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Abstract  46 

Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the 47 

tens of billions of dollars, and a significant supplier of essential vitamins, minerals and 48 

phytochemicals in the human diet.  Shelf life is a key quality trait related to alterations in 49 

cuticle properties and remodelling of the fruit cell walls. Studies with transgenic tomato 50 

plants undertaken over the last 20 years have indicated that a range of pectin degrading 51 

enzymes are involved in cell wall remodelling. These studies usually involved silencing of 52 

only a single gene and it has proved difficult to compare the effects of silencing these genes 53 

across the different experimental systems. Here we report the generation of CRISPR-based 54 

mutants in the ripening-related genes encoding the pectin degrading enzymes pectate lyase 55 

(PL), polygalacturonase 2a (PG2a) and β-galactanase (TBG4). Comparison of the 56 

physiochemical properties of the fruits from a range of PL, PG2a and TBG4 CRISPR lines 57 

demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a 58 

and TBG4 influenced fruit colour and weight. Pectin localisation, distribution and solubility 59 

in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal 60 

antibody probes LM19 to de-esterified homogalacturonan (HG), INRA-RU1 to 61 

rhamnogalacturonan I, LM5 to β1-4-galactan and LM6 to arabinan epitopes, respectively. 62 

The data indicate that PL, PG2a and TBG4 act on separate cell wall domains and the 63 

importance of cellulose microfibril-associated pectin is reflected in its increased occurrence 64 

in the different mutant lines. 65 

 66 
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 81 

 82 

Introduction 83 

 84 

Many fleshy fruits undergo pronounced softening during the ripening process. Softening is 85 

important for flavour development and overall palatability, but also impacts fruit storage, 86 

transportability and shelf life (Klee and Giovannoni, 2011). High quality produce with a long 87 

shelf life is essential for the modern supply chain. Current methods for slowing the softening 88 

process in tomato (Solanum lycopersicum) involve the use of hybrids containing non-ripening 89 

mutations that in the heterozygous form can enhance postharvest life, but these mutations can 90 

also compromise other aspects of ripening including flavour and colour development 91 

(Kitagawa et al., 2005). A better strategy would be to target the softening process alone.  92 

 93 

A substantial amount of work has been undertaken to investigate the genetic and molecular 94 

basis of fruit softening. Fruit texture is determined by numerous factors including cell wall 95 

structure (Seymour et al, 2013), cellular turgor (Saladié et al., 2007), hydroxyl radical (·OH) 96 

attack (Airianah et al., 2016) and cuticle properties (Yeats and Rose, 2013). Remodelling of 97 

the cell wall is thought to be a predominant mechanism for inducing softening, involving 98 

changes in the complex networks of microfibril and matrix polysaccharides including 99 

cellulose, hemicelluloses, pectins, and structural proteins (Keegstra, 2010). The primary cell 100 

walls and middle lamellae (ML) of fruits are normally rich in pectin and these pectic 101 

polysaccharides have long been known to undergo degradation during the ripening process 102 

(Brummell, 2006).  103 

 104 

Pectins are the most structurally complex plant cell wall polysaccharides, and three major 105 

classes of these polymers have been identified: homogalacturonan (HG), 106 

rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) (Atmodjo et al., 2013). 107 

Evidence indicates that during ripening these high molecular weight polymers are being 108 

released from the wall matrix likely through breaking of covalent linkages (Brummell, 2006). 109 

The pectic polymers also undergo a loss of neutral sugar side chains (associated with RG-I) 110 

and methyl ester groups from HG (Wang et al., 2018). In tomato, strawberry (Fragaria × 111 

ananassa) and many other fruits these changes are brought about by suites of cell wall-112 

degrading enzymes (see Table 1 in Wang et al., 2018), with varying cocktails of activities in 113 

different species.  114 
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 115 

Over the past 40 years a wide range of enzymes have been investigated to determine which 116 

activities are involved in regulating fruit softening. Work on tomato has included the 117 

generation of transgenic plants to silence the activity of genes encoding polygalacturonase 118 

(PG), pectinesterase (PE), galactanase (TBG), xyloglucan endo-transglycosylase (XTH) and 119 

expansin (Smith et al., 1988; Sheehy et al., 1988; Tieman and Handa, 1994; Brummell et al., 120 

1999; Smith et al., 2002; Cantu et al, 2008). These experiments have yielded only modest 121 

changes in texture of the transgenic fruits. However, in strawberry, a model for non-122 

climacteric fruits, suppression of either pectate lyase (PL) or PG resulted in much firmer fruit 123 

(Jiménez-Bermúdez et al., 2002; Quesada et al., 2009). More recently silencing of PL in 124 

tomato has been shown to inhibit fruit softening (Uluisik et al., 2016). Pectin degradation has 125 

therefore been demonstrated to be a major determinate of softening in fleshy fruits. 126 

 127 

New insights into the structure of primary cell walls are providing a way to further 128 

characterise the role of pectin degradation in fruit softening. Until recently pectin was thought 129 

to contribute to wall mechanics relatively independently of other cell wall polymers such as 130 

cellulose and xyloglucan. The pectic polysaccharides were considered to influence cell wall 131 

properties mainly through their ability to form so-called ‘egg box’ structures, in which 132 

divalent calcium ions cross-linked chains of de-esterified HG, leading to strengthening of the 133 

gel matrix independent of any cellulose-pectin interactions (Carpita and Gibeaut, 1993). In 134 

this “tethered network” model, cellulose microfibrils are coated and interlocked by 135 

xyloglucan, or other hemicellulose polymers, forming the load-bearing network. However, 136 

the validity of this conventional cell wall model has been challenged by a series of recent 137 

discoveries. It has been proposed that pectin may directly contribute to the crosslinking of 138 

cellulose microfibrils in the cell wall, potentially to a greater extent than xyloglucan, the 139 

classical crosslinking hemicellulose (Wang and Hong, 2016). Additionally, some subsets of 140 

xyloglucan and pectin can be covalently linked together (Thompson and Fry, 2000; Popper 141 

and Fry, 2005; Popper and Fry, 2008; Cornuault et al., 2018) and new structural features of 142 

pectic supramolecules have been recognised using atomic force microscopy (Round et al., 143 

2010). They include branches on the main galactosyluronic acid backbone of the pectic 144 

polysaccharides. These novel observations may explain why pectin degradation can modulate 145 

fruit texture. 146 

 147 
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For this study, we leveraged available DNA editing technologies (Wang et al., 2014) to 148 

generate loss of function mutants in specific cell wall structural enzymes and, therefore, 149 

provide an opportunity to revisit their functions in the context of a new understanding of the 150 

structure of plant cell walls. We generated mutations in genes encoding the tomato pectin 151 

degrading enzymes PL, PG2a and TBG4 and analysed their effects on fruit softening and 152 

pectin localisation in the ripe fruit pericarp. We report that, in our comparative study, only the 153 

silencing of PL had any significant impact on tomato softening, and that PL is necessary for: 154 

(i) changes in the pectin domains that lead to loss of de-esterified HG from tricellular 155 

junctions, and (ii) degradation of HG and RG-I by PG2a and TBG4. The presence of all three 156 

enzyme activities are needed, however, to allow normal ripening-related changes in pericarp 157 

cell-to-cell adhesion and solubilisation of pectin from association with cellulose microfibrils.  158 

 159 

 160 

RESULTS   161 

 162 

CRISPR/Cas9-induced homozygous lines were generated to silence PECTATE LYASE 163 

(PL), POLYGALACTURONASE (PG2a), and β-GALACTANASE (TBG4). 164 

Single guide RNAs (sgRNAs) were designed to create individual mutations in the coding 165 

sequences of PL, PG2a and TBG4 (Table S1). Specific sites were selected to avoid off-target 166 

mutagenesis using the tomato genome sequence v2.5 (https://solgenomics.net/). The sgRNAs 167 

were expressed under the control of the plant RNA polymerase III AtU6 promoter (Nekrasov 168 

et al., 2013). A total of 12, 10, and 7 transgenic lines were generated for PL, PG2a, and 169 

TBG4, respectively. Two homozygous lines were studied in detail for PL and TBG4, and 170 

three for PG2a (Figure 1). All were fully characterised in the T1 generation. In addition, a 171 

transgene free T1 line, which had come through tissue culture, was used as the azygous wild-172 

type control. Analysis indicated that mutations in the CRISPR lines generated premature 173 

translation termination codons (PTC) in the mRNAs of the target genes. These resulted in 174 

nonsense mutations and truncated, incomplete, and non-functional protein products in the 175 

mutants (see Figure S1-S3). 176 

 177 

PG2a, PL and TBG4 gene expression and enzyme activity in the CRISPR lines  178 

Expression of the PL, PG2a, and TBG4 target genes was determined by reverse transcription 179 

quantitative PCR (RT-qPCR) using pericarp tissues of red ripe (breaker+7) fruit. Transcripts 180 

of all three genes were reduced in the CRISPR mutants compared with azygous lines. A 181 
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significant (P<0.001) difference in relative gene expression was detected (Figure S4) in the 182 

PG2a lines. All CRISPR lines would be expected to generate non-functional proteins (Figure 183 

S1-S3).   184 

 185 

PL activity was estimated based on its β-eliminative reaction with cell wall-bound pectin. 186 

The basis of the assay was an increase in absorbance at 232 nm of the clarified reaction 187 

mixture due to the release of 4,5-unsaturated products from cell wall preparations as a result 188 

of PL activity. This follows the method described by Collmer et al. (1988). Acetone insoluble 189 

preparations were used because we found that the enzyme could not be purified away from 190 

the cell wall material without complete loss of activity.  PL activity in the CRISPR lines was 191 

significantly (P<0.001) reduced in comparison with the azygous controls (Figure 2A). There 192 

was residual PL activity in the CRISPR lines and this likely resulted from other PL genes that 193 

are weakly expressed during ripening, such as Solyc05g055510 and Solyc02g093580  (Figure 194 

S5). The reduction of PL activity in the CRISPR knockout lines was consistent with that 195 

reported from the RNAi study published recently by Uluisik et al, (2016). PG2a enzyme 196 

activity was significantly (P <0.001) reduced in all three independent CRISPR lines when 197 

compared with the azygous control at the red ripe (B+7) stage (Figure 2B). Residual PG 198 

activity was detected in these lines and this must arise from the products of other PG-like 199 

genes known to be expressed at low levels in ripening tomato (The Tomato Genome 200 

Consortium, 2012). Measurement of TBG4 activity was undertaken using a potato β-1-4-201 

galactan-rich substrate. A significant (P<0.001) reduction in enzyme activity was apparent in 202 

the TBG4 CRISPR lines (Figure 2C). Measurements of total β-galactosidase (Figure S6) did 203 

not show a large reduction in the CRISPR lines, but this was expected as most of the β-204 

galactosidase activity in tomato pericarp is associated with other non-cell wall-based 205 

isoforms (Pressey, 1983).  206 

 207 

Effects of CRISPR mutations on ripening 208 

Fruits from the PL CRISPR lines had significantly (P<0.05) firmer outer and inner pericarp 209 

tissues compared to the control, but fruits from the CRISPR edited PG2a and TBG4 lines 210 

showed a similar degree of softening to the azygous controls (Figure 3 A and B). Pericarp 211 

colour at red ripe B+7 stage was similar in the PL and azygous controls.  However, a 212 

significant (P<0.05) decrease in colour index was detected in both PG2a and TBG4 lines 213 

(Figure 4A). Analysis of pericarp carotenoids indicated significantly (P<0.05) enhanced β-214 

carotene and reduced cis-phytoene in the TBG4 and PG2a lines. There was also a trend 215 
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toward reduced lycopene levels in these lines although this was not significant (Figure S7). 216 

Such a profile suggests that ripening-related carotenoid formation could have been affected 217 

indirectly in these CRISPR mutants.  Fruit weight varied among mutant lines. The TBG4, 218 

PG1 and PG34 CRISPR lines had significantly (P<0.05) higher fruit weights than the 219 

azygous control fruit at the same stage of ripeness (Figure 4B).  Measurement of the fresh 220 

weight to dry weight ratio (Table S2) indicated that the variation among the means was not 221 

significant (P=0.111). There were no significant (P>0.05) differences between any of the 222 

CRISPR lines and the azygous control in soluble solids content (% Brix) of the fruit at the red 223 

ripe B+7 stage (Figure 4C).  224 

 225 

Preliminary assessment of juice viscosity of the CRISPR lines was performed using a 226 

RheolabQC rheometer. Juice viscosity was significantly (P<0.05) higher in PL and PG2a 227 

lines compared with the azygous control, with an effect on paste viscosity in one of the TBG4 228 

lines (Figure 5). Inhibiting PL and PG activity will permit the structural integrity of pectin 229 

polymers to be retained and therefore this would be predicted to have a positive influence on 230 

juice viscosity. Investigating the full impact of the CRISPR mutations on tomato processing 231 

traits is outside the scope of the present investigation and is now part of a further study.  232 

 233 

Immunocytochemistry of cell wall de-esterified HG and β-1-4-galactan in CRISPR 234 

mutants 235 

For the immunocytochemistry experiments, a single representative allele from each mutant 236 

class was selected and fruit were harvested at the orange ripe B+4 stage. This stage was 237 

chosen rather than red ripe B+7 because the activity of each of these cell wall enzymes has 238 

previously been shown to be at a maximum post breaker, but prior to the fully ripe stage 239 

(Della Penna et al., 1987; Smith and Gross, 2000; Uluisik et al., 2016; Yang et al., 2017). 240 

Also, preliminary experiments indicated that better fixation and localisation of pectin was 241 

achieved prior to fruit becoming fully ripe. All immunocytochemistry experiments were 242 

performed using multiple sections taken from embedded pericarp tissue from three biological 243 

replicates. The pericarp tissue from each line was fixed, embedded in resin and thin sections 244 

were cut and probed with the monoclonal antibodies LM19 and LM5. LM19 recognises 245 

unesterified HG (Verhertbruggen et al., 2009), LM5 recognises a linear tetrasaccharide at the 246 

non-reducing end of (1-4)-β-D-galactan that occurs as a sidechain of RG-I (Jones et al., 1997; 247 

Anderson et al., 2016).  248 

 249 
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Initially, thin sections from each of the lines were labelled with Calcofluor-white which binds 250 

strongly to cellulose (Figure S8). This showed that there were no major differences in cell 251 

size or patterning between the tomato lines. Under the transmission electron microscope cell 252 

walls of the various lines looked similar (Figure 6), although electron dense material was 253 

more often present in the tricellular junctions of the PL and PG CRISPR lines. Furthermore 254 

the intercellular spaces in the TBG4 CRISPR fruits were often larger than in other lines,  255 

particularly in the inner regions of the pericarp, indicating some loss of cell-to-cell adhesion 256 

at these points (Figure 6).  257 

 258 

Probing the pericarp sections with LM19 indicated a higher epitope signal intensity in the 259 

pericarp of PL, PG2a, and TBG4 CRISPR lines than that of the azygous control (Figure 7). In 260 

the control, there was some labelling of the cell walls but the epitope was often absent from 261 

the cell junctions and ML regions (Figure 7). Higher levels of labelling with LM19 were 262 

apparent in all CRISPR lines. Analysis of the micrographs using Image J (Table S3) indicated 263 

that the PG2a CRISPR lines had the highest mean intensity of label, while azygous controls 264 

had the lowest. The intensity of labelling of the sections from the TBG4 and PL CRISPR 265 

lines were similar, but higher than the control. There were significant (P<0.05) differences 266 

between the labelling intensity in the PL and PG2a CRISPR lines when compared against the 267 

azygous control (Table S3). 268 

 269 

In sections of the PL CRISPR lines, the LM19 epitope was particularly abundant in cell walls 270 

at the tricellular junctions (Figure 7). A distinctive feature of the PG2a CRISPR line was the 271 

presence of LM19 labelling in the intercellular spaces at some of the tricellular junctions (the 272 

point between adherent and separated cell walls). An additional feature of the PG2a line was 273 

a discontinuous detection of the LM19 epitope in the adhered cell walls. In the TBG4 274 

CRISPR fruit pericarp, the LM19 epitope occurred evenly in cell walls and was often present 275 

in corners of cell wall junctions and partially present in the ML, but absent from the 276 

intercellular spaces (Figure 7).  277 

 278 

The monoclonal antibody LM5 was used to detect β-1,4-galactan sidechains of RG-I. Low 279 

levels of labelling for LM5 were apparent in the azygous control with some labelling in the 280 

primary walls, but generally the signal was absent from the ML region. A similar pattern of 281 

labelling with LM5 was apparent in the PG2a line and the control (Figure 7). Both the PL 282 

and TBG4 CRISPR mutants showed much higher levels of LM5 labelling than the control 283 
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(Figure 7, Table S3). In the PL mutant the outer cell walls of epidermal cells were strongly 284 

labelled but the sub-epidermal cells reacted weakly with LM5, which was in contrast to the 285 

TBG4 CRISPR mutant where sub-epidermal cells were strongly labelled (Figure 7). LM5 286 

labelling was evident in the region of the cell wall lining the intercellular spaces especially in 287 

the PL and TBG4 lines. In both the PL and TBG4 lines, LM5 binding was generally absent 288 

from the intercellular spaces and the tricellular cell junctions. 289 

 290 

 291 

Extraction and characterisation of cell wall pectin fractions using pectin antibody 292 

probes 293 

Cell wall material was prepared from the pericarp of B+7 fruit of representative wild type, PL, 294 

PG2a and TBG4 lines.  Preparations of three biological replicates were then extracted 295 

sequentially with water, the calcium chelator cyclohexane diamine tetraacetic acid (CDTA) 296 

and 4 M KOH and then the residue was treated with cellulase. The clarified extracts were 297 

then probed with a range of monoclonal antibodies to determine the levels of specific pectin 298 

domains that were solubilized with each extractant (Figure 8).  A substantial additional 299 

amount of LM19 positive material was solubilized by water and CDTA in the cell wall 300 

preparations from the TBG4 mutants in comparison to the other genotypes (Figure 8A). 301 

However, significantly (P<0.05) more de-esterified HG was retained in the cellulose residue 302 

in the absence of PL, PG2a or TBG4 in comparison to wild-type controls where all three 303 

enzymes were present (Figure 8A). The LM5 response was significantly (P<0.05) higher in 304 

all fractions of the TBG4 fruit extracts than in the other lines and reduced most in the PG2a 305 

lines with  polysaccharides extracted with water, CDTA and KOH (Figure 8B). Galactan-rich 306 

pectins were retained with the cellulose residue in the absence of PL and TBG4 activity 307 

(Figure 8B). 308 

 309 

As part of the cell wall extraction experiments we tested two additional antibody probes to 310 

those used in the immunocytochemistry studies. The INRA-RU1 monoclonal antibody (Ralet 311 

et al., 2010) recognises the RG-I backbone. Significantly (P<0.05) less backbone RG-I 312 

epitope was solubilized with water when PL and PG2a were silenced in comparison to the 313 

wild-type lines and the TBG4 genotype. Conversely, cellulase treatment of residues indicated 314 

that more RG-I was associated with cellulose in the absence of PL and PG2a (Figure 8C). 315 

Similarly, for the arabinan epitope of RG-I detected by LM6 (Figure 8D), lower levels of 316 

epitope were solubilized in water and CDTA in the absence of PG2a and higher levels were 317 
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detected in the cellulase-extracted fraction relative to wild type (Figure 8D). The use of a 318 

post-alkali cellulase treatment to release pectic fractions provides an insight into the potential 319 

importance of cellulose microfibril-associated pectins. 320 

 321 

DISCUSSION 322 

 323 

Recent advances in DNA editing have made it possible to precisely manipulate plant 324 

genomes. The CRISPR/Cas9 system has been utilised successfully for mutagenesis in a 325 

variety of organisms including plants such as Arabidopsis (Gao et al., 2016), rice (Xu et al., 326 

2015; Sun et al., 2016), wheat (Wang et al., 2014), and maize (Svitashev et al., 2016). In 327 

tomato, genes that have been targeted include SlAGO7 (Brooks et al., 2014), RIN (Ito et al., 328 

2015), SlPDS and SlPIF4 (Pan et al., 2016), DELLA and ETR1 (Shimatani et al., 2017). Here, 329 

we have shown that CRISPR/Cas9 can induce mutations in the genes PL (Solyc03g111690), 330 

PG2a (Solyc10g080210) and TBG4 (Solyc12g008840), which encode pectin-degrading 331 

enzymes. In our study, the CRISPR mutations resulted in a range of transcript abundances 332 

with only PG2a showing substantial reductions in transcript levels (Figure S4). In eukaryotes, 333 

selective mRNAs containing a premature translation termination codon (PTC) are targeted 334 

for degradation by nonsense-mediated mRNA decay (NMD) (Lykke-Andersen and Jensen, 335 

2015) and often associated with decreased mRNA levels compared with their counterparts 336 

without PTCs. Both PG2a mutant lines have frame-shifts resulting in stop codons being 337 

introduced early within the transcript. As such, they are likely to be targets of NMD. The 338 

PG2a mRNA is one of the most abundant transcripts during normal ripening and this is in 339 

part due to its unusually long half-life rather than a particularly high transcription rate 340 

(DellaPenna et al., 1989). A switch to rapid turnover as a result of becoming an NMD target 341 

will thus have a proportionately strong impact on the PG2a mRNA steady state levels.  342 

 343 

All the modified sequences at our target sites were predicted to generate stop codons and 344 

subsequent measures of enzyme activity indicated the CRISPR mutations eliminated the 345 

target functions. Interestingly, low ripening-related activities for PL, PG, and TBG were 346 

apparent and this residual activity likely reflects the expression in the fruit pericarp of other 347 

members of the respective gene families.  For example, RT-qPCR data indicates that other PL 348 

and PG genes are being upregulated to some extent to compensate for the mutations in the 349 

main ripening-expressed gene family members (Figure S5).  350 

 351 
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CRISPR mutations targeting pectin degrading enzymes and the impact on ripening 352 

Prior to the development of DNA editing technology, antisense RNA and RNAi lines had 353 

been generated to silence PG2a, PL and TBG4 (Sheehy et al., 1988; Smith et al., 1988; 354 

Uluisik et al., 2016; Yang et al., 2017; Smith et al., 2002). PG2a antisense lines showed no 355 

effects on fruit texture, although pectin depolymerisation was inhibited (Smith et al., 1990). 356 

The TBG4 antisense lines yielded fruit that were reported to be somewhat firmer than those 357 

of the control line (Smith et al., 2002). More recently, RNAi lines suppressing PL expression 358 

resulted in marked effects on tomato fruit texture (Uluisik et al., 2016; Yang et al., 2017).  359 

 360 

In the current study, using cv. Ailsa Craig tomato fruits, only the silencing of PL resulted in 361 

any measurable effect on fruit softening in contrast to previous reports relating to TBG4. The 362 

differences between our work and the effects on the TBG4 antisense fruits reported by Smith 363 

et al., (2002) could be due to the genetic background as they performed their experiments in 364 

the c.v. Rutgers. The ability of reduced PL activity to delay softening, without impacting 365 

other aspects of ripening, was reported in both cvs Ailsa Craig, M82 (Uluisik et al., 2016) and 366 

Micro-Tom (Yang et al., 2017) indicating a key role for this gene in modulating softening in 367 

cultivated tomato. Interestingly, fruits of the PG2a and TBG4 CRISPR lines showed altered 368 

colour and weight. It has been suggested that pectin oligomers and sugar residues such as 369 

galactose, generated by cell wall degradation, could be involved in initiating the ripening 370 

process, possibly through induction of ethylene biosynthesis (Gross, 1985; Melotto et al., 371 

1994).  372 

 373 

Carotenoid analysis indicated that the changes in pericarp colour in the TBG4 and PG2a lines 374 

was due to altered β-carotene and lycopene content. A profile of increased β-carotene with a 375 

concurrent reduction in lycopene indicates that ripening-related carotenoid formation has 376 

been altered, possibly through the modulation of lycopene beta-cyclase (beta-LCY) activity.  377 

This enzyme converts lycopene to β-carotene and is normally down-regulated at the breaker 378 

stage of fruit development (Pecker et al., 1996). In the PL CRISPR lines, some pectin 379 

degradation may occur due to the activity of the normal PG2a and TBG4 gene products. The 380 

delayed colour development in the PG2a and TBG4 lines could, therefore, reflect a delay in 381 

the onset of ripening. The observed alteration in carotenoid profiles may reflect changes in 382 

ethylene perception or response. There was no strong evidence that the differences in fruit 383 

weight in the PG2a and TBG4 lines were due to altered water relations in the fruits based on 384 

fresh weight to dry weight ratios in the pericarp. Also there was no strong evidence that the 385 
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fresh weight to dry weight ratio in the PL lines differed from that of the wild type, which was 386 

consistent with them both having a similar water content.   The difference in fruit weight seen 387 

in the PG2a and TBG4 lines merits further investigation. 388 

 389 

Previous studies have reported that in tomato, juice produced from transgenic fruit with 390 

reduced PG2a activity, modified by antisense technology, was thicker and had a higher 391 

viscosity (Schuch et al., 1991; Errington et al., 1998). The properties of tomato juice or paste 392 

differ between varieties and are likely to reflect differences in cell wall physiochemical 393 

properties between the genotypes (Thankur et al., 1996). Tomato paste is composed of 394 

suspended particles including whole cells, broken cells and cellular fragments in an aqueous 395 

serum. In this work, the higher viscosity of the pastes made from the PL and PG2a CRISPR 396 

lines are likely explained by changes in pectin molecular size resulting from reduced pectin 397 

degradation as a result of the silencing of these genes (Uluisik et al., 2016). The similarity 398 

between PL and PG2a CRISPR fruits with respect to paste viscosity is consistent with an 399 

effect on polyuronide molecular weights rather than pectin solubility, which is unaffected in 400 

low PG2a antisense fruits (Smith et al., 1990), but inhibited in PL CRISPR lines (Uluisik et 401 

al., 2016). Rheological characterisation of juices obtained from transgenic PL-silenced 402 

strawberry fruits suggested that the increased content of large particles in the juice and the 403 

enhanced viscosity were the result of silenced PL activity and improved tissue integrity 404 

(Sesmero et al., 2009). 405 

 406 

Pectin localisation, degradation and tomato fruit softening 407 

The antibody probe LM19 recognises de-esterified HG. In the PL CRISPR mutants, which 408 

would be expected to have normal PG2a and TBG4 activity, intense staining of both the ML 409 

and tricellular junction zones was apparent. The PG2a CRISPR fruits showed ubiquitous 410 

LM19 labelling throughout their cell walls including the ML region, tricellular junction zones, 411 

and even the intercellular spaces. This was in contrast to the control fruits where some 412 

labelling of the primary wall was apparent, but HG appeared absent from other areas. These 413 

data support previous findings (Uluisik et al., 2016) that PL is especially important in 414 

degrading de-esterified HG at tricellular junctions and it has been reported in other plant 415 

tissues that the tricellular junction zones are rich in de-esterified HG (Willats et al., 2001).   416 

 417 

The immunolocalisation studies indicated that the presence of both normal PG and PL 418 

enzymes was necessary to degrade pectin to the extent seen in the wild-type fruits.  These 419 
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data are consistent with previous reports that in tomato pectin solubilisation requires PL, but 420 

PG2a is important for full pectin depolymerisation (Smith et al., 1990; Uluisik et al., 2016). 421 

Interestingly, in the absence of TBG4 activity in the TBG4 CRISPR lines, but with PG2a and 422 

PL expression present, the LM19 labels predominantly the primary cell walls, with some 423 

labelling of the ML, tricellular junctions and no labelling of the intercellular spaces. This 424 

indicates that PG2a and PL are necessary and sufficient to degrade de-esterified HG in the 425 

junction zones. Moreover, the galactanase encoded by TBG4 is needed for full solubilisation 426 

of de-esterified HG in the ML and primary cell wall, which must be rich in HG and HG 427 

linked to RG-I, harbouring sidechains of β1,4-galactan. 428 

 429 

The LM5 probe, which detects β1-4-galactan, showed limited labelling in the ML region in 430 

the control, PL and PG2a CRISPR fruits, which indicates that even in the absence of PL or 431 

PG2a, galactans are solubilized from the cell wall and especially the ML. A role for PL in 432 

this process was apparent when LM5 labelling of the PL CRISPR cell walls was undertaken.  433 

There was intense LM5 labelling of the cell walls of both PL and TBG4 mutants. This 434 

indicates PL is necessary to facilitate the normal degradation of β1-4-galactans and as might 435 

be expected, the absence of the TBG4 gene product impacts the solubilisation of these 436 

polymers and likely RG-I. De-esterified HG has an important role in plant cell wall structure, 437 

occurring at points of cell separation such as tricellular junctions and in the ML (Willats et al., 438 

2001) where it mitigates the forces that drive cell separation.  439 

 440 

A consistent feature of the parenchyma cells in the TBG4 CRISPR lines was that the 441 

intercellular spaces and junction zones appeared larger and more separated than in the PL and 442 

PG2a CRISPR lines and even the control fruits. A possible explanation for this observation is 443 

that in the TBG4 CRISPR lines, active PL and PG2a enzymes will have degraded de-444 

esterified HG in the cell junctions and ML regions, but RG-I-associated β1-4-galactans have 445 

remained intact. These β1-4-galactans are thought to reduce flexibility in plant cell walls. For 446 

instance, compression tests on pea cotyledons have revealed that galactan-rich cell walls were 447 

twice as stiff as those without detectable galactan-rich RG-I (McCartney et al., 2000; 448 

Bidhendi and Geitmann, 2016). Therefore, in the absence of HG at tricellular junctions, the 449 

presence of galactans in the primary wall may result in elevated levels of separation at the 450 

junction zones. This enhanced cell separation may counter-balance the impact of the loss of 451 

TBG4 on fruit firmness. This could explain the variation between the effects of silencing 452 
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TBG4 in different tomato backgrounds, as cell wall remodelling changes will likely vary 453 

between genotypes depending on the levels of PL, PG2a and other pectin degrading enzymes.  454 

 455 

To complement the immunocytochemical studies, we investigated the classes of pectin that 456 

could be extracted from cell wall material of the different genotypes using a range of solvents. 457 

Previous studies indicated that total water-soluble pectin levels are affected by silencing PL 458 

(Uluisik et al, 2016), but silencing PG has limited effects on pectin solubilisation (Smith et al, 459 

1990). In the present study, we wanted to focus on specific pectin domains to provide more 460 

detailed information on the changes in these polysaccharides in mutant and wild-type fruits.  461 

The pectin solubilized from the cell wall material was characterised with the same 462 

monoclonal antibody probes as for the immunomicroscopy, LM19 and LM5, and two 463 

additional probes, INRA-RU1 and LM6 recognising the RG-I backbone and arabinan 464 

epitopes, respectively. LM19 detected elevated levels of water-soluble de-esterified HG in 465 

the TBG4 fruits. Furthermore, these fruits showed enhanced levels of galactan-rich pectin in 466 

the water soluble fractions. These data may reflect the increases in cell separation observed in 467 

the TBG4 fruits, as pectin solubility, cell wall swelling and presence of intercellular spaces 468 

have been linked (Redgwell et al, 1997). 469 

 470 

The results of the cell wall analysis were consistent with the immunomicroscopy and 471 

demonstrated varying degrees of increased retention (reduced solubility) of HG and galactan-472 

rich pectin in the PL, PG2a and TBG4 lines in comparison to wild-type fruits. There was a 473 

significant reduction in the solubility of RG-I and the associated galactan and arabinan 474 

epitopes associated with the cellulose residue in all the mutants, and less INRA-RU1 epitope 475 

was water soluble in the PL and PG2a lines. Published studies on cellulose composites and 476 

cellulose microfibrils have indicated that an elevated neutral sugar content of pectin increases 477 

the ability of pectin to bind to cellulose. Furthermore, pectin has been observed to accumulate 478 

in the spaces of the fibrillar network, as well as adjacent to fibrils. Pectin is likely to coat 479 

cellulose microfibrils and affect their level of aggregation (Lin et al., 2016). Cellulose and 480 

pectin together have been shown to contribute to the load-bearing capacity of composites 481 

during compression. The changes in cellulose microfibril domain structure are likely 482 

important in wall toughness and developmental changes including growth (Thomas et al., 483 

2013; Lin et al., 2016), and this may also be the case in fruit ripening.  484 

 485 
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The importance and role of pectin in cell wall structure is undergoing something of a 486 

renaissance. In the generally accepted ‘tethered network’ hypothesis (Carpita and Gibeaut, 487 

1993) the main structural component of the primary cell wall was postulated to be the 488 

cellulose microfibrils tethered by hemicellulose molecules. Pectin was thought to form a 489 

further independent network with so-called ‘egg box’ structures, in which divalent calcium 490 

ions cross-linked chains of demethylesterified HG. Recent studies have indicated, however, 491 

that pectin may be much more closely associated with cellulose microfibrils than previously 492 

thought. Using solid-state nuclear magnetic resonance spectroscopy (ssNMR) of 
13

C labeled 493 

Arabidopsis cell walls it has been demonstrated that pectin-cellulose interactions are 494 

extensive and pectin galactan chains may intercalate within, or between, nascent cellulose 495 

microfibrils during their synthesis (Dick-Pérez et al., 2011; Wang et al., 2012; Wang et al., 496 

2015; Wang and Hong, 2016).  In addition, pectin structure may also involve features that 497 

have received little attention in relation to their role in the cell wall such as branching of the 498 

main galactosyluronic acid backbone (Round et al, 2010). 499 

 500 

The role of HG in cell adhesion and the close association of pectic galactans (RG-I) with 501 

cellulose microfibrils is entirely consistent with the observations on the CRISPR mutants 502 

made in this study. PL and also the galactanase encoded by TBG4 are necessary for changes 503 

in the primary cell wall and ML degradation seen in normal ripening. These changes include 504 

the tight control of cell separation, which is enhanced if galactan-rich pectin remains 505 

associated with the primary cell wall after degradation of de-esterified HG by PL and PG2a. 506 

 507 

The loss of galactose residues associated with the cellulose fraction of cell walls from 508 

ripening fruits was observed many years ago (Seymour et al., 1990). The present study 509 

supports a model where the pectin degrading enzymes act in a hierarchy to solubilize de-510 

esterified HG and RG-I leading to tight control of fruit softening and cell separation. We 511 

propose that in tomato, PL acts on insoluble high molecular weight pectic polysaccharides 512 

that are associated with cellulose at cell junctions and also on pectin in the ML. The effects of 513 

PL involve disaggregation and depolymerisation of de-esterified HG (Uluisik et al., 2016). In 514 

combination with the action of the galactanase, encoded by TBG4, HG and RG-I are further 515 

solubilized and then HG is depolymerised by PG2a (Smith et al, 1990). Eventually these 516 

processes lead to cell separation. 517 

 518 
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In contrast to tomato, strawberry softening is inhibited to a much greater degree by removal 519 

of PG activity (Posé et al., 2015). In this fruit, PG seems to be more active than PL on highly 520 

branched pectin in the cell wall. Also, in strawberry, silencing of a cell wall β-galactosidase 521 

resulted in firmer fruits (Paniagua et al., 2016).  The reason for this variation between species 522 

is unclear, but may reflect differences in cell wall composition or the levels of other 523 

additional wall modifying activities that include remodelling of the interactions between 524 

pectin and other wall components, such as cellulose, which have often been ignored in 525 

previous studies. This may also explain why the effects of silencing of specific genes such as 526 

TBG4 depends on the tomato genetic background. This is illustrated by the observation that 527 

in cv. Rutgers TBG4 down-regulation impacts fruit softening (Smith et al., 2002), while 528 

mutations in this gene did not influence texture in cv. Ailsa Craig in the present study. These 529 

results emphasise the complexity of cell wall remodelling and its effects on plant phenotypes.  530 

 531 

 532 

MATERIALS AND METHODS 533 

 534 

Construction of Cas9/sgRNA expressing vectors 535 

The sites used for targeted mutagenesis were designed according to Shan et al. 2014 using the 536 

CRISPR-PLANT tools and the tomato genome sequence database (www.solgenomics.net; 537 

Tomato Genome Consortium, 2012) and are listed in Table S1. The construction of the 538 

AtU6p::sgRNA vector and the Cas9/sgRNA expressing vectors were based on Golden Gate 539 

cloning technology. The sgRNAs were amplified using primers described in Supplementary 540 

Table S4 using the plasmid pICH86966:: AtU6p::sgRNA PDS construct (Addgene plasmid 541 

46966) as a template. sgRNAs placed under the Arabidopsis U6 promoter were cut-ligated 542 

with the pICSL01009::AtU6p level 0 (Addgene#46968) module into pICH47751 level 1 543 

vector (Addgene #48002) using the Golden Gate cloning method (Weber et al., 2011). 544 

sgRNA-Cas9 plant expression vectors were constructed by performing cut-ligation reaction 545 

with level 1 modules pICH47732::NOSp::NPTII (Addgene #51144), pICH47742::35S::Cas9 546 

(Addgene #49771), pICH47751::AtU6p::sgRNAs and the linker pICH41766 (Addgene # 547 

48018) into the level 2 Golden Gate vector pAGM4723 (Addgene #48015) using BbsI as 548 

described by Weber et al., 2011. The complete nptII-Cas9-sgRNA expression cassette was 549 

sequenced to verify that the clones had the correct transgene. 550 

 551 

Plant materials, growth conditions, and generation of transgenic plants 552 
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The Cas9/sgRNA constructs were transformed into Agrobacterium strain EHA105 by 553 

electroporation. Agrobacterium tumefaciens-mediated transformation of tomato (Solanum 554 

lycopersicum) cultivar Ailsa Craig were performed according to McCormick (1991). 555 

Plantlets were acclimated to become sturdy plants before transfer to the harsher conditions of 556 

the glasshouse. All tomato lines were grown in the UK under standard glasshouse conditions 557 

of 16-h day length and 25 °C, with night a temperature of 18 °C. Supplemental lighting was 558 

provided where required. Plants from each genotype were grown in “CNSC” coarse potting 559 

compost (Levington) in 7.5 L pots with irrigation supplemented with Vitax 214 with pot 560 

locations randomized throughout the glasshouse. 561 

 562 

Transgenic verification, genotyping and segregation of targeted mutagenesis in T1 563 

generation 564 

Leaflets were collected from each T0 plant and genomic DNA was extracted using ISOLATE 565 

II Plant DNA Kit (BIOLINE). The presence of the Cas9/sgRNA transgene was verified by 566 

PCR with primers pAGM4723 F3/R3 (Table S5) designed to amplify a region spanning a 567 

1652 bp coding region of Cas9. To detect CRISPR/Cas9-induced mutations, the genomic 568 

regions surrounding the target sites were amplified using specific PCR primers (Table S5). 569 

The fragments were directly sequenced or cloned into the pJET1.2/blunt vector and 570 

sequenced. The genotypes were also examined to investigate the transmission pattern of 571 

CRISPR/Cas9-mediated mutations. T1 progeny were obtained by strict self-pollination. For 572 

each T0 line, 10-20 progeny were randomly selected and examined by sequencing.  573 

 574 

Quantitative RT-PCR 575 

Total RNA from tomato fruit pericarp at breaker+7 was extracted with Spectrum TM Plant 576 

Total RNA Kit (Sigma-Aldrich). Five hundred nanograms of total RNA was reverse-577 

transcribed into 20 μl complementary DNA (cDNA) using SuperScript™ III First-Strand 578 

Synthesis SuperMix (Invitrogen) following the manufacturer’s instructions. The qPCR 579 

amplification was carried out using PerfeCTa SYBR Green SuperMix (Quanta Biosciences). 580 

A 10 μl reaction mixture was set up and contained 5 μl PerfeCTa SYBR Green SuperMix 581 

(2X), 0.3 μl forward/reverse primer (10uM) and an input quantity of cDNA corresponding to 582 

0.25ng of total RNA with ddH2O. Four experimental replicates were performed for each 583 

sample. RT-qPCR was run on a LightCycler480 System (Roche Applied Science); PCR 584 

conditions were as follows: an initial denaturation step at 95 °C for 10 min, followed by 45 585 

cycles of 95 °C for 15 s, 60 °C for 60s; a final cooling step at 40 °C for 10 min. The 586 
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ELONGATION FACTOR 1-ALPHA gene (EF-1α) was used as an internal control. Gene-587 

specific primers for RT-qPCR are listed in Table S6. The relative expression levels were 588 

calculated using the relative standard curve method and expressed as the relative quantity of 589 

target normalized to the reference gene EF-1α . 590 

 591 

Physiochemical analysis and mechanical measurement of fruit texture 592 

Fruit color index was recorded using a Minolta colorimeter CR400. Readings were taken 593 

based on the L*, a* and b* Hunter colour scale and colour index (CI) value was calculated 594 

from the equation CI= (2000·a*)/ [L*· (a*
2
+b*

2
)

1/2
] (López Camelo and Gómez, 2004). 595 

Soluble solids were recorded as % Brix and measured by a hand-held refractometer. The 596 

mechanical properties of fruit were measured using probe penetration tests using a Lloyd 597 

Instruments LF Plus machine equipped with a 10 N load cell and 1.6-mm flat-head 598 

cylindrical probe as described by Uluisik et al. (2016). Measurements were taken separately 599 

from the outer and inner pericarp in duplicate.  600 

 601 

Viscosity analysis of tomato paste 602 

The tomato fruit was peeled and halved. Seeds and locular tissue were removed and the 603 

pericarp was ground in a coffee machine for 30 seconds to make the puree. Stirred viscosity 604 

was measured at 20 °C based on a 20 ml volume of puree using a RheoLabQC Quality 605 

Control Rheometer installed with the Rheoplus software according to the manufacturer’s 606 

instructions (Device: RheolabQC SN910545; FW1.24; Application: RHEOPLUS/32 Multi3 607 

V3.40 21004817-33028; Measure system: CC27/S-SN18049; d=0 mm). For each sample, 608 

viscosity was measured against a range of shear rates changing from 1 to 100 [1/s] on a 609 

logarithmic setting at 11 measurement points so that the measuring profile had shear rate 610 

d(gamma)/dt = 1 ... 100 1/s log; |Slope| = 5 Pt. / dec. 611 

 612 

Determination of polygalacturonase (PG) activity, β-galactosidase activity and β-613 

galactanase activity 614 

Enzyme extracts were made from 5 g of frozen pericarp sampled at breaker+7 stage 615 

following the methods described by Pressey (1983).  Frozen tomato pericarp tissue was 616 

ground with a coffee grinder into fine powder. All subsequent steps were conducted at 4 
o
C. 617 

This powder was then homogenized with 20 ml ddH2O and the suspension was stirred for 30 618 

min. Solid NaCl was added to a final concentration of 1.0 M and pH was adjusted to 6.0 with 619 

1.0 M NaOH. The suspension was then stirred for an additional 1 h. The supernatant was 620 
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collected after centrifugation at 8000 g for 20 min and ammonium sulphate was added to 80% 621 

of saturation. Protein was allowed to precipitate overnight and collected by centrifugation at 622 

16000 g for 30 min. The pellet was re-suspended with 2 ml 80% ammonium sulphate. Protein 623 

concentrations of crude enzyme solutions were measured by the Bradford method (Bradford, 624 

1976) using Quick Start™ Bradford Protein Assay Kit (Bio-Rad).  625 

 626 

Determination of PG activity was based on the analysis of reducing groups released from 627 

polygalacturonic acid substrate (Honda et al., 1982). β -Galactosidase activity was assayed by 628 

measuring the rate at which the enzyme hydrolyzed p-nitrophenyl-p-D-galactopyranoside 629 

(Pressey, 1983). β-galactanase (Exo-galactanase) was assayed by measuring the release of 630 

monomeric D-(+)-galactose against a potato pectic galactan pretreated with 631 

arabinofuranosidase (Megazyme, Wicklow, Ireland) following previously described methods 632 

(Carey et al.,1995).  633 

 634 

Determination of PL enzyme activity 635 

PL activity was estimated by the method described in Uluisik et al, (2016) and based on 636 

Collmer et al (1988). For preparation of the acetone insoluble solids (AIS), 20 g of fresh 637 

pericarp (breaker+7) was homogenised with cold 80% (v/v) acetone. The sample was washed 638 

with 100% acetone to remove all pigment and the powder left overnight to dry at room 639 

temperature. Then 5 mg of the AIS was stirred for 30 min in 1.9 ml of 8.5 M Tris-HCL at 640 

20
o
C. The samples were then centrifuged for 30 minutes at 14000 rpm, and the absorbance of 641 

clear supernatant was measured at 232 nm, for determination of the level of reaction products 642 

with double bonds released as a result of PL activity. Controls were conducted using a 643 

parallel assay where the AIS was inactivated by boiling in 80% (v/v) ethanol.  644 

 645 

Carotenoid analysis 646 

Carotenoids were extracted from 10 mg freeze dried fruit as described in Fraser et al., 2000 647 

by the addition of chloroform: methanol: water (2:1:1). Phase separation was facilitated by 648 

centrifugation of the mixture and the organic phase containing carotenoids was collected and 649 

taken to dryness under vacuum centrifugation (Genevac EZ.27). Dried samples were stored at 650 

-20°C and re-dissolved in ethyl acetate prior chromatographic analysis.  651 

 652 

Carotenoids were separated and identified by ultra-high performance liquid chromatography 653 

with photo diode array detection (UPLC-PDA) as previously described (Uluisik et al, 2016). 654 
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An Acquity™ UPLC (Waters) was used with a BEH C18 column (2.1 x 100 mm, 1.7 μm) 655 

with a BEH C18 VanGuard pre-column (2.1 x 50 mm, 1.7μm). The mobile phase used was A: 656 

MeOH/H2O (50/50) and B: ACN (acetonitrile)/ethyl acetate (75:25) at a flow rate of 0.5 657 

ml/min. All solvents used were HPLC grade and filtered prior to use through a 0.2μm filter. 658 

The gradient was 30% A: 70% B for 0.5 min and then stepped to 0.1% A:99.9% B for 5.5 659 

min and then to 30% A:70% B for the last 2 min. Column temperature was maintained at 660 

30°C and the samples’ temperature at 8°C. On-line scanning across the UV/Vis range was 661 

performed in a continuous manner from 250 to 600 nm, using an extended wavelength PDA 662 

(Waters). Carotenoids were quantified from dose-response curves of authentic standards. 663 

 664 

Immunofluorescence and immunocytochemistry procedures 665 

For immunofluorescence microscopy, tomato fruit were harvested at breaker + 4 from a range 666 

of CRISPR lines and azygous controls. Two millimeter cubes of pericarp tissue cut from the 667 

equatorial sections were fixed in 0.1 M sodium cacodylate buffer, 2% paraformaldehyde 668 

(w/v), pH 6.9 overnight at 4°C. Samples were dehydrated by incubation in an ascending 669 

ethanol series (30, 50, 70, 90, and 100% v/v) with 1 h incubation at 4°C for each change. 670 

Dehydrated cubes were then infiltrated with resin at 4°C by increasing from 25% resin in 671 

ethanol for 2 h, to 50% overnight and then 75% for 8 h and 100% resin overnight. This was 672 

followed by a further four changes of absolute ethanol/LR White resin mix. Samples were 673 

then placed in 8 mm flat bottomed TAAB embedding capsules (C094, TAAB) containing LR 674 

White Resin and allowed to polymerize at 60°C for 9 h. Then blocks were trimmed and 0.5-675 

μm sections were cut using a Diatome Ultra 45° diamond knife on a Leica EM UC7 676 

ultramicrotome and collected onto 6.7 mm ten-well cavity diagnostic slides (Thermo 677 

Scientific) precoated with 2% (3-aminopropl) triethoxysilane in acetone.  678 

 679 

For the in situ labelling procedures rat monoclonal antibodies LM19 to unesterified HG 680 

(Verhertbruggen et al. 2009) and LM5 to 1,4-galactan (Jones et al. 1997; Andersen et al. 681 

2016) were used. Non-specific binding was blocked with 3% (w/v) solution of fat-free milk 682 

powder in phosphate-buffered saline (PBS/MP) for at least 30 min and sections were washed 683 

with PBS for 5 min. Specimens were incubated with a tenfold dilution of primary monoclonal 684 

antibody diluted in PBS/MP for 2 h at room temperature. They were then washed with three 685 

changes of PBS with at least 5 min for each change. After the incubation, they were 686 

incubated with a secondary anti-rat IgG (whole molecule)-FITC antibody (Sigma F1763) 687 

diluted 100-fold in PBS/MP for 1.5 h at RT and washed with three changes of PBS with at 688 
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least 5 min for each change. Samples were mounted using a small drop of Citifluor AF1 689 

glycerol/PBS-based anti-fade mountant solution (Agar Scientific). Coverslips (22x50mm, NO 690 

1.5) were sealed with nail polish. The specimens were examined with a Leica TCS SP5 691 

Confocal Laser Scanning Microscope according to the user guide and micrographs were 692 

analysed with the Image J software (Schindelin et al. 2012).  693 

 694 

For quantitative assessments of pectic epitopes in sequentially solubilized cell wall fractions, 695 

rat monoclonal antibody LM6 to arabinan (Willats et al. 1998) and mouse monoclonal 696 

antibody INRA-RU1 to the backbone of RG-I (Ralet et al. 2010) were used in addition to 697 

LM19 and LM5. Cell wall material where endogenous pectin degrading enzymes were 698 

inactivated was prepared as follows. Tomato pericarp was frozen in liquid N2 and broken into 699 

small pieces with a pestle and mortar.   The cubes were then boiled in 95% ethanol (100 mL) 700 

at 80°C for 30 min. The sample was cooled to room temperature, homogenised using a 701 

Polytron Homogenizer and then filtered through Miracloth and washed successively with hot 702 

85% ethanol (200 mL), chloroform/methanol (1:1 v/v) (200 mL) and 100% acetone. The 703 

samples were then air dried overnight. This crude cell wall preparation was then used in the 704 

fractionation studies. The cell wall materials were sequentially extracted (10 mg in 1 ml) with 705 

water, CDTA, 4 M KOH and with a cellulase treatment of the final insoluble residue to 706 

release polysaccharides associated with cellulose microfibrils as described (Posé et al. 2018). 707 

Solubilised extracts at dilutions ranging from 250-fold to 31250-fold were used to coat 708 

microtitre plates prior to ELISA procedures as described (Willats et al. 1998; Posé et al. 709 

2018).   710 

 711 

Transmission Electron Microscopy (TEM) 712 

Seventy-nanometer-thick sections were cut from resin blocks previously prepared for 713 

immunohistochemistry using a Diatome Ultra 45° diamond knife on a Leica EM UC7 714 

ultramicrotome, and collected onto 3.05 mm copper mesh grids (Agar Scientific). Grids were 715 

contrasted for 30 minutes in 2% uranyl acetate and washed in pure water, followed by 5 716 

minutes in Reynolds lead citrate, washed in pure water and allowed to dry. Samples were 717 

imaged in a JEOL JEM-1400 TEM with an accelerating voltage of 100 kV. Images were 718 

captured using a Megaview III digital camera with iTEM software. 719 

 720 

Statistical Analysis 721 
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There were replicate plants from each genetic line. Biological replicates are individual fruit 722 

from different plants of the same line. For each parameter, the variation among plants was 723 

partitioned by analysis of variance into the variation between and within genetic lines and the 724 

residual variation among plants of the same genetic line was used as the pooled variance 725 

estimate for subsequent post-hoc pairwise comparisons between means. Dunnet’s test was 726 

applied when the objective was to compare each mutant line mean to the mean of the wild-727 

type control and Duncan’s multiple range test when all possible pairs of means were to be 728 

compared.  729 

 730 

Accession Numbers 731 

PL (Solyc03g111690), PG2a (Solyc10g080210), TBG4 (Solyc12g008840) and other PL 732 

(Solyc05g055510, Solyc02g093580, Solyc06g083580) and PG (Solyc08g060970) family 733 

members.  734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

Supplemental Material  742 

 743 

Figure S1. Amino acid sequence analysis of PL in wild type and CRISPR lines.  744 

 745 

Figure S2. Amino acid sequence analysis of PG2a in wild type and CRISPR lines.  746 

 747 

Figure S3. Amino acid sequence analysis of TBG4 in wild type and CRISPR lines.  748 

 749 

Figure S4. Relative expression of target genes in CRISPR mutants in PL, PG2a and TBG4 750 

lines.  751 

 752 

Figure S5. Expression of PL and PG2a gene family members in the CRISPR lines at the 753 

breaker +7 stage.  754 

 755 

 www.plantphysiol.orgon November 27, 2018 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

24 
 

Figure S6. β-galactosidase activity in TBG4 CRISPR lines measured as specific activity / mg 756 

of protein. 757 

 758 

Figure S7. Carotenoid levels in the ripe fruits of the CRISPR lines. Carotenoids were 759 

extracted at breaker +7 with three biological replicates for each line.  760 

 761 

Figure S8. Calcofluor white staining of pericarp sections from CRISPR lines 762 

 763 

Table S1. Target sequences of cell wall structure-related genes. 764 

 765 

Table S2. Fresh weight / dry weight ratios of pericarp sections from three independent wild 766 

type (WT) and PG2a, PL and TBG4 lines.  767 

 768 

Table S3. Fluorescence intensity based on analysis of sections in the confocal microscope at 769 

10x objective with ImageJ and using Duncan’s Multiple Range Test to compare lines.  770 

 771 

Table S4. Primer sequences for amplifying sgRNAs. 772 

 773 

Table S5. Primers for genotyping of CRISPR/Cas9-induced mutations. 774 

 775 

Table S6. Primer sequences for RT-qPCR. 776 

 777 

 778 

 779 

 780 

Figure Legends 781 

 782 

Figure 1: Generation of a range of CRISPR alleles in PL, PG2a and TBG4. The wild-type 783 

sequences (WT) and the mutations generated in specific regions of the gene coding sequences 784 

are shown. The single guide RNA target sequences are in red and insertions in blue. Deletions 785 

are indicated by a dotted line. The PAM site is shown in yellow. 786 

 787 

Figure 2: The effect of the CRISPR mutations in the tomato PL, PG2a and TBG4 genes on 788 

the activity of the enzymes that they encode. (A) PL activity was estimated in the acetone 789 
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insoluble fraction containing cell wall pectin from two independent CRISPR PL lines (B) 790 

PG2a activity was determined by release of reducing groups in three independent CRISPR 791 

lines and (C) β-galactanase activity as release of galactose residues measured in two 792 

independent CRISPR lines. Error bars are ±SEM, n=3. Significant differences between 793 

CRISPR lines and the control (WT) are denoted by *** (P<0.001) based on a Dunnett’s test. 794 

 795 

Figure 3: Effect of CRISPR mutations on fruit pericarp texture. The texture of the pericarp of 796 

the different CRISPR lines was compared by measurement of maximum load. There were 797 

two PL, three PG2a and two independent TBG4 lines. At least 5 biological replicates 798 

(individual fruits from different plants) from each line were measured for texture line. 799 

Significant (P<0.05) differences between a line and the control (WT) determined by a 800 

Dunnett’s test are denoted by *.  Error bars are ±SEM. 801 

 802 

Figure 4: Effect of CRISPR mutations on fruit colour, weight and soluble sugars. 803 

Measurements were made of (A) pericarp colour, (B) fruit weight and (C) Brix levels. There 804 

were two PL, three PG2a and two independent TBG4 lines. At least 5 biological replicates 805 

(individual fruits from different plants) were measured from each line. Significant (P<0.05) 806 

differences between a line and the control (WT) based on a Dunnett’s test are denoted by *.  807 

Error bars are ±SEM. n is 5 or more. 808 

 809 

Figure 5:  Changes in viscosity of juice generated from CRISPR lines. Stirred viscosity of 810 

fruit juice was measured against sheer rates of 1 and 15.8 [1/s] using two PL, three PG2a and 811 

two independent TBG4 lines.  The number of biological replicates was 3 and error bars are 812 

±SEM. Samples that were significantly (P<0.05) different from the control (WT) determined 813 

by a Dunnett’s test are denoted by *. 814 

 815 

Figure 6. Transmission electron micrographs of cell junctions from the pericarp of the 816 

CRISPR lines. Sections cut from three separate fruits from each of wild type, PL5, PG34 and 817 

TBG-8 lines were visualised under the transmission electron microscope and two 818 

representative micrographs shown for each line. The scale bar on each micrograph represents 819 

10 µm. TCI = tricellular junction and PCW = primary cell wall. 820 

 821 

Figure 7.   Immunolocalisation of deesterified pectin and pectic galactan in CRISPR 822 

lines. Monoclonal antibody probes recognising deesterified pectin (LM19) and pectin-823 
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associated β-galactan (LM5) were used to label tomato pericarp tissue. For each probe low (A 824 

and C) and high magnification (B and D) images are presented. Representative sections of 825 

fruits from each of wild type, PL5, PG34 and TBG-8 lines are shown. Scale bar represents 826 

100 µm at low magnification and 10 µm at high magnification. TCJ = tricellular junction, ML 827 

= middle lamella. 828 

 829 

Figure. 8. Extraction and characterisation of cell wall pectin fractions using pectin 830 

antibody probes. Tomato cell wall materials from three biological replicates of breaker+7 831 

fruit pericarp of wild type (WT), PL, PG2a and TBG4 CRISPR lines were 832 

fractionated/sequentially solubilized with water, cyclohexane diamine tetraacetic acid 833 

(CDTA), 4 M potassium hydroxide and by treatment with cellulase. The resulting sequential 834 

extracts were serially diluted and analysed with monoclonal antibodies and data for 6250x 835 

dilutions are shown. Antibodies used were (A) LM19 to un-esterified homogalacturonan, (B) 836 

LM5 to (1-4)-β-galactan,  (C) INRA-RU1- to the RG-I backbone and (D) LM6 to (1-5)-α-837 

arabinan. Levels of specific pectic polysaccharide epitopes were detected as detailed in the 838 

materials and methods. Data were analysed using Duncan’s Multiple Range Test. Where 839 

significant (P<0.05) differences occur between tomato genotypes for the same extractant 840 

these are shown by different letters. 841 

 842 

 843 

 844 

 845 

 846 
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Figure 1: Generation of a range of CRISPR alleles in PL, PG2a and TBG4. The mutations generated in specific 
regions of gene coding sequences are shown.  The region for the single guide RNA sequences are in red and 
insertions in blue. Deletions are indicated by a dotted line. The PAM site is show in yellow. 

WT:      ACGGAAGGGGCGCTAGCGTACACA-T-AGCGGGT 

PL5:     ACGGAAGGGGCGCTAGCGTACACATT-AGCGGGT 

PL11:    ACGGAAGGGGCGCTAGCGTACACA-TGAGCGGGT 

 
WT:     ATTAAAGTGATTAATGTAC-TTAGCTTTGGA 

PG1:    ATTAAAGTGATTAATGTACCTT-----TGGA 

PG21:   ATTAAAGTGATTAATGTACTTAGCCTTTGGA 

PG34:   ATTAAAGTGATTAATGTAC-TTA-CTTTGGA 

 
WT:      AGAATAGGCCATACAATCTGCCTCCATGGT 

TBG4-6:  AGAATAGGCCATACAATCT----CCATGGT 

TBG4-8:  AGAATAGGCCATACAATCTGCC-CCATGGT 
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Figure 2: The effect of the CRISPR mutations in the tomato PL, PG2a and TBG4 genes on the activity 

of the enzymes that they encode. (A) PL activity was estimated in the acetone insoluble fraction 

containing cell wall pectin. There were two independent CRISPR PL lines, (B) PG2a activity was 

determined by release of reducing groups and there were three Independent CRISPR lines and (C) β-

galactanase activity as release of galactose residues with two independent CRISPR lines. For PG2a and 

galactanase enzyme activity is expressed as per µ or mg protein basis respectively. Error bars are 

±SEM, n=3. Significant differences between CRISPR lines and the control are denoted by *** 

(P<0.001) based on a Dunnett’s test. 
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Figure 3: Effect of CRISPR mutations on fruit pericarp texture. The texture of the pericarp of the different 

CRISPR lines was compared by measurement of maximum load. There were two PL, three PG2a and two 

independent TBG4 lines respectively. At least 5 biological replicates (individual fruits from different plants) 

were measured for texture from each line. Significant (P<0.05) differences between a line and the control 

determined by a Dunnett’s test are denoted by *.  Error bars are ±SEM. 
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Figure 4: Effect of CRISPR mutations on fruit colour, weight  and soluble sugars. Measurements were made 

of (A) pericarp colour, (B) fruit weight and (C) Brix levels. There were two PL, three PG2a and two 

independent TBG4 lines respectively. At least 5 biological replicates (individual fruits from different plants) 

were measured from each line. Significant (P<0.05) differences between a line and the control based on a 

Dunnett’s test are denoted by *.  Error bars are ±SEM. n is 5 or more. 
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Figure 5:  Changes in viscosity of juice generated from CRISPR lines. Stirred viscosity of fruit juice was 
measured against sheer rates of 1 and 15.8 [1/s] using two PL, three PG2a and two independent TBG4 lines 
respectively.  The number of biological replicates was 3 and error bars are ±SEM. Samples that were 
significantly (P<0.05) different from the control determined by a Dunnett’s test are denoted by *. 
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Figure 6. Transmission electron micrographs of cell junctions from the pericarp of the CRISPR lines. Sections 
cut from three separate fruits from each of wild type, PL5, PG34 and TBG-8 lines were visualised under the 
transmission electron microscope and two representative micrographs shown for each line. The scale bar 
on each micrograph represents 10 µm. TCI = tricellular junction and PCW = primary cell wall. 
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Figure 7.   Immunolocalisation of deesterified pectin and pectic galactan in CRISPR lines. 
Monoclonal antibody probes recognising deesterified pectin (LM19) and pectin associated 
β-galactan (LM5) were used to label tomato pericarp tissue. For each probe low (A and C) and high 
magnification (B and D) images are presented. Representative sections of fruits from each of wild type, PL5, 
PG34 and TBG-8 lines are shown. Scale bar represents 100 µm at low magnification and 10 µm at high 
magnification. TCJ = tricellular junction, ML = middle lamella. 
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Figure. 8. Extraction and characterisation of cell wall pectin fractions using pectin antibody probes. 
Tomato cell wall material from three biological replicates of breaker + 7 fruit pericarp of wild type (WT), PL, 
PG2a and TBG4 was fractionated with water, cyclohexane diamine tetraacetic acid (CDTA), 4 M potassium 
hydroxide and treatment with cellulase. The resulting sequential extracts were serially diluted and analysed 
with monoclonal antibodies and data for 6250x dilutions shown. Antibodies used were (A) LM19 to un-
esterified homogalacturonan, (B) LM5 to (1-4)-β-galactan,  (C) INRA-RU1- to the RG-I backbone and (D) LM6 
to (1-5)-α-arabinan. Levels of specific pectic polysaccharide epitopes were detected as detailed in the 
materials and methods. Data were analysed a Duncan’s Multiple Range Test. Where significant (P<0.05) 
differences occur between tomato genotypes  with the same extractant these are shown by different 
letters. 
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