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7. Appendix

7.1. Further results relating to section 2 and proofs

7.1.1. Domains of attraction according to tU and b

The domains of attraction may be usefully classified using a cross classification of b and tU
according to whether they are finite or infinite. This cross classification has implications

for the behavior of M(s) as s ↑ b as noted in the table below.

Proposition 2. (Classify by tU and b). Suppose Zs
w→ Z, where Z is non-degenerate,

and b /∈ S. The following cross-classification for domain of attraction holds.

b <∞ b =∞

D(−Gα) or D(N )

tU <∞ Empty D(−Gα) ⇐⇒ RV∞(−α)

D(N ) =⇒ FT PD

D(Gα) or D(N ) D(N )

tU =∞ D(Gα) ⇐⇒ RVb(−α) D(N ) =⇒ FT EG

D(N ) =⇒ FT PG

(7.1)

In the above the following abbreviations have been used:

FT PD: faster-than-power decay, meaning that for any c > 0, lims→∞ sce−stUM(s) = 0;

FT PG: faster-than-power growth, meaning that, for any c > 0, lims↑b(b−s)cM(s) =∞;

FT EG: faster-than-exponential growth, meaning for any c > 0, lims→∞ e−csM(s) =∞.

The shorthand in the table may be explained by considering e.g. the lower left cell, where

b < ∞ and tU = ∞: the statement “D(Gα) or D(N )” means that this cell consists of

distributions which are in the domain of attraction of the positive gamma with index α or

the normal; the former case occurs if and only if the MGF of the distribution is regularly

varying at b with index −α; and whenever the latter occurs, the MGF has faster-than-

polynomial growth at b.

The first row with tU <∞ is not relevant when X is integer-valued since in this case the

limiting distribution Z is degenerate at tU ; the second row includes integer-valued cases.

Three examples of Proposition 2 are briefly mentioned without proof. The right tail

of the noncentral χ2 distribution is in D(N ) and occupies the lower left cell above. The
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left tail of the generalized inverse Gaussian distribution of Example 1 is in D(N ) and

occupies the upper right cell. The right tail of the Poisson distribution is in the lower

right cell.

Proof of Proposition 2. The upper cell in the table must be empty because if tU <∞
then necessarily b =∞. If tU =∞, then it follows from Balkema et al. (2003 Prop. 4.1,

(2)) that X ∈ D(G) or X ∈ D(N ), and if b =∞, then X ∈ D(−G) or X ∈ D(N ) follows

from Balkema et al. (2003 Prop. 4.1, (1)). The middle lines in the upper right and lower

left cells are consequences of parts (b) and (c), respectively, of Proposition 1 and are

restated to complete the table. The remainder of the proof, concerning the asymptotics

in the three D(N ) cases, follows from results in Balkema et al. (1999b), especially the

proof of Lemma 5.2 (op. cit.), and the fact that X ∈ D(N ) if and only if the CGF K(s) is
asymptotically parabolic at b. In the proof of lemma 5.2 (op. cit.), it is noted that (using

our notation) if b < ∞ then K′′(s) >> (b− s)−2, which implies, after integrating twice

and then exponentiating, thatM(s) >> (b−s)−c+O(1) when s is sufficiently close to b,

for all fixed c > 0. Therefore, when b <∞, D(N ) implies the property FT PG, as stated
in the lower left cell of the table. When b =∞ and K(s)→∞ as s→∞ then, from the

proof of Lemma 5.2, K′′(s) >> s−2, which implies that for any fixed c > 0, there exists

an s∗(c) such that K′′(s) ≥ cs−2 for s > s∗(c). Integrating both sides from s0 to s1 and

then integrating s1 from s2 to s and rearranging, we obtain

K(s) ≥ s

{
K′(s0) +

c

s0
− c ln(s)

s

}
+K(s2)− s2K′(s0)−

cs2
s0

+ c ln(s2), (7.2)

for any s ≥ s2 ≥ s0 ≥ s∗(c). Choose a large c1 ∈ (0,∞). Due to the assumption that

K(s) is regular and therefore steep, for fixed c there exists an s0 such that

K′(s0) +
c

s0
− c ln s

s
> c1,

for s > s0. Exponentiating both sides of (7.2) with this choice of s0, it is seen that

M(s) ≥ A(c, s0, s2)ec1s for s ≥ s2 ≥ s0 ≥ s∗(c), where A(c, s0, s2) is independent

of s, and the property FT EG in the lower right cell of the table then follows easily.

Finally, in the upper right cell, where M(∞) = 0, we have from Lemma 5.2 (op. cit.)

that −K′(s) >> s−1. Integrating both sides, it follows that, for any fixed c ∈ (0,∞),

K(s) ≤ −c ln(s) for s sufficiently large, from which the FT PD property in the upper

right cell follows after exponentiating both sides. [Comment on notation: there is some

inconsistency in the literature on the meaning of g(x) >> f(x). In notation attributed

to Vindogradov, it means f(x) = O{g(x)}, whereas for Balkema et al. and coauthors,

and also for us, it means f(x) = o{g(x)}.] �
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7.1.2. Domains of attraction according to singularity type

Results from Balkema et al. (1999a,b, 2003) also permit categorization of domains of

attraction according to the type of singularity that occurs at b.

Pole or algebraic branch point at b of order α > 0. Suppose X is absolutely

continuous (integer-valued) with MGF M (PGF P) as given in (7.3), where L is slowly

varying at ∞ (L ∈ SV∞). Then X ∈ D(Gα) follows since the form forM and P in (7.3)

implies that they are in RVb(−α) and RVr(−α) respectively, i.e.

M(z) =
1

(b− z)α
L

(
1

b− z

)
and P(ω) = 1

(r − ω)α
L

(
1

r − ω

)
. (7.3)

If α is not an integer, then the multi-function factors such as (b− z)−α assume principal

branch values which are real-valued for z = s < b and make use of a branch cut along

the positive real axis [b,∞].

Slowly varying at b. This category includes logarithmic branch points and their powers

as well as iterated logarithmic branch points and their powers.

Proposition 3. (MGF slowly varying at b). Suppose X is absolutely continuous

with moment generating function M(s) = L{1/(b− s)} where L ∈ SV∞ or X has PGF

P(w) = L{1/(r −w)} where L ∈ SV∞ (see §2 for definition) and r = eb. Then, Zs does

not converge weakly as s→ b.

Proposition 3 covers logarithmic branch points, examples of which are given in Butler

(2017, §8) and include the exponential integral density and the logarithmic series mass

function.

Proof of Proposition 3. Since M and P are analytic on a ≦ Re(z) < b and ra ≦

|z| < r, L ∈ SV∞ and L is smooth. Let u = 1/(b− s) and observe that u→∞ as s ↑ b.
Note that

κn =
unL(n)(u)

L(u)
→ 0, s ↑ b,

follows as a property of smoothly varying functions; see Bingham et al. (1987, §8). Then
K′(s) = uκ1,

K′′(s) = 2u2κ1 + u2
(
κ2 − κ21

)

K′′′(s) = 6u3κ1 + 6u3
(
κ2 − κ21

)
+ u3

{
κ3 − κ2κ1 − 2κ1(κ2 − κ21)

}
.

From this,

K′′′(s)
{K′′(s)}3/2 =

6κ1 + 6
(
κ2 − κ21

)
+ κ3 − κ2κ1 − 2κ1(κ2 − κ21)

(2κ1 + κ2 − κ21)
3/2

∼ 6κ1 + 6κ2 + κ3

{2κ1 + κ2}3/2
→∞
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as u → ∞. Thus, by Proposition 1, there is no weak convergence. The proof for mass

functions is the same. �

Essential singularity at b. If M(z) is an entire function and not a finite polynomial,

then it must have an essential singularity at b =∞. Thus all such entire MGFs fall within

this singularity type.

Proposition 4. (Essential singularities). If b is an essential singularity and Zs
w→ Z,

then the following categorization holds.

b <∞ b =∞

tU <∞ Empty D(−Gα) or D(N )∗

tU =∞ D(N ) D(N )

(7.4)

Examples in the upper right cell for which D(−Gα) holds, include the uniform distri-

bution of Example 3 as well as the tail of a truncated distribution as in Example 4. The

bottom left category includes a noncentral χ2(n, λ) distribution with n degrees of free-

dom and noncentrality parameter λ, and the Poisson mass function occupies the lower

right. No examples have been found for the starred case of D(N ) in the upper right cell

but, so far as we are aware, it is a possibility that cannot be ruled out.

Proof of Proposition 4. If b < ∞, then suppose X ∈ D(Gα). Then (b − s)K′(s) ∼
α as s ↑ b so that K(s) ∼ −α ln(1 − s/b) and M(s) ∼ (1 − s/b)−α = bα(b − s)−α.

However, M(z) has an essential singularity at b so that M(z)(b − z)⌊α+1⌋ still has an

essential singularity at b. This contradicts the asymptotic order ofM(s) as s ↑ b in which

M(s)(b − s)⌊α+1⌋ → 0 as s ↑ b, hence we reach a contradiction to the assumption that

X ∈ D(Gα). �

The next result however, mostly rules out the starred case in practical applications.

Corollary 7. The starred case of D(N ) in Proposition 4 cannot occur if the density

f , when viewed as a function of complex variable z, satisfies the following condition: for

some δ > −1,
f(z) = (tU − z)δh(z) (7.5)

where h is analytic in a complex neighbourhood of tU .

The rationale for condition (7.5) is to limit f(t) to power-law behavior as t ↑ tU but

at the same time ensure it is still integrable on (tU − ε, tU) by taking δ > −1. Under this

regime, f cannot have an essential singularity at tU .
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Proof of Corollary 7. Condition (7.5) is sufficient for showing that X ∈ D(−Gα) for

some α ≥ δ. See the proof of Corollary 5 of §7.4 of Supplementary Materials. �

7.1.3. Saddlepoint implications if Zs
w→ Z

Various properties of the saddlepoint quantities ŵ and û as ŝ → b are now developed

based on the three possible weak distributional limits for Z.

Proposition 5. (Properties of ŵ and û). Suppose b /∈ S.
(a) As t→∞,

û→
{ ∞ if X ∈ D(Gα) or X ∈ D(N )
√
α if X ∈ D(−Gα)

.

(b) If X is such that Zs converges weakly as s ↑ b, then ŵ→∞ as t ↑ tU , tU ≤∞.

(c) If X ∈ D(Gα) or X ∈ D(−Gα) then û/ŵ3 → 0 as t ↑ tU ≤ ∞.

Proof of Proposition 5. (a) For the caseX ∈ D(Ga), we first show that (b−ŝ)2K′′(ŝ)→
α as ŝ→ b. Note that from Balkema et al. (2003, Prop. 4.1), (b− s)Xs

w→ Gamma (α, 1)

as s→ b so that, by Balkema et al. (1999a, Theorem 3.6), we have pointwise convergence

of the MGF of (b− s)Xs to the MGF of Gamma (α), so that

M{s+ (b− s)u}
M(s)

→ 1

(1− u)α
, Re(u) < 1.

This convergence ensures that the moments converge and the result follows by taking

two derivatives in u and evaluating the limit at u = 0. Thus, û = ŝσ̂ ∼ b
√
α/(b− ŝ)→∞.

Suppose X ∈ D(N ). If b =∞, then 1/σŝ is self-neglecting in b by Corollary 5.4(a) of

Balkema et al. (2003). Thus, by the discussion in paragraph 3 of Balkema et al. (2003),

1/σŝ = o(ŝ) so that 1/û = o(1) as ŝ → ∞ as required. When b < ∞, then Corollary

5.4(a) ensures that σŝ →∞ and hence û→∞ as t ↑ tU as part of the condition AP3) in

Balkema et al. (2003, p.91), which holds when there is convergence E(Z3ŝ )→ 0.

If X ∈ D(−Ga), then s(Xs − tU )
w→− Gamma (α, 1) as s ↑ b as shown in Balkema et

al. (2003, Prop. 4.1). The sequence of CGFs converges and the convergence of the second

cumulant sequence gives s2K′′(s)→ α. Thus û = ŝσ̂→√
α.

(b) If X ∈ D(Gα) then b < ∞ (Balkema et al., 2003, Prop. 4.1) so that tU = ∞.

By implicit differentiation, 1
2d{ŵ(t)2}/dt = ŝ(t). Choose t0 such that ŝ(t0) > 0. With

ŵ0 = ŵ(t0), then

1
2{ŵ(t)2 − ŵ20} =

∫ t

t0

ŝ(z)dz ≥ (t− t0)ŝ(t0)→∞, t→∞, (7.6)
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when X ∈ D(Gα).

For X ∈ D(N ), if b < ∞ then the argument used in (7.6) suffices since t → tU = ∞
as ŝ ↑ b. If b = ∞, then, with ŵ(t) given in (1.1), differentiate 1

2d{ŵ(t)2}/dŝ = ŝK′′(ŝ)
so that

1
2{ŵ(t)2 − ŵ20} =

∫ ŝ(t)

ŝ(t0)

yK′′(y)dy. (7.7)

Since 1/
√
K′′(y) = o(y), then there exists ε > 0 such that 1/{y2K′′(y)} < ε for all

y > y0 > 0. Hence, yK′′(y) > 1/(εy), and the integral in (7.7) is bounded below by

∫ ŝ(t)

y0

dy

εy
=

1

ε
ln{ŝ(t)/y0} →∞ ŝ(t)→∞.

If X ∈ D(−Ga) then tU < ∞ and b = ∞. Also, y2K′′(y) → α as y → ∞ so that

yK′′(y) > (α− ε)/y for some ε ∈ (0, α) and for all y > y1. Using (7.7), then

1
2 ŵ(t)

2 >

∫ ŝ(t)

y1

yK′′(y)dy >
∫ ŝ(t)

y1

α− ε

y
dy = (α− ε) ln

ŝ(t)

y1
→∞ ŝ(t)→∞.

(c) If X ∈ D(Ga), then (b− ŝ)t→ α. From part (a), û ∼ b
√
α/(b− ŝ) ∼ bt/

√
α. From

part (b), ŵ2 > 2(t− t0)ŝ(t0) so that

û

ŵ3
<

bt/
√
α

{2(t− t0)ŝ(t0)}3/2
→ 0, t→∞.

If X ∈ D(−Ga), then û/ŵ3 ∼ √α/ŵ3 → 0 by part (b). �

7.2. Proofs for section 3

Proof of Theorem 1. The proof involves computing separate limits for the factors

1

S(t)

∫ tU

t

f̂(u)du and
1

Ŝ(t)

∫ tU

t

f̂(u)du. (7.8)

The first term has the same limit as f̂(t)/f(t) and the second term has limit 1. Denote

r∞ = limt↑tU f(t)/f̂(t) < ∞. Then, for any ε > 0, supt>T |f(t)/f̂(t) − r∞| < ε for T
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sufficiently large. Starting from the first term in (7.8) we have
∣∣∣∣

1

S(t)

∫ tU

t

f̂(u)du− 1

r∞

∣∣∣∣ =
1

S(t)

∣∣∣∣

∫ tU

t

{f̂(u)− 1

r∞
f(u)}du

∣∣∣∣

≤ 1

S(t)

∫ tU

t

∣∣∣∣f̂(u)−
1

r∞
f(u)

∣∣∣∣ du

=
1

S(t)

∫ tU

t

∣∣∣∣∣
f̂(u)

f(u)
− 1

r∞

∣∣∣∣∣
f(u)du < ε,

if t > T. Thus the limit of the first term in (7.8) is 1/r∞. For the second term we

use l’Hôpital’s rule but in order to use this result, we must ensure that Ŝ(t) → 0 as

t ↑ tU . Note from the form of Ŝ(t) given in (1.3) this happens as long as ŵ → ∞ and

lim inf ŝ↑b û > 0. By Proposition 5, both of these conditions hold under weak convergence

of Zs as s ↑ b. Thus

lim
t↑tU

1

Ŝ(t)

∫ tU

t

f̂(u)du = lim
t↑tU

f̂(t)

f̂(t)

{
1 +

1

û2
+
κ̂3
2û
− û

ŵ3

}
(7.9)

where κ̂3 is the third standardized cumulant of the ŝ-tilted distribution, and the expres-

sion for Ŝ′(t) is given in Butler (2007, eqn. 2.82). If X ∈ D(N ) and we assume û/ŵ3 → 0,

then the limit of the term in curly braces is 1 so the limit in (7.9) is 1. If X ∈ D(Ga) then

û/ŵ3 → 0 and û→∞ so the limit is 1 by Proposition 5. If X ∈ D(−Ga) then û/ŵ3 → 0

and

1 +
1

û2
+
κ̂3
2û

→ 1 +
1

α
+
−2/√α
2
√
α

= 1.

Putting both results together, then limt↑tU S(t)/Ŝ(t) = r∞. �

Proof of Theorem 2. The relationship between the convergence in (2.1) and limiting

ratio for the saddlepoint density is determined through the inversion formula for f(t).

Under the weak condition that the density f of X is locally of bounded variation (see

condition (ii) in the statement of Theorem 2), f is determined by its MGF as

f(t) =
1

2πi

∫ ŝ+i∞

ŝ−i∞
M(z)e−ztdz =

1

2π

∫ +∞

−∞
M(ŝ+ iy)e−t(ŝ+iy)dy

where ŝ ∈ S is the saddlepoint solving K′(ŝ) = t. Substituting µ̂ = K′(ŝ) = t, then

f(t) =M(ŝ)e−tŝ 1

2π

∫ +∞

−∞

M(ŝ+ iy)

M(ŝ)
e−iµ̂ydy

=
M(ŝ)e−tŝ

σ̂

1

2π

∫ +∞

−∞

M(ŝ+ iu/σ̂)

M(ŝ)
e−iµ̂u/σ̂du

= f̂(t)
1√
2π

∫ +∞

−∞

M(ŝ+ iu/σ̂)

M(ŝ)
e−iµ̂u/σ̂du, (7.10)
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where the substitution u = σ̂y with σ̂ =
√
K′′(ŝ) has been made in the second line. The

limit for the ratio f(t)/f̂(t) as t ↑ tU is determined by letting ŝ → b in the inversion

integral in (7.10) under the assumption of the convergence in (2.1). To justify this lim-

iting operation we argue as follows. For large t, f(t) is locally of bounded variation and

continuous so the inversion theorem for f(t) holds; see Doetsch (1974, Theorem 24.3).

From (7.10) we take the limit

lim
t↑tU

f(t)

f̂(t)
=

1√
2π

lim
ŝ↑b

∫ +∞

−∞

M(ŝ+ iu/σ̂)

M(ŝ)
e−iuµ̂/σ̂du. (7.11)

Consider the case X ∈ D(Gα) in which (b − ŝ)µŝ → α as t ↑ tU . Then Zŝ
w→ Z ∼

Gamma (α,
√
α)−√α and, for each fixed u ∈ R,

lim
ŝ↑b

M(ŝ+ iu/σ̂)

M(ŝ)
e−iuµ̂/σ̂ =MZ(iu) =

(
1− iu√

α

)−α

e−iu
√

α. (7.12)

To show the limiting relative error ratio for the density, assume a dominating function

D as in (3.2) exists. Then from (7.11), (7.12) and (3.2), we get

lim
t→tU

f(t)

f̂(t)
=
√
2π

1

2π

∫ +∞

−∞

(
1− iu√

α

)−α

e−iu
√

αdu

=
√
2πfZ(0) =

√
2πfG(α,

√
α)(
√
α)

=
√
2π

1

Γ(α)

√
α

α√
α

α−1
e−

√
α
√

α =
Γ̂(α)

Γ(α)
.

Here, fG(α,
√

α) refers to the density of a Gamma (α,
√
α) distribution.

Consider now the case X ∈ D(−Gα). Then Zŝ
w→ Z ∼ −Gamma (α,

√
α)+

√
α so the

convergence in (7.12) is now to

MZ(iu) =

(
1 +

iu√
α

)−α

eiu
√

α u ∈ R.

Then

lim
t↑tU

f(t)

f̂(t)
=
√
2πfZ(0) =

√
2πf−G(α,

√
α)(−

√
α) =

Γ̂(α)

Γ(α)
.

For the case X ∈ D(N ), Zŝ
w→ Z ∼ Normal (0, 1) and the limit is

√
2πfZ(0) = 1. �
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7.3. Proofs for section 4

Proof of Theorem 3 using condition (4.2) with j = 1. As the proof of this result is

quite long, we begin by giving a brief outline of the argument. In Step 1 we recall results

given by Widder (2010) and Lukacs (1964) concerning Fourier inversion which apply in

cases where the Fourier transform is not assumed to be absolutely integrable. In Step 2

we summarize the two key inequalities which follow from condition (4.2) when j = 1;

see (7.17) and (7.18) below. Step 3, the key part of the proof, involves rewriting part of

the inversion integral (the negligible part) over (−∞,∞) as an integral over [0, π] with a

new integrand. Step 4 rewrites this integral as the sum of three terms using summation

by parts, and Step 5 shows, using (7.17) and (7.18), that the contribution of each of

the three parts is negligible in the limit. A major technical issue in the proof is that we

are not able to assume that the inversion integrand is absolutely integrable, so detailed

arguments are given.

It will be assumed for convenience that ε in condition (4.2) satisfies ε ∈ (0, α). There

is no loss of generality in doing so, because if (4.2) holds for some ε ≥ α then it must

hold for all positive ε less then α.

Under the assumption that F is the CDF of an absolutely continuous distribution, of

course F ′ is defined almost everywhere in the Lebesgue sense. In order to avoid uninter-

esting and trivial complications in the formulation of our results, we shall further assume

that f(t) = F ′(t) at all points t ∈ R at which the derivative of F exists. How we define

f(t) at points on the measure-zero set where F is not differentiable is immaterial.

Step 1: Results on Fourier inversion. We recall two results that play a key role

later. Define, for A > 0, the function hA(z) by

hA(y) =

{
1− |y|/A if |y| ≤ A

0 if |y| > A.

Proposition 6 (Inversion Theorem). (i) Let f(t) denote a probability density function

on (−∞,∞) with MGF M(z). Then

f(t) = lim
A→∞

1

2π

∫ ∞

−∞
hA(y)M(iy)e−iytdy, y ∈ R, (7.13)

for almost all t ∈ R in the Lebesgue sense.

(ii) The procedure (7.13) gives the correct answer at every t that is a continuity point of

f = F ′ (and not just almost everywhere for such t).

Proof. With cosmetic changes in notation, part (i) follows immediately from Theorem

6e in Widder (2010, p. 203). Part (ii) is due to Lukacs (1964). However, the statement of
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the result in Lukacs (1964) appears to be incomplete because an additional condition is

required on the smoothing density, q(t), to rule out pathological behavior. Close scrutiny

of the Lukacs (1964) proof indicates that the following additional condition is sufficient

for the Lukacs (1964) result to hold: for some fixed η > 0,

sup
|t|≥T

q(t) = o(T−1−η), T →∞. (7.14)

From Widder (2010, p. 204), the smoothing density associated with the characteristic

function h1(z) is given by q(t) = 2{sin(t/2)}2/(πt2), and this density clearly does satisfy

the condition (7.14). �

Step 2: Implications of (4.2). We now show what condition (4.2) with j = 1 gives

us. For any given real numbers y1 < y2, integrate g
′(z)/g(s) in C from z = s+ iy1/σs to

z = s+ iy2/σs. Thus, for any 0 ≤ y1 < y2,

sup
s∈[b−,b)

∣∣∣∣
g(s+ iy2/σs)

g(s)
− g(s+ iy1/σs)

g(s)

∣∣∣∣ = sup
s∈[b−,b)

∣∣∣∣∣

∫ s+iy2/σs

s+iy1/σs

g′(z)

g(s)
dz

∣∣∣∣∣

= sup
s∈[b−,b)

∣∣∣∣
i

σs

∫ y2

y1

g′(s+ iy/σs)

g(s)
dy

∣∣∣∣ ≤
∫ y2

y1

sup
s∈[b−,b)

∣∣∣∣
1

σs

g′(s+ iy/σs)

g(s)

∣∣∣∣ dy

≤
∫ y2

y1

c1
(1 + |y|)−α+1+ε

dy =
c1

α− ε
{(1 + y2)

α−ε − (1 + y1)
α−ε}. (7.15)

It follows easily from (7.15) that, for any y1, y2 ∈ R which have the same sign and

|y2| ≥ |y1|, we have the bound

sup
s∈[b−,b)

∣∣∣∣
g(s+ iy2/σs)

g(s)
− g(s+ iy1/σs)

g(s)

∣∣∣∣ ≤ c2
{
(1 + |y2|)α−ε − (1 + |y1|)α−ε

}
, (7.16)

and if y1 and y2 have different signs then the bound in (7.16) is modified by replacing

the minus on the RHS with a plus. The key implications we shall need from (7.16) are

the following:

sup
s∈[b−,b)

∣∣∣∣
g(s+ iy/σs)

g(s)
− 1

∣∣∣∣ ≤ c (1 + |y|)α−ε
, |y| → ∞; (7.17)

and for y1 = y and y2 = y + v, where v ∈ R with |v| ≤ v0 for some fixed v0 > 0,

sup
s∈[b−,b)

sup
|v|≤v0

∣∣∣∣
g{s+ iy2/σs}

g(s)
− g(s+ iy1/σs)

g(s)

∣∣∣∣ ≤ c (1 + |y|)α−1−ε
. (7.18)

To obtain (7.17), put y1 = 0 and y2 = y on the LHS of (7.16) and then modify the

constant c2. To obtain (7.18), focus initially on the case 0 < v < v0 < y and y > δv0 for
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34 Butler and Wood

some fixed δ > 1. Then, using the exact form of Taylor’s theorem with θ ∈ [0, 1],

(1 + y + v)α−ε − (1 + y)α−ε = (1 + y)α−ε

{(
1 +

v

1 + y

)α−ε

− 1

}

= (1 + y)α−ε

{

1 + (α− ε)
v

1 + y

(
1 +

θv

1 + y

)α−ε−1
− 1

}

≤ c′(1 + y)α−ε−1,

where c′ = c′(v0). Note for future reference that we shall only require (7.18) for some

fixed choice of v0 > 0; we shall not require it to hold in the limit as v0 → ∞. The case

where y < −δv0 may be dealt with similarly. The cases where |y| ≤ v0 follow from a

suitable choice of the constant on the RHS of inequality (7.17) and inequality (7.18).

Step 3: Rearrangement of the inversion integral. In this step we rearrange the

inversion integral by writing it as the integral of a different function over a finite region.

Using the inversion formula in Step 1, define

I(s,A) = 1

2π

∫ ∞

−∞

M(s+ iy/σs)

M(s)
hA(y)e

−iyµs/σsdy

We first perform all calculations with A fixed and then consider A → ∞. Note that all

calculations below are valid when A is finite. Define

ψA(y) =

{
1− iy

σs(b− s)

)−α{
g(s+ iy/σs)

g(s)
− 1

}
hA(y), (7.19)

where hA(y) is defined in Step 1. Then

I(s,A) = 1

2π

∫ ∞

−∞

{
1− iy

σs(b− s)

)−α
g(s+ iy/σs)

g(s)
hA(y)e

−iyµs/σsdy

=
1

2π

∫ ∞

−∞

{
1− iy

σs(b− s)

)−α

hA(y)e
−iyµs/σsdy (7.20)

+
1

2π

∫ ∞

−∞
ψA(y)e

−iyµs/σsdy. (7.21)

The term (7.20) is the inversion integral for the gamma density convolved with the time

domain function for hA(y). In the limit as A → ∞ for fixed s ∈ [b−, b) and t > 0, we

have

lim
A→∞

1

2π

∫ ∞

−∞

{
1− iy

σs(b− s)

)−α

hA(y)e
−iyµs/σsdy = fG{α,σs(b−s)}

(
µs

σs

)
,

where fG(α,β)(t) is the density of the gamma (α, β) distribution at t ∈ (0,∞). In the

above, we have used part (ii) of the inversion result stated in Step 1, combined with the
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Limiting saddlepoint relative errors 35

fact that gamma densities are continuous when t > 0. Consequently, letting s ↑ b and

using the saddlepoint density ratio in (7.10), we obtain the limit

lim
t↑tU

f(t)

f̂(t)
= lim

s→b

√
2πfG{α,σs(b−s)}

(
µs

σs

)
=

Γ̂(α)

Γ(α)
.

Theorem 3 follows if we can show that the term (7.21) has a limit denoted by

R(s) = lim
A→∞

∫ ∞

−∞
ψA(y)e

−iyµs/σsdy, (7.22)

that R(s) is bounded above and below over s ∈ [b−, b), and that R(s) satisfies

lim
s↑b

R(s) = 0. (7.23)

We now rearrange the integral in (7.22) in such a way that we will then be able to prove

that the limit in (7.22) is bounded for s ∈ [b−, b) and (7.23) holds. Focusing now on

(7.21), with ψA(y) defined as in (7.19), and writing ρs = σs/µs, we obtain

∫ ∞

−∞
ψA(y)e

−iyµs/σsdy = ρs

∫ ∞

−∞
ψA(ρsy1)e

−iy1dy1 = ρs

∞∑

r=−∞

∫ (2r+1)π

(2r−1)π
ψA(ρsy1)e

−iy1dy1

(7.24)

= ρs

∞∑

r=−∞

∫ π

−π

ψA {ρs(2rπ + v)} e−i(2rπ+v)dv (7.25)

= ρs

∞∑

r=−∞

∫ π

0

[
ψA {ρs(2rπ + v)} e−iv + ψA {ρs(2rπ + v − π)} e−i(v−π)

]
dv

(7.26)

= ρs

∞∑

r=−∞

∫ π

0

[ψA {ρs(2rπ + v)} − ψA {ρs(2rπ + v − π)}] e−ivdv

= ρs

∫ π

0

∞∑

r=−∞
[ψA {ρs(2rπ + v)} − ψA {ρs(2rπ + v − π)}] e−ivdv

= ρs

∫ π

0

F
(s)
A (v)e−ivdv, (7.27)

where F
(s)
A (v) is defined by

F
(s)
A (v) =

∞∑

r=−∞
[ψA {ρs(2rπ + v)} − ψA {ρs(2rπ + v − π)}] , (7.28)
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36 Butler and Wood

and ψA(y) is defined in (7.19). Note that there are various interpretations of the function

F
(s)
A (v); e.g. it is derived by ‘wrapping’ R around a circle and then taking advantage of

the natural differencing induced by the exponential with imaginary argument. Another

interpretation of wrapping is that, after suitable rescaling of the period, we sum the

integrand over terms with the same phase.

Step 4: Summation by parts. We now apply summation by parts to F
(s)
A (v) in (7.28).

Define

ar(v, s) =

{
1− iρs(2rπ + v)

σs(b− s)

}−α

, br(v, s) =
g{s+ iρs(2rπ + v)/σs}

g(s)
− 1, (7.29)

and

cr(v,A) = hA {ρs(2rπ + v)} (7.30)

Then, from the definitions,

F
(s)
A (v) =

∞∑

r=−∞
{ar(v, s)br(v, s)cr(v,A)− ar(v − π, s)br(v − π, s)cr(v − π,A)} . (7.31)

So, using the identity

ar(v, s)br(v, s)cr(v,A)− ar(v − π, s)br(v − π, s)cr(v − π,A)

= {ar(v, s)− ar(v − π, s)} br(v − π, s)cr(v − π,A)

+ ar(v, s) {br(v, s)− br(v − π, s)} cr(v − π,A)

+ ar(v, s)br(v, s) {cr(v,A)− cr(v − π,A)} ,

then

|F (s)A (v)| ≤ R1 +R2 +R3

where, due to the fact that 0 ≤ hA(y) ≤ 1,

R1 =
∣∣∣∣

∞∑

r=−∞
{ar(v, s)− ar(v − π, s)}br(v − π, s)cr(v − π,A)

∣∣∣∣

≤
∞∑

r=−∞
|ar(v, s)− ar(v − π, s)||br(v − π, s)||cr(v − π,A)|

≤
∞∑

r=−∞
|ar(v, s)− ar(v − π, s)||br(v − π, s)| = R′1(v, s,A), (7.32)
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Limiting saddlepoint relative errors 37

R2 =

∣∣∣∣

∞∑

r=−∞
ar(v, s){br(v, s)− br(v − π, s)}cr(v − π,A)

∣∣∣∣

≤
∞∑

r=−∞
|ar(v, s)||br(v, s)− br(v − π, s)||cr(v − π,A)|

≤
∞∑

r=−∞
|ar(v, s)||br(v, s)− br(v − π, s)| = R′2(v, s,A) (7.33)

and

R3 =
∣∣∣∣

∞∑

r=−∞
ar(v, s)br(v, s){cr(v,A)− cr(v − π,A)}

∣∣∣∣

≤
∞∑

r=−∞
|ar(v, s)br(v, s)||cr(v,A)− cr(v − π,A)| = R′3(v, s,A). (7.34)

If we can show that, for k = 1,2, 3,

sup
s∈[b−,b)

sup
v∈[0,π]

sup
{A:A≥1}

R′k(v, s,A) <∞ (7.35)

and

lim
s↑b

lim
A→∞

R′k(v, s,A) = 0, (7.36)

then (7.22) and (7.23) will follow from the bounded convergence theorem because the

region of integration, v ∈ [0, π], is bounded.

Step 5: Proof of (7.35) and (7.36), and therefore (7.22) and (7.23). We first

deal with R′
3 =

∑∞
r=−∞ dr with {dr} denoting its addends. Although br(v, s) is not

necessarily bounded as |r| → ∞, it is the case that

sup
s∈[b−,b)

sup
v∈[0,π]

sup
−∞<r<∞

|ar(v, s)br(v, s)| <∞ (7.37)

and

lim
|r|→∞

sup
s∈[b−,b)

sup
v∈[0.π]

|ar(v, s)br(v, s)| → 0. (7.38)

Statements (7.37) and (7.38) follow from the following two facts: from the definition of

ar(v, s) in (7.29),

sup
s∈[b−,b)

sup
v∈[0,π]

|ar(v, s)| = O{(1 + |r|)−α}; (7.39)

while from (7.17),

sup
s∈[b−,b)

sup
v∈[0,π]

|br(v, s)| = O{(1 + |r|)α−ε}. (7.40)
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38 Butler and Wood

Then (7.37) and (7.38) follow after multiplying (7.39) and (7.40) together. Moreover,

from the definition of cr(v,A) in (7.30),

∆cr(v,A) := cr(v,A)− cr(v − π,A) = 0

if both

ρs|2rπ + v| > A, ρs|2rπ + v − π| > A; (7.41)

if precisely one of the inequalities in (7.41) holds, then |∆cr(v,A)| ≤ 1; and ∆cr(v,A) =

ρsπ/A otherwise, i.e. when neither of the inequalities in (7.41) holds. A key point to note

is that, for each v ∈ [0, π] and A ≥ 1, there are at most two values of r for which precisely

one of the inequalities in (7.41) holds. To see this, suppose that r > 0. Then, it follows

from elementary arguments that, for precisely one of the inequalities to hold we must

have ρs(2rπ + v) > A ≥ ρs(2rπ + v − π), from which it is easily deduced that

1

2π
(ρ−1s A− v) < r ≤ 1

2π
(ρ−1s A− v) +

1

2
, (7.42)

and clearly there is at most one positive value of r, r+ say, for which (7.42) holds. A

similar argument shows that for negative values of r, there is at most one negative value

of r, r− say, for which precisely one of the inequalities in (7.41) holds. Consequently,

since (when they exist) r− → −∞ and r+ →∞ as A→∞ uniformly for v ∈ [0, π] and

s ∈ [b−, b), it follows from (7.37) and (7.38) that the case in which precisely one of (7.41)

holds makes a negligible contribution to R′3(v, s,A) as A→∞. So we focus on the case

in which neither of the inequalities in (7.41) holds which, by elementary calculations,

corresponds to r-values given by

r1 = −
⌊
1

2π
(ρ−1s A+ v)

⌋
≤ r ≤

⌊
1

2π
(ρ−1s A− v)

⌋
= r2.

Then

R′3(v, s,A) =
∞∑

r=−∞
dr = o(1) +

r2∑

r=r1

dr

=
ρsπ

A

r2∑

r=r1

|ar(v, s)||br(v, s)| → 0, as A→∞, (7.43)

uniformly for v ∈ [0, π] and s ∈ [b−, b). since |r1| = O(A) and r2 = O(A) imply that,

apart from negligible terms, the sum (7.43) is a linear combination of two Cesáro sums,

each of which has the same limit as ar(v, s)br(v, s) as |r| → 0, which by (7.38) is zero.

We conclude that R′3(v, s,A) satisfies (7.35) and (7.36).

We now consider R′2. Using the fact that

br(v, s)− br(v − π, s) =
g{s+ iρs(2rπ + v)/σs}

g(s)
− g{s+ iρs(2rπ + v − π)/σs}

g(s)
,
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Limiting saddlepoint relative errors 39

it follows from (7.18), taking y1 = ρs(2rπ + v − π)/σs and y2 = ρs(2rπ + v)/σs, that

sup
v∈[0,π]

sup
s∈[b−,b)

|br(v, s)− br(v − π, s)| ≤ c(1 + |r|)α−1−ε).

Consequently, since |ar(v, s)| and |ar(v − π, s)| are both O{(1 + |r|)−α uniformly for

s ∈ [b−, b) and v ∈ [0, π], it follows that

|ar(v − π, s)||br(v, s)− br(v − π, s)|

decays as

O{(1 + |r|)−α}O{(1 + |r|)α−1−ε} = O({(1 + |r|)−1−ε},
and therefore R′2 satisfies (7.35) and (7.36). Similar considerations show that

sup
s∈[b−,b)

sup
v∈[0,π]

|ar(v, s)− ar(v − π, s)| ≤ c(1 + |r|)−α−1,

and we know from (7.17) that br(v, π) = O{(1 + |r|)α−ε} uniformly for v ∈ [0, π] and

s ∈ [b−, b). Consequently, |ar(v, s)− ar(v − π, s)||br(v, s)| decays as

O{(1 + |r|)−α−1}O{(1 + |r|)α−ε} = O{(1 + |r|)−1−ε},

and hence R′1 also satisfies (7.35) and (7.36). Therefore, it follows from bounded conver-

gence that (7.22) and (7.23) hold and so Theorem 3 is proved under condition (4.2) with

j = 1. �

Proof of Theorem 3 under condition (4.2) with j = 2. The structure of the proof

in this case is similar but the technicalities are somewhat more cumbersome, the main

change being that second differences rather than first differences arise. Brief details of the

required modifications are now given. Step 1 is unchanged, while Step 2 gives us bound

(7.17) with exponent α+1−ε instead of α−ε, bound (7.18) with exponent α−ε instead

of α− 1− ε, and the bound

sup
s∈[b−,b), |δ|≤δ0, |η|≤η0

∣∣∣∣
g{s+ i(y + δ + η)}

g(s)
− g{s+ i(y + δ)}

g(s)
− g{s+ i(y + η)}

g(s)
+
g(s+ iy)

g(s)

∣∣∣∣

≤ c(1 + |y|)α−1−ε,

for some fixed δ0, η0 > 0, and δ, η ∈ R. In the modified Step 3, the complex exponential

e−iv is split into sine and cosine terms, so as to exploit second differencing. Using sub-

scripts R and I to denote real and imaginary parts, it is seen that the left side of the

real part of the integral (7.24) may be written as

ρs

{∫ ∞

−∞
ψR,A(ρsy) cos(y)dy +

∫ ∞

−∞
ψI,A(ρsy) sin(y)dy

}
.
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40 Butler and Wood

Then, using steps similar to those in (7.27), we obtain

∫ ∞

−∞
ψR,A(ρsy) cos(y)dy =

∫ π/2

0

F̄
(s)
R,A(v) cos(v)dv, (7.44)

where

F̄
(s)
R,A(v) =

∞∑

r=−∞

[
ψR,A{ρs(2rπ + v)} − ψR,A{ρs(2rπ + v − π)}

− ψR,A{ρs(2rπ + π − v)}+ ψR,A{ρs(2rπ − v)}
]
. (7.45)

We briefly explain how to derive the above. When moving from (7.25) to (7.26), we

pair the two terms corresponding terms v and v − π, where v ∈ [0, π], where v = π

gives the complex exponential a coefficient +1, and v − π gives it a coefficient −1. In
contrast, when deriving (7.44) and (7.45), we combine the four terms corresponding to

v, −v, π − v and v − π, where now v ∈ [0, π/2]. For the first two terms, corresponding

to ±v, the coefficient of the cosine is +1, and for the other two terms, corresponding to

±(π − v), the coefficient of the cosine is −1. This leads to (7.45).

A similar, but slightly modified argument shows that

∫ ∞

−∞
ψI,A(ρsy) sin(y)dy =

∫ π/2

0

F̄
(s)
I,A(v) sin(v)dv, (7.46)

where

F̄
(s)
I,A(v) =

∞∑

r=−∞

[
ψI,A{ρs(2rπ + (π/2) + v)} − ψI,A{ρs(2rπ + (π/2) + v − π)}

− ψI,A{ρs(2rπ + (π/2)− v + π)}+ ψI,A{ρs(2rπ + (π/2)− v)}
]
.

(7.47)

To derive (7.46), we first of all apply the transformation y �→ y − π/2 to the variable of

integration on the left side of (7.46). This has the affect of changing sin(y) to cos(y) in

the integrand, but we also need to add π/2 to 2rπ each time the latter appears. We then

apply the same argument that was used to derive (7.44) and (7.45); note that (7.47) has

the same structure as (7.45), but with π/2 added to 2rπ each time the latter appears.

The imaginary part of the integral in (7.24) is zero. In Step 4, we do a second order

summation by parts. As a generic example of a second order summation by parts, just

including two factors to give the general idea even though we actually have three factors,
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Limiting saddlepoint relative errors 41

consider

ar(v, s)br(v, s)− ar(v − π, s)br(v − π, s)− ar(π − v, s)br(π − v, s) + ar(−v, s)br(−v, s)
= {ar(v, s)− ar(v − π, s)− ar(π − v, s) + ar(−v, s)} br(v, s)

+ ar(v − π, s) {br(v, s)− br(v − π, s)− br(π − v, s) + br(−v, s)}
+ {ar(−v, s)− ar(π − v, s)} {br(π − v, s)− br(v, s)}
+ {ar(π − v, s)− ar(v − π, s)} {br(−v, s)− br(π − v, s)} ,

where each term on the right is either a second difference or a product of two first

differences. A similar but more complicated formula can be derived when three factors are

present. With ar(v, s), br(v, s) and cr(v,A) given similar but slightly modified definitions

to those in (7.29) and (7.30), using real and imaginary parts as appropriate, and noting

that these terms will be defined slightly differently in the sine and cosine integrals, the

modified version of Step 5 follows, after using the bounds in the modified version of Step

2 and using the fact that

sup
s∈[b−,b), v∈[0,π/2]

|ar(v, s)− ar(v − π, s)− ar(π − v, s) + ar(−v, s)| ≤ c(1 + |r|)−α−2. �

Proof of Corollary 1. In this case, using property (4.6), and noting that as a conse-

quence infs∈[b−,b){g(s)}−1 > 0,

sup
s∈[b−,b)

∣∣∣∣
1

σs

g′(s+ iy/σs)

g(s)

∣∣∣∣ ≤ sup
s∈[b−,b)

[
1

σs

1

g(s)

c

(1 + |y|/σs)1+δ

]

≤ c1 sup
s∈[b−,b)

1

σs

1

(1 + |y|/σs)1+δ
,

for some δ > 0. Using elementary calculus, it is straightforward to check that if the above

has a stationary maximum over s ∈ [b−, b) for fixed y then it occurs when σs = δ|y|, in
which case the maximum is δ|y|−1(1+ δ−1)−1−δ; otherwise, for |y| sufficiently small, the

maximum will be non-stationary and will occur at infs∈[b−,b) σs > 0, in which case the

maximum is bounded by a constant. We can combine these bounds into a global bound

(in y) of the form c(1+|y|)−1, and consequently it is seen that (4.2) with j = 1 is satisfied

by any ε ∈ (0, α), and the result is proved. �

Proof of Corollary 2. Here, the MGF has a simple pole at z = b so in this case α = 1.

Without loss of generality, it is assumed that δ ∈ (0, 1). We are required to prove that,

when the MGF’sMij(z) satisfy condition (4.6), then the form of g(z) in the semi-Markov
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42 Butler and Wood

case implies that g satisfies (4.2) with j = 1. Write

A(z) =
(−1)m+1|Ψm1(z)|

F1m(0)
B (z) = |Ψmm(z)| C(z) = |Ψmm(z)|(b− z)−1

so that g(z) = A(z)/C(z). We need to bound g′(s + iy/σs)/{σsg(s)} over s ∈ [b−, b).
Differentiating, we obtain

i

σs

g′(s+ iy/σs)

g(s)
=

i

σs

{
A′(s+ iy/σs)C(s)

A(s)C(s+ iy/σs)
− A(s+ iy/σs)C(s)C ′(s+ iy/σs)

A(s){C(s+ iy/σs)}2
}

(7.48)

Since in the present context g(s) satisfies

0 < inf
s∈[b−,b)

g(s) < sup
s∈[b−,b)

g(s) <∞, (7.49)

it follows from (7.48) that we just need to show that, for each fixed y ∈ R,

sup
s∈[b−,b)

∣∣∣∣
1

σs

A′(s+ iy/σs)

C(s+ iy/σs)

∣∣∣∣ and sup
s∈[b−,b)

∣∣∣∣
1

σs

A(s+ iy/σs)C
′(s+ iy/σs)

{C(s+ iy/σs)}2
∣∣∣∣ (7.50)

are bounded above by c(1+ |y|)α−1−δ = c(1+ |y|)−δ for some constants c > 0 and δ > 0.

First of all, by assumption, (4.6) holds for all (i, j) ∈ S\m×S with a common minimal

δ > 0. By integrating both sides of the bound in (4.6), we obtain

|Mij(s+ iy)| = o{(1 + |y|)−δ}, (i, j) ∈ S\m × S.

Since A(z) is the determinant of a non-principal minor of Im−T(z), it follows that A(z)

is a sum of terms which are finite products of T(z) entries with no constant term. Each

of these addends must contain at least one factor in S\m × S. All other factors in each

addend are analytic for Re(z) ∈ [b−, b] and achieve their maximal modulus on the real

axis, so that

sup
y∈R

|Mij(s+ iy)| =Mij(s) <∞, s ∈ [b−, b].

Consequently, it follows that, for y ∈ R,

sup
s∈[b−,b)

|A(s+ iy)| ≤ c(1 + |y|)−δ. (7.51)

Let us now consider the derivative of A(z). From (4.6), it is seen that ,

|M′
ij(s+ iy)| ≤ c1(1 + |y|)−1−δ (i, j) ∈ S\m × S,

and so

sup
s∈[b−,b)

|A′(s+ iy)| ≤ c′1(1 + |y|)−1−δ,

cczdp
Sticky Note
None set by cczdp

cczdp
Sticky Note
MigrationNone set by cczdp

cczdp
Sticky Note
Unmarked set by cczdp



Limiting saddlepoint relative errors 43

for some constant c′1 ∈ (0,∞). It follows that for s ∈ [b−, b) and all y ∈ R,

σ−1s |A′(s+ iy/σs)| ≤ c2σ
−1
s (1 + |y|/σs)

−1−δ. (7.52)

We now consider C(s + iy/σs). First note that, using Henrici (1977, p. 277, Theorem

10.7a), we have

sup
s∈[b−,b]

|Mij(s+ iy)| → 0, |y| → ∞, (7.53)

and so, due to the structure of B noted above,

sup
s∈[b−,b)

|B(s+ iy)− 1| → 0, |y| → ∞. (7.54)

Also, using the fact that B(s+iy) = (b−s−iy)C(s+iy), we have C(s+iy) ∼ 1/(b−s−iy)
as |y| → ∞, uniformly for s ∈ [b−, b). In view of the above, and using the fact that g(s+iy)

is analytic when s ∈ [b−, b), with no singularities on the line b+ iy, y ∈ R, it follows we
can find a c3 ∈ (0,∞) such that

sup
s∈[b−,b), |y|≤c3

1

|C(s+ iy)| ≤ c4 (7.55)

and

sup
s∈[b−,b), |y|>c3

1

|C(s+ iy)| ≤ c5 + c6|y|. (7.56)

Therefore it follows from (7.55) and (7.56) that, for s ∈ [b−, b) and y ∈ R,

|C(s+ iy/σs)|−1 ≤ c7 + c6|y|/σs ≤ c8(1 + |y|/σs). (7.57)

After multiplying the inequalities (7.52) and (7.57) together, we obtain

1

σs

∣∣∣∣
A′(s+ iy/σs)

C(s+ iy/σs)

∣∣∣∣ ≤
c9
σs

(1 + |y|/σs)
−1−δ(1 + |y|/σs) =

c9
σs

(1 + |y|/σs)
−δ. (7.58)

where s ∈ [b−, b) and y ∈ R. Since we have assumed without loss of generality that

δ ∈ (0, 1), it follows from elementary calculus that the supremum of the right hand side

of (7.58) is achieved at σ∗ = infs∈[b−,b) σs. Since σ
∗ > 0, it follows that the right hand

side of (7.58) has an upper bound of the form c(1 + |y|)−δ. Thus condition (4.2) with

j = 1 is satisfied with α = 1 and ε = δ, which gives the desired bound for the first term

on the right of (7.48).

We conclude by showing that the second term in (7.50) also satisfies (4.2) with j = 1.

Since C(s + iy) is analytic when s ∈ [b−, b] and y ∈ R it follows that its derivative is

also analytic in the same region. Moreover, given the relation B(z) = (b − z)C(z), the

derivative of C(z) may be written

C′(s+ iy) =
B′(s+ iy)

b− s− iy
+

B(s+ iy)

(b− s− iy)2
.
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44 Butler and Wood

Now when we differentiate B(z) we lose the constant term, which is 1. Moreover, using

reasoning similar to that to bound A′(s+ iy), it is straightforward to establish that

|B′(s+ iy)| ≤ c10(1 + |y|)−1−δ.

Consequently, using (7.54) and recalling that δ ∈ (0, 1), we obtain the following bound:

|C′(s+ iy)|
|C(s+ iy)|2 ≤ c11 + c12(1 + |y|)2(1 + |y|)−2 ≤ c13,

for constants c11, c12, c13 ∈ (0,∞). Therefore, using (7.51),

∣∣∣∣
1

σs

A(s+ iy/σs)C
′(s+ iy/σs)

{C(s+ iy/σs)}2
∣∣∣∣ ≤

c14
σs

(1 + |y|/σs)
−δ. (7.59)

Similar arguments to those given above show that the left side of (7.59) has an upper

bound of the form c(1 + |y|)−δ, and the proof is now complete. �

Proof of Corollary 3. Here, g(z) = G{M0(z)}{C(z)}−α, and the main new feature

is the presence of G. However, using (7.53), sups∈[b−,b) |M0(s + iy)| → 0 as |y| → ∞.

Moreover, G(z) is analytic when z is in the unit circle and G(z) ∼ rαp1z as z → 0,

where p1 is the probability of 1 in the compounding distribution. Therefore for |y| large,
|G{M0(s+ iy)}| ∼ rαp1|M0(s+ iy)|. Now

1

σs

g′(s+ iy/σs)

g(s)
=

iC(s)α

σsG(M0(s))

[M′
0(s+ iy/σs)G

′{M0(s+ iy/σs)}
{C(s+ iy/σs)}α

− αG{M0(s+ iy/σs)}
{C(s+ iy/σs)}α−1

C′(s+ iy/σs)

{C(s+ iy/σs)}2
]

(7.60)

Using a similar argument to that which led to (7.57), we obtain the bound

|C(s+ iy)|−β ≤ c(1 + |y|)β, β = α− 1, α, y ∈ R;

using (4.6) and G(z) ∼ rαp1z,

|M′
0(s+ iy/σs)| ≤ c1(1 + |y|/σs)

−1−δ, |G′{M0(s+ iy/σs)}| < c1,

and

|G{M0(s+ iy/σs)}| ≤ c2(1 + |y|/σs)
−δ;

inequalities (7.49) hold; and, using arguments similar to those in the proof of Corollary

2, we have ∣∣∣∣
C′(s+ iy/σs)

{C(s+ iy/σs)}2
∣∣∣∣ ≤ c3.
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Limiting saddlepoint relative errors 45

Applying the above inequalities to the terms in (7.60), it is seen that (4.2) with j = 1

holds with ε = δ. �

Proof of Corollary 4. If (4.9) holds for some ε0 > 0 then necessarily it holds for all

ε ∈ (0, ε0), so if (4.9) holds it must hold for some ε ∈ (0, α). Then

sup
s∈[b−,b)

∣∣∣∣
1

σs

g′(s+ iy/σs)

g(s)

∣∣∣∣ = sup
s∈[b−,b)

∣∣∣∣
1

σs

1

(b− s− iy/σs)2
L′{1/(b− s− iy/σs)}

L{1/(b− s)}

∣∣∣∣

≤ c sup
s∈[b−,b)

∣∣∣∣
1

{σs(b− s)− iy}

∣∣∣∣(1 + |y|)α−ε

≤ c1(1 + |y|)α−1−ε, (7.61)

since, for X ∈ D(Gα), σs(b − s) stays bounded away from 0 as s ↑ b by Proposition 1.

Therefore (4.2) with j = 1 holds with the same choice of ε. �

7.4. Proofs for section 5

Proof of Theorem 4. To show X ∈ D(−Gα), we first compute σs. Since the expansion

forM(z) is uniform over a sector containing the real line, a uniform asymptotic expansion

for M′(z) can be obtained by differentiating term-by-term the expansion for M(z). For

justification of this, see Copson (1965, (vii), pp. 11-12). Iterating upon this leads to

another expansion for M′′(z) and higher derivatives, so that

M(k)(z) =
(−1)kΓ(α+ k)

Γ(α)

c1
zα+k

+O

(
1

zα+k+η

)
k ≥ 0, | arg(z)| ≤ π

2
− ε. (7.62)

The variance is obtained when k = 2 by substituting z = s, leading to

σ2s = K′′(s) =
{M′′(s)

M(s)

}
−
{M′(s)

M(s)

}2
∼ Γ(α+ 2)

Γ(α)

1

s2
−
{
Γ(α+ 1)

Γ(α)

1

s

}2
=

α

s2
.

This gives the asymptotic expansion

M(s+ u/σs)

M(s)
∼ c1(s+ us/

√
α)−α

c1s−α
=

(
1 +

u√
α

)−α

s→∞. (7.63)

This is the MGF for a −Gamma (α,
√
α) distribution so X ∈ D(−Gα).

We show (5.2) for the survival approximation by directly applying the inversion for-

mula for the survival function of X and then mimicking the proof of Theorem 2. Now

cczdp
Sticky Note
None set by cczdp

cczdp
Sticky Note
MigrationNone set by cczdp

cczdp
Sticky Note
Unmarked set by cczdp



46 Butler and Wood

t ↑ 0 as ŝ→∞ and so the inversion formula is

S(t) =
1

2πi

∫ ŝ+i∞

ŝ−i∞

M(z)

z
e−ztdz =

1

2π

∫ +∞

−∞

M(ŝ+ iy)

ŝ+ iy
e−t(ŝ+iy)dy

=
M(ŝ)e−ŝt

ŝ

1

2π

∫ +∞

−∞

(
1 +

iy

ŝ

)−1 M(ŝ+ iy)

M(ŝ)
e−iyµ̂dy

=
f̂(t)

ŝ

1√
2π

∫ +∞

−∞

(
1 +

iu

ŝσ̂

)−1 M(ŝ+ iu/σ̂)

M(ŝ)
e−iuµ̂/σ̂du, (7.64)

where substitution u = σ̂y has been used in the last step.

The leading term in (7.64) as t ↑ 0 is f̂(t)/ŝ ∼ Ŝ(t) as we now show. The continued

fraction expansion of Mill’s ratio in Abramowitz and Stegun (1972, 26.2.14) leads to the

bounds
φ(t)

t+ 1/t
≤ 1− Φ(t) <

φ(t)

t
t > 0.

Therefore, from (1.3),

φ (ŵ)

ŵ + 1/ŵ
− φ (ŵ)

(
1

ŵ
− 1

û

)
≤ Ŝ (t) < φ (ŵ)

1

û
.

Thus,
1

ŝ

{
1− û

ŵ3
1

1 + ŵ−2

}
≤ Ŝ (t)

f̂(t)
<

1

ŝ
(7.65)

and, since by Proposition 5, û/ŵ3 → 0 and ŵ→∞, then Ŝ (t) ∼ f̂(t)/ŝ as t→ 0.

From (7.64),

lim
t↑0

S(t)

Ŝ(t)
= lim

ŝ→∞
1√
2π

∫ +∞

−∞

(
1 +

iy

ŝσ̂

)−1 M(ŝ+ iy/σ̂)

M(ŝ)
e−iµ̂y/σ̂dy. (7.66)

We now determine a dominating bound for the integrand in (7.66) so that the limit

as ŝ → ∞ may be passed through the integral. Note that there is a c1 > 0 such that

the expansion of M in (7.62) has the remainder term |O (1/ŝα+η) | < c1/|ŝ|α+η for |ŝ|
sufficiently large. Thus,

sup
ŝ≥b−

∣∣∣∣
M(ŝ+ iy/σ̂)

M(ŝ)

∣∣∣∣ ≤ sup
ŝ≥b−

∣∣∣∣1 +
iy

ŝσ̂

∣∣∣∣
−α

1 + c2|1 + iy/(ŝσ̂)|−η

1− c2|ŝ|−η
< c3

∣∣∣∣∣
1 +

iy
√
α
+

∣∣∣∣∣

−α

(7.67)

for some constants c2, c3 > 0 where
√
α
+
>
√
α. Also, by Proposition 5, û → √

α < ∞
when X ∈ D(−Ga), so that

sup
ŝ≥b−

∣∣∣∣

(
1 +

iy

û

)−1 M(ŝ+ iy/σ̂)

M(ŝ)

∣∣∣∣ ≤ c4

(

1 +
|y|
√
α
+

)−1−α

. (7.68)
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Limiting saddlepoint relative errors 47

The integrability of the upper bound in (7.68) allows the limit in (7.66) to be passed

inside. Since ŝµ̂ → −α and ŝσ̂ → √
α, then µ̂/σ̂ → −√α. The inversion of the limiting

integrand in (7.66) is therefore

√
2πf−G(α+1,

√
α)(−

√
α) =

√
2πfG(α+1,

√
α)(
√
α)

=
√
2π

(
√
α)

α+1
(
√
α)

α
e−

√
α
√

α

Γ(α+ 1)
=

Γ̂(α)

Γ(α)
. (7.69)

We now show the same limit applies to the saddlepoint density ratio by applying

Theorem 2. If α > 1 the right-hand bound in (7.67) suffices as a dominating bound so that

condition (3.2) holds and the saddlepoint density ratio achieves the limit in (7.69). For

α ≤ 1, a different argument is needed which uses integration by parts in conjunction with

Theorem 2 arguments. For the inversion integral in (7.11), take u =M0(ŝ+iy/σ̂)/M0(ŝ)

and dv = e−iyµ̂/σ̂dy so that for t < 0,

f(t)

f̂(t)
=

−σ̂√
2πiµ̂

M(ŝ+ iy/σ̂)

M(ŝ)
e−iyµ̂/σ̂

∣∣∣∣
y=∞

y=−∞
+

1√
2πµ̂

∫ ∞

−∞

M′(ŝ+ iy/σ̂)

M(ŝ)
e−iyµ̂/σ̂dy.

(7.70)

The first term in (7.70) is 0 by the Riemann-Lebesgue lemma. To pass to the limit as

ŝ → ∞ inside the integral in (7.70), a dominating function is needed. Since M′(z) =

−αc1/zα+1 +O(1/zα+1+η) where |O(1/zα+1+η)| < c5/|z|α+1+η for |z| sufficiently large,

then

M′(ŝ+ iy/σ̂)

µ̂M(ŝ)
=
−αc1/(ŝ+ iy/σ̂)α+1 +O{1/(ŝ+ iy/σ̂)α+1+η}

µ̂c1/ŝα + µ̂O(1/ŝα+η)

=
1

{1 + iy/(ŝσ̂)}α

(−α)
(µ̂ŝ+ iyµ̂/σ̂)

1 +O{1/(ŝ+ iy/σ̂)η}
1 + µ̂O(1/ŝη)

. (7.71)

Since ŝσ̂ <
√
α
+
, −µ̂ŝ/α > 1− ∈ (0, 1), and −µ̂/(σ̂√α) > 1− for sufficiently large ŝ, then

∣∣∣∣
M′(ŝ+ iy/σ̂)

µ̂M(ŝ)

∣∣∣∣ <
1

|1 + iy/(
√
α
+
)|α

1+

|1 + iy/
√
α
+|

1 + c5/|ŝ|η}
1− c2/|ŝ|η

for ŝ sufficiently large. Thus, assumption (5.1) ensures that a dominating bound, as

required in condition (3.2) of Theorem 2, can always be found so the theorem applies.

From (7.71), the pointwise limit is

M′(ŝ+ iy/σ̂)√
2πµ̂M(ŝ)

e−iyµ̂/σ̂ → 1√
2π

1

{1 + iy/
√
α}1+α

eiy
√

α,

and therefore

lim
t↑0

f(t)

f̂(t)
=
√
2πf−G(1+α,

√
α)(−

√
α) =

Γ̂(α)

Γ(α)
,
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48 Butler and Wood

as required. �

Proof of Corollary 5. Apply Watson’s lemma (Copson, 1965, §22) to determine an

expansion for M(z) based upon the assumptions in (5.4). The only condition for using

Watson’s lemma that is not explicitly specified is showing that |h(z)| is of exponential

order, i.e. there exists c > 0 < d such that |h(t)| < cedt. This must hold since M(s) is

convergent for all s ≥ 0. Thus, for any ε > 0,

M(z) ∼
∞∑

k=0

hk
Γ(k + 1− β)

zk+1−β
|z| → ∞, | arg(z)| < π

2
− ε <

π

2

= hm
Γ(m+ 1− β)

zm+1−β
+O

(
1

zm+2−β

)
,

and Watson’s lemma ensures that the expansion is uniform. �

7.5. Proofs for section 6

Proof of Theorem 5. Follow the approach used for continuous densities. The inversion

integral for the mass function is

p(n) =
1

2πi

∫ ŝ+πi

ŝ−πi

M(z)e−zndz = p̂(n)
1√
2π

∫ πσ̂

−πσ̂

M(ŝ+ iy/σ̂)

M(ŝ)
e−iµ̂y/σ̂dy. (7.72)

If X ∈ D(Gα), then σ̂ ∼ √
α/(b − ŝ) → ∞ and, assuming (3.2), the saddlepoint ratio

from (7.72) has limit

lim
n→∞

p(n)

p̂(n)
=

1√
2π

∫ ∞

−∞

(
1− iy√

α

)−a

e−iy
√

αdy =
Γ̂(α)

Γ(α)
.

If X ∈ D(N ), then the limit is 1. �

Proof of Theorem 6. From (6.1) we may write

M(z) = (b− z)−αg(z) where g(z) =
(b− z)α

ebα
{
1− e−(b−z)

}αG(ez).

Consequently,

g(s+ iy/σs)

g(s)
=

{
1− iy

σs(b− s)

}α{
1− e−(b−s)+iy/σs

1− e−(b−s)

}−α
G(es+iy/σs)

G(es)

=: {As(y)}α {Bs(y)}−α Cs(y). (7.73)

cczdp
Sticky Note
None set by cczdp

cczdp
Sticky Note
MigrationNone set by cczdp

cczdp
Sticky Note
Unmarked set by cczdp



Limiting saddlepoint relative errors 49

Moreover, Bs(y), may be written

Bs(y) =
1− e−(b−s)+iy/σs

1− e−(b−s)
=

1− e−(b−s) + e−(b−s) − e−(b−s)+iy/σs

1− e−(b−s)

= 1 +
e−(b−s)

1− e−(b−s)
(1− eiy/σs) = 1 + h(s)T (y/σs)y,

where

h(s) = e−(b−s)

{
b− s

1− e−(b−s)

1

σs(b− s)

}

has a removable singularity at s = b, and is both positive and bounded away from 0

when s ∈ [b−, b); and T (v) = (1− eiv)/v is finite and bounded away from 0 for |v| ≤ π.

Therefore

sup
s∈[b−,b)

1

σs

∣∣∣∣
g′(s+ iy/σs)

g(s)

∣∣∣∣ ≤ sup
s∈[b−,b)

∣∣∣∣αA
′
s(y) {As(y)}α−1 {Bs(y)}−α Cs(y)

∣∣∣∣

+ sup
s∈[b−,b)

∣∣∣∣− αB′s(y) {As(y)}α {Bs(y)}−α−1Cs(y)

∣∣∣∣

+ sup
s∈[b−,b)

∣∣∣∣ {As(y)}α {Bs(y)}−α
C′s(y)

∣∣∣∣. (7.74)

We shall need the following facts, which can be checked directly from the definitions

of the relevant functions. Since, from Section 2, σs(b − s) is bounded away from 0 and

∞ when s ∈ [b−, b), using the definition of As(y) we have

sup
s∈[b−,b)

|As(y)|β = sup
s∈[b−,b)

∣∣∣∣1−
iy

σs(b− s)

∣∣∣∣
β

≤ c1(1 + |y|)β (7.75)

for β = α− 1 and β = α, and

sup
s∈[b−,b)

|A′s(y)| = sup
s∈[b−,b)

∣∣∣∣−
i

σs(b− s)

∣∣∣∣ ≤ c1. (7.76)

Now consider Bs(y). Assuming that s, y ∈ R, the imaginary part of Bs(y) is given by

−h(s){sin(y/σ1)/(y/σs)}y and so, for |y| ≤ σsπ, there exists a constant c1 > 0 for which

inf
s∈[b−,b)

|Bs(y)| ≥ c1|y|.

Moreover, since Bs(0) = 1 for all s ∈ [b−, b), it follows that infs∈[b−,b) |Bs(y/σs)| > 0 for

|y| sufficiently small (in fact, positivity holds for all |y|), and therefore, for sufficiently

small c2 > 0,

|Bs(y)| ≥ c2(1 + |y|),
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50 Butler and Wood

from which we conclude that

|Bs(y)|−β ≤ c3(1 + |y|)−β (7.77)

for β = α− 1 and β = α, when c3 <∞ is sufficiently large. Similar arguments show that

sup
s∈[b−,b)

|B′s(y)| ≤ c4. (7.78)

Finally, we focus on Cs(y). We know from condition (6.2) that

sup
s∈[b−,b)

|C ′s(y)| = sup
s∈[b−,b)

∣∣∣∣e
s+iy/σs

i

σs

G′(es+iy/σs)

G(es)

∣∣∣∣ ≤ c5(1 + |y|)α−1−ε, (7.79)

and integrating the bound (6.2) as in Step 2 of the proof of Theorem 3, we conclude that

sup
s∈[b−,b)

|Cs(y)| = sup
s∈[b−,b)

∣∣∣∣
G(es+iy/σs)

G(es)

∣∣∣∣ ≤ c6(1 + |y|)α−ε. (7.80)

Using (7.75)-(7.80) to bound the three terms on the right side of (7.74), it is seen that

the left side of (7.74) satisfies condition (4.2) that was used in Theorem 3. Moreover,

from the second form of the inversion integral in (7.72),

p(n)

p̂(n)
=

1√
2π

∫ πσs

−πσs

M(s+ iy/σs)

M(s)
e−iµsy/σsdy

=
1√
2π

∫ ∞

−∞

M(s+ iy/σs)

M(s)
1{y∈R: |y|≤πσs}e

−iµsy/σsdy. (7.81)

Apart from the indicator function in the second integral in (7.81), the integrand is of

exactly the same form as in the continuous case and so exactly the same argument can

be used as in the continuous case to justify the limiting argument. �

Proof of Corollary 6. Since G(ω) is assumed analytic on |ω| ≤ r, it follows that G′(ω)
is also analytic when |ω| ≤ r. Therefore

inf
s∈[b−,b]

inf
|y|≤πσs

|G′(es+iy/σs)| ≤ c1,

for some finite positive constant c1. Also, since infs∈[b−,b) σs > 0, and |y| ≤ πσs, it

follows that σ−1s ≤ c2(1 + |y|)−1 for some constant c2 ∈ (0,∞). Finally, since G(r)  = 0

by assumption, infs∈[b−,b]G(es) = c−13 > 0. Therefore

sup
s∈[b−,b)

∣∣∣∣
1

σs

G′(es+iy/σs)

G(es)

∣∣∣∣ ≤ c1c2c3(1 + |y|)−1 ≤ c4(1 + |y|)α−1−ε,
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Limiting saddlepoint relative errors 51

for some positive constant c4, and any α > 0, whenever ε ∈ (0, α). So (6.2) and therefore

(6.3) both hold. �

Preliminary results needed for the proof of Theorem 7. Our next result is needed

in the proof of Theorem 7. Based on Table 1, define

p̂j(n) = φ(ŵj)/
√
K′′(ŝj) j = 1, 2, 3, 4.

Thus p̂1(n) = p̂4(n) = p̂(n), the ordinary saddlepoint mass function of Theorems 5 and

6. The approximations p̂2(n) = p̂3(n) are based on the offset saddlepoint ŝ− and are only

defined because they are used in proving Theorem 7. Let ŝj(n + 1) be the saddlepoint

for p(n+ 1) using the jth approximation.

Proposition 7. (Offset saddlepoint mass functions). Suppose b /∈ S, either X ∈
D(Gα), or X ∈ D(N ) and (6.5) does not hold. Then as n→∞,

p̂2(n)

p̂(n)
∼ η1/4eŝ2/2 and

p̂j(n+ 1)

p̂j(n)
∼ ηe−ŝj(n+1), j = 1,2.

Here, η = 1 if X does not satisfy (6.4) and η = exp(1/(2κ∞)) otherwise.

Proof of Proposition 7. For the ratio

p̂2(n)

p̂(n)
=

√
K′′(ŝ)
K′′(ŝ2)

exp
{
K(ŝ2)− ŝ2n

− −K(ŝ) + ŝn
}
, (7.82)

let Kn denote the exponent. We show Kn− ŝ2/2− ln η/4→ 0 as n→∞. Expand K(ŝ2)
about ŝ so that

Kn = −ŝ2n− + ŝn+K′(ŝ)(ŝ2 − ŝ) +
1

2
K′′(ŝ)(ŝ2 − ŝ)2 +

1

6
K′′′(s̃1)(ŝ2 − ŝ)3

= −ŝ2n− + ŝn+ n(ŝ2 − ŝ) +
1

2
K′′(ŝ)(ŝ2 − ŝ)2 +

1

6
K′′′(s̃1)(ŝ2 − ŝ)3

=
ŝ2
2

+
1

2
K′′(ŝ)(ŝ2 − ŝ)2 +

1

6
K′′′(s̃1)(ŝ2 − ŝ)3, (7.83)

with s̃1 ∈ (ŝ2, ŝ). To determine the order of ŝ− ŝ2, subtract the equalities n = K′(ŝ) and
n− = K′(ŝ2) to get

1

2
= K′(ŝ)−K′(ŝ2) = K′′(s̃2)(ŝ− ŝ2), s̃2 ∈ (ŝ2, ŝ). (7.84)

If K′′(s̃2) → ∞, as occurs when the distribution of X satisfies neither (6.4) nor (6.5),

then from (7.84), ŝ2 − ŝ = o(1). Combining (7.83) and (7.84),

Kn −
ŝ2
2

=
1

8

K′′(ŝ)
{K′′(s̃2)}2

− 1

48

K′′′(s̃1)
{K′′(s̃2)}3

∼ 1

8K′′(s̃2)
+O

(
1

{K′′(s̃2)}3/2
)
→ 0, n→∞, (7.85)
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52 Butler and Wood

since K′′(ŝ)/K′′(s̃2) ∼ 1, as shown in the next paragraph, and K′′′(s̃1)/{K′′(s̃1)}3/2 =

O(1) by weak convergence of the standardized tilted distribution Zs as s ↑ b. Otherwise,

if K′′(s̃2) stays bounded, then from (7.84) ŝ− ŝ2 stays bounded. Thus, if (6.4) holds, then
Kn − ŝ2/2 − lnη/4 → 0. If (6.5) holds, then Kn − ŝ2/2 diverges but remains bounded.

This explains the dominant exponential term.

The remainder of the argument concerns the leading ratio in (7.82) which can be

ignored since it converges to 1. If X ∈ D(Gα), then K′′(ŝ) ∼ α(b − ŝ)−2 and K′(ŝ) ∼
α(b− ŝ)−1 so

R :=

√
K′′(ŝ2)
K′′(ŝ) ∼

b− ŝ

b− ŝ2
∼ K′(ŝ2)
K′(ŝ) =

n−

n
→ 1.

If X ∈ D(N ), then ψ(s) = 1/
√
K′′(s) is self-neglecting and

R =
ψ(ŝ)

ψ(ŝ2)
=

ψ{ŝ2 + xψ(ŝ2)}
ψ(ŝ2)

, x =
√
K′′(ŝ2)/{2K′′(s̃2)}.

If X satisfies (6.4) then x is clearly bounded; if K′′(ŝ2)→∞ then it is also bounded due

to X ∈ D(N ) and convergence of the third standardized cumulant to 0. To see this, note

for sufficiently large n that |K′′′(s̃2)| < {K′′(s̃2)}3/2 so that

|K′′(ŝ2)−K′′(s̃2)| < (s̃2 − ŝ2)c1{K′′(s̃2)}3/2 < c2{K′′(s̃2)}3/2,

and

x =

√
K′′(ŝ2)

2K′′(s̃2)
<

1

2K′′(s̃2)
√
K′′(s̃2) + c2{K′′(s̃2)}3/2 = O

{
{K′′(s̃2)}−1/4

}
.

Thus, R→ 1 since ψ is locally uniform self-neglecting.

The argument for the ratio p̂j(n+ 1)/p̂j(n) is the same argument but now

1 = K′′(s̃2) {ŝj(n+ 1)− ŝj(n)} s̃2 ∈ (ŝj(n), ŝj(n+ 1)),

and

Kn + ŝj(n+ 1) =
1

2

K′′(s̃1)
{K′′(s̃2)}2

→ 0

if neither of (6.4) or (6.5) holds. If (6.4) holds, then Kn ∼ −ŝj(n+ 1) + ln η. �

Proof of Theorem 7. The proof uses Proposition 7 and roughly follows the same

approach as that for Theorem 1. However there is considerably more subtlety to the

arguments due to the continuity corrections. We first note that
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Limiting saddlepoint relative errors 53

Ŝj (n) ∼
p̂j(n)

v̂j
, n→∞; v̂j =

ûj√
K′′(ŝj)

, j = 1, 2, 3, 4. (7.86)

Here, p̂j(n) = p̂1(n) for j = 1, 4 and p̂j(n) = p̂2(n) for j = 2, 3, and, for example,

v̂1 = 1 − e−ŝ. These results follow from the same arguments used to derive the bounds

(7.65) in the proof of Theorem 4.

For the first continuity correction with j = 1, define

A1n :=
1

S(n)

∞∑

k=n

p̂1(k) and B1n := Ŝ1(n)/
∞∑

k=n

p̂1(k).

For any ε > 0, supk≥N |p̂1(k)/p(k)− 1/l| < ε for sufficiently largeN, where l = Γ̂(α)/Γ(α)

if X ∈ D(Ga) and l = 1 if X ∈ D(N ). Thus,

|A1n − 1/l| = 1

S(n)

∣∣∣∣∣

∞∑

k=n

{p̂1(k)− p(k)/l}
∣∣∣∣∣
≤ 1

S(n)

∞∑

k=n

∣∣∣∣
p̂1(k)

p(k)
− 1/l

∣∣∣∣ p(k) < ε

for n > N. Thus, A1n → 1/l. For B1n, we use the Stolz-Cesàro theorem given below in

Lemma 1 with an = Ŝ1(n) and bn =
∑∞

k=n p̂1(k) ↓ 0. The sequence an → 0 if ŵ1 → ∞
and lim infn→∞ û1 > 0 and these conditions hold under weak convergence as s ↑ b of the
standardized tilted distribution Zs by Proposition 5. Therefore it suffices to consider the

limit of

B1n ∼
Ŝ1(n+ 1)− Ŝ1(n)

−p̂1(n)
∼ −p̂1(n+ 1)

v̂1(n+ 1)p̂1(n)
+

1

v̂1(n)
∼ −ηe−ŝ1(n+1)

1− e−ŝ1(n+1)
+

1

1− e−ŝ1(n)
,

where (7.86) has been used and the last expression holds for all cases except (6.5). For

b <∞ or for b =∞ and K′′(s)→∞ as s→∞, then the limit is 1 giving j = 1 results

for parts (a) and (b) of the theorem. Part (c) is the case (6.4) where the limit is also 1.

For the case (6.5), the ratio p̂1(n+1)/p̂1(n) stays bounded but the Stolz-Cesàro theorem

does not allow conclusions to be drawn.

For the second continuity correction with j = 2, we let

A2n :=
1

S(n)

∞∑

k=n

e−ŝ2(k)/2p̂2(k) and B2n := Ŝ2(n)/
∞∑

k=n

e−ŝ2(k)/2p̂2(k)

and we first show that A2n− η1/4A1n → 0 as n→∞. Choose N1 so that A1n < 1/l− for

all n ≥ N1 with l− ∈ (0, l). For arbitrarily small ε > 0, suppose, by Proposition 7,

∣∣∣∣
e−ŝ2(k)/2p̂2(k)

η1/4p̂1(k)
− 1

∣∣∣∣ < l−ε/η1/4 k ≥ N2.
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54 Butler and Wood

Then

|A2n − η1/4A1n| =
1

S(n)

∣∣∣∣∣

∞∑

k=n

{
e−ŝ2(k)/2p̂2(k)− η1/4p̂1(k)

}
∣∣∣∣∣

≤ η1/4

S(n)

∞∑

k=n

∣∣∣∣
e−ŝ2(k)/2p̂2(k)

η1/4p̂1(k)
− 1

∣∣∣∣ p̂1(k)

<
l−ε

S(n)

∞∑

k=n

p̂1(k) = l−εA1n < ε, n ≥ max{N1,N2}.

Thus A2n ∼ η1/4A1n → η1/4/l as n → ∞. Also using the Stolz-Cesàro theorem along

with (7.86) and Proposition 7,

B2n ∼
Ŝ2(n+ 1)− Ŝ2(n)

−e−ŝ2(n)/2p̂2(n)
∼ −ηe−ŝ2(n+1)

e−ŝ2(n)/22 sinh{ŝ2(n+ 1)/2} +
eŝ2(n)/2

2 sinh{ŝ2(n)/2}
→ 1

for b < ∞, or for b = ∞ and K′′(s) →∞, as s →∞. This is also the limit for the case

(6.4). Thus the overall limit for Ŝ2(n)/S(n) is η1/4/l and this specializes to the results

in parts (a)—(c) for j = 2.

For the third continuity correction, A3n = A2n → 1/(lη1/4). Also B3n is the same,

with Ŝ3(n) replacing Ŝ2(n), so that

B3n ∼
Ŝ3(n+ 1)− Ŝ3(n)

−e−ŝ2(n)/2p̂2(n)
∼ −ηe−ŝ2(n+1)

e−ŝ2(n)/2ŝ2(n+ 1)
+
eŝ2(n)/2

ŝ2(n)
.

For b < ∞, B3n converges to 2 sinh(b/2)/b providing results for cases (a) and (b) when

b <∞. For b =∞, B3n converges to ∞ so S(n)/Ŝ3(n)→ 0 for case (b) with b =∞ and

also for case (c).

For the fourth approximation, A4n = A1n → 1/l. Also

B4n = Ŝ4(n)/
∞∑

k=n

p̂1(k) ∼
Ŝ4(n+ 1)− Ŝ4(n)

−p̂1(n)
∼ −ηe−ŝ1(n+1)

ŝ1(n+ 1)
+

1

ŝ1(n)
,

which converges to (1 − e−b)/b for b < ∞ providing results for cases (a) and (b) when

b < ∞. If b = ∞, then the limit is 0, hence S(n)/Ŝ4(n) → ∞ for case (b) with b = ∞
and also case (c). �

Lemma 1. (Stolz-Cesàro). Let {an} and {bn} be sequences that converge to zero, and

assume that {bn} is strictly decreasing for large n. If

lim
n→∞

an+1 − an

bn+1 − bn
= γ (finite or infinite),
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Limiting saddlepoint relative errors 55

then

lim
n→∞

an

bn
= γ.

Proof. See Huang, X.-C. (1988).

Mid-p-values. We consider four approximation to the mid-p-value S−(n) := S(n) −
p(n)/2. The first two survival approximations are modified to use

Ŝ−j (n) := Ŝj(n)− p̂(n)/2 j = 1, 2.

The third Ŝ3(n) and fourth Ŝ4(n) are not modified and are used as they are. In practical

applications, Ŝ4(n) has been found to provide quite accurate approximations as discussed

in Paige et al. (2011).

When there is a need to distinguish a saddlepoint at n from the one at n+ 1, we use

the notation ŝj(n) and ŝj(n+1) for both the ordinary saddlepoint (j = 1) and the offset

saddlepoint (j = 2).

Corollary 8. (Mid-p-values). Assume the conditions of Theorem 7 for cases (a)—(c).

For approximations Ŝ−1 (n) and Ŝ−2 (n) the ratios S−(n)/Ŝ−j (n) have the same limits as

in (6.6) and (6.7) for cases (a) and (b). For case (c), in which X satisfies (6.4), the limit

is 1 for Ŝ−1 (n) and (2η1/4 − 1)−1 for Ŝ−2 (n).
For j = 3, the limits depend upon whether b is finite or infinite with

lim
n→∞

S−(n)

Ŝ3(n)
=





l 12be

−b/2 coth(b/2) if b <∞
0 if b =∞,

(7.87)

where l = Γ̂(α)/Γ(α) if X ∈ D(Ga) and l = 1 if X ∈ D(N ). Likewise, for j = 4,

lim
n→∞

S−(n)

Ŝ4(n)
=





l 12b coth(b/2) if b <∞

∞ if b =∞.

When b = ∞ then certainly Ŝ−1 (n) and Ŝ−2 (n) are asymptotically better than Ŝ3(n)

and Ŝ4(n). For b <∞, Ŝ−1 (n) and Ŝ−2 (n) dominate Ŝ3(n), since

1
2be

−b/2 coth(b/2) < 1

for b > 0. The comparison of Ŝ−1 (n) and Ŝ
−
2 (n) with Ŝ4(n) for b <∞ is more complicated

since 1
2b coth(b/2) ≥ 1 and 1

2b coth(b/2) → 1 as b → 0. Consider the example in which

α = 1 and X ∈ D(G1). In the range b ∈ (0, 1.45) which covers many practical examples,
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56 Butler and Wood

the limiting ratio for Ŝ4 is closer to 1 than for Ŝ−1 (n) and Ŝ−2 (n) but the latter are closer
for b > 1.45.

Proof of Corollary 8. Consider the case j = 2. Then

S−(n)

Ŝ2(n)− p̂1(n)/2
=

S (n)

Ŝ2(n)

1− 1
2h(n)

1− 1
2 p̂1(n)/Ŝ2(n)

, (7.88)

where h(n) is the hazard function, and

p̂1(n)

Ŝ2(n)
=

p̂1(n)

p̂2(n)

p̂2(n)

Ŝ2(n)
∼ η−1/4e−ŝ2/22 sinh(ŝ2/2)→ η−1/4

(
1− e−b

)
.

This is 1− e−b if b <∞ and η−1/4 if b =∞. Since

1

h(n)

p̂1(n)

Ŝ2(n)
=

p̂1(n)

p(n)

S(n)

Ŝ2(n)
→ η−1/4,

then h(n) ∼ 1− e−b for b <∞ and h(n) ∼ 1 for b =∞. Thus, (7.88) has the limit

η−1/4
1−

(
1− e−b

)
/2

1− η−1/4 (1− e−b) /2
=

1−
(
1− e−b

)
/2

η1/4 − (1− e−b) /2
, (7.89)

which is 1 when η = 1 and (2η1/4− 1)−1 when (6.4). The same argument applies in case

j = 1, with p̂1(n)/Ŝ1(n)→ 1− e−b. For j = 3, then

S−(n)

Ŝ3(n)
∼ S (n)

Ŝ3(n)

(
1− h(n)

2

)
∼ l

b

2 sinh(b/2)

(
1− 1− e−b

2

)
= l

be−b/2

2
coth(b/2),

(7.90)

when b <∞. If b =∞, then h(n)→ 1 and the limit for (7.90) is 0.

7.6. Limiting relative errors and complex regular variation

Sufficient conditions are now presented for (4.3) to hold in terms of complex regular and

slow variation; see Vuilleumier (1976) and Bingham et al. (1987, Appendix 1). First, we

define what is meant by complex slowly varying at ∞. Define the sector

Vϑ = {z ∈ C : |z| > 0 and | arg(z)| < ϑ} for some ϑ ∈ (0, π).

A function L : C→ C is complex slowly varying at infinity in sector Vϑ or, equivalently

in abbreviated form, L ∈ CSV∞(ϑ), if it is analytic and has no zeros in sector Vϑ, and

for all λ > 0, L(λz)/L(z)→ 1 as |z| → ∞ uniformly for | arg(z)| ≤ λ < ϑ.
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Limiting saddlepoint relative errors 57

A function f is said to be complex regularly varying at ξ ∈ C with index α ∈ R, if it
is of the form

f(z) = (ξ − z)αL{1/(ξ − z)},
where L ∈ CSV∞(ϑ). In abbreviated form we write f ∈ CRVξ(α, ϑ).

Corollary 9. (Complex regular variation). Suppose the MGF M(z) is complex

regularly varying at b, or M ∈ CRVb(−α, ϑ) for some ϑ ∈ (π/2, π) and α > 0. Thus,

M takes the form (4.1) with g(z) = L{1/(b − z)}, z ∈ C, where L ∈ CSV∞(ϑ) for

ϑ ∈ (π/2, π). Additionally, suppose L satisfies the following conditions:

z
L′(z)

L(z)
= O(1) C

+ ∋ z → 0, sup
s∈[b−,b)

∣∣∣∣
g (s+ iy/σs)

g (s)

∣∣∣∣ < c1(1 + |y|)δ (7.91)

for some δ ∈ (0, α) and c1 > 0, where C+ = {z ∈ C : Re(z) ≥ 0}. Then condition (4.2)

holds with j = 1, X ∈ D(Ga), and the limiting saddlepoint ratios in (4.3) follow.

Proof of Corollary 9. Factorize the expression in condition (4.2) so that

1

σs

g′ (s+ iy/σs)

g (s)
=

1

σs

g′ (s+ iy/σs)

g (s+ iy/σs)

g (s+ iy/σs)

g (s)
=:

1

σs
R1(y, s)R2(y, s).

By assumption, sups∈[b−,b) |R2(y, s)| < c1(1 + |y|)δ for some δ ∈ (0, α).

We now determine a bound for sups∈[b−,b) |R1(y, s)/σs|. Differentiation gives

1

σs
R1(y, s) =

1

σs

L′
(

1
b−s−iy/σs

)

L
(

1
b−s−iy/σs

) 1

(b− s− iy/σs)2
=

1

σs(b− s)− iy
Q

{
1

b− s− iy/σs

}
,

(7.92)

where Q(z) = zL′ (z) /L (z) . We now show that the Q factor in (7.92) is uniformly

bounded in y. Since σs ∼
√
α/(b − s), we can write 1/σs = τs(b− s)/

√
α where τs → 1

as s ↑ b. The argument of Q is

1

b− s− iy/σs
=

1

(b− s)(1− iτsy/
√
α)

= t−1ry,se
iθy,s

where t = b− s→ 0, and ry,se
iθy,s is the polar form for (1− iτsy/

√
α)−1. The inversion

changes the sign of the argument and θy,s ∈ (−π/2, π/2) with ry,s = (1+ τ2s y
2/α)−1/2 ≤

1. Thus,

sup
s∈[b−,b)

∣∣Q
{
t−1ry,se

iθy,s
}∣∣ ≤ sup

|z|∈[R(y),1]
sup

| arg(z)|≤π/2

∣∣Q
(
t−1z

)∣∣ ,
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58 Butler and Wood

where R(y) = (1 + y2/α−)−1/2 for α− ∈ (0, α). Note that R(y) → 0 as |y| → ∞. Using

Vuilleumier (1976, Theorem 1, (2.2)), with uniform convergence over θy,s ∈ [−π/2, π/2],
then there exists sufficiently large R0 > 0 such that

sup
|z|/t>R0

sup
| arg(z)|≤π/2

∣∣Q
(
t−1z

)∣∣ < c2.

By assumption, |Q (z/t)| < c3 for 0 < |z|/t < ε1 for some ε1 > 0. Since Q (z/t) is analytic

on the remaining range for z/t in the compact half-disc {z/t ∈ C : ε1 ≤ |z|/t ≤ R0,

| arg(z)| ≤ π/2}, then |Q (z/t)| < c4 on this set. Putting all three bounds together, then

the Q factor in (7.92) is uniformly bounded in y such that

sup
y

sup
s∈[b−,b)

∣∣∣∣Q
{

1

b− s− iy/σs

}∣∣∣∣ ≤ sup
|z|/t>0

sup
| arg(z)|≤π/2

∣∣∣Q
(z
t

)∣∣∣ < c5.

The first factor of (7.92) is of order O{(√α− iy)−1} making R1R2/σs of order O{(1 +
|y|)−1+δ}. Thus, condition (4.2) with j = 1 holds with any ε ∈ (0, α− δ). �

The traditional smoothly regularly varying and slowly varying functions which arise

in practical applications, such as powers, powers of logarithms and powers of iterated

logarithms, admit analytic continuations which are CRVb(−α, ϑ) and CSV∞(ϑ) in sector

Vϑ for any ϑ ∈ (π/2, π) and also satisfy the conditions in (7.91).

The assumption that M ∈ CRVb(−α, ϑ) for ϑ ∈ (π/2, π) is stronger than RVb(−α)
and sufficiently so that, together with conditions (7.91), they imply condition (4.2) with

j = 1 and guarantee that saddlepoint ratios attain the limits in (4.3). Recall from Propo-

sition 1(b) that M ∈ RVb(−α) for α > 0 is a necessary and sufficient condition for

X ∈ D(Ga), but it is not sufficient to guarantee the limits in (4.3). The key to the

CRVb(−α, ϑ) assumption is the requirement that ϑ > π/2. This places conditions on the

analytic continuation of M within sector {z ∈ C : | arg(z − b)| ∈ (π − ϑ, π/2]}. As a

result, condition (4.2) with j = 1 follows from the local uniformity of convergence of L

on the subsector b + C+ := {z ∈ C : | arg(z − b)| ≤ π/2} and the conditions in (7.91).

Note that it is not sufficient to assume CRVb(−α, π/2) so as to avoid assumptions in the

analytic continuation of M since then local uniformity of a CSV∞(π/2) function would

only hold on proper subsectors {z ∈ C : | arg(z − b)| ≤ ς} for ς ∈ (0, π/2) and this is not

sufficient to ensure condition (4.2).

7.7. Some further examples and details

Here we provide details for the generalized inverse Gaussian distribution and consider

seven more examples. Examples 6 and 7 cover logarithmic singularities, Example 8 con-

siders a finite mixture, and Example 9 gives an example with an oscillatory density.
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Limiting saddlepoint relative errors 59

Example 10 considers X ∼ Pareto and also the distribution of exp(−X) with X ∼
Pareto. The final examples are Poisson (Example 11) and a discretized normal mass

function (Example 12).

Example 1. (Further details for the Generalized inverse Gaussian distribu-

tion).

(Right tail). (Case p > 0). From (4.4) with p > 0, it follows that

M(s) = (β − 2s)−pg(s)

where

g(s) = c0{(β − 2s)γ}p/2Kp{
√
(β − 2s)γ},

and c0 = (β/γ)p/2/Kp(
√
βγ). Note that, from Abramowitz and Stegun (1972, 9.6.9,

p. 375), g(s) stays bounded away from 0 as s ↑ b = β/2, so that we may ignore the

denominator g(s) in (4.2). It follows from formulae in Abramowitz and Stegun (1972, p.

376) that, for j = 1, 2,

g(j)(s) = c0γ
j{(β − 2s)γ}(p−j)/2Kp−j{

√
(β − 2s)γ};

this is an easy consequence of the result

d

dy
{ypKp(y)} = −ypKp−1(y),

which follows in turn from classical Bessel function identities, combined with an appli-

cation of the chain rule to y = {γ(β − 2s)}1/2.
Moreover, from Abramowitz and Stegun (1972, 9.7.2, p. 378),

Kν(z) ∼ e−z

√
π

2z
{1 +O(|z|−1)}, z ∈ C,

where the error term is uniform as |z| → ∞ for |arg(z)| < 3π/2. Consequently, putting

z =
√
(β − 2s− 2iy)γ, it follows that

sup
s∈[b−,b)

|g(1)(s+ iy)| ≤ c1(1 + |y|)(p−1)/2(1 + |y|)−1/4 = c1(1 + |y|)(2p−3)/4,

and so

sup
s∈[b−,b)

1

σs

∣∣∣∣
g(1)(s+ iy/σs)

g(s)

∣∣∣∣ = sup
s∈[b−,b)

c1
σs

(1 + |y|/σs)
(2p−3)/4 ≤ c2(1 + |y|)(2p−3)/4;

cf. the arguments used to derive the bounds in the proofs of corollaries 2-4.
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60 Butler and Wood

But (2p − 3)/4 < p − 1 only when p > 1/2, so that condition (4.2) with j = 1 fails

when p ∈ (0, 1/2]. However, with (4.2) and j = 2 we obtain, using a similar argument,

the requirement that (2p− 5)/4 < p− 1, which holds for all p > 0. So (4.3) holds for all

p = α > 0.

(Case p = 0). Use Abramowitz and Stegun (1972, 9.6.13) so that in a neighborhood of

0,

K0(x) = λ1(x)I0(x) + h(x),

where λ1(x) = −{ln(x/2) + γ}, I0(x) is a modified Bessel function, h(x) = O(x2) as

x→ 0, and I0 and h are entire functions. The MGF takes the form

M(s) ∼ c1 ln(1− 2s/β)}g(s) g(s) = 1 +O(β − 2s) s→ β/2.

Hence the conclusion of Example 6 of §7.7 applies and relative error is not preserved.

(Left tail). We now consider the left tail of the GIG distribution. Set scale parameter

γ = 1 without loss in generality. In the case p ≥ 0, use the notation ŷ = β − 2ŝ→∞ as

t ↑ 0 along with the expansions

Kp(x) =

√
π

2x
e−x

{
1 +

4p2 − 1

8x
+O(x−2)

}
x→∞ (7.93)

K′
p(x) = −

√
π

2x
e−x

{
1 +

4p2 + 3

8x
+O(x−2)

}
x→∞

from Abramowitz and Stegun (1972, 9.7.2 and 9.7.4). The saddlepoint equation is

t = K′(ŝ) ∼ −1√
ŷ

K′
p(
√
ŷ)

Kp(
√
ŷ)

+
p

ŷ
=

1√
ŷ
+
p− 1/2

ŷ
+O(ŷ−3/2) ŷ →∞

when using the second-order expansions in (7.93). Since the expansions for Kp(z) and

K′
p(z), viewed as functions of a complex variable z, are uniform over |arg(z)| < 3π/2,

they may be differentiated term by term to give expansions for higher-order derivatives

(Copson, 1965, (vii), p. 10-11). This implies K′′(ŝ) = ŷ−3/2 +O(ŷ−2).
The values for û and ŵ are

û ∼ ŷ

2

√
ŷ−3/2 =

1

2
ŷ1/4 →∞

1

2
ŵ2 = ŝt−K(ŝ) ∼ ŷ

2

(
1√
ŷ

)
− lnKp(

√
ŷ)− p

2
ln ŷ

∼
√
ŷ

2
+

1

4
ln ŷ +

√
ŷ − p

2
ln ŷ→∞, ŷ →∞.

Also

û/ŵ3 ∼ c1ŷ
1/4/

√
ŷ
3/2 → 0.
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Limiting saddlepoint relative errors 61

We now determine the dominating function needed for the condition (3.2). Using the

asymptotic expansion for Kp, it follows that

M(s) ∼ (1− 2s/β)−p/2−1/4 exp
(
−
√
β − 2s+

√
β
)

s→−∞.

Consequently, for fixed A0 large and positive, if ŝ < −A0 then

∣∣∣∣
M(ŝ+ iy/σ̂)

M(ŝ)

∣∣∣∣ ≤ c2

∣∣∣exp
{√

β − 2ŝ−
√
β − 2ŝ− 2iy/σ̂

}∣∣∣
∣∣∣1− 2iy

σ̂(β−2ŝ)

∣∣∣
p/2+1/4

≤ c2

∣∣∣∣ exp

{
√
ŷ

(

1−
√

1− 2iy

σ̂ŷ

)}

, (7.94)

where ŷ = β−2ŝ. It is sufficient to focus on the real part of the exponent of the exponential

in the numerator of (7.94), because the modulus of the exponential of the imaginary part

of the exponent is bounded above by 1. The real part of the exponent is given by

√
ŷ
[
1−Re(

√
Reiθ)

]
,

where Reiθ = 1 − 2iy/(σ̂ŷ) is the polar representation of the quantity indicated. It is

appropriate to take the positive square root here; using the identity cos θ = 2 cos2(θ/2)−1,
we obtain

Re(R1/2eiθ/2) = 2−1/2
(
1 +

4y2

σ̂2ŷ2

)1/4{

1 +

(
1 +

4y2

σ̂2ŷ2

)−1/2}1/2

= (1 + x)1/4
{
1 + (1 + x)−1/2

2

}1/2
≡ f1(x),

where x = 4y2/(σ̂ŷ)2. Differentiating the logarithm of {f1(x)} with respect to x we find

that (i) f1(x) is strictly increasing on x ≥ 0 and (ii) the minimum value of f1(x) on

[0,∞) is equal to 1. Now define

f2(x) =
1

x
{1− f1(x)},

Clearly for x ∈ (0,∞), f2(x) < 0; as x →∞, −f2(x) ∼ 2−1/2x−3/4 → 0; and as x→ 0,

f2(x)→ −1/8. Moreover, on any compact interval [0, A], f2 is bounded away from 0. It

follows from the above facts that for A sufficiently large,

sup
x∈[0,A]

f2(x) ∼ −2−1/2A−3/4. (7.95)
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62 Butler and Wood

As noted above, σ̂ ∼ ŷ−3/4 so σ̂(β − 2ŝ) = σ̂ŷ ∼ ŷ1/4 →∞, from which it follows that

sup
ŝ∈(−∞,−A0)

√
ŷ

σ̂2ŷ2
≥ c3 > 0,

for A0 sufficiently large. Hence, for ŝ ∈ (−∞,−A0), the RHS of (7.94) is bounded above

by

c2 exp

{
4y2

( √
ŷ

σ̂2ŷ2

)
f2(x)

}
≤ c2 exp

{
c3y

2f2(x)
}
, (7.96)

where x = 4y2/(σ̂ŷ)2, and note also that for ŝ ∈ (−∞,−A0), (σ̂ŷ)2 is bounded below by

a positive constant, c4 say. Hence using (7.95) for y sufficiently large, the real part of the

exponent is bounded above over [0, 4y2/c4] by

sup
x∈[0,4y2/c4]

{
c3y

2f2(x)
}
∼
{

−c3y22−1/2
(
c4
4y2

)3/4}

≤ c6 − c5y
1/2,

for all ŝ ∈ (−∞,−A0), where c5 and c6 are positive constants which are sufficiently small

and sufficiently large, respectively. Thus there exists a dominating function D of the form

D(y) = c7 exp(−c5y1/2),

with c7 = exp(c6). The derivation when p < 0 is exactly the same and uses the identity

K−p(x) = Kp(x). �

Example 6. (Logarithmic singularities: continuous case). If M has a logarith-

mic singularity at b > 0, there is no weak convergence as s → b by Proposition 3. In

such settings and subject to additional assumptions, saddlepoint relative errors are not

uniformly bounded.

Suppose X ≥ 0 is absolutely continuous with MGF M(s) = {− ln(b−s)}mg(s)+h(s)

for integer m > 0, where g(s) and h(s) are analytic on {s ∈ C : Re(s) ≤ b} with g(b)  = 0.

Examples of such distributions are given in Jensen (1995, §6.1) and Butler (2017, §8)
and include densities of the form

f(t) ∝ (ln t)m−1
1

t
e−t, t > 1.

Additionally, assume there exists an ε > 0 such that the improper tilted density e(b+ε)tf(t)

is ultimately non-decreasing. Then

lim
t→∞

f(t)

f̂(t)
= 0.
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Limiting saddlepoint relative errors 63

To show this, we consider the case in which h(s) ≡ 0 as this keeps expressions simple.

The case with h(s)  = 0 is the same argument but with more complicated expressions.

The CGF is ln{M(s)} = K(s) = m ln{− ln (b− s)} + ln g(s). As ŝ ↑ b, the saddlepoint

equation is

t = K′(ŝ) ∼ −m
û ln û

û = b− ŝ

with K′′(ŝ) ∼ −m/{û2 ln û}. The saddlepoint density is therefore

f̂(t) ∼ 1√
2π

û
√
− ln û√
m

(− ln û)mg(b)e−ŝt, ŝ ↑ b. (7.97)

The asymptotic form for f(t) is given by a Tauberian theorem in Butler (2017, §8,
Proposition 4) as

f(t) ∼m(ln t)m−1t−1g(b)e−bt, t→∞.

Extracting the essential parts of the ratio, and using ln t ∼ − ln û and ût ∼ −m/ ln û,

then as t ↑ tU ,

f(t)

f̂(t)
∼ c1

(− ln û)−3/2

ût
e−ût ∼ c2(− ln û)−1/2 exp

{ m

ln û

}
∼ c2(− ln û)−1/2 → 0. �

Example 7. (Logarithmic singularities: discrete case). When the boundary singu-

larity r for PGF P(z) is logarithmic, then saddlepoint approximations for mass functions

lack uniformity in the right tail. The logarithmic series mass function and its independent

convolutions in Butler (2017, §8) are examples. The logarithmic series mass function is

the tilted mass function for a base mass function which is a Zipf’s law with integer power.

Suppose X ≥ 0 and has PGF P(z) = {− ln(r−z)}mG(z) for r > 1 and integer m > 0,

where G(z) is analytic on {z ∈ C : |z| ≤ r} with G(r)  = 0. Then

lim
n→∞

p (n)

p̂(n)
= 0,

so relative error is not uniform as n → ∞. To prove this limiting result, consider the

setting with P(z) = {− ln(r − z)}mG(z). Take ŷ = eŝ and let û = r − ŷ. Solving

the saddlepoint equation gives nû ∼ −mŷ/ ln û so that lnn ∼ − ln û. Taking another

derivative, K′′(ŝ) ∼ mŷ2/{−û2 ln û} so that

p̂(n) ∼ 1√
2π

û
√
− ln û√
m

1

ŷ
(− ln û)mG(ŷ)ŷ−n, n→∞. (7.98)

The asymptotic behavior of p(n) is given by

p(n) ∼ m

n
(lnn)m−1G(r)r−n, n→∞, (7.99)
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64 Butler and Wood

and results from a Tauberian theorem in Butler (2017, §8, Proposition 5) which was

derived using results from Flajolet and Odlyzko (1990). Combining (7.98) and (7.99)

gives
p(n)

p̂(n)
∼
√
2πm

(
ŷ

r

)n
1

√
− ln(r − ŷ)

→ 0, n→∞, (7.100)

since (ŷ/r)
n
< 1 while ŷ → r. �

Relative errors of saddlepoint approximations for finite mixtures behave in the ex-

pected way, as indicated in the next example.

Example 8. (Finite mixtures). Such mixture distributions are the base distributions

which are tilted to form a regular exponential family. (a) Suppose X is Gamma (1, 1)

with probability (w.p.) 1/2 and Gamma (1/2, 2) w.p. 1/2. Then X ∈ D(G1) as s→ 1 and

−X ∈ D(−G1/2) as s→−∞. The limiting saddlepoint ratios are Γ̂(1) and Γ̂(1/2)/Γ(1/2)

in the respective tails.

(b) Suppose X is Gamma (1, 1) w.p. 1/2 and Normal (0, 1) w.p. 1/2. Then X ∈ D(G1)
as s→ 1. The normal component dominates in the left tail and X ∈ D(N ) as s→−∞.

The limiting saddlepoint ratios are Γ̂(1) and 1 in the respective tails. �

In this final example, we consider a distribution due to McCullagh (1994) in which weak

convergence of the standardized tilted distribution Zs does not occur as s ↑ b, yet the

relative error remains bounded as t ↑ tU .

Example 9. In this example the standardized tilted distribution does not exhibit weak

convergence. However, the relative saddlepoint error remains bounded though it does not

converge to a constant. The density f(t) = φ(t){1 + sin(2πt)/2} has MGF

M (s) = es2/2{1 + c sin(2πs)}, c = e−2π
2

/2, s ∈ R. (7.101)

The second K′′ (s) and third cumulants K′′′ (s) computed from (7.101) have period 1 and

so the third standardized cumulant is also periodic without a limit. Here, the saddlepoint

ŝ = t+O(1) as t→∞ and the saddlepoint density ratio is

f(t)

f̂(t)
∼
√
K′′ (t)1 + sin(2πt)/2

1 + c sin(2πt)
exp

[

−2π2
{

c cos(2πt)

1 + c sin(2πt)

}2]

where the right side is purely 1-periodic. It attains maxima of 1.5 at {k + 1/4 : k ∈ Z}
when sine terms are 1, and there are minima of 0.5 at {k+3/4 : k ∈ Z} where sine terms

are −1. �
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Limiting saddlepoint relative errors 65

Example 10. (Pareto and exp(−Pareto)). Suppose P has a Pareto (p) distribution

with density p/tp+1 for t > 1 and p > 0. The MGF is MP (z) = p(−z)pΓ(−p,−z) and

convergent for {Re(z) ≤ 0}, where Γ(−p,−z) denotes the incomplete gamma function,

defined in e.g. Abramowitz and Stegun (1972). Since b = 0 ∈ S, the right tail does

not conform to the conditions of Proposition 1. There is no weak convergence of the

standardized tilted variable Zs as s→ 0 since the tilted cumulants of order p or greater

diverge to ∞ as s→ 0. In the left tail, MP (−z) ∼ pz−1e−z {1 +O(1/z)} as z →∞ for

| arg(z)| < 3π/2 (Abramowitz and Stegun, 1972, 6.5.32) and so the MGF for X = 1− P

(with tU = 0) is MX(z) = ezMP (−z) ∼ pz−1 {1 +O(1/z)} . Thus, (5.1) holds and in

the left tail P ∈ D(−G1) as t ↓ 1. The condition (5.4) also applies.

Take Y = e−P so Y has the density f(t) = pt−1(− ln t)−p−1 for t ∈ (0, e−1). The
density differs from power law 1/t by the slowly varying factor (− ln t)−p−1 so β = 1 for an

expansion such as (5.4). The slowly varying factor, however, makes the density integrable

but it becomes divergent without this factor. The MGF M is an entire function. Using

(5.4) in the right tail, Y ∈ D(−G1) as t ↑ e−1 for all p. In the left tail as t ↓ 0, the third

standardized cumulant converges to ∞ as s → −∞ as shown in the next paragraph.

Thus there can be no weak convergence as s→−∞.

For the exp{−Pareto} example, we consider the left tail of Y in which t ↓ 0 and

s → −∞ and show that the third standardized cumulant diverges to ∞ as s → −∞.

First, an asymptotic expansion as s→−∞ for the MGF M of Y and its derivative M′

are given by

M(s) = p

∫ 1/e

0

est

t(− ln t)p+1
dt and M′(s) = p

∫ 1/e

0

est

(− ln t)p+1
dt.

For M′, make the substitution v = −st so that

M′(s) =
−p
s

∫ −s/e

0

e−v

{ln(−s)− ln v}p+1
dv =

−p
s lnp+1(−s)

∫ −s/e

0

e−v

{
1− ln v

ln(−s)

}−p−1
dv.

Expanding the integrand term in curly braces using the generalized binomial expansion

and using Fubini’s theorem to interchange integration and summation, then

M′(s) =
−p

s lnp+1(−s)

∫ −s/e

0

e−v

{
1 +

A1 ln v

ln(−s) +O

(
ln2 v

ln2(−s)

)}
dv

=
−p

s lnp+1(−s)

{
1 +O

(
1

ln(−s)

)}
(7.102)

as s → −∞. Since the expansion in (7.102) is uniform in the sector {Re(z) ≤ 0}, it
may be integrated to giveM(z) = ln−p(−z)[1+O{1/ ln(−z)}]. Furthermore, second and

third derivative computations from K(s) = −p ln{ln(−s)} +O{1/ ln(−s)}, s ∈ R, show
that the third standardized cumulant has expansion 2

√
ln(−s)/p→∞ as s→−∞. �
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Example 11. (Poisson (1)). The central limit theorem ensures that X ∈ D(N ). For

j = 1 and 2 the limiting survival ratio is 1. Taking n = 400, then S(400) = 5.759×10−870

and computations give p(400)/p̂(400) = 0.9998. For j = 1, 2 the survival ratios at 400

are 0.9999 and 1.0004 respectively. For j = 3 and 4 such limits should be 0 and ∞ and

at 400 they attain values 0.3002 and 6.008 respectively. �

Example 12. (Discretized normal, Balkema et al. 1999a). Consider the mass

function p(n) = cφ(n) with c =
√
2π/θ3(0, e

−1/2) ≃ 1.08535, where 08 indicates a string

of 8 zeros, and θ3 is a theta function (NIST DLMF, 20.2.3). The MGF can be derived

as θ3(is/2, e−1/2)/θ3(0, e−1/2). All cumulants, as functions of s, are purely oscillatory

with period 1 hence weak convergence of the standardized tilted distribution Zs does not

occur. If, however, sγ ↑ b =∞ over the subsequence sγ ∈ {γ, γ+1, . . .} for γ ∈ [0, 1), then

all cumulants converge to finite limits which depend only on the value of γ. The third

cumulant versus γ resembles c sin(2πγ) and accordingly the weak limit over subsequence

{γ, γ + 1, . . .} is in D(N ) if γ = 0 or 1/2, in D(G) if γ ∈ (0, 1/2), and in D(−G) if

γ ∈ (1/2, 1). If γ = 0 or 1/2, then (6.4) holds with κ∞ ≃ 0.96788 or κ∞ ≃ 1.062112

respectively, where 96 and 06 are strings of six 9’s and 0’s, respectively. In both cases,

the limiting values for S(n)/Ŝ2(n) are η
−1/4 = 0.8825. �
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