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INSTRUCTION 
The lateral resolution of a surface topography 
measuring instrument refers to the ability to 
clearly distinguish surface heights between two 
closely spaced features. Specifications for lateral 
resolution often include the traditional Rayleigh 
and Sparrow criteria inherited from optical 
imaging systems [1], and there are more 
definitions that include a measure of the height 
transmission listed in the draft ISO specification 
standard, ISO 25178 part 600 [2]. 
 

  
FIGURE 1 Example instrument transfer function of a 
laser Fizeau interferometer showing a spatial 
frequency limit of 16 cycles/mm over a 100 mm 
aperture [3].  

 
A more complete characterisation of lateral 
resolution is the linear height-response 
instrument transfer function (ITF). The linear ITF 
represents the measured amplitudes relative to 
the true amplitudes of surface sine waves as a 
function of spatial frequency. In the limit of low-
amplitude sine waves (<<λ/4), we can predict the 
instrument response by mapping the Fourier 
components of the surface, weighted by the ITF, 
to the surface topography. The small height 
limitation in the ITF representation follows from 
the need to avoid nonlinear effects and to keep 
the spatial frequencies separable [1].  
 

FIGURE 1 shows the measured ITF for a laser 
Fizeau interferometer [3]. Data of this kind are 
valuable when using optical metrology to quantify 
the power spectral density of a surface – an 
important parameter in optics fabrication. 
 
There are a variety of calibration artefacts for 
lateral resolution, such as a line pairs, star 
patterns, a series of sinusoids with a chirped pitch 
and pseudo-random binary structures [4]. The 
measurement results in FIGURE 1 correspond to 
a line-spread function test, using a 30 nm step 
feature [3].  
 
An alternative to directly measuring the ITF over 
a range of surface frequencies is to calculate the 
ITF using modelling. The theoretical curve in 
FIGURE 1, for example, follows from a Fourier 
optics analysis of a coherent system, including 
apertures and known aberrations, with the object 
represented as a distribution of phase shifts 
proportional to surface heights [5]. Once this 
model is in place, for the purpose of generating a 
height-response ITF, it is easy enough to 
generate virtual sinusoidal surfaces in software at 
the small (<λ/4) surface height limit. 
 
The modelling approach to the ITF presupposes 
that we have an effective means of calibrating for 
the optical properties of the instrument.  This 
becomes increasingly cumbersome for 
techniques such as coherence scanning 
interferometry (CSI), which employs a spatially-
extended, spectrally-broadband light source [6]. 
Modelling of such systems traditionally involves 
diffraction calculations followed by numerical 
integration over an area of pupil positions, 
illumination directions and optical path lengths for 
each point in the field of view, under the 
assumption of ideal optics [7,8].  
 
A compelling modelling framework for surface 
topography measurement using CSI relies on the 
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definition of a 3D transfer function (3D TF) for the 
optical system [9-11]. In this framework, the 
object surface is a weakly-scattering structure or 
“foil”, and under reasonable physical conditions, 
we can compactly model the CSI imaging 
process as a 3D linear shift-invariant filtering 
operation. This linear systems theory is valid 
provided two assumptions are satisfied: 1) the 
first Born approximation is assumed, which 
means the total electromagnetic field on the 
surface is only determined by the incident field 
[12]. This approximation is accurate if the 
scattered field is small compared to the incident 
field on the surface. The weak scattering case 
can be considered when the refractive index 
contrast is small or if the object consists of sparse 
point-like objects. 2) Alternatively, the foil model 
of the surface must be valid, where the surface 
can be strongly scattering but must be slowly 
varying on a wavelength scale, i.e. the radius of 
the local curvature of the surface is much greater 
than a wavelength, such that the multiple 
scattering effect is negligible and the Kirchhoff 
approximation is assumed. Moreover, the 
reflection coefficient is assumed constant and 
polarisation independent over the range of 
incident/reflected angles accepted by the 
numerical aperture (NA) [13]. The Kirchhoff 
approximation is required if the refractive index 
contrast is large between the air and the material. 
 
Importantly, based on the foil model of the surface, 
it is possible to fully characterise the transfer 
properties and the resolutions of a CSI system by 
measuring a precision sphere [14-16]. This 
follows from the observation that a sphere, which 
is smaller than the field of view, reflects light 
through all possible angles within the NA limits of 
the optics. Once this calibration is completed, it is 
straightforward to calculate what the response 
would be to a sequence of sinusoids of small 
amplitudes, providing the height-response ITF.  
 
In this paper, we will demonstrate calculation of 
the linear height-response ITF of a CSI system 
using the foil model, calibrated using a precision 
sphere. This approach provides an alternative to 
calibration by the more familiar specimens, such 
as star patterns and chirped sinusoids, while 
enabling a more complete system 
characterisation than the traditional ITF 
specification. 
 
METHOD 
CSI is a well-established technique for surface 
topography measurement [17,18]. The major 

advantage of CSI is that it can estimate the phase 
information of the light back-reflected/scattered 
from the sample surface and the spectrum of 
broadband light source modulates the 
interferometric fringes in order to make it easier 
to determine the fringe order than in traditional 
phase shifting interferometry. CSI overcomes the 
2π ambiguity that can be present when the 
surface topography or a sharp step feature 
interrupts the imaging of continuous interference 
fringes.  
 
The detailed theoretical derivation of the foil 
model and the characterisation of the 3D TF of 
CSI can be found elsewhere [10,14,19]. Here, we 
will briefly describe the characterisation 
procedure. As shown in FIGURE 2, we first 
acquire the 3D fringe data of the spherical cap by 
CSI data acquisition and storing the intensity 
image stack in the usual way. Given that the 
sphere diameter is known, the foil function of the 
spherical cap, described as  

    o , , = 4 , ( , ) ,x y z jRw x y z s x y    
 (1) 

where 𝑗 = √−1 , R is the Fresnel amplitude 

reflection coefficient and is assumed to be a 
complex constant for simplicity, corresponding to 
the limit case of normal incidence reflection [10], 

and w(x,y) is a window function with smooth cut-

off for defining the space-limited surface region 
under illumination. The ‘foil’ is defined by the 1D 

Dirac delta function δ(z) based on the surface 

topography of the object s(x,y). The foil function 

can be generated numerically. Taking the Fourier 
transform of the fringe data and the foil function 
gives us the spectra of the spatial frequency 
components. Then the 3D TF for the specific 
optical instrument at the time of calibration can be 
calculated by dividing the fringe by the foil in the 
spatial frequency domain. From the 3D TF, the 
point spread function (PSF) can be derived 
through its inverse Fourier transform, and the 2D 
TF is calculated as the projection of the 3D TF 
onto the x-y plane by summing the 3D TF along 
the axial direction for each lateral spatial 
frequency. The 1D ITF plot, similar to FIGURE 1, 
can then be extracted from the 2D TF. In other 
words, the traditional ITF can be obtained by 
dimension reduction of the 3D TF.  

 



 
FIGURE 2 Characterisation procedure of 3D TF of CSI. 

 
In this work, we use a ZYGO NewView™ 8300 
CSI system with a 0.55 NA objective lens, 167 μm 
field of view and 0.163 µm lateral sampling 
distance. The three microspheres used here are 
made of silica and have different diameters, 
44 µm, 57 µm and 59 µm. The spheres are 
checked for surface quality and sphericity under 
scanning electron microscope (SEM) as shown in 
FIGURE 3, and we assume the sphericity error is 
negligible, i.e. the sphere can be described solely 
by its diameter. More information about the 
necessary microsphere tolerance is given 
elsewhere [15]. 

 

 
FIGURE 3 SEM image of a microsphere. 

 
RESULTS 
The three microspheres of different diameters 
were measured with CSI, and the 3D fringe data 
for each obtained. As previously mentioned, we 
compute a 3D TF from each measurement, 
where each sphere’s diameter determines the 
form of each modelled surface. For each sphere, 
measurements are taken at four orientations (0°, 
90°, 180°, 270°). The resulting TFs from each 
orientation are averaged to reduce the effect of 
any directional bias, such as those caused by 
asphericity of the microsphere or the influence of 

randomly located dust particles on the spherical 
surface. This averaging is performed by taking 
the arithmetic mean of the magnitude of 
differently orientated 3D TFs. The result of this 
can be seen in FIGURE 4.  
 

 
FIGURE 4 Magnitude of the 3D TF associated with the 
44 µm sphere after averaging and normalisation to one. 
Slices are shown at spatial frequencies A) ky = 0, B) kx 
= 0, and C) kz =2/λ= 3.45 µm-1 (λ = 0.58 µm). The 
colour bar and colour map used are shared between 
the three slices. 

 
A 3D PSF is acquired by the inverse Fourier 
transform of the 3D TF, and is displayed in 
FIGURE 5. It is interesting to note that the 3D 
PSF of CSI contains fringes along the axial 
direction, which would not be seen in an ordinary 
widefield microscope.  
 

 
FIGURE 5 A slice of the 3D PSF, computed by inverse Fourier 
transform of the 3D TF shown in FIGURE 4. Magnitude 
normalised to one for plotting. 

 
The averaged 3D TF of each sphere is projected 
onto the lateral spatial frequency (kx-ky) plane to 
produce a 2D projection of the 3D TF. This 
process is done by summing the 3D TF along the 
kz direction at each kx and ky, followed by 



normalising the magnitude of the resulting 2D 
projection to one. This projection characterises at 
each lateral spatial frequency coordinate (kx,ky) 
the instrument’s ability to transfer the surface 
function (equation (1)) to the measured optical 
field (i.e. the 3D fringe data). From the fringe data, 
the surface topographic information is retrieved 
using a surface reconstruction algorithm, e.g. the 
frequency domain analysis method [20].  
 
From each of the averaged 3D TFs we obtain an 
approximately circularly-symmetric 2D projection 
(which is what we would expect from an optical 
imaging system with a circular aperture). The one 
shown in FIGURE 6 is obtained from the 44 µm 
sphere. The 3D TFs and the corresponding 2D 
projections obtained from the measurements of 
the three spheres are almost completely identical 
to each other, despite the differences in diameter 
between the three spheres, providing evidence 
that the transfer function of a CSI can be obtained 
solely via measurement of a microsphere based 
on the linear theory of CSI. 
 

 
FIGURE 6 The 2D projection of the 3D TF shown in 
FIGURE 4. Since the other two projections associated 
with the other two spheres are nearly identical, only 
one is displayed. The blue lines are the lines along 
which profiles are taken for FIGURE 7.  

 
Profiles of the three projections are taken radially 
from the origin of the axes, in this case arbitrarily 
along the positive kx axis (marked in FIGURE 6), 
and compared to both each other and the 
theoretical model in FIGURE 7. This theoretical 
model is produced using equation (32) in 
reference [10]. Given the system has a 0.55 NA, 
the central wavelength of 0.58 µm and full-width-
at-half-maximum bandwidth of 0.08 µm, the 

theoretical cut-off frequency is approximately 
2 µm-1. 
 

 
FIGURE 7 Profiles of the 2D projections from each 
sphere measurement taken along the positive kx axis 
as marked on FIGURE 6. The projection associated 
with the 44 µm diameter sphere is the blue dashed line, 
the 57 µm is the red dotted line, the 59 µm is the yellow 
dash-dot line, and the theoretical model is given by the 
black solid line. Cut-off frequencies corresponding to 
the Rayleigh and Abbe criteria of resolution limit are 
shown. 

 
The measured TFs are in general very close to 
the theoretical one. The discrepancy is highly 
likely caused by slight defocus of the CSI system. 
The reader may consult [16] for more detailed 
explanation and discussion on this. Assuming the 
surface reconstruction algorithm is a linear 
operation applied to the measured optical field 
and the digital sampling frequency of the camera 
is higher than 2 µm-1 (which is true for high 
magnification objective lens), the traditional ITF 
defined in [1] can be estimated from the 3D TF.  
 
CONCLUSION 
The linear height-response instrument transfer 
function (ITF) offers a more complete 
characterisation of the lateral resolution of an 
optical surface topography measuring instrument. 
We demonstrate in this paper, the ITF can be 
estimated from measuring a microsphere based 
on the linear theory of 3D imaging, particularly in 
this case, the foil model in CSI. This approach 
provides an alternative to calibration by the more 
familiar specimens such as star patterns and 
chirped sinusoids.  
 
Importantly, an optical model such as the 3D TF 
presented here is not limited to recreating the 
linear ITF, which is known to have limitations 
based on the assumption of linear response of the 



instrument [1]. The foil model provides a means 
of predicting the response to more challenging 
surface topographies and shapes that often give 
rise to anomalous or unexpected results that are 
inconsistent with the linear response. The sphere 
calibration, therefore, enables a more complete 
system characterisation than the traditional ITF 
specification, potentially leading to software 
correction methods to extend the linear range of 
the instrument [14,19]. For future work, the 
authors will provide a rigorous experimental 
verification of the foil model and investigate the 
validity regimes of the ITF and 3D TF, and their 
relationship. 
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