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1. Abstract 

Wind turbine rotor blades are large composite structures performing most of their design life 

under random cycle loading patterns. Concurrently material properties of the constituent plies 

exhibit inherent variability. In order to ensure a safe and cost effective design, uncertainty 

related to the basic variables (material properties, loads etc.) should be quantified and taken 

into account in the design calculations. Recently the blade design standard DNVGL-ST-0376 

was released, showing the trend of using dedicated probabilistic analysis for wind turbine blade 

design. A critical evaluation of the new edition of the standard is performed herein, particularly 

in terms of the ability of the suggested safety factors to satisfy the target failure probability level 

of 1E-04. To this end, probabilistic analysis methodology is employed, starting with the 

measurement uncertainty for the static and fatigue properties of the composite material and 

going all the way up to the blade failure probability on a layer by layer basis. The application 

is performed on the INNWIND.EU reference 10MW rotor blade of 90m length. Furthermore, 

the current reliability level of the specific blade design, following the new standard DNVGL-

ST-0376, is estimated considering the various failure modes i.e. fibre failure (short term and 

fatigue strength), buckling and inter fibre failure of the composite laminates, while taking into 

account sources of variability that contribute to the physical, statistical, measurement and model 

uncertainty. Results indicate that while for the static (extreme) analysis deterministic results are 

conservative, the opposite is observed for fatigue analysis.  

2. Introduction 

Designing the 20MW wind turbine of the future with about 250m rotor diameter is a 

challenging task. The task becomes more complicated considering that wind turbine structures 

should continuously operate in a fully stochastic environment for their entire design life. To 

provide a safe and cost effective design, uncertainty quantification and probabilistic analysis 

become mandatory.  

Reliability analysis of wind turbine rotor blades under extreme and variable amplitude 

loading has already been performed in the past [1]-[5]. The main effort, however, was put on 

the uncertainty quantification related to the environmental conditions e.g. wind speed and 

turbulence as well as the statistical treatment of the sectional stress resultants, with less 

emphasis placed on the uncertainty on the material properties. When mechanical properties 

were considered as random variables only part of the uncertainty was quantified; namely the 

physical and statistical uncertainty related to the limited sample size of experimental tests. 

Measurement uncertainty was totally ignored. The available standards for composite materials 

do not provide any indication of the measurement uncertainty obtained through application of 



 

the experimental method and therefore, this is difficult to consider in combination with design 

guidelines and standards for the blade design. This, in turn, leads to the introduction of partial 

safety factors, which are based on engineering judgement rather than experimental evidence. 

This is clearly evident in the new edition of DNVGL-ST-0376 design standard for wind turbine 

blades. 

In the present work, measurement uncertainty for both static and fatigue properties of the 

composite material is quantified following principles of metrology and based upon appropriate 

experimental data [6]. This information is of high importance if comparisons are to be made 

between candidate materials or the effect of a parameter, whether environmental or other, on 

the material properties is to be sought. Moreover, to identify the role of measurement 

uncertainty on the reliability level of the blade, the probability of failure under static and 

variable amplitude loading is estimated based on probabilistic analysis tools developed for 

application on wind turbine blades in [7]-[9]. The application is performed on the 90m 

INNWIND.EU reference 10MW wind turbine blade [10]. The probability of failure against 

static and variable amplitude fatigue loading is estimated at the material ply level on several 

locations on each section of the blade taking into account the various sources of uncertainty i.e. 

physical, statistical, measurement and model uncertainty.  

Having the methodology and the tools to reasonably quantify several types of uncertainty 

and perform reliability analysis at the blade structural level, namely the building ply of each 

laminate, the reliability level of the specific blade design is quantified following the new 

standard DNVGL-ST-0376. Since the new edition encompasses the difference between 

deterministic and probabilistic design it provides the perfect platform to locate the disparities 

between the two methodologies. In parallel, it allows also a critical evaluation relevant to the 

ability of the suggested safety factors by the new standard to provide a blade design with a 

target annual failure probability 1E-04.  

3. Rotor blade 

The case study is based on the INNWIND.EU 10MW reference (WT) [10], a horizontal, 

variable speed, collective-pitch controlled wind turbine with a three-bladed upwind rotor. Each 

blade expands to a radius equal to 89.17m and has a nominal mass of 41,788kg.  

The structural design of the blade defined in [10] is based on a load carrying box girder with 

two shear webs and a cylindrical root. A third shear web is present close to the trailing edge 

from 21.8m to the tip. The material used is E-Glass/Epoxy composite and balsa wood sandwich 

panels. One unidirectional and two different multidirectional laminates were used to form the 

plies of numerous lamination schemes, namely a uniaxial with 0° fibre orientation (along the 

blade length), a biaxial with ±45° fibre orientation and a triaxial with combined 0° and ±45° 

fibre orientations. Details on the blade geometry and materials are given in [10]. For the 

purposes of this work, small modifications on the blade design were performed considering 

each ply of the multidirectional fabrics separately. This was done to allow application of the 

Puck failure criterion, which is directed for uniaxial laminas (layers). The assumption is 

supported by the fact that the layers used in the design of the blade are non-crimp stitched and 

not woven.  

4. Mechanical properties of the composite ply 

Lamina properties that need to be determined for further use in the structural design are: the 

elastic modulus in the fibre direction and perpendicular to the fibre direction, E1 and E2, 

respectively, the major Poisson’s ratio, ν12, and the in-plane shear modulus G12, as well as the 

strength in tension and compression along the fibre direction and perpendicular to it, XT and XC, 



YT and YC, respectively, and the in-plane shear strength S. The present analysis is focused on 

the property determination based on the ISO standard series. For the fatigue properties, constant 

amplitude (CA) fatigue tests are performed to estimate the parameters of the SN curve. 

According to wind turbine blade design standard, DNVGL-ST-0376 [11], the power law model 

(SN curve) is fitted to the experimental data. Its formulation is given herein by: 

ln(𝑆𝑚𝑎𝑥) = 𝐶 + 𝑏 ln(𝑁𝑓) + 𝜀 

𝑆𝑚𝑎𝑥 = 𝑎𝑁𝑓
𝑏𝜀1 

(1) 

Where Nf the number of cycles to failure, Smax the maximum (or absolute minimum) stress 

level, ε the error of the model following normal distribution, N(0,se
2), with se the standard 

deviation of the error, a=eC, and ε1=eε. The fatigue experimental data are derived following 

ISO 13003 [12], with the exception of the formulation of the SN curve.  

Although the standard practice for model fitting involves the least square fitting method, for 

the purposes of this work, the maximum likelihood estimators (MLE) are used to determine 

parameters of the power law model C, b and se. It should be noted that MLE estimators are 

equivalent to the least square ones when the normality assumption for the error ε holds. The 

normality assumption was investigated by implementing the Kolmogorov-Smirnov test on the 

calculated residuals of the fitting procedure.  

For both static and fatigue properties implementing the ISO standard series, measurements 

are performed for the quantities shown in Table 1. Further, more complex measurands i.e. 

quantities that are not measured directly but are rather determined through the above mentioned 

measurements are shown in Table 2. 

 

Table 1: Measurands and sources of uncertainty  

Quantity Unit Symbol Sources of uncertainty 

   
Standard 

(resolution) 

Specimen 

dimensions & 

tolerances 

Resolution of 

instrumentation  

Statistical 

uncertainty  

Thickness mm H √ √ √ √ 

Width mm W √ √ √ √ 

Applied load kN F √ N/A - N/A 

Exhibited Strain % ε √ N/A - N/A 

Number of 

fatigue cycles 
 N - - - - 

 

In Table 2 the subscripts 1 and 2 refer to the principal axes of the composite lamina, i.e. along 

the direction of the fibres and perpendicular to them, respectively, while subscripts x and y in 

shear stress/strain and shear modulus equations refer to the loading direction of the ±45o 

specimens and transverse to it. Furthermore, the subscript F stands for the value of the quantity 

in Table 2 at the failure of the specimen and the exponents (1), (2) correspond to different 

measurements. More specifically in Eq. (6) σi
(1) is the stress in the i direction at axial strain 

value of εi
(1)=0.05% while σi

(2) is the axial stress at a strain value of εi
(2)=0.25%. Moreover, in 

Eq. (8), the shear stress τ12
(1) corresponds to a shear strain value of γ12

(1)=0.1% while τ12
(2) to a 

shear strain value of γ12
(2)=0.5%. 

 

 

 

 

 



 

Table 2: Complex measurands and mathematical expressions  

Quantity Unit Symbol Expression Eq. ( ) 

Cross section area mm2 A 𝐴 = 𝐻 ×𝑊 (2) 

Normal stress MPa 𝜎𝑖 𝜎𝑖 =
𝐹𝑖
𝐴
,   𝑖 = 1,2, 𝐹 (3) 

Shear stress MPa 𝜏12 𝜏12 =
𝐹𝑖
2𝐴
,   𝑖 = 𝑥, 𝐹 (4) 

Shear strain % 𝛾12 𝛾12 = 𝜀𝑥 − 𝜀𝑦 (5) 

Modulus of elasticity GPa 𝐸𝑖 𝐸𝑖 =
𝜎𝑖
(2)
− 𝜎𝑖

(1)

𝜀𝑖
(2) − 𝜀𝑖

(1)
 (6) 

Poisson’s ratio --- 𝜈12 𝜈12 = −
𝜀2
(2)
− 𝜀2

(1)

𝜀1
(2) − 𝜀1

(1)
 (7) 

Shear modulus GPa 𝐺12 𝐺12 =
𝜏12
(2)
− 𝜏12

(1)

𝛾12
(2)
− 𝛾12

(1)
 (8) 

Slope Eq. (1) 
𝑙𝑛(𝑀𝑃𝑎)

𝑙𝑛(𝑐𝑦𝑐𝑙𝑒𝑠)
 b Section 4.1.5  

Intercept Eq. (1) 𝑙𝑛(𝑀𝑃𝑎) C Section 4.1.5  

 

The mean values of the material properties calculated during the respective test series are 

reported, along with the corresponding standard deviation. 

Depending on the starting scale at which uncertainties are built up in the composite materials, 

three main approaches are encountered [13]. Uncertainties can be modelled from a micro-scale 

level where the macroscopic material properties of the lamina are obtained using various micro-

mechanical models. Uncertainties can also be quantified from the meso-scale or the ply level 

and it is related with the uncertainties introduced when mechanical characterization of the 

lamina is performed. Finally, the macro scale level involves uncertainties determined by 

experimental tests similar to that required for the ply characterization but for more general lay-

up schemes for the laminates or for subcomponents tests. Herein, uncertainties were modelled 

at the meso-scale level based on the experimental data derived by coupon tests. 

To quantify uncertainty in the material properties, except from the experimental data, 

detailed information about the performance of the tests is needed. Due to the limited 

information related to the INNWIND.EU material properties, the OPTIDAT database [14] is 

used instead. To be more specific, testing results with full information about the testing 

procedure followed for their derivation, for which the author had complete access, concerned 

the measurements from one laboratory reported in [15]. Tests were performed on unidirectional 

specimens with stacking sequence [0]4 (or [90]7 for the properties in the transverse direction) 

from one batch of material. For the determination of the shear properties, axial testing on [±45]S 

coupons were performed. Therefore, the outcome of the present statistical analysis can be 

viewed only as a favourable scenario missing some part of the introduced uncertainty, as e.g. 

plate to plate variability (coupons cut from one plate) or laboratory to laboratory variability. 

For the fatigue properties of Glass/Epoxy material, a database to perform the various 

statistical analyses was provided by Fraunhofer-IWES from a previous industrial project [6]. 

More specifically, data concerned measurements of the number of cycles to failure on several 

stress levels for three different ratios of minimum to maximum load (R-ratio) namely R=0.1, -1 

and 10 for constant amplitude fatigue tests. Tests were performed on unidirectional specimens 

with stacking sequence [0]4. More information about the constituents of the material as well as 

the derivation of the experimental data can be found in [6].  



It is assumed that during the performance of the tests every effort was made to identify and 

correct possible systematic effects for the creation of both databases.  

Summarising, for the probabilistic calculations implemented in this work, the OPTIDAT 

database is used to quantify uncertainty i.e. to estimate the coefficient of variation (CoV) of 

each static material property, while the UD properties of the INNWIND.EU design [10] are 

assumed and assigned as the mean values of the material properties. Regarding the fatigue 

properties, i.e. parameters of the power law model, both mean and CoV values are derived by 

statistically analysing the database in [6].   

4.1 Uncertainty quantification methodology 

The uncertainty analysis is performed based on the principles of the Guide for Uncertainty 

Measurement (GUM) [16]. The combined standard uncertainty up i.e. the uncertainty of the 

measurands, is determined by the uncertainty propagation law given by: 

𝑢𝑝
2 =∑(

𝜕𝑓

𝜕𝑥𝑗
)

2

𝑢𝑥𝑗
2

𝑛

𝑗=1

+ 2∑ ∑
𝜕𝑓

𝜕𝑥𝑗

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

𝜕𝑓

𝜕𝑥𝑘
𝑢𝑥𝑗𝑢𝑥𝑘𝑟(𝑥𝑗 , 𝑥𝑘) 

(9) 

where p the quantity (measurand) determined by combining more than one of the measured 

(input) quantities xj, uxj the standard uncertainty of xj i.e. the uncertainty of the result of a 

measurement expressed as a standard deviation, f the mathematical model between the 

measurand p and input xj and r the correlation coefficient between xj and xk. The assumption 

behind Eq. 9 concerns the approximation of the function f using Taylor series expansion while 

keeping only the linear terms i.e. linearization of the function f.  

The sources of uncertainty that were taken into account in the uncertainty quantification 

analysis are listed in Table 1. That is, uncertainties due to test instruments (resolution of 

calliper), specimen (dimensions, tolerances), test procedure (standard’s recommendations) and 

statistical uncertainty due to the limited number of measurements e.g. thickness measurements. 

It should be highlighted that GUM [16] suggests a uniform treatment for all uncertainty 

components i.e. uncertainties due to systematic and random effects. That is, the result of a 

measurement after correction for recognized systematic effects is still only an estimate of the 

value of the measurand. Thus, GUM distinguishes only between methods used to evaluate 

uncertainty components i.e. type A and type B uncertainties and not the components 

themselves. The former are uncertainties that can be determined by analysing a series of 

independent repeated measurements while the latter are uncertainties that cannot be determined 

by repeated observations, but are rather based on scientific judgement.  

Thus, for the first three sources of uncertainty (type B) of Table 1, a rectangular distribution 

was assumed, while a normal probability distribution for the (type A) statistical uncertainty. 

That is, regarding to the thickness/width measurement of the test coupons, one of the sources 

of uncertainty presented in Table 1 is related to the precision of the measuring instrument. For 

a calliper with accuracy ±0.02 mm, a rectangular distribution can be assumed implying equal 

probability for any value in the interval of precision. Those uncertainties propagate to the more 

complex measurands presented in Table 2. Because, in practise, series of tests is performed and 

the mean values of the measurand of Table 2 along with their standard deviations are reported, 

the associated probability distributions to the mean values (and the variances) of the measurand 

of Table 2 were assumed to be a normal distribution based on the Central Limit Theorem 

approximation. The analytical formulation of the combined uncertainty up of the static and 

fatigue material properties of Table 2 was developed and partially presented in [9], [17]-[19]. 

A brief discussion is performed herein, selectively for topics of interest. 



 

4.1.1 Uncertainty on the mean value of a series of measurements 

Following [20], the combined standard uncertainty on the mean value of a series of n 

measurements for a material property p can be derived by Eq. (9). Its formulation is given by: 

𝑢𝜇𝑝
2 =

𝑠𝑝
2

𝑛
+ (𝑢𝑝

2 − 𝑠𝑝
2) 

(10) 

where sp is the sample standard deviation and up is the combined standard uncertainty related 

to the static material properties and is estimated as explicitly described in [17] while the various 

sources of uncertainty considered are presented in Table 1. Because for a given property p, e.g. 

XT every single measurement pi, where i=1,…n corresponds to the number of the consecutive 

measurements for the specific property, results in slight different up value, in Eq. (10), the 

average value of the combined standard uncertainty of the measurand is used. 

4.1.2 Uncertainty on the variance of a series of measurements [9] 

In a similar approach with the derivation of the combined standard uncertainty uμp, Eq. (10), 

the combined standard uncertainty for the variance of a series of n measurement for a material 

property p can be derived by Eq. (9). Its formulation is then given by: 

𝑢𝑠𝑝2
2 =

4𝑠𝑝
2𝑢𝑝

2

𝑛 − 1
+
8(𝑢𝑝

2−𝑠𝑝
2)

(𝑛 − 1)2
∑ ∑ (𝑝𝑖 − 𝜇𝑝)(𝑝𝑗 − 𝜇𝑝)

𝑛

𝑗=𝑖+1

𝑛−1

1

 (11) 

where μp, sp are the sample mean and standard deviation respectively and up is the combined 

standard uncertainty related to the static material properties i.e. measurands and is estimated as 

described in [17]. Again, the average value of the combined standard uncertainty of the 

measurand is used as for Eq. (10).  

4.1.3 Uncertainty on measurement of applied load (fatigue) [18] 

The force, F, is measured through a load cell on the testing machine, which should be 

verified and calibrated for example according to ISO 7500-1 [21], to achieve the requested 

accuracy specified within the ISO material testing standards for static tests. For the CA fatigue 

tests, ISO 13003 [12] does not make reference to any particular calibration standard, requiring 

only that the load reading device should be accurate to within ±2% of the full scale value for 

fatigue cases. Assuming a rectangular distribution, the type B uncertainty on the load is derived 

by: 

𝑢𝐹 =
2 × 𝐹𝑓𝑠

100 × √3
 (12) 

where Ffs is the full scale value of the load cell. According to the study in [18], it was found 

that the requirement of the standard for ±2% accuracy of the full scale value of the load reading 

device covers several uncertainties among them the ones that are related to the mean value and 

the amplitude on the load command.  

4.1.4 Uncertainty on fatigue cycles [18] 

In case the fatigue cycles are continuously counted and displayed up to the failure of the 

specimen, depending on whether the testing machine counts the cycle at the beginning or end 

of the fatigue cycle and whether the specimen fails at the beginning or end of the fatigue cycle, 

the uncertainty can be assumed in the range 1 cycle. Thus, assuming a rectangular distribution, 

the uncertainty in cycle counting is: 



𝑢𝑁 =
1

√12
 (13) 

Uncertainty introduced in the fatigue cycles due to test parameters such as frequency, heating 

of the coupon during test etc. might be neglected assuming that ISO 13003 [12] is strictly 

followed.  

The uncertainty on the fatigue cycles as estimated by Eq. (13) exhibits a quite low value, 

especially when cycles to failure in the order of magnitude 1E+04-1E+06 are considered and 

therefore it can be ignored. 

4.1.5 Uncertainty on fatigue parameters [18] 

The slope and intercept parameters of Eq. (1) are estimated by means of MLE, as already 

discussed. Assuming the normality for the residuals, the analytical equations of the estimated 

parameters with respect to the input data i.e. pairs of maximum/minimum stress level (Smax) and 

the number of cycles to failure (Nf) can be found in several statistical books and reports as e.g. 

[20]. However, due to the introduction of complex mathematical expressions as well as due to 

the difficulty of directly applying Eq. (9) on these expressions, the combined standard 

uncertainty for the two parameters of the power law model (C, b) was estimated following 

numerical procedures and more specifically, the finite difference method. According to this 

method [20], the term (
𝜕𝑓

𝜕𝑥𝑗
) of Eq. (9) can be approximated by quotients of finite differences 

and thus the product (
𝜕𝑓

𝜕𝑥𝑗
) 𝑢𝑥𝑗 of Eq. (9) can by approximated by the values Δi given by: 

 

∆𝑖= 𝑝(𝑥1, … , 𝑥𝑖 +
𝑢(𝑥𝑖)

2
, … , 𝑥𝑁) − 𝑝 (𝑥1, … , 𝑥𝑖 −

𝑢(𝑥𝑖)

2
, … , 𝑥𝑁) (14) 

Where p corresponds to the slope (or intercept) parameter of the power law model, input 

quantities xi stand for the maximum/minimum stress level (Smax) that the tests were performed 

and u(xi) is the combined uncertainty for xi in which the uncertainties of Table 1 are taken into 

account and propagate up to the stress level. Eq. (9) can be rewritten in terms of Δi and is given 

by: 

𝑢𝑝
2 =∑∆𝑖

2

𝑁

𝑖=1

+ 2∑ ∑ ∆𝑖∆𝑘𝑟(𝑋𝑖, 𝑋𝑘)

𝑁

𝑘=𝑖+1

𝑁−1

𝑖=1

 
(15) 

Unless input quantities are correlated, the second sum on the right-hand side of Eq. (15) can 

be omitted. As already mentioned, the uncertainty on the fatigue cycles estimated by Eq. (13) 

were ignored due to the quite low values. 

 

4.2 Elastic and static strength properties 

Table 3 forms the basis for the development of probabilistic models for the material 

properties necessary for the reliability analyses performed. Under the heading Data the mean 

values, μp, as derived by the INNWIND.EU blade design report [10] and the coefficient of 

variation of each property, i.e. the ratio of the standard deviation over the mean value, CoV(p), 

of the material properties, as determined through the OPTIDAT database are presented. 

Applying the methodology of section 4.1 and more specifically, Eq. (10)-(11) on the OPTIDAT 

experimental data, the uncertainty of the mean value, expressed as a coefficient of variation, 



 

CoV(μp), and the uncertainty of the standard deviation CoV(sp) of each property is determined. 

Results are reported in Table 3 under the heading Propagation Law.  

In the reliability analysis, the physical uncertainty of the basic variables is taken into account 

by considering only the statistics of the experimental data, μp and CoV(p) of Table 3. By 

considering the asymptotic properties of the maximum likelihood estimators (ap-MLE) for the 

mean and standard deviation of the experimental data the physical and statistical uncertainty 

can be taken into account. Results are shown in Table 3 under the heading ap-MLE and they 

were derived by evaluating the inverse of the Fisher information. The correlation coefficient 

between the two parameters (μp, sp) indicated a quite low value for all the material properties 

and thus it was further ignored. To consider physical, statistical and measurement uncertainty, 

statistics under the heading Propagation Law of Table 3 are considered into the reliability 

calculations. Due to the limited data, the correlation coefficient between the parameters (μp, sp) 

was not possible to be determined implementing the approach of section 4.1. For this reason, 

the correlation coefficient was assumed equal to the one derived by ap-MLE method and thus 

for this case was ignored. 

In line with JCSS [22], all material properties might be assumed to follow the lognormal 

distribution. Correlation between the material properties was taken into account in the reliability 

analysis by implementing the Nataf transformation and adopting the formulation developed in 

[23]. Part of the correlation matrix between the material properties was derived directly from 

the available OPTIDAT data. Only five from the thirty six required correlation coefficients 

were possible to be evaluated (ρE1-v12=0.21, ρE1-XT=0.55, ρE2-YT=-0.04, ρv12-XT=0.15, ρG12-S=0.24). 

The remaining ones were assigned a low correlation value, equal to 0.1, ensuring a positive 

semi definite matrix.  

Table 3: Statistics for the stiffness and strength properties  

Property (p) 
Data Propagation Law ap-MLE 

μp CoV(p) CoV(μp) CoV(sp) CoV(μp) CoV(sp) 

E1 [GPa] 41.63 2.73% 0.97% 19.44% 0.51% 13.36% 

E2 [GPa] 14.93 2.31% 1.72% 20.41% 0.45% 14.14% 

v12  0.24 9.16% 9.08% 19.85% 1.76% 13.36% 

G12 [GPa] 5.05 2.38% 2.32% 21.20% 0.49% 14.74% 

XT [MPa] 941.53 3.65% 0.82% 19.25% 0.81% 13.36% 

XC [MPa] 665.75 3.11% 0.80% 21.82% 0.55% 15.08% 

YT [MPa] 81.58 4.78% 3.56% 20.41% 0.94% 14.14% 

YC [MPa] 200.6 2.95% 1.11% 10.00% 0.57% 13.87% 

S [MPa] 58.59 1.83% 1.80% 21.32% 0.37% 14.74% 

 

An example for the empirical cumulative distribution function (CDF) considering the 

various types of uncertainty of Table 3 can be seen in Figure 1a and Figure 1b for the tensile 

strength in the fibre direction (XT) and the shear strength (S), respectively. Both property 

distributions are depicted with the continuous black line. To estimate the CDF of each property 

introducing the quantified measurement uncertainty (or statistical uncertainty), a simulation 

procedure was implemented. That is, assuming that μp, sp are normally distributed independent 

random variables with mean values as indicated in Table 3 under the heading Data and CoV 

values given either under the heading Propagation Law (or under the heading ap-MLE 

depending on whether measurement uncertainty is considered or not), NB sample points are 

generated for the mean value and standard deviation of each property. Further, lognormal 

parameters are estimated for every set of μp, sp following basic statistical theory. Eventually, 



samples of size Nf for the property are generated for each set of the lognormal parameter values 

while the correlation matrix of the material properties is also taken into account. The derived 

sample (NB*Nf) is considered to be representative for the physical, statistical and/or 

measurement uncertainty and can be further fed into simulation techniques such as Monte Carlo 

to perform reliability analysis of wind turbine rotor blades. The various types of uncertainty 

namely physical, statistical and measurement uncertainty mainly affect the tails of the 

distribution. 

A comparison of the distribution of the material property estimated following the uncertainty 

quantification analysis presented in section 4 as well as the standard, DNVGL-ST-0376 [11], 

is carried out. Tolerance bound theory was used along with Monte Carlo simulation as described 

in [24] to obtain the ith% fractile with confidence level 95% assuming normal distribution with 

unknown variance. Results are added in Figure 1 (the dashed line curve). Additionally, the 

distribution of the material property following GL2010 [25] corresponding to the lower 

confidence limit of the sample mean in order to estimate the ith% fractile with confidence level 

95% assuming normal distribution with known variance was also superimposed (grey colour 

curve). The characteristic value of the material property i.e. 5% fractile, according to both 

DNVGL-ST-0376 and GL2010 is given by the intersection of the red straight line with the 

respective distribution curve. 

  
(a) (b) 

Figure 1: Strength considering different ways of accounting for the various types of 

uncertainty (Left: Tensile strength in the fibre direction, Right: in-plane shear strength)  

 

Depending on the quality of the experiments and the measurement uncertainty obtained, it 

is clearly seen that in some cases, the DNVGL-ST-0376 approach might be very conservative, 

as e.g. for the tension along the fibre direction (XT). In other cases, however, as for the shear 

strength, which has an increased uncertainty, above 1% for the mean value (CoV(μp)), the 

DNVGL-ST-0376 approach is almost coinciding with that obtained when calculating the 

measurement uncertainty. The effect of this difference, nevertheless, should be more 

systematically analysed with respect to the final result on the blade design.  

 

4.3 Fatigue properties 

Similar to the properties derived from the database of the static experiments, the results for 

the fatigue properties are presented in Table 4. The intercept C and slope b were estimated from 

the experimental data of [6]. Results are reported under heading Data, together with the variance 

se
2, of the error ε of Eq. (1). To remind that tests were performed for three different R ratio (0.1, 

-1 and 10) i.e. the ratio of the minimum to maximum load during testing as recommended by 
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DNVGL-ST-0376. More specifically, the standard suggests the use of the Shifted Goodman 

and piecewise linear constant life diagrams (CLD). In order to construct those diagrams, fatigue 

tests are necessary to be performed for R=-1 (tension-compression region) for the first type of 

CLD while additional tests at least for R=0.1 (tension-tension region) and R=10 (compression-

compression region) for the second type of graph according to the standard. Considering the 

asymptotic properties of the maximum likelihood estimators (ap-MLE) for the two parameters 

C, b and the variance of the error se
2, the physical and statistical uncertainty due to the limited 

number of experimental tests can be taken into account. Results are shown in Table 4 under the 

heading ap-MLE. The procedure of section 4 was further applied on the experimental data of 

[6] and the coefficient of variation of the intercept, CoV(C), and the slope CoV(b) is 

determined. Results are reported in Table 4 under the heading Propagation Law. It is pointed 

out that the only source of uncertainty leading to the CoV values of Table 4 is the uncertainty 

introduced by the stresses as a result of uncertainty in measurements both of the load and the 

coupon area (width and thickness). The CoV(se
2) of the variance of the error as well as the 

correlation coefficients among the parameters of the power law model were assumed to be equal 

to the ones estimated by the ap-MLE procedure. 

Table 4 comprises the base to develop probabilistic models for the fatigue parameters as was 

the case of static properties. That is, when considering physical uncertainty of the fatigue 

properties only the error ε of Eq. (1) is taken into account as a stochastic variable while slope 

and intercept parameters are assumed constants and equal to the MLE estimations presented in 

Table 4. Furthermore, in a reliability analysis considering both the physical and the statistical 

uncertainty, the information under heading ap-MLE is used. Finally, assuming that the 

measurands (C, b) are characterized by a normal probability distribution with mean values the 

MLE estimations and standard deviation the combined standard uncertainty indicated under the 

heading Propagation law of Table 4, physical, statistical and measurement uncertainty are 

considered in reliability calculations. Samples representative of the physical, statistical and/or 

measurement uncertainty are generated and fed into a Monte Carlo simulation in a similar way 

to that expounded for the case of the static properties. 

 

Table 4: Statistics for the fatigue material properties determined by (i) the uncertainty 

propagation law (ii) the asymptotic properties of the MLE 

 Data 

(Phys) 

Propagation Law 

(Phys+Stat+Meas) 

ap-MLE 

(Phys+Stat) 

 
C 

[𝑙𝑛(𝑀𝑃𝑎)] 

b 

[
𝑙𝑛(𝑀𝑃𝑎)

𝑙𝑛(𝑐𝑦𝑐𝑙𝑒𝑠)
] 

sε2 CoV(C) CoV(b) CoV(C) CoV(b) CoV (sε2) ρC-b 

R=0.1 7.336 -0.119 0.002 2.36% 12.44% 1.62% 8.27% 46.16% -0.97 

R=-1 6.303 -0.069 0.006 2.77% 23.25% 2.25% 18.24% 44.72% -0.98 

R=10 5.941 -0.011 0.003 1.29% 66.21% 0.75% 37.38% 40.83% -0.93 

 

From Table 4, it is obvious that when introducing measurement uncertainty, the CoV values 

for the parameters of the power law model are increased in comparison to the respective ones 

when only statistical uncertainty is taken into account. The effect is more pronounced for the 

uncertainty budget of the slope parameter in R=10, that is in case of CA fatigue experiments in 

the compression-compression region. This reflects the general difficulty in performing fatigue 

tests in the specific sector and highlights also the need for the construction of a robust database 

concerning the specific experimental tests. 

The effect of considering statistical and measurement uncertainty directly on the S-N curve 

formulation can be seen in Figure 2. The average S-N curve, as well as the characteristic S-N 



curve, i.e. 5th% fractile with 90% confidence level according to DNVGL-ST-0376 are plotted 

in Figure 2 with a black continuous and a black dashed line respectively. The results were 

reduced by one standard deviation in the intercept C, Figure 2(a), and the slope parameter b, 

Figure 2(b). S-N curves considering only the statistical uncertainty are plotted in blue, while 

those by considering both the statistical and measurement uncertainty are plotted in red. Note 

that the 5% fractile for a normal distribution is obtained by reducing the mean value by 1.96 

times the standard distribution. To facilitate clarity in Figure 2 the average value was only 

reduced by 1.0 standard deviation.  

The consideration of the measurement uncertainty affects significantly the derived S-N 

curves. 

  
(a) (b) 

Figure 2: S-N curve when varying intercept parameter C (left) and the slope parameter b 

(right) (R=-1) 

 

 5. Loads on the blade 

The strength of the blade under extreme loading and elastic stability is examined for the 

power production state of the wind turbine, DLC 1.1, realising the Normal Turbulence Model 

for all wind speed bins in the interval between cut-in and cut-out wind speeds. More 

specifically, one 10 minute time series of stress resultants at various cross-sections along the 

blade length for twenty different wind-speed bins was provided by POLI-Wind group, 

Politecnico di Milano [26].  

Load extrapolation was performed on the sectional stress resultants time series namely the 

flap and edgewise bending moments, the respective shear forces and the torsional moment 

following IEC 61400-1 ed.3 [27]. Axial force is mainly dictated by gravitational and centrifugal 

forces and thus it was considered as a deterministic variable. Local maxima were extracted from 

the 10 min simulations adopting the peak over threshold method. The threshold value was set 

according to IEC i.e. equal to the mean value plus 1.4 standard deviation of the time series for 

each wind speed bin. A time separation of 10 seconds was also imposed to ensure statistical 

independence between successive maxima. The 3p-Weibull was selected to fit local maxima 

for all the wind speed bins. The long-term exceedance probability of the extreme sectional stress 

resultants for the 10 min and 1 year reference period (T) was estimated.  

Correlation between extreme stress resultants was taken into account in the reliability 

calculations by implementing the Nataf transformation and adopting the formulation developed 

in [23]. Correlation was estimated based on the load time series. More specifically, one 

correlation matrix was estimated for each of the wind speed bin considered in DLC 1.1. As an 

approximation, the final correlation matrix used in the reliability calculations was estimated as 

the average of the derived correlation matrices and is presented in Table 5. It is observed that 
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flap/edge moment and flap/edge force stress resultants are highly correlated as expected. 

Further, flap and edge moment stress resultants are neither uncorrelated nor fully correlated. 

Similar, behaviour was observed in other research works e.g. in [28]. 

 

Table 5: Correlation coefficient of the extreme stress resultants used in the reliability 

calculations 

 Torque Flap Moment Flap Force Edge Moment Edge Force 

Torque 1.00 0.09 -0.01 0.85 -0.84 
Flap Moment 0.09 1.00 -0.96 -0.24 0.28 

Flap Force -0.01 -0.96 1.00 0.32 -0.35 
Edge Moment 0.85 -0.24 -0.24 1.00 -0.99 

Edge Force -0.84 0.28 0.28 -0.99 1.00 

 

Due to the limited number of available time series, statistical uncertainty was taken into 

account. The Bootstrap technique was used to quantify the uncertainty as described in [8]. 

Moreover, model uncertainties related to the aero-elastic load calculations, considered in [5], 

were also included in the probabilistic model and is given by: 

𝑄 = 𝑋𝑑𝑦𝑛𝑋𝑒𝑥𝑝𝑋𝑠𝑡𝑋𝑎𝑒𝑟𝑜𝑋𝑠𝑡𝑟𝑒𝑠𝑠𝐹𝑒𝑥𝑡 (16) 

where Xdyn stands for the uncertainty related to modeling of the dynamic response for the wind 

turbine including uncertainty in damping ratios and eigenfrequencies, Xexp for the uncertainty 

related to the modeling of the exposure such as the terrain roughness and the landscape 

topography, Xst for the statistical uncertainty related to the limited amount of wind data, Xaero is 

related to the uncertainty in assessment of lift and drag coefficients, Xstress for the uncertainty 

related to the computation of stresses from the wind load and Fext for the physical and statistical 

uncertainty. For the extreme edge moment stress resultants, the annual long-term exceedance 

probabilities can be seen in Figure 3 considering all types of uncertainty. The load values have 

been normalized with respect to the maximum load value from all provided simulations. The 

characteristic value with a recurrence period of 50 yrs. as IEC standard suggests is also depicted 

in Figure 3.  

 
Figure 3: Empirical plot for the long-term exceedance probability of the extreme edge 

bending moment considering all uncertainty types at the section with the maximum chord 

It is very interesting to notice the great influence of the model uncertainties of [5] to the 

annual distribution of the extremes. The CoV values for the annual loads considering all 



uncertainty types were estimated between 26-30% when the respective ones considering only 

physical uncertainty are 4-7%. 

Concerning the analysis under variable amplitude loading, additionally to DLC 1.2 that is 

the normal operation of the wind turbine throughout its lifetime, the parked condition of the 

wind turbine, DLC 6.4, is also considered while load time series were provided in the range of 

[26 m/s, 40 m/s]. 

It should be highlighted that for the design of a wind turbine rotor blade all the DLCs 

specified in the standard [11] should be considered. Additionally, due to the multi-axial loading 

of the rotor blade and the different load carrying capacity of an airfoil on the various load 

directions, the entire load envelop of the bending moments (in the flap and edge direction) 

should be examined to identify the critical load directions. More specifically, according to [11], 

the load envelope should be discretised in at least 12 equally distributed bending moment 

directions while verification analyses should be performed for each one of them. Thus, the 

limitations of the present work concerns the examination of very specific DLCs. On the other 

hand, because of the unidimensional load extrapolation performed herein and in combination 

with the correlation matrix of Table 5, only one load directions was mainly investigated. This 

means that there may be a load combination of the flap and edge moment in other directions 

more critical than the one examined in this example. The multiaxial load modelling problem 

for wind turbine rotor blades has been dealt both in deterministic and probabilistic terms in e.g. 

[29] and [30] respectively.  

 

6. Safety factors 

In a classic deterministic design, the material properties are reduced while the loads are 

increased through safety factors to account for parameters which may deviate from the design 

assumptions during operation of the wind turbine blade. In a probabilistic design, safety factors 

are avoided by directly considering the variability of the basic variables. However, there are 

certain factors, the effect of which is not included in the experimental databases selected for the 

statistical characterisation of material properties.  

The general material partial safety factor, γm, suggested by DNVGl-ST-0376 takes into 

account the dependence on the type of material, the processing, component geometry and 

influence of the manufacturing process on the strength. It should be noted that a similar 

formulation is also given in IEC 61400-1 [27], where the minimum recommended partial safety 

factor takes into account possible unfavourable deviations/uncertainties of the strength of 

material from the characteristic value, uncertainties in geometrical parameters etc. 

In the present work the uncertainty of the component geometry (assumed invariable), or the 

influence of the manufacturing processing on the strength (assumed equal from plate to blade) 

were not considered. Therefore, to estimate as accurate as possible the reliability level of the 

blades it was decided to take into account specific partial safety factors for the material 

properties as shown in Table 6. The purpose is not to double count uncertainties but to complete 

the missing uncertainties of this analysis by considering the appropriate safety factors. In this 

work, the estimated reliability level following this approach is defined as the ‘current’ reliability 

level of the blade.  

Safety factors suggested by DNVGL-ST-0376 are the base factor γm0, the partial reduction 

factor for criticality of failure mode γmC, the factor for irreversible long-term degradation γm1, 

the factor for temperature effects γm2, the factor for manufacturing effects γm3, the factor for the 

accuracy of the analysis method γm4 and the factor for the accuracy of the load assumptions γm5. 

The partial reduction factors used for each analysis type are shown in Table 6. It was assumed 

that γm3, γm4 and γm5 are equal to unity for all analyses performed. It is highlighted that accuracy 



 

of the structural analyses i.e. γm4, is considered by taking into account appropriate model 

uncertainties explained in section 8. According to DNVGL-ST-0376 the product of γm0 and γmC 

factors results in a design with an annual failure probability of 1E-04. Normally, both factors 

should be ignored in a structural reliability analysis. However, because in the multiplication 

γm0*γmC several uncertainties are hidden that partially were not accounted for in the coupon 

experiments e.g. uncertainties in geometrical parameters, while their effect cannot be identified 

and separated, as a compromise, the γmC factor was set equal to unity. The last column of Table 

6 gives the reduction factor γm i.e. the product of all the assumed partial reduction factors that 

will be applied to the material properties sample values. 

Table 6: Partial safety factors taken into account in blade reliability estimations as per 

DNVGL-ST-0376 [11]  

Type of Analysis γm0 γm1 γm2 γm 

Short term strength 1.20 1.20 1.10 1.58 

fatigue strength 1.20 1.10 1.00 1.32 

Buckling 1.20 1.05 1.05 1.32 

Inter fibre failure 1.20 1.10 1.00 1.32 

 

Regarding the loads, the aero-elastic simulation results already include safety factors 

following GL2010 [25], which are not different than those in the new standard DNVGL-ST-

0376 [11]. The partial safety factor values used to multiply loads in the aero-elastic calculations 

are presented in Table 7.  

 

Table 7: Partial safety factors included in the estimation of the load time series  

 γF 

Aerodynamic 1.35 

Operational 1.35 

Gravity 1.35 

Other inertial forces 1.25 

Heat influence 1.35 

 

It should be noted that for different limit states i.e. different types of analysis (short term 

fibre failure, fatigue etc.) and different techniques for estimating the maximum loads, different 

safety factors should be applied. More specifically, for serviceability and fatigue limit states a 

safety factor equal to 1.0 should be applied while for ultimate limit states, the partial safety 

factor considering DLC 1.1 should be equal to 1.25 if load extrapolation is performed. To 

compensate for this and be aligned with the new standard, the load sample values generated in 

the Monte Carlo simulation were reduced approximately 35% for the inter fibre failure and 

fatigue analysis and 10% for fibre failure and buckling analysis.  

For the estimation of the reliability level of the blade, the model uncertainties for loads as 

described in [5] and implemented in the developed probabilistic tool, Eq. (16), were not 

considered to avoid double counting of uncertainties.     

7. Probabilistic tool 

The probabilistic analysis was performed using PROBUST [8], a dedicated tool for the 

reliability and structural analysis of composite rotor blade sections under ultimate and fatigue 

loading. The tool is operating in MATLAB environment by modifying FORTRAN subroutines 



of THIN [7] and CUFSM [31] into the Matlab Executable as well as developing new source 

code. 

PROBUST consists of four distinct processes: The first process concerns the stochastic 

representation of the basic variables i.e. the in-plane thermo-mechanical properties of the 

unidirectional composite ply, the ply thickness, the developed sectional stress resultants as well 

as the gradient of operating and curing temperature and the moisture content. Concerning 

fatigue properties, the uncertainty analysis presented in the previous section was fully 

implemented in the current code. 

The second process concerns the structural analysis of the rotor blade. The program can be 

used for stress and instability analysis in multi-cellular orthotropic beam sections using thin 

wall theory and finite strip method (FSM) respectively. Additionally, fatigue analysis is 

performed by selecting a constant life diagram and applying the rainflow counting method. 

Specifically, two CLDs were implemented in the code namely, the Shifted Goodman diagram 

and the Piecewise Linear CLD as suggested by DNVGL-ST-0376 [11].  

Thus, the cross section into PROBUST is discretized using 2-node elements. The effective 

thermo-elastic properties for every different laminate in the blade section are evaluated by 

means of Classical Lamination Theory (CLT) and assigned to every element. Cross-section 

properties are then calculated providing the necessary structural input for an aero-elastic beam 

element analysis. Sectional stress resultants are computed performing aero-elastic simulations. 

The derived loads are further used to calculate the normal and shear stress resultants of each 

node in the laminated shell elements. The solution of the abovementioned calculations is based 

on the Euler-Bernoulli kinematic assumptions. The stress-strain fields are evaluated for each 

layer for all the nodes in the blade section using CLT.  

Regarding buckling analyses, only the axial normal stresses are taken into account in the 

calculations. The specific type of analysis is performed iteratively for a user-defined range of 

half-wave lengths to determine the critical load factor and the corresponding mode shape.  

For the fatigue analysis, two types of constant life diagrams were implemented in the code 

as recommended by DNVGL-ST-0376 namely, the Shifted Goodman diagram and the 

Piecewise Linear CLD. The number of allowable load cycles Nf adopting the shifted Goodman 

diagram (without safety factors) is given by: 

𝑁𝑓 =

{
 
 

 
 [

𝑆𝑎
𝜀1(𝑋𝑇 − 𝑆𝑚)

]

1
𝑏⁄

   𝑆𝑚 >
(𝑋𝑇 − |𝑋𝐶|)

2

[
𝑆𝑎

𝜀1(|𝑋𝐶| + 𝑆𝑚)
]

1
𝑏⁄

   𝑆𝑚 <
(𝑋𝑇 − |𝑋𝐶|)

2

 (17) 

where Sa, Sm the amplitude and mean stress that the allowable number of cycles Nf need to 

be specified, a, b, ε1 the parameters of Eq. (1) for R=-1 and XT, XC the static tensile and 

compressive strengths in the fiber direction respectively. For the Linear Piecewise CLD the 

allowable number of cycles is given by: 

𝑁𝑓 =

{
 
 

 
 [

2𝑆𝑎𝑋𝑇
(1 − 𝑅1𝑇𝑇)𝜀1𝑇𝑇𝑎𝑇𝑇[𝑋𝑇 − 𝑆𝑎(𝑟 − 𝑟1𝑇𝑇)]

]

1
𝑏𝑇𝑇
⁄

   𝑅1𝑇𝑇 < 𝑅 < 1 𝑇 − 𝑇 𝑠𝑒𝑐𝑡𝑜𝑟

[
−2𝑅1𝐶𝐶𝑆𝑎|𝑋𝐶|

(1 − 𝑅1𝐶𝐶)𝜀1𝐶𝐶𝑎𝐶𝐶[|𝑋𝐶| + 𝑆𝑎(𝑟 − 𝑟1𝐶𝐶)]
]

1
𝑏𝐶𝐶
⁄

   1 < 𝑅 < 𝑅1𝐶𝐶  𝐶 − 𝐶 𝑠𝑒𝑐𝑡𝑜𝑟

 (18) 

and 



 

𝑓1(𝑎𝑖, 𝑎𝑖+1, 𝑅, 𝑅𝑖 , 𝑅𝑖+1, 𝜀1, 𝜀1𝑖+1)𝑁𝑓
𝑏𝑖+𝑏𝑖+1

−𝑓2(𝑆𝑎, 𝑎𝑖, 𝑅, 𝑅𝑖 , 𝜀1𝑖)𝑁𝑓
𝑏𝑖 𝑅 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑅𝑖  𝑎𝑛𝑑 𝑅𝑖+1

−𝑓3(𝑆𝑎, 𝑎𝑖+1, 𝑅, 𝑅𝑖+1, 𝜀1𝑖+1)𝑁𝑓
𝑏𝑖+1 = 0

 (19) 

where a1TT, b1TT, ε1TT the parameters of the power law model for the first known R-ratio R1TT 

in the tensile region, a1CC, b1CC, ε1CC the parameters of Eq. (1) for the first known ratio R1CC in 

the compression region, ai, bi, ε1i and ai+1, bi+1, ε1i+1 the parameters of Eq. (1) for ratios Ri and 

Ri+1 (when moving counter clockwise in the CLD graph) respectively for which experimental 

data were provided and r=(1+R)/(1-R). It is noted that Eq. (19) is a nonlinear equation with 

respect to Nf and it has to be solved numerically. When parameters of the power law model are 

considered random variables in Eq. (17)-(19), the probabilistic expression of the allowable 

number of cycles to failure is obtained. Assuming constants the intercept and slope parameters 

and ε1 equal to unit, Eq. (17)-(19) represent the classical deterministic expressions for Nf. The 

Palmgren-Miner damage index (D) is finally calculated at the ply level of the composite 

structure. It should be mentioned that only the axial stresses along the fibre direction are taken 

into account in the fatigue calculations presented herein. 

For the study case in the present work, the section was discretized with 136 2-node elements. 

The material properties used to perform the stress calculations are given in section 4.2 and 4.3 

for static and fatigue analysis respectively. It is reminded that for the probabilistic analysis, the 

property values for the UD ply of the INNWIND.EU blade design [10] were used as the mean 

values of each static material property making the assumption of separated UD plies of the 

BIAX and TRIAX fabrics. Furthermore, OPTIDAT database was used for uncertainty 

quantification i.e. the estimation of the CoV value of each property. For the fatigue properties, 

the IWES database was used to estimate both mean and CoV values. Property values were 

presented in Table 3 and Table 4 for static and fatigue properties respectively. 

In the third process, the limit state function is determined for every analysis type (static, 

buckling, or fatigue). For the strength analysis under ultimate loading, the limit state function 

is given by: 

𝑔(𝐗) = 𝑋𝑅𝑓1(𝐗, 𝑋𝐷) − 1 (20) 

where X the vector of the basic variables, f1(X) a function expressing either the strength ratio 

i.e. the ratio of allowable stress over the applied one of each failure criterion or the stretch factor 

fs for Puck criterion, XR a random variable quantifying the model uncertainty related to the 

adopted failure criterion and XD a random variable expressing the model uncertainty related to 

the structural model used to evaluate deflections.  

For the elastic stability, the limit state function is described by: 

𝑔(𝐗) = 𝑋𝜆𝜆1 − 1 (21) 

where λ1 the critical eigenvalue and Xλ a random variable quantifying the model uncertainty 

related to the evaluation of the load factor. For the fatigue analysis the limit state function is 

given by   

𝑔(𝐗) = 1 − 𝑋𝑑𝐷 (22) 

where  𝐷 = ∑
𝑛𝑖

𝑁𝑓𝑖
𝑖 , with ni the applied load cycles for the i-th bin of the Markov matrix derived 

by the rainflow counting method and Nfi the allowable number of cycles for each bin calculated 

by Eq. (17)-(19). In Eq. (22) Xd is a random variable quantifying the model uncertainty related 

to the calculation of the linear damage index D. For all the limit state functions when g(X)>0, 

the composite ply (or the blade section for the buckling analysis) is in the safe mode. 



The fourth process in PROBUST contains probabilistic methods for reliability estimation. 

In the current exercise, the crude Monte Carlo (MC) method was used for strength analysis 

under variable amplitude loading. Sample values for every random variable were generated and 

repetitive simulations were performed. The failure probability (Pf) for every ply is estimated as 

the ratio of the number of failures to the total number of simulations. A major issue of concern 

in implementing the MC method is the random number generators. For correlated non-normal 

variables, the formulation developed in [23] was adopted.  

8. Model uncertainty 

The model uncertainties discussed in the formulation of the limit state functions (Eq. (20)-

(22)) are based in the work performed within the INNWIND.EU project [26]. Six organizations 

participated in the benchmark on structural analysis tools for wind turbine blades. As all 

partners were provided with the same information regarding the blade external structure, the 

internal material lay-out as well as loading that should be imposed on the blade it was possible 

to compare the output and assess the variability of the results. The results were derived by each 

partner using their own tools (fully in-house developed or combined with commercially 

available ones), with its specific structural analysis approach (thin wall theory and finite 

element (FE) models using beam, shell or solid elements) and their preferable analysis type 

(linear or geometrical non-linear). 

For the section of interest i.e. the section with the maximum chord, coefficient of variations 

of the respective model uncertainties XD, Xλ and Xd were estimated in [26] and are shown in 

Table 8. Work on the quantification of the model uncertainty related to failure criteria of 

composite materials, XR, has already been performed in [32] based on experimental data. 

Results were adopted herein and presented in Table 8. 

According to JCSS [22], model uncertainty is characterized by the choice of a suitable 

probability distribution offering mathematical convenience to the analyst. For this reason, due 

to the large CoV value e.g. in case of XR, negative values may be introduced and thus quantities 

that should always be positive become negative ones e.g. the strength ratio f1 of Eq. (20). To 

circumvent the difficulty a lognormal distribution is selected for these cases. 

Table 8: Model uncertainties related to stiffness calculations, load introduction, failure 

criterion selection, critical eigenvalue and fatigue stress factor estimation 

Model uncertainty Mean value CoV Distribution Reference 

XR 1.14 0.300 LN [32] 

XD 1.00 0.038 N 

[26] Xλ 1.00 0.229 LN 

Xd 1.00 0.490 LN 

9. RESULTS AND DISCUSSION 

 

9.1 Strength analysis under extreme loading 

Having developed appropriate probabilistic models for the static and fatigue material 

properties, reliability analysis of the blade is performed. According to [26], the critical section 

of the blade was found to be close to the maximum chord section. The Puck criterion was 

considered to identify failure for each layer and perform the verification analysis that DNVGL-

ST-0376 requires for the composite laminates i.e. fibre and inter-fibre failure. The annual failure 

probability was estimated by implementing Monte Carlo with 2E+06 iterations. It should be 



 

mentioned that the β index is related to the failure probability by Pf=Φ(-β), with Φ() the 

standardized normal distribution N(0,1). The analysed section consists of 136 2-node laminated 

elements with 9 plies per element.  

The section is considered to be a series system of elements and in turn each element is 

assumed to be a series system of layers while each layer fails due to several failure modes. 

Assuming first ply failure for each laminated element and positively correlated behaviour of 

the layers in the stacking sequence, the annual β value of the element is given by the minimum 

annual β value for every lamination scheme, i.e. the worst case of all plies in each element, and 

is depicted in Figure 4. Additionally, the estimated annual β index value of the layer 

corresponds to the worst case among the five failure modes of the Puck criterion (namely tensile 

fibre failure, compressive fibre failure, mode A, B and C for the inter fibre failure mode). 

Because of the different loading conditions at every point in the multi-cellular blade section, 

the entire β index distribution, element by element, is depicted in Figure 4. Due to the sample 

size of 2E+06, a lower bound in the estimated probability of Pf=5E-07 (β=4.89) is implied. 

Also, note that the target probability of failure referenced in DNVGL-ST-0376 is 1E-04, 

corresponding to a β index value of 3.72.  The green curve, with x marks, refers to the reliability 

level of the blade for which physical, statistical and measurement uncertainties for the material 

properties are considered. Introducing the model uncertainties of Table 8, XD and XR the blue 

(with triangular marks) and red (with dashes) curve are obtained respectively. It is reminded 

that XD corresponds to the model uncertainty related to the structural model used to evaluate 

deflections while XR is related to the failure criteria for composite material. Finally, the ‘current’ 

reliability level of the blade design, as explained in section 6, is depicted with the black (with 

circular marks) curve when appropriate safety factors given in Table 6 are considered in the 

analysis. 

 
Figure 4: Effect of the various uncertainties on the reliability level of the section at the 

maximum chord along with the estimation of the ‘current’ reliability level. (T=1yr) 

 

The results on the complete section of the blade in Figure 4, fluctuate from low reliability 

levels (even failure) to expected reliability levels (i.e. β>3.72). 

0.0

1.0

2.0

3.0

4.0

5.0

0 25 50 75 100 125

β

# elem

Without model unc

Model unc (XD)

Model unc (XR+XD)

Current reliability level

TA TP CAP NOSE CAP TP TA TV WEBc WEBb WEBa

1

8

34

40

53

69

75

99

106

1
1
3

1
1
8

119127

128136

TP

TP

TATA

TV

CAP

NOSE

WEBc

WEBb

WEBa

CAP



It should be stated that the effect considering the measurement uncertainty of the material 

properties on the reliability level of the blade is minor for this particular example, were the 

material database used was quite large (each property defined by at least 25 experiments versus 

the traditional required 7). When model uncertainties are introduced, the β index distribution is 

considerably affected, especially, for the model uncertainties related to the formulation of the 

failure criterion of composite materials (red with dashed curve). Taking into account the safety 

factors as discussed earlier, the reliability level of the blade is even more reduced. Clearly, the 

target probability level of β ≥ 3.72 is not achieved for a large number of elements. The low β 

index values of Figure 4 correspond mainly to the A and B inter-fibre failure modes of Puck 

criterion indicating the initialization of matrix cracks in the [±45] layers. It is important to say 

that the failure probabilities are zero for all the elements of the blade section considering fibre 

failure or the catastrophic failure mode C. The outcome of this work does not imply that the 

blades spinning around the word should start fail (with a significant failure rate) but there is a 

high probability that off-axis layers in the laminates will develop matrix cracks. The 

development of these matrix cracks does not necessarily lead to blade collapse. However, it 

will certainly affect operational life under cyclic loading. That is, these matrix cracks in 

combination with the cycle loading of the blade can lead to more substantial failure modes (e.g. 

extensive matrix cracks, delamination etc.) in the laminates of the blade. 

In Figure 5, probabilistic and deterministic results for the same case are set side by side. 

Specifically, the distribution on the blade section of the ‘current’ reliability level, as defined in 

section 6, is compared against the stretch factor fs distribution of the Puck failure criterion 

(worst case among the failure modes) as calculated following the DNVGL-ST-0376. fs 

distribution is depicted by the blue continuous curve while its values are plotted against the 

right hand side axis of the graph. In the same graph the critical stretch factor value of 1.0 is 

shown. fs values less than unity indicate failure for the specific element. It is clearly seen that 

the stretch factor values for some elements e.g. the element #33 (fs=0.93) are only slightly below 

the limit and thus the specific design could be considered as an adequate one according to 

DNVGL-DT-0376. This, however, means that the specific design should result in an annual 

failure probability approximately equal to 1E-04.  

 
Figure 5: Comparison of the ‘current’ reliability with the deterministic design following 

DNVGL-ST-0376. (T=1yr) 
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The probabilistic approach of this work, however, indicates a much larger annual failure 

probability. The result can be attributed mainly to the considerable effect of the failure criterion 

model uncertainties in the analysis on top of the safety factors required by the standard, as seen 

in Figure 4.  

9.2 Buckling analysis 

Similarly to the analysis presented for the strength of the blade under extreme loading in this 

section a buckling analysis of the specific blade section is discussed. Results are depicted in 

Table 9. Specifically, the first row of Table 9 indicates the annual β index value of the blade 

section when measurement uncertainty for the stiffness properties is taken into account. The β 

values were estimated implementing the response surface method as described in [8] combined 

with the Monte Carlo. The second row corresponds to the reliability level when the model 

uncertainty of Table 8 Xλ is also considered. The third row of Table 9 corresponds to the 

‘current’ reliability level, as defined in section 6, of the blade section considering the 

appropriate safety factors of Table 6.  

 

Table 9: Effect of measurement and model uncertainty on the blade reliability level of the 

section with the maximum chord. (T=1yr)   

Simulation β   

Without model unc. 1.95 

With model unc. 0.89 

‘Current’ reliability level -0.08 

 Load factor 

DNVGL-ST-0376 (1st eigenvalue) 0.52 

 

As for the static case a drastic change on the estimated β values is observed when model 

uncertainties and appropriate safety factors are considered. Still, note that the acceptable β index 

value for an annual failure probability of 1E-04 is 3.72. This result was, nevertheless, 

anticipated because the deterministic design following DNVGL-ST-0376 indicated a load 

factor equal to 0.52 as shown in the last row of Table 9. A load factor less than unity indicates 

buckling of the section. It is clear that the blade should be reinforced at this area for example 

by inserting thicker sandwich panels. 

9.3 Strength analysis under variable amplitude loading 

Regarding strength under variable amplitude loading, DNVGL-ST-0376 defines two 

approaches to take into account the mean stress effect; namely the shifted Goodman diagram 

and the linear piecewise constant life diagram. The β index distribution for the blade section at 

the maximum chord was estimated for both cases and is presented in Figure 6. In order to make 

this comparison and have failure probability values other than 1E-06, i.e. the limit of the 

calculation procedure, the number of operational years of the wind turbine was increased more 

than the specified design life of 20-30 years. 



 
Figure 6: Effect of the choice of the CLD on the reliability level of the blade section at the 

maximum chord. 

 

It is obvious that the β index distribution is significantly affected by the CLD 

implementation. For the shifted Goodman CLD, the critical parts of the section are the spar cup 

and the leading edge panel in the suction and pressure side of the blade. For Linear Piecewise 

CLD, critical parts of the blade section are the trailing panel and the cup in the pressure side 

but not in the suction side of the blade. Both approaches indicate almost the same reliability 

level but with totally different β-index distribution along the section. 

Finally, the effect of measurement uncertainty for the fatigue properties directly on the 

reliability level of the blade section is presented in Figure 7 using the shifted Goodman CLD 

and taking also into account the appropriate safety factors of Table 6 and the model uncertainty 

on the linear damage index value of Table 8. The estimated β index values correspond to the 

most critical element of the section, that is, the element #69 at the spar cup in the suction side 

of the blade.  

In Figure 7 the β values are plotted against the years of operation of the wind turbine The 

labels “Mat(P)”, “Mat(P+S)”, “Mat(P+S+M)” correspond to different formulations for the 

material fatigue properties, namely: physical only, physical and statistical and physical, 

statistical and measurement uncertainty, respectively. 
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Figure 7: Effect of the measurement uncertainty on the reliability level of the blade section 

(element with the minimum β index). Comparison with the deterministic design following 

DNVGL-ST-0376.   

The effect of considering measurement uncertainty of the static and fatigue material 

properties on the blade reliability is quite obvious. When measurement uncertainty is ignored, 

the failure probability of the blade section in terms of fatigue analysis is zero as indicated by 

the curve with circles (black) or the line with crosses (green) in Figure 7. The ‘current’ 

reliability level for T=25 yr, as defined in section 6, is given by the bold marker and it has a β 

index value equal to 3.6. The annual β index value of the blade section under variable amplitude 

loading is much higher than the one required from the standard i.e. β=3.72. 

In the same graph the linear damage index as calculated following DNVGL-ST-0376 is also 

presented. The D index values are given on the right hand side axis of the graph. It is noted that, 

for an acceptable design in deterministic terms the D index should be less than unity. Quite 

small index values were observed. For the presented design assumptions, the fatigue was not a 

limiting failure mode for the blade. Yet, as seen for the estimations on the 25 years of operation, 

the deterministic approach clearly overestimates the fatigue capacity of the blade, leading to 

non-conservative design values, when compared to the probabilistic one.  

  

10. CONCLUSIONS 

  The results presented above are not general for all wind turbine blades. They are based on 

a specific structural design, as well as connected with the available material databases and load 

conditions. For this specific design, the highest annual probability of failure was observed for 

the elastic stability case (buckling), while the annual probability of failure against fatigue was 

found to be negligible. This being said, some trends can be clearly identified.  

Uncertainty analysis was performed according to the principles of metrology using the 

OPTIDAT database and the database in [6]. Regarding static properties, variability on the 

sample mean was found to fluctuate between 0.8-10%. For the standard deviation, the CoV 

values were much higher at 19-22%. Measurement uncertainty affects mainly the tails of the 

distribution of the material property while, depending on the CoV value of the sample mean, it 
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could have a more pronounced effect on these. The new standard DNVGL-ST-0376 captures 

cases with higher variability, yet is quite conservative for cases with low fluctuations.   

For the fatigue cases, variability on the intercept parameter of the power law model, Eq. (1), 

was found to fluctuate between 1.29-2.36% depending on the R-ratio that CA fatigue tests were 

performed. For the slope parameter, the CoV value was much higher at 12.5-66.2%. The greater 

CoV values i.e. CoV>20%, are mainly related to the data derived by CA fatigue tests in the 

compression-compression region. This is not appropriately captured by the blade design 

standard, as shown in Figure 2. 

For the blade, when considering all sectional stress resultants and the multi-axial state of 

stress of the laminate and the layers, the reliability of the blade section under extreme loading 

is not driven by the unidirectional layers on the lamination sequence, but rather from the off-

axis layers. In contrast to that, for the fatigue case, where only the axial stresses (the stresses 

along the fibre direction) are taken into account, the reliability is driven by the caps of the blade 

(and the unidirectional layers). The uncertainty relevant to the failure criteria models for 

composite materials is still quite high, driving the results for the extreme (static) load cases. It 

is recommended that this uncertainty is reduced through verification of appropriate failure 

criteria by experimental evidence. This significant uncertainty relevant to the failure criteria, is 

already known and commented in the literature within the World Failure Exercise, among 

others. This could also be the background for the conservative approach of the new blade design 

standard in the static case. Nevertheless, a compensation for advanced probabilistic methods 

incorporating these types of uncertainty should be foreseen in the standard. Currently this is not 

the case.   

The fatigue formulation for multi-axial state of stress for composite materials is in its infancy 

relevant to variable amplitude fatigue loading. This is more pronounced in the wind energy 

sector, where also the sectional stress resultants coming from various load cases show a strong 

variability making even more difficult concurrent stress counting on the constituent layer of the 

blade section. Work is recommended in this direction, although this falls outside the scope of 

the development of probabilistic methods for structural reliability estimation.  

Regarding the effect of the CLD implementation, each formulation resulted in a different β 

index distribution indicating also differences in the locations of the critical parts of the blade 

section. Uncertainty related to CLD selection affects greatly the reliability estimations. 

Nevertheless, opposite to the static case, the deterministic approach of the design standard 

leads to non-conservative results for the fatigue case. Measurement uncertainty in experiments 

performed in fatigue was proven quite important, while up to now it has been neglected. This 

might be a reason for the large deviation and uncertainty of the fatigue failure criteria employed 

in composite structural design, such as wind turbine blades. 

In light of the above findings, in combination with the structural model uncertainties 

obtained in [26], it is also recommended to revisit the partial safety factors used in the blade 

design through a dedicated safety factor re-calibration.  
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