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Abstract. Automated vehicles are expected to revolutionise everyday travel with 
anticipated benefits of improved road safety, comfort and mobility. However, 
they also raise complex ethical challenges. Ethical debates have primarily centred 
around moral judgements that must be made by autonomous vehicles in safety-
critical situations, with proposed solutions typically based on deontological prin-
ciples or consequentialism. However, ethics should also be acknowledged in the 
design, development and deployment of partially-automated systems that invari-
ably rely upon the human driver to monitor and intervene when required, even 
though they may be ill-prepared to do so. In this literature review, we explore the 
lesser-discussed ethics associated with the role of, and expectations placed upon, 
the human driver in partially-automated vehicles, discussing factors such as the 
marketing and deployment of these vehicles, and the impact upon the human 
driver’s development of trust and complacency in automated functionality, con-
cluding that the human driver must be kept ‘in the loop’ at all times. 
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1 Introduction 

Automated driving is expected to enhance road safety by reducing the number of acci-
dents attributable to driver error, improve comfort by reducing driver workload and 
enabling drivers to engage in secondary tasks and activities, and deliver ‘mobility for 
all’ [1]. These are undeniably bold and admirable claims, which on face value suggest 
that the current drive towards the ‘driverless car’ favours the ‘greater good’ and should 
be applauded and encouraged. However, the visionary hype surrounding the concepts 
of ‘self-driving’, ‘driverless’ and ‘autonomous cars’ is masking a disconnect between 
public expectations and current technological capabilities [2,3]. Journalists in the pop-
ular media are failing to clarify important differences in terminology that define the 
varying levels of automation within the automotive industry. Vehicle manufacturers are 
also using choice words to describe product capabilities that carry a multitude of inter-
pretations [4]. For example, it has been suggested that Tesla’s choice of the name ‘Au-
topilot’ for its partially automated driving feature suggests that it has fully autonomous 
capability and therefore, promises more than it can deliver [5,6]. Indeed, Tesla faced 
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intense media scrutiny following the first fatal collision involving one of its vehicles 
being operated in Autopilot mode in May 2016. The driver of a Tesla Model S was 
fatally injured when their vehicle collided with a tractor trailer that was crossing an 
intersection on a highway west of Williston, Florida. Data taken directly from the Tesla 
Model S vehicle in question confirmed that, at the time of the incident, the vehicle was 
being operated in Autopilot mode. The Autonomous Emergency Brake (AEB) system 
did not provide any warning nor initiated automated braking and there was no attempt 
made by the driver to take evasive action. There was speculation that the radar and 
camera technology used on Tesla’s AEB system failed to detect the trailer against a 
brightly lit sky, or the trailer was misclassified as an overhead sign by the software. 
However, the National Highway Traffic Safety Administration [7] concluded that “hu-
man error” was the primary cause of the fatal collision and speculated that the driver 
must have been distracted from the driving task for an ‘extended period’. Further in-
vestigation by the National Transportation Safety Board [8] reported that the drivers’ 
hands were only detected for 25 seconds over a thirty-seven minute journey. It is there-
fore reasonable to assume that the driver was on the whole operating the vehicle com-
pletely “hands and feet free”, despite Tesla’s own Human-Machine Interface (HMI) 
alert that states “Always keep your hands on the wheel, be prepared to take over at any 
time” when Autopilot is initially activated. According to Norman [9,10], automation is 
at its most dangerous when it behaves in a consistent and reliable manner for most of 
the time. This is because of an increased risk of out-of-the-loop performance problems 
including complacency [11], over- trust [12], and loss of situation awareness [13].  

Instead, the full benefits of automation can only be realised if the driver is completely 
removed from the driving task. In these situations, the vehicle would then need to make 
moral and ethical judgements in otherwise conflicting safety-critical situations. The de-
velopment of control algorithms and artificial intelligence to enable such decisions is 
therefore the subject of many ongoing works. Studies propose the use of either: deon-
tological principles, such as the laws of robotics [14,15]; or consequentialism, which 
uses the classic ‘trolley dilemma’, a thought-scenario based on unavoidable harm, to 
determine moral right and wrong in order to inform computational algorithms [16,17]. 
However, we currently reside in an era whereby only some driving tasks are automated. 
This means that the human driver still plays a vital role within the wider driving task.  
 
1.1 The Role of Terminology 

One of the greatest challenges surrounding automobile automation is the inconsistent 
use of terminologies, in particular, two key concepts: autonomous and automation. Un-
derstanding the differences between these terms is extremely important because the 
terminologies used to describe a feature can lead to inferences over what the role of the 
human driver is within the wider system. According to the Oxford English Dictionary 
[18], to be ‘autonomous’ is to mean “having the freedom to act independently”. An 
autonomous vehicle therefore can act independently and control its own behaviour 
without human intervention. One example of an ‘autonomous’ vehicle system is the 
Electronic Stability Control (ESC) system that can improve vehicle stability by detect-
ing and then reducing a loss of traction that can lead to skidding.  
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In contrast, ‘automation’ refers to the “use or introduction of automation equipment” 
[18]. Thus, an automated vehicle is not capable of acting independently from the driver, 
and any ‘automated control’ must be carefully engineered to ensure seamless transition 
from and back to manual control. The driver therefore has overarching control of vehi-
cle operation meaning that automated systems can be disengaged whenever the driver 
feels it is necessary. Automated systems can therefore be considered as ‘driver-initi-
ated’ because it is the human that has ultimate authority of the primary task.  

There are also various levels of automated functionality that further complicate our 
understanding of automation. The Society of Automotive Engineers (SAE) [19] defined 
five levels of automation specific to the driving domain, outlining the functional capa-
bilities of systems operating within each of these levels. SAE propose that automation 
ranges from Level 0 (Fully Manually) to Level 5 (Fully Autonomous). However, this 
can be criticised because automation is not considered to be a dichotomous concept. 
Instead, automation operates on a continuum [20] making it difficult to classify systems 
whereby different component parts operate at different levels of automation [2].  

There are, however, a number of taxonomies that have sought to better define the 
role of the human within automated systems. The oldest and most widely cited taxon-
omy was developed by Sheridan and Verplanck [21], who offer a ten-level taxonomy 
specifying which functions are the responsibility of the human operator and which are 
the responsibility of the computer system. Endsley and Kaber [22] sought to better de-
fine the intermediate levels by identifying “who” was doing “what” in terms of system 
monitoring, strategy generation, decision making and response execution processes. 
Defining the allocation of system function in this way can better help us understand the 
explicit roles and responsibilities of the driver at each level of automation.  

 
1.2 The Role of the Driver 

Kaber and Endsley [23] captured the idea of the changing driver role eloquently by 
describing a shift from ‘active operation’ to ‘passive monitoring’ as the level of auto-
mation increases. However, the expectation on the human driver to passively monitor 
operations and rapidly resume control in emergency situations, or when systems go 
beyond their parameters, is posited as the main human factors challenge facing the de-
ployment of automated vehicles [2]. It is argued that the designers of automated systems 
have a moral and ethical responsibility to consider how the operational characteristics 
and capabilities of the systems impact upon the human driver. Poulin et al. [24] go as 
far to suggest that drivers will end up with none of the control but all of the accounta-
bility for a system that has not been designed in recognition of any potential perfor-
mance issues. This is termed “the responsibility gap”, and is often an inevitable out-
come relating to the complexity of a system [25]. A responsibility gap would be the 
consequence of technologies being deployed with little knowledge as to how they will 
behave in context. In the case of autonomy, this would be a result of autonomous vehi-
cles being programmed to learn as they operate. This would also mean that not even the 
human initially responsible for programming these vehicles, would be able to under-
stand or predict the processes underpinning artificial agent decision making in future 
scenarios [26].  
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Too much automation can take the human out of the loop, deskill them and lower 
morale [27, 28]. In addition, automated assistance can lead to decrements in situation 
awareness and in some instances cause erratic changes to driver mental workload [29]. 
This is because any sudden transfer of control may result in mode confusion [30] and/or 
startle effects [31]. Finding ways to encourage and motivate drivers to stay in-the-loop 
is an enduring challenge, one that could rely heavily upon the role of the driver moni-
toring. Hancock [32], however, suggests that there is a need to consider motivation 
theory in relation to human-computer interaction associated with the automotive do-
main. The general consensus is that mental workload optimisation is crucial in main-
taining effective task performance (e.g. [33]). Thus, being able to recognise different 
driver states at higher levels of automation will enable researchers to not only explore 
the most efficient strategies of keeping the driver ‘in-the-loop’ but always the most 
efficient means to transfer control.  

The application of automation by designers without due consideration of the conse-
quences to human performance is something Parasuraman and Riley [34] referred to as 
‘abuse’ of automation and arguably violates the ethical principle of respect for persons 
[35, p1845]. Without a human-centred focus, the benefits of automation for individual 
drivers are overlooked in pursuit of higher levels of functionality [36]. We also miss 
opportunities to learn from driver experiences in using such systems that could help 
inform future generations of technology that can improve the safety of both its users 
and wider public [6].  

At the core of the Human Factors and Ergonomics discipline is the goal to enable 
the development of innovative and beneficial technologies that can optimise the perfor-
mance and safety of the human that interact with them [36]. Systems engineering uses 
the principles of complementarity to help inform the design of complex sociotechnical 
systems such as those seen in driving automation. This approach is based upon the idea 
that the allocation of tasks should serve to maintain control whilst retaining human skill 
[37]. Such an approach aims to encourage shared situation awareness between driver 
and automated systems [38]. ‘Team cognition’ appears to be the binding mechanism 
that goes on to produce coordinated behaviour [39]. According to Cuevas et al. [39], a 
human-automation team can be defined as the coupling of both human and automated 
systems working both collaboratively and in coordination with one another to success-
fully complete a task. Hoc [40] originally applied the concept of cooperation as a means 
to identify, analyse, implement and support cooperative activities between humans and 
machines. This essentially describes the essence of partially automated driving solu-
tions, but does not necessarily reflect the reality of such systems.  

 
1.3 The Role of Marketing 

The drive for vehicle automation is likely to continue at pace given the potential eco-
nomic benefits available from competitive advantage within a mass-market commodity 
[32, 41]. However, this enthusiasm and push for technological innovation may encour-
age more focus on the functional capabilities and characteristics of a system rather than 
the impacts that it may have on driver behaviour. It is after all the former that dominates 
discussions within the public arena [32]. The marketing and deployment of automated 
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technologies may therefore negatively impact upon driver expectations [6, 42], risk 
perception [43] and trust [11]. All of these factors can contribute to automation ‘misuse’ 
(i.e. over reliance) and/or ‘disuse’ (i.e. underutilisation) [34].  

The marketing of automated systems is also likely to influence how drivers interpret 
and predict what may happen within the driving environment (i.e. their mental model 
of the system) [3,27], particularly if these are reinforced by positive interactions with 
technology (i.e. systems appears to be reliable, accurate and dependable). Of course, 
any deviation in expected behaviour has the potential to challenge existing models and 
affect user trust in system functionality [44].  

There seems to be a lack of transparency regarding the true technological capabilities 
of autonomous systems. For example, Endsley [45] recalls that a service representative 
from Tesla initially told her the automated systems were 100% reliable. However, when 
it comes down to a matter of liability, Tesla were clear to state that the Autopilot in use 
around the time of the fatal accident in May 2016 was in the beta testing phase [46]. 
Mobileye, who make the image recognition software for assisted driving, condemned 
Tesla’s claims that their Autopilot was safer than a human driver on highways by citing 
the dangers involved with causing mistrust through consumer confusion of technolog-
ical capabilities [47]. In fact, Smith [48] calculated that in order to say with 99% con-
fidence that automated vehicles crash less frequently than vehicles with human drivers, 
it would need to drive 725,000 mile on representative roadways without incident. If 
only fatal crashes were considered, this figure rises dramatically to 300 million miles. 
To date, no automated vehicle has yet to travel such distances unassisted [49] and there-
fore it is not possible to validate the claim that automated vehicles are safer than vehi-
cles driven by human drivers. In reality, even with perfect sensing, it is unrealistic to 
suggest that a truly crash free environment can exist [49]. This is because the driving 
environment is characterised by unpredictable obstacles and dynamically changing sit-
uations that are difficult to design for. We also cannot overlook the fact that inevitable 
failures will occur. Software and/or hardware failures remain an inevitable threat to the 
safety of automated systems. In an effort to minimise such failures, vehicles will need 
multiple redundancies, extensive testing and likely need mandatory maintenance [49].  

 
1.4 The Role of Technology 

Given that software and/or hardware failures appear to remain an inevitable threat to 
drivers [49], research into failure-induced transfer of control has been extensively stud-
ied [50, 51]. Early research concentrated on determining appropriate thresholds relating 
to how long a driver would need to know in advance about an upcoming control tran-
sition. Damböck et al. [52] utilised three different lead times – 4, 6 and 8 seconds – and 
found that performance did not differ significantly from manual driving when an 8 se-
cond lead time was used. Similarly, Gold et al. [53] suggested that drivers needed a 
lead time of 7 seconds to ensure a safe resumption of control. For partially automated 
driving, the literature suggests that drivers can take anywhere between 1.2 seconds [54] 
and 15 seconds to respond to emergency situations [55]. Further, for self-paced control 
transitions (i.e. non-critical), response times vary between 1.9 and 25.7 seconds de-
pending upon task engagement and criticality [56]. This has significant implications for 
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the design of warning systems as they must provide drivers with adequate warning 
about takeover situations. Whilst it is common practice to design for the 90th percentile 
(taking into the consideration the range between the 5th percentile female and 95th 
percentile male populations [57]), it is important that manufacturers are given more 
information about the ‘extreme’ ends of the population (i.e. range in performance). Us-
ing only mean values as a basis to design systems is troublesome because we do not 
understand the range or spread of distributions. Thus, Eriksson and Stanton [56] argue 
that a more inclusive design approach is needed. Median response times are simply not 
sufficient enough when it comes to designing control transitions for automated driving.  

Even so, Louw [58] argues that, in addition to providing adequate warning to drivers, 
a more pressing need is to develop an objective measure relating to handover quality 
and safety. Thomas et al. [59] suggest that it is in the seconds immediately after takeo-
ver when most errors occur. For the case of partial automation, drivers can take between 
35 and 40 seconds to stabilise lateral control of the vehicle following a transfer of con-
trol from automated to manual driving [55]. Transfer of control and the provision of 
adequate warning remains an ongoing challenge.  

2 Conclusions 

The utilitarian justification for automated vehicles is that they can improve safety, com-
fort and deliver greater mobility for both the user and wider population [1, 2]. However, 
there is a need to balance these justifications with the current state of the art. In reality, 
fully autonomous vehicles are a long way off [10]. Partially automated driving solutions 
are already available today, but can give the impression of higher level functionality. 
Systems that can automate both longitudinal and lateral control, as well as automate 
aspects of traditional driver decision-making enable drivers to become “hands and feet 
free”. However, they still require the driver to supervise, maintain and potentially take 
over from the system [2]. Unfortunately, humans are notoriously inefficient at com-
pletely sustained vigilance tasks (e.g. [50, 60]). Combine that with the fact that drivers 
can quickly become complacent in situations where automated systems behave in a 
consistent manner for extended periods, it appears inevitable that drivers will over-trust 
systems offering limited automated assistance (e.g. [11, 61, 62]). This behaviour will 
heavily impact upon the capabilities of the driver to respond appropriately when re-
quired.  

Finally, whilst the concepts of “automation” and “autonomy” are clearly distinct, it 
is worth noting that some of the more sophisticated automated technologies have the 
potential to become autonomous in the future [32]. This is of course a natural progres-
sion for technological development. For example, at a basic level ‘cruise assist’ tech-
nologies have evolved from systems that simply maintain a pre-set speed (Cruise Con-
trol), to systems that can adapt their speed profile depending upon the speed of the 
vehicle ahead, although notably will not exceed a pre-set maximum (Adaptive Cruise 
Control). It therefore seems likely that continued extension of pre-existing automated 
systems could pave the way for future autonomous functionality. Presently, however, 
it appears that we do not fully understand or appreciate the complexities of human-
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machine interaction in vehicles offering enhanced automated driving solutions [63]. 
This is further exacerbated by the current approach to accident investigation following 
an incident involving an ‘automated’ vehicle. Rather than adopting a holistic ‘system’ 
view, individual subsystems tend to be looked at in isolation; if they are deemed to be 
operationally sound, blame will often be attributed to ‘human error’ [64]. Such an ap-
proach is problematic because it fails to consider how multiple subsystems operating 
together can synergistically change the way in which the vehicle performs and the im-
pact it has on the driver. It also fails to consider contextual factors that could signifi-
cantly influence the operator’s behaviour within the system (e.g. how automated sys-
tems are named and marketed). If the circle of investigation widens to include such 
factors, it is likely that the conclusions drawn from the investigation process will pro-
vide a much more accurate and informative depiction of accident causation. After all, 
Dekker [65] argues that human error should be the starting point of an accident rather 
than the end, and that any case involving human error “demands an explanation” [65, 
p.68].  
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