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Abstract—Fuzzy sets may have complex, non-normal or non-
convex membership functions that occur, for example, in the
output of a fuzzy logic system or when automatically generating
fuzzy sets from data. Measuring the distance between such non-
standard fuzzy sets can be challenging as there is no clear correct
method of comparison and limited research currently exists that
systematically compares existing distance measures for these
fuzzy sets. It is useful to know the distance between these sets,
which can tell us how much the results of a system change when
the inputs differ, or the amount of disagreement between individ-
ual’s perceptions or opinions on different concepts. In addition,
understanding the direction of difference between such fuzzy
sets further enables us to rank them, learning if one represents a
higher output or higher ratings than another. This paper picks up
previous functions of measuring directional distance and, for the
first time, presents methods of measuring the directional distance
between any type-1 and type-2 fuzzy sets with both normal/non-
normal and convex/non-convex membership functions. In real-
world applications where data-driven, non-convex, non-normal
fuzzy sets are the norm, the proposed approaches for measuring
the distance enables us to systematically reason about the real-
world objects captured by the fuzzy sets.

Index Terms—distance, directional distance, type-2 fuzzy sets,
non-normal, non-convex

I. INTRODUCTION

As applications centring on employing large-scale data
become prolific - in particular on human perceptions, pref-
erences and habits - measures that enable the comparison of
comprehensive models (e.g., type-2 fuzzy sets in Computing
with Words) are needed. Distance measures are particularly
useful as they enable one to understand the relative difference
between fuzzy sets (FSs) with respect to their universe of
discourse. With improved distance measures, applications such
as clustering of type-2 fuzzy sets can produce more accurate
results.

As well as determining the magnitude of distance between
the FSs, it is also useful to learn the direction of distance; i.e.,
establishing if one FS is to the left or right of another. Though
some literature on directional distance measures already exists
[1], [2], current methods do not have the mathematical prop-
erties that would be generally desired.

Additionally, difficulties arise when measuring the distance
between non-normal or non-convex FSs. For example, Fig.
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Fig. 1. A normal unimodal FS (a); and a non-normal bimodal FS (b).

1 shows a unimodal and a bimodal FS representing the
aggregated subjective opinions on two variables. The bimodal
function is non-convex as people’s beliefs have fallen into two
distinct groups. It is also non-normal (with a highest degree of
membership less than 1) as neither group is certainly correct.
To measure the distance between these two sets, a series of
horizontal cuts (α-cuts) are commonly compared. However, in
some cases (e.g., α1 in Fig. 1) the bimodal set results in a non-
continuous interval (effectively, a set of two intervals), and in
other cases (e.g., α2) the cut results in the empty set. This
paper examines measuring distance in such complex cases.

Some research has been published into the distance between
type-1 (T1) FSs that are non-normal [2], [3] or non-convex [2],
but these measures are either non-directional [3] or lack the
expected properties of a distance measure [2]. There is also
limited literature on the α-cut-based distance between interval
type-2 (IT2) FSs [4], but this does not account for direction,
non-normality or non-convexity in the membership functions.
Additionally, to the authors’ knowledge, there are currently no
α-cut-based distance measures to compare general type-2 (T2)
FSs. Note that it is important to use α-cuts as they enable a
comparison of FSs along the x-axis.

This paper builds upon existing measures [1], [2], [4]
developing a distance measure for T1 FSs that can measure
the directional or non-directional distance between FSs that
may be non-normal or non-convex; proofs of the resulting
measure’s properties are presented. The approach is then
extended to enable the comparison of T2 FSs. The functions
proposed in this paper are available online as part of our toolkit
at https://lucidresearch.org/software and at https://bitbucket.
org/JosieMcCulloch/fuzzycreator.

Note that in order to determine the distance between FSs,
the ordering along the x-axis must be taken into account [5].
Therefore, an α-cut based approach is the most appropriate.
Any measure that accounts for vertical slices only (such as in



[6]) is more akin to measuring dissimilarity. However, distance
by dissimilarity is a fundamentally different measure with
different properties that calculates the difference in overlap
between FSs. In this paper, we measure the distance between
FSs in relation to their universe of discourse; this is measured
through α-cuts.

Further, note that in principle any measure (including any
distance measure) on a set may be designed to itself return
an output of the same type of set. For example, a distance
measure on T1 FSs would return a T1 FS distance. Such a
distance measure is, for example, discussed in [7]. It is clear
that returning a set of the same type as the input sets minimises
the potential for information loss. However, most commonly,
measures on fuzzy sets are designed to return crisp outputs for
use in decision making and similar applications. This paper
thus focuses specifically on developing (distance) measures
returning a crisp output for convex/non-convex, normal/non-
normal T1 and T2 FSs.

It is important to note, however, that a crisp distance value
will, of course, capture minimal information about the input
FSs. For example, it will not be possible to know from the
value of distance if the fuzzy sets compared were non-normal
or non-convex. In a future publication, we are looking to revisit
some of the contributions made in this paper in respect to
more complex (distance) measures which return non-numeric
distances, such as proposed in [7].

This paper is structured as follows: Section II presents
background on FSs and existing distance measures. Section
III presents a directional distance measure for T1 FSs that
may be non-convex or non-normal. Then, Sections IV and
V extend the measure to compare interval and general type-2
FSs, respectively. Finally, conclusions are presented in Section
VII.

II. BACKGROUND

This section presents background on FSs and the key
methods for measuring their distance. For reference, Table
I provides descriptions of set notations and functions used
throughout the paper.

A. Fuzzy Sets

This section presents the necessary background on FS
theory and notations for T1 and T2 FSs.

1) Type-1 Fuzzy Sets:

Definition 1. Let T1(X) denote the set of all FSs in the
universe of discourse X . The FS A ∈ T1(X) is defined by a
set of pairs as

A = {(x, µA(x)) | ∀x ∈ X} , (1)

where µA(x) ∈ [0, 1] denotes the membership value of x in
A.

Definition 2. The height HA of a FS A is its maximum
membership value, defined as maxx∈X µA(x).

Definition 3. A T1 FS A ∈ T1(X) is described as normal if
HA = 1.0; i.e., max{µA(x) | ∀x ∈ X} = 1. Otherwise, it is
non-normal.

TABLE I
TABLE OF NOTATIONS. COMMON FS NOTATIONS ARE OMITTED. NOTE

ACRONYMS DM (DISTANCE MEASURE), DDM (DIRECTIONAL DM), UMF
(UPPER MEMBERSHIP FUNCTION) AND LMF (LOWER MEMBERSHIP

FUNCTION).

Set notation Meaning Ref.

A T1 FS (1)
Ã T2 FS (6)
ÃL lower membership function of Ã (8)
ÃU upper membership function of Ã (9)
A continuous interval (3)
−−
H non-continuous interval (5)
ZÃ set of zLevels of Ã (11)

Function

d̄ Set of distance functions on intervals (12)
d̄ DM for continuous intervals (13)(14)(16)
−−
d DM for non-continuous intervals (18)
dT1 DM for T1 FSs (19)
dIT2 DM for IT2 FSs (21)
dT2 DM for T2 FSs (23)

Definition 4. A FS A is convex if and only if [8]

∀x1 ∈ X, ∀x2 ∈ X, ∀λ ∈ [0, 1],

µA(λx1 + (1− λ)x2) ≥ min{µA(x1), µA(x2)}. (2)

A FS that does not satisfy (2) is non-convex.

Definition 5. An α-cut of a convex normal FS A ∈ T1(X) is
written as [9]

Aα = {x | µA(x) ≥ α, α ∈ [0, 1]} . (3)

Note that A denotes an interval and A denotes a T1 FS.
Any α-cuts of A above HA will be empty sets.

The α-cut of a normal, convex FS can be represented as a
continuous interval. Thus, an α-cut may be rewritten as

Aα = [AαL, AαR]

AαL = min {x | µA(x) ≥ α, α ∈ [0, 1]}
AαR = max {x | µA(x) ≥ α, α ∈ [0, 1]} (4)

However, this representation changes when FSs are non-
convex or non-normal.

The α-cut of a non-convex region within a non-convex
FS cannot be described as a continuous interval (as in (4)).
Instead, it is described by a set of non-overlapping, continuous
intervals. This is defined as a non-continuous interval as
follows:

Definition 6. Let a non-continuous interval
−−
H be [10]

−−
H =

I⋃
i=1

Hi (5)

where Hi represents the ith continuous interval within
−−
H and

I is the total number of intervals within
−−
H .



Such non-continuous intervals arise, for example, when de-
scribing the α-cut of a non-convex FS. For example, referring

to Fig. 1,
−−
Bα1

= {[0.985, 3.015], [5.376, 8.625]}.
2) Type-2 Fuzzy Sets: A T2 FS is an extension of a T1 FS

in which the membership value of any element is defined as
a T1 FS instead of a crisp number.

Definition 7. Let T2(X) represent the set of all T2 FSs within
X , then the FS Ã ∈ T2(X) is formally written in terms of a
set of pairs as [11]

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X, u ∈ [0, 1]} , (6)

where x is the primary variable in X , u ∈ [0, 1] is the
secondary variable, and the amplitude of µA(x, u) ∈ [0, 1]
is known as the secondary grade.

In addition to (6), many representations of T2 FSs have
been developed. This paper uses the zSlices [12] (aka, alpha-
plane [13]) representation (introduced in Section II-A4). This
is based on the theory of IT2 FSs, introduced next.

3) Interval Type-2 Fuzzy Sets: An IT2 FS is a special case
of T2 in which each secondary membership value greater than
0 has a membership of 1.

Definition 8. Let IT2(X) represent the set of all IT2 FSs
within X . The FS Ã ∈ IT2(X) is formally written as [14]

Ã = {((x, u), µÃ(x, u) = 1) | ∀x ∈ X,
u ∈ [µ

Ã
(x), µÃ(x)] ⊆ [0, 1]}.

(7)

where µ
Ã

(x) and µÃ(x) are defined as the lower and upper
membership values of Ã. The lower and upper membership
functions of Ã are

ÃL = {(x, u) | min
u∈[0.1]

µÃ(x, u) > 0, ∀x ∈ X} (8)

ÃU = {(x, u) | max
u∈[0.1]

µÃ(x, u) > 0, ∀x ∈ X} (9)

Definition 9. The α-cut of an IT2 FS may be represented
by the α-cuts of the upper and lower membership functions;
throughout this paper, this is denoted Ãα =

{
ÃLα , ÃUα

}
for

Ã ∈ IT2(X) where ÃLα and ÃUα are the α-cuts of the lower
and upper membership functions of Ã, respectively.

4) zSlices Type-2 Fuzzy Sets : A zSlices T2 FS can be
composed by slicing a T2 FS along the z-axis, segmenting the
FS into many IT2 set-like FSs called zSlices. Each resulting
zSlice has a secondary membership of zi, referred to as the
zLevel.

Definition 10. The zSlice Zi has a secondary membership
grade at zi and is defined as [12]

Z̃i = {((x, u), µZ̃i(x, u) ≥ zi) | ∀x ∈ X,∀u ∈ [0, 1]}. (10)

A FS F̃ ∈ T2(X) can be represented by the union of its
zSlices [12].

Definition 11. As a zSlices T2 FS Ã ∈ T2(X) is a collection
of IT2 FSs, we represent the α-cuts of Ã as the collection of
α-cuts of its zSlices as given in Definition 9). That is, Ãziα =

{ÃziLα , ÃziUα }; i.e. the α-cut of Ãzi is composed of the α-
cuts of the lower and upper membership functions of Ãzi .

Definition 12. ZÃ denotes the set of all zLevels of the zSlices
in Ã. This is defined as

ZÃ =
{
zi | ∀i ∈ {1, 2, ..., I} , Ãzi 6= {}

}
, (11)

where I is the total number of zLevels in Ã.

B. Distance Measures

A distance measure is a function d : A × B → R+ or
R for non-directional and directional distance, respectively,
where A and B are crisp sets, or T1 or T2 FSs. This section
covers background on non-directional and directional distance
measures.

1) Non-directional Distance : Some common properties of
a non-directional distance measure include:
Self-Identity: d(A,B) = 0⇐⇒ A = B
Symmetry: d(A,B) = d(B,A)
Separability: d(A,B) ≥ 0
Triangle inequality: d(A,C) ≤ d(A,B) + d(B,C)
Transitivity: If A ≤ B ≤ C, then d(A,B) ≤ d(A,C)

For transitivity, note that A ≤ B if Aα ≤ Bα∀α ∈ [0, 1].
Note, as mentioned in Section I, we only focus on measures

of distance that calculate the difference between fuzzy sets in
the x-axis by measuring α-cuts .

One of the most common methods of calculating the dis-
tance between two convex, normal FSs A,B ∈ T1(X) by
comparing α-cuts is the following [1], [3], [4], [15]–[18]:

dT1(A,B) =

∑
α∈(0,1] d̄(Aα, Bα)f(α)∑

α∈(0,1] f(α)
, (12)

where d̄ refers to the set of distance functions used to calculate
distance between two intervals (α-cuts). The function f(α)
may be used to weight the distance at a given α-cut . If so, it is
typically a non-negative and increasing function on [0, 1] with
f(0) = 0, f(1) = 1 and

∫ 1

0
f(α)dα = 1

2 ; in most cases (and
in this paper) f(α) = α [3], [18], [19]. However, sometimes a
weighting function is not used such that f(α) = 1 [15]–[17].

Note that dT1 (12) does not measure where α = 0 as this
relates to all elements that are not within the FS.

In this paper, d̄ refers to the set of distance functions to
compare two intervals, and d̄ refers to a specific distance
function, as shown next.

Often, the distance between two intervals is some form of
the Minkowski [1], [4], [16], [17] or Hausdorff distance [3],
[15]. The Minkowski distance d̄r between two intervals Ā and
B̄ is

d̄r(Ā, B̄) = r

√
1/2((ĀL − B̄L)r + (ĀR − B̄R)r). (13)

where r > 1 and [ĀL, ĀR] represents a continuous interval;
e.g., the α-cut of a FS A ∈ T1(X). The Hausdorff distance
d̄h between two intervals Ā and B̄ is [5]

d̄h(Ā, B̄) = max
{
|ĀL − B̄L|, |ĀR − B̄R|

}
(14)

To compare non-normal FSs, [3] and [2] present methods
based on the Hausdorff distance, where [2] also measures



distance on non-convex FSs. Extensions using the Minkowski
distance are not currently in the literature. These are further
developed in Section III.

To compare IT2 FSs, Figueroa-Garcı́a et al. [4] developed
a distance measure using the Minkowski distance (where
r = 1) to compare α-cuts of the upper and lower membership
functions. The distance between two IT2 FSs Ã, B̃ ∈ IT2(X)
is given as (12), where f(α) = α and d̄f is used for d̄, given
as [4]

d̄f (Ãα, Ãα) =
[∣∣ÃαiU L − B̃αiU L∣∣+∣∣ÃαiW L

− B̃αiW L

∣∣+∣∣ÃαiW R
− B̃αiW R

∣∣+∣∣ÃαiU R − B̃αiU R∣∣]. (15)

where ÃαiW is the α-cut of the lower membership function of

Ã (that is, ÃαiW = [ÃαiW L
, ÃαiW R

]), and ÃαiU is the α-cut
of the upper membership function of Ã.

Note that (15) requires the membership functions of Ã and
B̃ to be convex and normal. However, d̄f could also be used to
compare convex, non-normal IT2 FSs with identical heights.

In addition to (15), Figueroa-Garcı́a et al. [4] also proposed
two methods based on comparing the centroids of FSs; for
more details on this see [4].

Note that, to the authors’ knowledge, there are no current
α-cut based measures of distance beyond IT2 to general T2
FSs.

2) Directional Distance Measures: A directional distance
measure is one that does not follow separability and instead
uses a signed result to indicate direction; thus giving a result
within R instead of R+. A directional distance measure has the
benefit of indicating if one fuzzy set contains lower or higher
values from the universe of discourse than another fuzzy set.
This is useful in applications requiring ranking of fuzzy sets,
in which ordering is important.

The property of symmetry of a directional distance measure
is altered to d(A,B) = −d(B,A) [1]. Some properties of
directional distance are presented in [1] and will be further
explored in this paper in Section III-A.

Yao and Wu [1] present a measure where d(A,B) ≥ 0 if
A ≥ B and d(A,B) < 0 if A < B, using dT1 (12), where
f(α) = α and d̄ is

d̄y(Aα, Bα) = [AαL +AαR −BαL −BαR]. (16)

In [2], a directional distance measure using the general
equation (12) was presented, where f(α) = α and the
Hausdorff distance (14) is altered to

d̄m(Ā, B̄) =

{
B̄l − Āl, if |B̄l − Āl| > |B̄r − Ār|.
B̄r − Ār, otherwise.

(17)

However, this approach does not account for cases of sym-
metry where (ĀL − B̄L) = −(ĀR − B̄R). For example, if
Ā = [3, 5] and B̄ = [2, 6], it is not clear if the distance should
be 1 or −1. Additionally, as a result, (17) does not always
follow transitivity or triangle inequality.

This concludes the background of distance measures in
the literature. The next section expands upon these current
measure to introduce a directional distance measure for T1
FSs that may be non-normal or non-convex.

III. DIRECTIONAL DISTANCE FOR NORMAL, CONVEX,
TYPE-1 FUZZY SETS

This section uses a hybrid of pre-existing measures to
propose a new directional distance measure on non-normal
and non-convex FSs. The theory of measuring distance for
non-normal and non-convex FSs builds on [2]. However, as
described with (17), this existing work cannot be applied when
comparing α-cuts with identical centres but different lengths.
This is due to a limitation of using the Hausdorff distance
to describe direction. Additionally, the directional Hausdorff
distance does not have the property of triangle inequality,
which may make it unsuitable for many applications. As an
alternative, the Manhattan-based directional distance proposed
by Yao and Wu [1] is used. Using a hybrid of these meth-
ods ensures the resulting directional distance measure has
predictable properties that are consistent with non-directional
measures.

This section first discusses the properties of (16) [1], after
which the measure is extended for non-convex or non-normal
FSs.

A. Properties of Directional Distance
Due to the directional nature of d̄y (16), the standard

properties of a distance measure are slightly altered. Some
of these properties are discussed within [1] and this section
explores additional properties in more detail.

1) Self-Identity: If two FSs are identical then their distance
is zero, as is standard with the non-directional form of the
Manhattan distance. However, this is not the only case in
which the distance may be zero.

For two intervals, Ā and B̄, if one interval is a subset of
the other and the distances (ĀL − B̄L) and −(ĀR − B̄R) are
equal then their directional distance is zero. We shall denote
this property reflectivity.

Definition 13 (Reflectivity). The distance between two inter-
vals is 0 if the distances between their respective end points
are equal to each other and in opposite directions.
d̄y(Ā, B̄) = 0 if (ĀL − B̄L) = −(ĀR − B̄R), where
Ā = [ĀL, ĀR] and B̄ = [B̄L, B̄R]

For example, in Fig. 2, Ā = [1, 7] and B̄ = [3, 5]. Given
that ĀL− B̄L = −2 and ĀR− B̄R = 2, the resulting distance
d̄(Ā, B̄) is 0.

0 1 2 3 4 5 6 7 8 9 10

Ā
B̄

Fig. 2. Two intervals, Ā and B̄, where B̄ is a subset of Ā and d̄(Ā, B̄) = 0.

Theorem 1. d̄y(A,B) = 0 if A = B.

Proof: If Ā = B̄ then ĀL − B̄L = ĀR − B̄R = 0 thus
d̄y(Ā, B̄) = 0



Theorem 2. d̄y (16) follows reflectivity.

Proof:

Let β = ĀL − B̄L = −(ĀR − B̄R)

d̄y(Ā, B̄) = ĀL − B̄L + ĀR − B̄R
= β + (−β)

= 0

2) Symmetry: The directional distance produces signed
results such that d(A,B) = −d(B,A), thus the property of
symmetry does not hold. Instead, we introduce a new property
denoted partial-symmetry.

Definition 14 (Partial Symmetry). Let partial-symmetry de-
scribe the property of a distance measure d : A×B → R for
two points or objects A and B as

d(A,B) = −d(B,A).

This property enables us to indicate both the magnitude
of the distance (by the absolute value) and the direction of
distance (by the sign). Note, this property also appears in [1].

Theorem 3. d̄y (16) follows partial-symmetry.

Proof:

d̄y(Ā, B̄) = −d̄y(B̄, Ā)

ĀL − B̄L + ĀR − B̄R = −(B̄L − ĀL + B̄R − ĀR)

= −B̄L + ĀL − B̄R + ĀR

3) Separability: The property of separability no longer
holds as any real negative or non-negative value may result
from the measure. Instead, we define a new form of separa-
bility denoted directional-separability.

Definition 15 (Directional-separability). The sign of the dis-
tance indicates the relative positions between the variables.

d(A,B) < 0 if A < B
d(A,B) ≥ 0 if A ≥ B,

For directional separability, we must define when Ā < B̄.
Several methods of interval order have been proposed in
literature [20], of which we choose some common methods:
Ā < B̄ ⇔:
• ĀR < B̄L
• ĀL < B̄L and ĀR < B̄R
• ĀM < B̄M and ĀW < B̄W
• ĀM < B̄M and ĀL < B̄L
• ĀM < B̄M and ĀR < B̄R

where ĀM = (ĀL + ĀR)/2 and ĀW = ĀR− ĀL. We reduce
the last three to ĀM < B̄M ⇒ Ā < B̄ and show that this
is sufficient to prove directional-separability for these three
definitions of interval ordering.

Theorem 4. d̄y (16) follows directional-separability.

Proof:
When Ā < B̄ ⇔ ĀR < B̄L
Then ĀL − B̄L < 0 and ĀR − B̄R < 0

Therefore d̄y(Ā, B̄) < 0 if Ā < B̄.

When Ā < B̄ ⇔ ĀL < B̄L and ĀR < B̄R
If ĀL < B̄L then AL −BL < 0
and if ĀR < B̄R then AR −BR < 0
then ĀL + ĀR − B̄L − B̄R < 0, thus d̄y(Ā, B̄) < 0

When ĀM < B̄M ⇒ Ā < B̄
It is given that ĀM = ĀL+ĀR

2

Therefore ĀL+ĀR
2 < B̄L+B̄R

2 ⇒ Ā < B̄
and ĀL + ĀR < B̄L + B̄R ⇒ Ā < B̄
ĀL + ĀR − (B̄L + B̄R) < 0 thus d̄y(Ā, B̄) < 0

In each case, the likewise is given for d̄y(Ā, B̄) ≥ 0 if
Ā ≥ B̄

4) Triangle Inequality: In a non-directional distance mea-
sure, because d̄(Ā, B̄) = d̄(B̄, Ā), the ordering of the given
intervals that are measured has no effect on the rule of triangle
inequality, e.g., both

d̄(Ā, C̄) ≤ d̄(Ā, B̄) + d̄(B̄, C̄)

and

d̄(Ā, C̄) ≤ d̄(B̄, Ā) + d̄(B̄, C̄)

are true. However, for the directional distance, it is necessary
to consider the ordering of the FSs when applying the rule of
triangle inequality. This can be explained with the aid of Table
II. If the first input of part 1 appears as the first input where
it occurs in part 2, then the distance is unchanged. Otherwise,
the negative of the result must be used. Likewise, if the second
input of part 1 appears as the second input where it occurs in
part 2 the sign is kept the same. Otherwise, the negative of
the result is used.

TABLE II
AN EXAMPLE OF THE RESTRICTED PROPERTY OF TRIANGLE INEQUALITY

ON THE DIRECTIONAL DISTANCE MEASURE d̄y (16).

Part 1 Part 2

d̄y(Ā, C̄) ≤ d̄y(Ā, B̄) + d̄y(B̄, C̄)

d̄y(Ā, C̄) ≤ −d̄y(B̄, Ā) + d̄y(B̄, C̄)

d̄y(Ā, C̄) ≤ d̄y(Ā, B̄)− d̄y(C̄, B̄)

d̄y(Ā, C̄) ≤ −d̄y(B̄, Ā)− d̄y(C̄, B̄)

Note that the restricted triangle inequality is not affected by
the ordering of the FSs, i.e., d̄y(Ā, C̄) ≤ d̄y(Ā, B̄)+ d̄y(B̄, C̄)
is true if Ā ≤ B̄ ≤ C̄, or B̄ ≤ Ā ≤ C̄, or any other ordering
on Ā, B̄ and C̄.

5) Transitivity: The property of transitivity works in the
opposite direction to usual; i.e., if A ≤ B ≤ C, instead of
d̄(Ā, B̄) ≤ d̄(Ā, C̄) it follows that d̄y(Ā, B̄) ≥ d̄y(Ā, C̄).
However, the magnitude of distance (ignoring sign) follows
the normal rule; i.e. |d̄y(Ā, B̄)| ≤ |d̄y(Ā, C̄)|.

Theorem 5. For Ā ≤ B̄ ≤ C̄, d̄y(Ā, B̄) ≥ d̄y(Ā, C̄).



Proof:

d̄y(Ā, B̄) ≥ d̄y(Ā, C̄)

ĀL − B̄L + ĀR − B̄R ≥ ĀL − C̄L + ĀR − C̄R
−B̄L − B̄R ≥ −C̄L − C̄R
B̄L + B̄R ≤ C̄L + C̄R

Given that B̄ ≤ C̄ it follows that d̄y(Ā, B̄) ≥ d̄y(Ā, C̄).

The remainder of this section presents methods of measur-
ing the distance between T1 FSs that may have non-convex
or non-normal membership functions. The methods proposed
enable one to measure either the directional or non-directional
distance between such sets.

B. Non-Convex Fuzzy Sets

To measure the distance (directional or non-directional) be-
tween non-convex FSs, a method of comparing non-continuous
intervals is required. For example, referring to Fig. 1, at α1,
the FS in Fig. 1(a) results in a continuous interval. However,
in 1(b) it is represented by a non-continuous interval because
the FS is non-convex.

Definition 16 (Distance between non-continuous intervals). As
described in [2], the directional distance between α-cuts that
may be non-continuous is calculated as

−−
d (
−−
Aα,

−−
Bα) =

1

nm

n∑
i=1

m∑
j=1

d̄(Aαi , Bαj ) (18)

where Aαi represents the ith continuous interval within
−−
Aα,

and n and m are the total number of continuous intervals

within
−−
Aα and

−−
Bα, respectively. The function d̄ denotes the

set of directional distance measures on intervals.

In (18), we take the average distance between discontinuous
intervals, but a weighted average can implemented if, for
example, close regions of FSs are more important than far
regions.

The function d̄ may be (16) for directional distance, and
d̄ncr (13) and d̄nch (14) for non-directional distance. In each

case,
−−
d inherits the properties of the chosen method for d̄.

The function
−−
d (
−−
Aα,

−−
Bα) compares the distance (using

a function from d̄) of every continuous interval within
−−
Aα

against every continuous interval in
−−
Bα. If both

−−
Aα and

−−
Bα

each contain one continuous interval (i.e., they are convex)
then only one comparison is made.

Note that
−−
d can compare non-continuous intervals (from

non-convex FSs) but cannot be used to compare empty inter-
vals (from non-normal FSs).

Consider three α-cuts, where Aα = [2, 4], Bα =
([3, 5], [7, 9]) and Cα = [5, 7] (Aα and Cα and convex, Bα
is non-convex). Using (18), d̄(Aα, Bα) = d̄(Aα, Cα); the
distance is the same even though the α-cuts are fundamentally
different. While this may not be desired, it will always be
an issue when simplifying the distance of fuzzy sets to a
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Fig. 3. A non-convex fuzzy set and a convex fuzzy set (a); and the distance
between these fuzzy sets as a fuzzy set (orange) and as a singleton using (18)
(black dashed).

singleton. If it necessary to show non-convexity in the distance
when it is present in the fuzzy sets that are compared, we
recommend modelling distance as a fuzzy set [7].

When distance must be represented as a singleton, we rec-
ommend the proposed method (18) for measuring non-convex
fuzzy sets. Although the most accurate result is achieved by
representing distance as a fuzzy set, a singleton result is
usually required in most applications. The defuzzified result of
the distance represented by a fuzzy set provides an appropriate
singleton approximation. Our proposed measure provides the
centroid of the fuzzy distance. For example, Fig. 3 shows two
fuzzy sets and their distance as a fuzzy set (using [7]) and
as a singleton (using (18)). Note that the singleton result is
the centroid of the fuzzy result. This example shows that the
proposed method provides a good singleton approximation of
the distance between non-convex fuzzy sets. (Note that the
methods in [7] only provide fuzzy-valued distance for T1 FSs,
not T2).

C. Non-Normal FSs
For two fuzzy sets A and B, if HA = HB (such as for

normal fuzzy sets) only parallel α-cuts should be compared,
i.e., we should not measure d̄(Aαi , Bαj ) where i 6= j. If we
do, then d(A,B) 6= 0 when A = B because α-cuts of a fuzzy
set are usually different at different α levels. Next, consider
A and B where HA < HB < 1. There exist α-cuts where
Aα = ∅ and Bα 6= ∅ (where HA < α ≤ HB) and α-cuts
where Aα = Bα = ∅ (where α > HB). However, if we only
measure parallel α-cuts then we ignore B where HA < α ≤
HB .

We propose measuring d̄(AHA , Bα) where HA < α ≤ HB

so that a full comparison of the fuzzy sets can be made
(comparing α-cuts in B with the highest possible cut in A).
Instead of weighting this distance with f(α) = α as is done
in (12), we weight the distance at these α-cuts as HA. This
is chosen because A does not have values with membership
greater than HA and therefore the distance d̄(AHA , Bα) cannot
be any more confident than HA. We also propose that the
distance where α > max{HA, HB} is not measured since
both fuzzy sets are empty at these α-cuts.

Considering the above, the distance between A and B is
measured as

dT1(A,B) =

∑
α∈(0,λ] d̄(Amin{HA,α}, Bmin{HA,α})f(α)∑

α∈(0,λ] f(α)
,

(19)



where λ = max{HA, HB} and f(α) = min{HA, HB , α}.
To compare FSs that are both non-normal and non-convex,

dT1(A,B) (19) can be used with
−−
d (18). We propose (19)

(for normal and non-convex FSs) as an alternative to (12) (for
normal, convex FSs).

Theorem 6. dT1 has the properties self-identity, symmetry,
separability, triangle inequality and transitivity when used
with a non-directional distance measure for two intervals.

Proof: For self-identity, symmetry and separability, the
proofs are trivial.

Triangle Inequality and Transitivity:
As the measure is a weighted average for each used value of α,
increasing or decreasing the number of α-cuts compared does
not increase or decrease the calculated distance according to
dT1. Thus, the properties are retained.

Theorem 7. dT1 has the properties self-identity, partial-
symmetry and directional-separability when used with a di-
rectional distance measure for two intervals.

Proof: The proofs are trivial.
This concludes the introduction of a new directional distance

measure on T1 FSs. This improves upon the existing direc-
tional distance measures [1], [2] by enabling the comparison
of non-normal and non-convex FSs whilst maintaining the
expected properties of a directional distance measure as de-
scribed in Section III-A. The next section extends this measure
to IT2 FSs.

IV. DISTANCE ON INTERVAL TYPE-2 FUZZY SETS

A T1 FS can be modelled as an IT2 FS where µ(x) =
µ(x) ∀x ∈ X . Based on this, we would expect the distance
between T1 FSs using an IT2 representation and IT2 distance
measure to be equal to their distance using the T1 representa-
tion and measure. This ensures that the results of T1 and T2
measures can be easily compared because the type of FS does
not affect the interpretation of the results.

We measure the distance between IT2 FSs Ã and B̃ by
comparing their UMFs and their LMFs, and aggregating the
two results. We do this based on the method of comparing T1
FSs. As the upper and lower MFs of IT2 FSs are T1 FSs, let
A be a T1 embedded set of Ã and let the distance between
two embedded MFs (UMFs or LMFs) of Ã, B̃ ∈ IT2(X) be

dIT2
LU (A,B) =

∑
α∈[0,γ]

f(α)d̄(Amin{HA,α}, Bmin{HB ,α})

(20)
where γ = max {HA, HB} and f(α) = min{HA, HB , α}.
Note that at this stage (20) the average distance across α-
cuts is not normalised the same as for T1 FSs (19). Next,
we aggregate the distance between upper and lower MFs and
normalise the distance together.

Definition 17 (Interval Type-2 Distance Measure). The di-
rectional distance between two FSs Ã, B̃ ∈ IT2(X) may
be measured by comparing the upper and lower membership
functions as

dIT2(Ã, B̃) =
dIT2
LU (AU , BU ) + dIT2

LU (AL, BL)∑
α∈[0,γU ] fU (α) +

∑
α∈[0,γL] fL(α)

(21)

where fU (α) = min{HAU , HBU , α} (where HAU is the
height of the upper membership function of Ã) and fL(α) =
min{HAL , HBL , α}.

The function dIT2 (21) enables the comparison of non-
normal IT2 FSs. In addition, depending on the choice of inter-
val distance for d̄ within dIT2

LU (20), it is possible to compare
non-convex FSs and the result may be either directional or
non-directional.

Theorem 8. dIT2 has the properties self-identity, symmetry,
separability, triangle inequality and transitivity when used
with a non-directional distance measure for two intervals.

Proof: The proofs are trivial.

Theorem 9. dIT2 has the properties self-identity, partial-
symmetry and directional-separability when used with a di-
rectional distance measure for two intervals.

Proof: The proofs are trivial.

V. DISTANCE ON TYPE-2 FUZZY SETS

A distance measure on T2 FSs is attained by using the IT2
distance measure dIT2 on the zSlices of the FSs at relative
zlevels and aggregating the results. This is a method that has
previously been applied to extend IT2 similarity measures to
T2 FSs [21]–[24].

We propose measuring the distance between zSlices based
fuzzy sets by only comparing zSlices at equal zLevels where
possible. However, it is possible for T2 FSs to have non-
normal membership functions within the secondary member-
ship axis. This may occur, for example, when there is no
consensus when modelling agreement between individuals.
Figure 4 shows an example of a FS that has non-normal
secondary membership functions (Ã) and a FS that is normal
(B̃).

To compare such sets as those in figure 4, we take the same
approach as for non-normal T1 FSs. The distance between
zSlices is measured at equal zLevels where both FSs are non-
empty at the given zLevel. At zLevels where one FS Ãz is
empty and another B̃z is not, the highest non-empty zLevel
of Ã is measured against B̃z . At zLevels where both FSs are
empty, distance is not measured.

We use L(Ã, B̃) to denote the maximum zLevel that can
be used to compare Ã and B̃.

Definition 18.

L(Ã, B̃) = {z | z ∈ ZÃ ∪ ZB̃ ,
z ≤ min(max(ZÃ),max(ZB̃))} (22)

where ZÃ is described in (11).

Definition 19. The distance between two T2 FSs Ã, B̃ ∈
GT2(X) may be measured as

dT2(Ã, B̃) =

∑
i∈L(A,B) zi d

IT2(Ãzi , B̃zi)∑
i∈L(A,B) zi

, (23)

where dIT2 is the distance measure on IT2 FSs (21) and
L(Ã, B̃) is give in (22).



Fig. 4. Two FSs Ã, B̃ ∈ GT2(X) where Ã is non normal (ZÃ =

{0.25, 0.5}), and B̃ (ZB̃ = {0.25, 0.5, 0.75, 1.0}).

Using L(Ã, B̃) ensures that all zSlices up to the lowest
maximum zLevel, even if the FSs are divided into different
zLevels [22]. Note that dT2 inherits the properties of dIT2,
including the ability to measure either directional or non-
directional distance.

Theorem 10. dGT2 has the properties self-identity, symmetry,
separability, triangle inequality and transitivity when used
with a non-directional distance measure for two intervals.

Proof: For self-identity, symmetry and separability, the
proofs are trivial.

Triangle Inequality and Transitivity:
As the measure is a weighted average for each used value of
z, increasing or decreasing the number of zLevels compared
does not increase or decrease the calculated distance according
to dGT2. Thus, the properties are retained.

Theorem 11. dGT2 has the properties self-identity, partial-
symmetry and directional-separability when used with a di-
rectional distance measure for two intervals.

Proof: The proofs are trivial.

This concludes the proposed methods of measuring direc-
tional and non-directional distance on T1 and T2 FSs that
may have non-normal or non-convex primary membership
functions and, for T2 FSs, non-normal secondary membership
functions. Note that although non-convex secondary mem-
bership functions are possible, they are uncommon due to
their complexity, and are not considered further in this paper.
Further, we note that (23) enables the direct comparison on
T2 (interval and general), as well as T1 FSs.

VI. NUMERICAL EXAMPLES

This section demonstrates the proposed directional distance
measures on T1, IT2 and GT2 FSs. Each example includes
three fuzzy sets:

• A: non-normal and convex
• B: non-normal and non-convex
• C: normal and convex

We calculate the distance using four α-cuts at
α ∈ {0.25, 0.5, 0.75, 1.0}.
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Fig. 5. Type-1 fuzzy sets.

A. Type-1 Fuzzy Sets

The FSs are defined by key values below and linear inter-
polation is used to calculate intermediary membership values.

A = {(0.25, 0), (2, 0.775), (3.75, 0)}
B = {(2.25, 0), (3.025, 0.85), (3.95, 0.35),

(6.9, 0.65), (7.75, 0)}
C = {(7.15, 0), (8, 1), (8.85, 0)} (24)

Fig. 5 illustrates the FSs. The α-cuts are given in Table III.
The distance between the FSs at each α-cut and overall are
given in Table IV.

TABLE III
α-CUTS OF FSS IN (24) AND FIG. 5.

α A B C

1 - - (8.000, 8.000)
0.75 [1.944, 2.056] [2.940, 3.210] [7.788, 8.212]
0.5 [1.379, 2.621] ([2.710, 3.670], [7.575, 8.425]

[5.430, 7.090])
0.25 [0.815, 3.185] [2.480, 7.420] [7.362, 8.638]

TABLE IV
DISTANCE BETWEEN T1 FSS IN (24) AND FIG. 5 AT INDIVIDUAL α-CUTS

AND OVERALL.

α d(A,C) d(C,A) d(B,C) d(A,B)

1.0 -6.0 6.0 -4.925 -
0.75 -6.0 6.0 -4.925 -1.075
0.5 -6.0 6.0 -3.275 -2.725
0.25 -6.0 6.0 -3.050 -2.950
Overall -6.0 6.0 -4.062 -1.938

As A and C are symmetrical FSs, their distance is equivalent
to comparing their centres of gravity. Note the symmetry in
distance, such that d(A,C) = −d(C,A).

Comparing B with C, their distance is larger at higher α-
cuts , particularly at α = 0.75 where the right-most region
of the non-convex FS B is not present. Lower α-cuts of B
are closer to C, to the extent of overlapping; this is reflected
in the calculated distance that is smaller at lower α-cuts. The
distance between A and B decreases at lower α-cuts at B
begins to overlap A.
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Fig. 6. Type-2 fuzzy sets.

B. Interval Type-2 Fuzzy Sets

AU = {(0, 0), (2, 0.8), (4, 0)}
AL = {(0.5, 0), (2, 0.75), (3.5, 0)}
BU = {(2, 0), (3, 0.9), (4, 0.4), (7, 0.7), (8, 0)}
BL = {(2.5, 0), (3.05, 0.9), (3.9, 0.4), (6.8, 0.7), (7.5, 0)}
CU = {(7, 0), (8, 1), (9, 0)}
CL = {(7.3, 0), (8, 1), (8.7, 0)} (25)

Fig. 6 illustrates the fuzzy sets. The α-cuts are given in Table
V.

TABLE V
α-CUTS OF FSS IN (25) AND FIG. 6.

α A B C

1 - - [8.000, 8.000]
0.75 [1.875, 2.125] [2.840, 3.300] [7.750, 8.250]
0.5 [1.250, 2.750] ([2.560, 3.800], [7.500, 8.500]

[5.000, 7.280])
0.25 [0.625, 3.375] [2.280, 7.640] [7.250, 8.750]

TABLE VI
DISTANCE BETWEEN IT2 FSS IN (25) AND FIG. 6 AT INDIVIDUAL α-CUTS
(FOR LOWER AND UPPER MEMBERSHIP FUNCTIONS, RESPECTIVELY) AND

OVERALL.

d(Ã, C̃) d(C̃, Ã) d(B̃, C̃) d(Ã, B̃)

1.0 -6.0, -6.0 6.0, 6.0 -4.930, -4.925 -
0.75 -6.0, -6.0 6.0, 6.0 -4.930, -4.925 -1.070, -1.075
0.5 -6.0, -6.0 6.0, 6.0 -3.340, -3.213 -2.660, -2.788
0.25 -6.0, -6.0 6.0, 6.0 -3.040, -3.060 -2.960, -2.940
Overall -6.0 6.0 -4.064 -1.936

The same trend in results can be found in the IT2 results as
in the T1 results (Table IV). Specifically, d(A,C) is consistent
throughout all α-cuts, d(B,C) decreases at lower α-cuts, and
d(A,B) increases at lower α-cuts . The reasons are the same
as discussed for Table IV.

C. General Type-2 Fuzzy Sets

In this example, we construct a general type-2 fuzzy set
with two zSlices. The lowest zSlice z1, with a secondary
membership (zLevel) of 0.5 is defined by the interval type-2
fuzzy sets as given in (25) and has the same corresponding α-
cuts given in Table V. The highest zSlice z2, with a secondary
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Fig. 7. A convex GT2 FS (A) and two identically shaped non-convex GT2
FSs (B and C) at different locations.

membership of 1.0 is defined by the type-1 fuzzy set given in
(24) and α-cuts given in Table III.

TABLE VII
DISTANCE BETWEEN GT2 FSS IN FIG. 6 BASED ON (25) AND (24).

d(Ã, C̃) d(C̃, Ã) d(B̃, C̃) d(Ã, B̃)

z1 -6.0 6.0 -4.064 -1.936
z2 -6.0 6.0 -4.062 -1.938
Overall -6.0 6.0 -4.063 -1.937

The distance between the FSs is calculated through the
weighted average of the distances at z1 and at z2 with weights
0.5 and 1.0, respectively. The resulting distance at each zSlice
and overall distance are given in Table VII. Note that the
distances at z1 and z2 are the same as those for the IT2 and
T1 FSs in Tables VI and IV, respectively. The trend in results
for GT2 FSs in Table VII are the same as those discussed for
the T1 results (Table IV).

Next, we demonstrate comparing GT2 FSs with non-normal
secondary membership functions. As in the previous example,
the lowest zSlice z1 (at zLevel 0.5) is defined by the IT2
FSs given in (25). However, in this example, set Ã is only
described by this single zSlice. Therefore the set of zLevels of
Ã is ZÃ = {0.5}. As in the previous example, B̃ and C̃ have
a second zSlice z2 (at zLevel 1.0) with the same membership
functions as the T1 FSs B and C described in (24).

Table VIII shows results of comparing these FSs using
dGT2 (23). Note that L(Ã, B̃) = {0.5}, L(Ã, C̃) = {0.5},
and L(B̃, C̃) = {0.5, 1.0}. Therefore, in each case except
dGT2(B̃, C̃), the distance at only one zLevel can be compared.
The results in Table VIII are intuitive with those in Table VII
where all FSs contain two zSlices.

TABLE VIII
DISTANCE BETWEEN GT2 FSS IN FIG. 6 WITH NON-NORMAL SECONDARY

MEMBERSHIP FUNCTIONS BASED ON (25) AND (24).

d(Ã, C̃) d(C̃, Ã) d(B̃, C̃) d(Ã, B̃)

z1 -6.0 6.0 -4.064 -1.936
z2 - - -4.062 -
Overall -6.0 6.0 -4.063 -1.936

Next, we present an example of the behaviour of measuring
distance with non-convex T2 FSs. Fig. 7 shows a convex T2
FS (Ã) and two identically shaped non-convex T2 FSs (B̃ and
C̃). The modes of B̃ are at x = 4 and x = 5, and the FS is



centred at x = 4.5. The FS C̃ is the same but shifted by 2
along the x-axis; that is, its centre is at x = 6.5. Using our
proposed measure, dT2(Ã, B̃) = 2.5 and dT2(Ã, C̃) = 4.5.
These results demonstrate that the proposed measure correctly
shows the difference in position of B̃ and C̃ with respect to
Ã and correctly identifies the centres of the FSs. While this
result contains limited information in the sense that, being
numeric, it does not show the non-convexity in the result
(as would be possible when returning a FS valued distance,
for instance), it provides a useful single-valued measure of
distance. As discussed with Fig. 3, a FS result could convey
the non-convexity of the T2 FSs, but loss of such information
is unavoidable when reducing a result from its FS form to a
numeric (singleton) form.

VII. CONCLUSIONS

Distance measures are vital in applications centring on
employing human perceptions, preferences and habits. They
provide the ability to understand the relative difference be-
tween FSs with respect to their universe of discourse. Direc-
tional distance measures are especially useful in understanding
the direction of difference between such FS, for example in
ranking, to determine if one FS represents a higher output or
higher ratings than another.

Current methods in the literature enable the directional or
non-directional distance between T1 FSs. However, although
some steps have been made towards comparing non-normal
and non-convex FSs, the measures do not have all of the
properties of a distance measure, making them difficult to
apply. In addition, current distance measures on T2 FSs only
exist for IT2 FSs that are normal and convex. Thus, current
methods in the literature are not useful in cases where non-
normal and non-convex FSs are common, such as applications
with data-driven FSs, for which any measures used on these
FSs need be able to handle such circumstances.

Given this, we present extensions to distance measures with
the goal of enabling the comparison of different types of real-
world FSs. We introduce a new measure on the directional
and non-directional distance for T1 and T2 FSs that may be
normal/non-normal and convex/non-convex. Note that for T2
FSs, the extensions in this paper support non-normal secondary
MFs, but do not support non-convex secondary MFs. (This will
be addressed in a future publication.)

In addition, the measures resulting from the proposed ap-
proach are ‘backwards-compatible’ in the sense that they allow
for the direct comparison of GT2 to IT2 and T1 FSs - regard-
less of the sets’ (non-)convexity, (non-)normality and type. As
non-standard (e.g. non-convex) fuzzy sets are common in real-
world applications where FSs are data-driven, the proposed
extensions thus significantly expand the applicability of FSs
(including T2 FSs) to applications beyond fuzzy logic, e.g.,
distance based recommendation systems, as used commonly
in marketing.

The functions proposed in this paper are available on-
line as part of our toolkit, available at https://lucidresearch.
org/software and at https://bitbucket.org/JosieMcCulloch/
fuzzycreator
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