
New J. Phys. 24 (2022) 103018 https://doi.org/10.1088/1367-2630/ac9547

OPEN ACCESS

RECEIVED

21 June 2022

REVISED

1 September 2022

ACCEPTED FOR PUBLICATION

27 September 2022

PUBLISHED

21 October 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

A little excitement across the horizon

Keith K Ng1 , Chen Zhang2 ,3 , Jorma Louko4,∗ and Robert B Mann2,5,6

1 Department of Physics, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
2 Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
3 Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 1A7, Canada
4 School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
5 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
6 Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario, N2L 2Y5, Canada
∗ Author to whom any correspondence should be addressed.

E-mail: lafcadio08@gmail.com, zhangvchen@gmail.com, jorma.louko@nottingham.ac.uk and
rbmann@uwaterloo.ca

Keywords: black hole radiation, Unruh-DeWitt detector, curved spacetime quantum fields

Abstract
We analyse numerically the transitions in an Unruh-DeWitt detector, coupled linearly to a massless
scalar field, in radial infall in (3 + 1)-dimensional Schwarzschild spacetime. In the
Hartle–Hawking and Unruh states, the transition probability attains a small local extremum near
the horizon-crossing and is then moderately enhanced on approaching the singularity. In the
Boulware state, the transition probability drops on approaching the horizon. The unexpected
near-horizon extremum arises numerically from angular momentum superpositions, with a
deeper physical explanation to be found.

1. Introduction

Attempts to combine well-established tenets of black hole physics and well-established tenets of quantum
physics—that black hole evaporation is unitary, well described by local semi-classical quantum field theory,
and respects the equivalence principle—have been a source of a number of paradoxes [1, 2], culminating in
recent years to the suggestion that the horizon will be replaced by a high curvature region, inducing a
‘firewall’ that will destroy any observer attempting to fall into the black hole [3]. In this firewall paradigm,
quantum physics near the black hole horizon differs significantly from what ensues from a gravitational
collapse in the conventional semiclassical picture without back-reaction [4], well approximated at late times
by the Unruh state [5], or from placing a radiating black hole in thermal equilibrium with its environment,
described by the Hartle–Hawking(-Israel) state [6, 7].

While there has been much effort and discussion in attempting to resolve this conundrum, scant
attention has been paid toward understanding in semi-classical terms the actual behaviour of objects
crossing the horizon, without a firewall. This is of crucial importance, since the only way to determine if a
black hole has a temperature—that is, the vacuum of spacetime outside it is in a thermal state—is to
consider the response of some object (a detector) placed in the vicinity of the black hole [8]. Such detectors
are most straightforwardly modelled as two-level systems known as Unruh-DeWitt (UDW) detectors [5, 9].

When both the detector and the state of the quantum field are stationary, a number of results about the
detector’s response are known [10, 11]; in particular, a static detector in the exterior of a Schwarzschild
black hole responds thermally to the Hartle–Hawking(-Israel) state [6, 7]. However, essentially nothing is
known about the response of detectors that freely fall toward a black hole, with the exception of a few
studies in lower dimensions. One such study considered a UDW detector falling radially toward spinless
black hole in (2 + 1) dimensions [10]. In this case no regions in parameter space were found where the
transition rate was thermal, in accord with the equivalence principle, but the detector was switched on and
off in the region exterior to the black hole. A study of the transition rate of a UDW detector infalling toward
a (1 + 1) dimensional Schwarzschild black hole provided numerical evidence of how its thermal properties
are gradually lost during the infall [12, 13], and a detector approaching a Cauchy horizon in 1 + 1
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dimensions was considered in [14]. A recent study of the (1 + 1) dimensional Schwarzschild black hole [15]
considered the entanglement and mutual information acquired by two freely falling detectors and found
that such correlations can be harvested even when the detectors are causally disconnected by the event
horizon.

In this paper we investigate for the first time the response of a UDW detector (linearly coupled to a
scalar field) in radial free-fall toward a Schwarzschild black hole and across its horizon. We consider the
Hartle–Hawking(-Israel) [6, 7], Unruh [5], and Boulware [16] states of the field, where in the last case the
detector is switched off before horizon crossing due to the singularity of the Boulware state at the horizon.
Far from the horizon, we find that the response approaches a Minkowski thermal state response for the
Hartle–Hawking state and the Minkowski vacuum response for the other two states, as could be expected.
Near the horizon, the response in the Hartle–Hawking and Unruh states attains a small local extremum
after horizon crossing and is then moderately enhanced on approaching the black hole singularity; in the
Boulware state, the response drops as the horizon is approached. Our work involves pioneering numerical
elements, and constitutes, to our knowledge, the first analysis of a time-and-space localised quantum system
crossing the horizon of a (3 + 1)-dimensional black hole.

We begin by recalling in section 2 background about the Schwarzschild spacetime and the radially
infalling trajectory therein, and in section 3 about the UDW detector. Section 4 describes the Boulware,
Hartle–Hawking and Unruh states in terms of the scalar field mode functions, and section 5 gives the mode
sum expressions for the detector’s response function in each of these three states. Section 6 describes how
the detector’s interaction with the field is switched on and off. The numerical results for the detector’s
response are presented in section 7, and section 8 describes the role of the angular momentum sum in the
small extrema near the horizon. Section 9 gives concluding remarks. Technical supporting material is
deferred to four appendices. We use throughout units in which ! = c = kB = 1.

2. Spacetime and detector’s motion

The exterior Schwarzschild metric reads

ds2 = −
(
1 − 2M/r

)
dt2 +

dr2

1 − 2M/r
+ r2 dΩ2, (1)

where M > 0 and r > 2M, and dΩ2 = dθ2 + sin2θ dϕ2 is the metric on the round unit two-sphere. The
Kruskal–Szekeres extension is obtained by introducing the new coordinates (we follow the conventions
of [17])

ū = −4M
(
r/(2M) − 1

)1/2
e(r−t)/(4M), (2a)

v̄ = 4M
(
r/(2M) − 1

)1/2
e(r+t)/(4M), (2b)

where initially ū < 0 < v̄, and then extending the coordinate range to ūv̄ < (4M)2. The metric becomes

ds2 = −(2M/r)e−r/(2M) dū dv̄ + r2 dΩ2, (3)

where r is the unique solution to −ūv̄ = (4M)2er/(2M)
(
r/(2M) − 1

)
. The conformal diagram can be found

for example in [17].
We consider the part of the Kruskal–Szekeres extension where v̄ > 0. This contains the original

Schwarzschild exterior at ū < 0, the black hole interior at 0 < ū < (4M)2/v̄, and the black hole horizon
at ū = 0.

We consider a detector on an infalling radial timelike geodesic that starts from infinity with
asymptotically vanishing initial velocity. In the Kruskal coordinates, the trajectory reads

ū = −4M(z − 1) exp

(
z +

1
2

z2 +
1
3

z3

)
, (4a)

v̄ = 4M(z + 1) exp

(
−z +

1
2

z2 − 1
3

z3

)
, (4b)

where z = (τ/τH)1/3, τ ∈ (−∞, 0) is the proper time, and τH = − 4
3 M. The trajectory starts from past

timelike infinity in the asymptotic past, τ →−∞, crosses the horizon at τ = τH, and hits the black hole
singularity at τ → 0−. The exterior Schwarzschild part of the trajectory can be expressed in the exterior
Schwarzschild coordinates via (2a), and similar expressions can be given for the black hole interior part of
the trajectory in terms of interior Schwarzschild coordinates.
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3. Detector preliminaries

Our UDW detector [5, 9] is a two-level quantum system of spatially negligible size, moving through the
spacetime on the timelike worldline x(τ), parametrised by the proper time τ . The detector’s Hilbert space is
spanned by two orthonormal states, with the respective eigenenergies 0 and Ω ∈ R\{0}, defined with
respect to τ . For Ω > 0, the state with eigenenergy 0 is the ground state and the state with eigenenergy Ω is
the excited state; for Ω < 0, the roles of the states are reversed.

The detector couples linearly to a quantised real scalar field φ. While simple, this model captures the
essential features of light–matter interactions when angular momentum interchange is negligible [18, 19].

Working to first-order perturbation theory in the coupling constant, the probability of the detector to
make a transition from the eigenenergy 0 state to the eigenenergy Ω state is a multiple of the response
function F(Ω), given by

F(Ω) =

∫
dτ dτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W(τ , τ ′), (5)

where W(τ , τ ′) = 〈Ψ|φ(x(τ))φ(x(τ ′))|Ψ〉 is the pullback of the scalar field’s Wightman function to the
detector’s worldline, |Ψ〉 denotes the initial state of the field, and the real-valued switching function χ
specifies how the interaction is turned on and off. Assuming that |Ψ〉 has a technical regularity property
known as the Hadamard condition [20], W(τ , τ ′) is a well-defined distribution under mild assumptions
about the detector’s trajectory [21, 22], and then F(Ω) is well defined under mild assumptions about χ. As
the factor relating F(Ω) to the probability depends only on the detector’s internal structure, we (with minor
abuse of terminology) refer to F(Ω) as the probability.

When the state |Ψ〉 is a ‘vacuum’ state associated with a complete orthonormal set of ‘positive
frequency’ field modes, {Ψβ(x)}, the Wightman function has the mode sum expression
〈Ψ|φ(x)φ(x′)|Ψ〉 =

∑
βΨβ(x)Ψ∗

β(x′), and the response function can be written as the mode sum

F(Ω) =
∑

β

∣∣∣∣
∫

dτχ(τ)e−iΩτΨβ(x(τ))

∣∣∣∣
2

, (6)

which we shall employ in what follows.

4. Mode functions and states

We take the field φ to be a real massless Klein–Gordon field. In the Schwarzchild exterior, we may separate
the field equation, !φ = 0, by the ansatz

u(t, r, θ,ϕ) =
1√
4πω

φωl(r)Ylm(θ,ϕ)e−iωt , (7)

where Ylm are the scalar spherical harmonics and the positive separation parameter ω is the frequency with
respect to Schwarzschild time. The differential equation for the radial function φωl may be conveniently
written in terms of the tortoise radial coordinate r∗ = r + 2M ln[r/(2M) − 1] ∈ (−∞,∞) and the scaling
φωl(r) = ρωl(r)/r, giving the Schrödinger-like equation [23]

d2

dr∗2
ρωl(r) +

[
ω2 − Vl(r)

]
ρωl(r) = 0, (8)

with the effective potential

Vl(r) =

(
1 − 2M

r

)(
l(l + 1)

r2
+

2M
r3

)
. (9)

As the effective potential approaches zero when r∗ →∞ and r∗ → −∞, corresponding respectively to
r →∞ and r → 2M, there exists a set of mode solutions for φωl denoted by Φin

ωl and Φup
ωl , specified uniquely

by the asymptotic behaviour

Φin
ωl ∼

{
Bin
ωlr

−1 e−iωr∗ r → 2M,
r−1 e−iωr∗ + Ain

ωlr
−1 eiωr∗ r →∞,

(10a)

Φup
ωl ∼

{
r−1 eiωr∗ + Aup

ωl r
−1 e−iωr∗ r → 2M,

Bup
ωl r

−1 eiωr∗ r →∞.
(10b)

We consider three quantum states for the field. First, the Boulware (B) state [16], which approaches the
Minkowski vacuum at r →∞, but is singular on both the black hole horizon and on the white hole

3



New J. Phys. 24 (2022) 103018 K K Ng et al

horizon. Second, the Hartle–Hawking (H) state [6, 7], which represents a radiating black hole in thermal
equilibrium with a heat bath at r →∞, and is regular over all of the Kruskal–Szekeres extension. Third, the
Unruh (U) state [5], which represents a Hawking-radiating black hole with no incoming radiation from the
past null infinity, and which is singular at the white hole horizon but regular across the black hole horizon.
In the B state we can follow the infalling detector only outside the horizon, but in the H and U states we can
follow the detector as it crosses the black hole horizon and into the black hole interior.

The mode functions defining the B, H and U states in the exterior region can be written in terms of Φin
ωl

and Φup
ωl and their conjugates, as lucidly reviewed in [24]. The H and U modes can then be continued to the

black hole interior in the lower half-plane in complexified ū [5].

5. Response function

We are now ready to write out the mode sum expression (6) for the response function for each of the three
states.

Consider first a detector that only operates in the Schwarzschild exterior. We may choose without loss of
generality the trajectory to be at θ = 0, which simplifies the spherical harmonics. The pull-back of the
Wightman function to the detector’s worldline then has the mode sum expressions [11, 25]

WB(τ , τ ′) =
∞∑

l=0

∫ ∞

0
dω

2l + 1
16π2ω

(
Φ̃up

ωl (r)Φ̃up∗
ωl (r′)

(
ū
ū′

)i4Mω

+ Φ̃in
ωl(r)Φ̃in∗

ωl (r′)
( v̄

v̄′

)−i4Mω
)

, (11a)

WH(τ , τ ′) =
∞∑

l=0

∫ ∞

0
dω

2l + 1
16π2ω

(
e4πMω

2 sinh(4πMω)
Φ̃up

ωl (r)Φ̃up∗
ωl (r′)

(
ū
ū′

)i4Mω

+
e−4πMω

2 sinh(4πMω)
Φ̃up∗

ωl (r)Φ̃up
ωl (r′)

(
ū
ū′

)−i4Mω

+
e4πMω

2 sinh(4πMω)
Φ̃in

ωl(r)Φ̃in∗
ωl (r′)

( v̄

v̄′

)−i4Mω

+
e−4πMω

2 sinh(4πMω)
Φ̃in∗

ωl (r)Φ̃in
ωl(r′)

( v̄

v̄′

)i4Mω
)

, (11b)

WU(τ , τ ′) =
∞∑

l=0

∫ ∞

0
dω

2l + 1
16π2ω

(
e4πMω

2 sinh(4πMω)
Φ̃up

ωl (r)Φ̃up∗
ωl (r′)

(
ū
ū′

)i4Mω

+
e−4πMω

2 sinh(4πMω)
Φ̃up∗

ωl (r)Φ̃up
ωl (r′)

(
ū
ū′

)−i4Mω

+ Φ̃in
ωl(r)Φ̃in∗

ωl (r′)
( v̄

v̄′

)−i4Mω
)

, (11c)

where
Φ̃up

ωl (r) := e−iωr∗Φup
ωl (r), Φ̃in

ωl(r) := e+iωr∗Φin
ωl(r), (12)

and the subscripts B, H and U label the three states. Unprimed and primed coordinates are evaluated at τ
and τ ′ respectively. In each term, the factor depending on the unprimed coordinates comes from the
‘positive frequency’ mode functions defining the corresponding state, and the factor depending on the
primed coordinates comes from the complex conjugate ‘negative frequency’ mode functions.

From (6), we now obtain

FB = Fup
B + Fin

B , FH = Fup
H + Fũp

H + Fin
H + F ĩn

H , FU = Fup
H + Fũp

H + Fin
B , (13)

for the respective B, H, and U states, where

Fup
B (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

∣∣∣∣∣

∫
dτ χ(τ)e−iΩτ Φ̃up

ωl (r)

(
−ū
4M

)i4Mω
∣∣∣∣∣

2

, (14a)

Fin
B (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

∣∣∣∣
∫

dτχ(τ)e−iΩτ Φ̃in
ωl(r)

( v̄

4M

)−i4Mω
∣∣∣∣

2

, (14b)

Fup
H (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

× e4πMω

2 sinh(4πMω)

∣∣∣∣∣

∫
dτχ(τ)e−iΩτ Φ̃up

ωl (r)

(
−ū
4M

)i4Mω
∣∣∣∣∣

2

, (14c)

4
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Fũp
H (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

× e−4πMω

2 sinh(4πMω)

∣∣∣∣∣

∫
dτχ(τ)e−iΩτ Φ̃up∗

ωl (r)

(
−ū
4M

)−i4Mω
∣∣∣∣∣

2

, (14d)

Fin
H (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

× e4πMω

2 sinh(4πMω)

∣∣∣∣
∫

dτχ(τ)e−iΩτ Φ̃in
ωl(r)

( v̄

4M

)−i4Mω
∣∣∣∣

2

, (14e)

F ĩn
H (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

× e−4πMω

2 sinh(4πMω)

∣∣∣∣
∫

dτχ(τ)e−iΩτ Φ̃in∗
ωl (r)

( v̄

4M

)i4Mω
∣∣∣∣

2

. (14f)

Consider then a detector that continues to operate behind the horizon. As the B state is singular on the
horizon, we consider only the H and U states. As shown in appendix A, following [25], and as discussed in
the context of vacuum polarisation in [26], expressions valid both in the exterior and interior for Fup

H and
Fũp

H are

Fup
H (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

× e4πMω

2 sinh(4πMω)
×

∣∣∣∣∣

∫
dτχ(τ)e−iΩτ

{
Θ(−ū)Φ̃up

ωl (r)

(
−ū
4M

)i4Mω

+Θ(ū)

[
AupΦ̃in

ωl(r)
Bin

( v̄

4M

)−i4Mω

+
e−4πMωΦ̃in∗

ωl (r)
Bin∗

(
ū

4M

)i4Mω
]}∣∣∣∣∣

2

, (15a)

Fũp
H (Ω) =

∑

l

∫ ∞

0
dω

2l + 1
16π2ω

× e−4πMω

2 sinh(4πMω)
×

∣∣∣∣∣

∫
dτχ(τ)e−iΩτ

{
Θ(−ū)Φ̃up∗

ωl (r)

(
−ū
4M

)−i4Mω

+Θ(ū)

[
Aup∗Φ̃in∗

ωl (r)
Bin∗

( v̄

4M

)i4Mω

+
e4πMωΦ̃in

ωl(r)
Bin

(
ū

4M

)−i4Mω
]}∣∣∣∣∣

2

, (15b)

where Θ is the Heaviside theta-function. The responses for the H and U states are hence given by FH and FU

in (13), using (14b), (14e), (14f) and (15).

6. Switching

We switch the interaction on and off with

χ(τ) =





cos4

(
π(τ − τmid)

2∆

)
for |τ − τmid| < ∆,

0 otherwise,
(16)

where the positive parameter ∆ is half the interaction duration and the parameter τmid is the midpoint of
the interaction interval. χ is a close approximation to Gaussian switching over its duration [27], and it is
smooth everywhere except at the switch-on and switch-off moments, where it is still C3, which is
sufficiently regular to render the response finite.

Note that χ has peak value 1, regardless of the total duration, with the convenient consequence that the
response function is dimensionless, but with the price that the overall magnitudes of the response function
for differing values of ∆ are not directly comparable. Factoring out an ‘overall duration’ effect could be
accomplished by including a normalisation factor proportional to ∆−1/2 [28, 29].

7. Results

We present here graphs of the response as the detector falls close to and in the black hole. The numerical
implementation is described in appendices B and C.

First, we plot in figure 1 the response function as a function of rmid = r(τmid), for detector frequency
Ω = 5/(2M), and switching time ∆ = 0.3 × 2M, with respect to all three states. Far from the horizon, the
response function approaches that of a detector in flat space: for the B and U states, the asymptotic value is
the flat space vacuum value Fvac ≈ 0.033 4638, and for the H state, the asymptotic value is the flat space
thermal state value Fβ ≈ 0.033 4861 in the Hawking temperature 1/(8πM) (these values are computed in
appendix D). This is as expected: note that the difference between the H and U states arises because the H
state is in equilibrium with a thermal bath that extends to infinity, whereas in the U state the black hole is

5
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Figure 1. Response for the three states with Ω = 5/(2M) and ∆ = 0.3 × (2M), as a function of rmid = r(τmid). Note that the
response for the Boulware state is defined only when the full interval in which the detector operates is outside the horizon. The
lower (red) and upper (blue) dashed horizontal lines indicate respectively the flat space values Fvac and Fβ , described in the text.

emitting net radiation whose intensity falls off far from the hole. We likewise see that the response in the B
state falls off as the horizon is approached. The maximum departure from these asymptotic values is of the
order of parts per thousand. This shows that the major part of the response in our parameter range is due
to the finiteness of the time interval during which the detector operates.

We also observe (for H and U) a small but discernible peak in the response as the detector crosses the
horizon. Although this region involves some numerical subtlety in the matching in (15a) across the horizon,
we have checked (see appendix C) that the peak is robust on varying the numerical parameters. We shall
address the origins of this peak in section 8.

Enhancement of radiation seen by an infalling observer approaching the horizon has been noted
previously using an effective temperature function [30], and a near-horizon discussion based on the
equivalence principle has been given in [31]. The relationship with our approach remains an interesting
open question.

Next, we plot in figure 2 the response for selected values of ∆ in the H state. We again observe a small
but discernible peak in the response that is ∆-dependent. A curious tradeoff becomes visible: if ∆ is too
small, the finer features of the states are overwhelmed by switching effects [29]; but ∆ cannot be too large
since the detector cannot remain ‘switched on’ at the r = 0 singularity. These facts conspire to limit detector
sensitivity to the state of the field. (In fact, since the B state is defined only outside the horizon, sensitivity in
that case is reduced even further.)

Finally, in figure 3 we consider the effect of varying the detector’s energy gap Ω, recalling that Ω > 0
corresponds to excitations and Ω < 0 to de-excitations. We specialise to the H state. The response as a
function of rmid exhibits local extrema near and past rmid = 2M, but the detailed loci and character of these
extrema depend on Ω. When the detector falls deeper in the black hole, the response exhibits a modest
overall growth (also evident in figure 1). The magnitude of the rmid-dependent variation is however small,
of the order of parts per thousand, in the parameter range that we have explored.

8. Origins of the peak

In this section we present evidence that the small local extremum in the detector’s response near the
horizon is a cumulative effect from superposition of low and high angular momentum field modes, having
no counterpart in the corresponding (1 + 1)-dimensional infall, where the field only has the zero angular
momentum sector. This suggests that the angular momentum of the field is an essential contributor to the
extremum.

8.1. Detector infall in 1 + 1 dimensions
First, for comparison, we consider the corresponding detector infall in the (1 + 1)-dimensional
Schwarzschild spacetime, whose metric is given by the first two terms in (1). The field now has only the zero
angular momentum sector.

The Wightman functions of a massless scalar in the B, U and H states are elementary functions, and the
infrared ambiguity in these Wightman functions, typical of a massless field in 1 + 1 dimensions, drops out
when we consider a detector that couples linearly to the proper time derivative of the field, rather than to

6
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Figure 2. The normalized response F/Fasymp, where Fasymp (inset) is the response as rmid →∞ (obtained from the analytic result
in appendix D), for selected values of the switching duration parameter ∆, with Ω = 5/(2M), in the Hartle–Hawking state.
Lines end on the left when detector switchoff is at the singularity.

Figure 3. The normalized response F/Fasymp, where Fasymp (inset) is the response as rmid →∞ (obtained from the analytic result
in appendix D) for selected values of the energy gap Ω, with ∆ = 0.3 × 2M, in the Hartle–Hawking state.

the value of the field [12]. Note also that the short-distance properties of a derivative-coupled detector in
1 + 1 dimensions are similar to those of a non-derivative detector in 3 + 1 dimensions [15].

The numerical codes to analyse this situation can be readily extracted from those that were used in [15],
by a team including one of the present authors, to analyse detector–detector entanglement during the infall.
We exhibit the response for the U state in figure 4, for both the cosine switching function (16) and the
corresponding Gaussian switching function used in [15]. The behaviour is monotonic across the horizon,
exhibiting no local extremum.

8.2. High and low angular momenta in 3 + 1 dimensions
Second, returning to 3 + 1 dimensions, we consider the contributions to the response from low and high
angular momenta.

The detector’s response involves a sum over the angular momentum quantum number l, and the graphs
in figures 1–3 were obtained by increasing the high l cutoff lmax until the results stabilised. To examine the
effect of the high l modes, we plot in figure 5 partial sums, for selected values of lmax. The horizontal axis is
rmid/(2M), as in figures 1–3, and the state is the H state.

For low values of lmax, figure 5 shows that the small local extremum near the horizon is no longer
present. The bump only appears for sufficiently high lmax. Angular momentum hence appears essential for
the bump.

To examine the individual contributions of different angular momentum modes, we plot in figure 6
selected individual l terms in the detector’s response, for the H state.

The low-l modes (including the S-wave mode, l = 0) contribute the most to the response closer to the
singularity, while the contribution of the higher l modes is larger far from the black hole. The bump near
the horizon is the superposition of these two effects. We emphasise that the contribution of the non-S-wave
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Figure 4. Response of a detector falling through the horizon (vertical black line) of the (1 + 1)-dimensional Schwarzschild

spacetime in the Unruh state for a Gaussian switching function e
− (τ−τmid)2

∆2 (orange, lower curve) and a cos4( π(τ−τmid)
2∆ ) switching

function (blue, higher curve). The energy gap is Ω∆ = 1. rmid denotes the location of the peak of the switching.

Figure 5. Detector response contributions in the Hartle–Hawking state with high l cutoff lmax as a function of rmid/2M.

Figure 6. Detector response contribution in the Hartle–Hawking state from selected individual values of l as a function of
rmid/2M.

modes is of significant magnitude, and this contribution must be included to evaluate the response
accurately.

9. Conclusions

We have evaluated numerically, for the first time, the response of a time-and-space localised quantum
detector falling through the horizon of a Schwarzschild black hole. When the ambient quantum field is in
the Hartle–Hawking state or in the Unruh state, the detector’s response remains regular across the horizon,
as indeed had to happen by the regularity properties of these states. However, the response displays an
unexpected local extremum near the horizon-crossing, at a few parts per thousand in the parameter regions
we have explored. Numerical evidence indicates that this extremum comes from the superposition of
contributions from low and high angular momentum modes of the field, and it has no counterpart for the
analogous detector infall in (1 + 1) dimensions. A deeper physical explanation of this extremum remains an
intriguing topic for further study. For example, is a similar feature present in all spacetime dimensions
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higher than two, and for quantum fields of any spin? Also, might the detailed form of the switching
function have a role in this feature?

Our numerical parameter range covered the detector’s locus inwards from area-radius slightly above
4M, the detector’s interaction duration from 1.2M to 2M, and the detector’s energy gap from 3/(2M) to
5/(2M), for excitations and de-excitations. These ranges are of order unity, in the units of M, and they focus
on a regime where varying the parameters did reveal characteristic features, yet kept the numerical demands
manageable. The energy gaps probed are near the characteristic energy in the Hawking radiation; going to
much higher or much lower values of the gap would increase the numerical demands. The maximum value
of the area-radius is large enough to indicate numerical convergence towards the analytically-known
asymptotic values at infinity, as discussed in section 7 and appendix D; going to higher values of the
area-radius would increase the numerical demands, but would not be expected to uncover qualitatively new
features. The detector’s interaction duration is small enough to reveal time-dependent features near and
past the horizon; going to smaller durations would improve the time resolution, but it would also increase
the pure switching contribution to the detector’s response, and require higher numerical accuracy to
distinguish the contributions due to the motion and to the field’s quantum state, which contributions are
the interesting ones. We recall that with the current parameters, the contributions due to motion and the
field’s quantum state are less than one part per thousand far from the hole, raising to a few parts per
thousand near and in the hole.

To rephrase, our numerical parameter range was chosen for demonstrating a fundamental prediction of
the theory, rather than as a proposal for a practical observation or experiment. For example, for a solar
mass black hole, M ∼ 103 m, our detector has total operating time ∼10−5 s and energy gap ∼10−10 eV,
whereas for a galactic centre black hole, M ∼ 1010 m, the total operating time is ∼100 s and the energy gap
is ∼10−17 eV. These values seem difficult to relate to astrophysical observations of black holes.

One way to generalise our analysis would be to vary the geodesic trajectory of the detector. For example,
the limitations due to the detector’s finite interaction duration could be ameliorated by considering
trajectories that spend more proper time in the near-horizon region. Alternatively, the region between the
closed photon orbit at r = 3M and the innermost stable circular timelike orbit at r = 6M can be explored
by nonradial high-eccentricity geodesics that come from infinity and return there. Perhaps Alice the
astronaut can gain significant information by just observing the dance of quantum matter around the hole,
without having to dive into the hole herself.

Our methods are applicable to other quantum states and to other spacetimes. For instance, the methods
can be used to evaluate the response of a detector to quantum states defined on proposed alternatives to
black holes, such as those discussed in [32]. This may provide a quantum tool for distinguishing a black
hole from its alternatives, and by extension a tool for testing quantum extensions to general relativity,
offering the prospect of taking one more step towards a unified theory.
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Appendix A. Continuation across the horizon

In this appendix we verify the analytic continuation of Fup
H and Fũp

H from the exterior formulas (14c) and
(14d) to the formulas (15a) that are valid also inside the horizon, for the evaluation of the response in the H
and U states.

First, note that each of the expressions in (14) is written so that the quantity within the absolute values
comes from the ‘positive frequency’ mode functions characterising the respective state.

Next, recall that the ‘positive frequency’ mode functions defining the H and U states have the property
that if they are singular on the horizon, where ū changes sign, they are continued across the horizon in the
lower half of the complex ū plane [5, 17, 24]. As v̄ > 0 in the spacetime regions in which we are working,
and as Φ̃in

ωl (12) is smooth across the black hole horizon, the expressions for Fin
B , Fin

H and F ĩn
H in (14) remain

well defined and suitable for numerical evaluation at and behind the horizon. By contrast, the expressions
for Fup

H and Fũp
H in (14) need to be given an appropriate analytic continuation, as described in [25], and as

we now explain. See [26] for a discussion of this continuation in the context of vacuum polarisation.
Consider the exterior formulas (14c) and (14d) for Fup

H and Fũp
H . Under each integral, we write (where

our convention for Bin differs from [25])

Φ̃up
ωl (r)

(
−ū
4M

)i4Mω

=
AupΦ̃in

ωl(r)
Bin

( v̄

4M

)−i4Mω

+
Φ̃in∗

ωl (r)
Bin∗

(
−ū
4M

)i4Mω

, (A1a)

Φ̃up∗
ωl (r)

(
−ū
4M

)−i4Mω

=
Aup∗Φ̃in∗

ωl (r)
Bin∗

( v̄

4M

)i4Mω

+
Φ̃in

ωl(r)
Bin

(
−ū
4M

)−i4Mω

, (A1b)

using (10a) and (12), and recalling that ū < 0. Continuing now to positive ū in the lower half of the
complex ū plane, the respective first terms on the right-hand sides in (A1a) remain well defined as written,
whereas the second terms respectively continue to

e−4πMωΦ̃in∗
ωl (r)

Bin∗

(
ū

4M

)i4Mω

, (A2a)

e4πMωΦ̃in
ωl(r)

Bin

(
ū

4M

)−i4Mω

. (A2b)

This gives the expressions (15a) for Fup
H and Fũp

H .

Appendix B. Numerical integration of the radial equation

In this appendix we describe the numerical integration of the radial equation (8).
The form of (8) suggests an obvious strategy: take initial conditions in the ‘asymptotic free’ regime, then

numerically integrate the differential equation. However, things are somewhat complicated by a few issues.
The most obvious of these is that the modes are defined and normalized on ‘opposite sides’; for instance,
while the in mode is defined by pure ingoing behaviour near the horizon, it is normalized in the other
asymptotic regime, far from the horizon. In this section, we use Φ to refer to modes normalized as in (10),
and φ for an alternate normalization, which will be defined shortly.

When we enter initial values into the differential equation, we must use the asymptotic regime where the
mode is expressible as a single exponential; more specifically, we use an initial value such that

φin
ωl ∼ r−1e−iωr∗ , r → 2M, (B1a)

φup
ωl ∼ r−1eiωr∗ , r →∞. (B1b)

However, this normalization is clearly at odds with the normalization required for Φ.
In order to resolve this problem, we can introduce two further sets of solutions: the downward and

outward modes, which we define by

φout
ωl ∼ r−1eiωr∗ , r → 2M, (B2a)

φdown
ωl ∼ r−1 e−iωr∗ , r →∞. (B2b)

Normalization is then a matter of expressing each physical mode in terms of a superposition of two
other modes; this allows us to deduce the correct factor by which we must multiply φ to yield Φ. In essence,
we are solving for the transmission and reflection coefficients in (10).
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While we could, in principle, simply take the boundary conditions at face value for some suitably
asymptotic finite values of r∗, there are more precise estimates of the modes in asymptotic regimes available.
Following Leaver [23], we can make estimates for the up and down modes far from the horizon as follows:

φup
ωl ∼

1√
r(r − 2M)

H+
νa

(−2Mω,ωr) exp
[

i
(
−2Mω log(4Mω) +

π

2
νa − σνa (−2Mω)

)]
, (B3a)

φdown
ωl ∼ 1√

r(r − 2M)
H−

νa
(−2Mω,ωr) exp

[
−i

(
−2Mω log(4Mω) +

π

2
νa − σνa (−2Mω)

)]
, (B3b)

where H± are Coulomb wave functions, the Coulomb phase shift is

σν(η) = − i
2

log
Γ(ν + 1 + iη)
Γ(ν + 1 − iη)

, (B4)

and νa = 1
2 (−1 +

√
(2l + 1)2 − 12(2Mω)2). The final factor ensures that the phase (i.e. complex argument)

of the mode matches the asymptotic solution e±iωr. Note that some other references use a different
expression for σ involving arg; such expressions are only valid for real ω.

On the other hand, we estimate the in and out modes near the horizon using the Jaffé power series
solution given in equations (49)–(51) of [23]. For the in modes,

φin
ωl ∼

1
r

e−iωr
( r

2M
− 1

)−i2Mω
∞∑

n=0

an

(
1 − 2M

r

)n

, (B5)

where

a−1 = 0, a0 = 1, (1 + n)(1 + n − 2i(2Mω))an+1 + (−1 − l(l + 1) − 2n(1 + n))an + n2an−1 = 0, (B6)

and for the out modes we replace ω by −ω in the equations above. While these solutions are, in principle,
analytic, in practice the convergence becomes extremely slow far from the horizon; as a result, it is more
practical to use them to find the asymptotic value of the modes. Specifically, we evaluate the Jaffé
asymptotic expressions at fixed boundary values of r just outside and inside the horizon, then use the
differential equation to extrapolate further away. Our results are robust to the choice of values for these two
parameters.

Unfortunately, this numerical integration method is not without issues. The most serious problems
occur when the energy of the mode is very small compared to the angular momentum l—or rather, the
effective potential Vl(r). In that case, continuing the analogy with one-dimensional scattering, the incident
and reflected waves will have similar magnitudes, while the transmitted wave will be very, very small; the
relative disparity in magnitudes amplifies numerical imprecision. Some care is therefore needed.

Appendix C. Convergence of the mode sums and integrals

In this appendix we describe the numerical accuracy in the mode sums and integrals.
The evaluation of the response function is done mode by mode, and each ‘mode’ makes a positive

contribution to the response function. Therefore, calculating the response function is a simple matter of
summing over the contributions of all modes, questions of convergence notwithstanding. It thus remains to
show, analytically or otherwise, that the sum over l and ω remains finite; while a suitably chosen switching
function will accelerate convergence over ω, we must carefully consider the sum over l. Outside, of course,
the sum over l behaves similarly to the Minkowski case, but the sum inside the black hole needs more care.

In practice, our program proceeds as follows: we evaluate the mode functions for each l on a discretized
ω grid, which is then interpolated and integrated over, taking care to evaluate at enough ω points to ensure
smoothness of the interpolating function. (The low ω regime, in particular, requires evaluation to high
resolution in order to capture the features of the sharp peaks found there.) These ω integrals are then
summed over to a suitable maximum l.

This approach raises a technical issue: by summing over modes in ω and l, we are effectively summing in
two infinite dimensions. We deal with this by putting in cut-offs on ω and l such that any term beyond the
cutoff values have contributions smaller than 0.0001% of the total sum. We find that in general the cut-off
lmax grows with larger distances, smaller switching widths or decreasing energy gaps. We have also checked
the robustness of our results by refining the grid of the ω summation.
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Figure 7. Plot of the Minkowski thermal state response Fβ (D7) as a function of αΩ and β/α.

Appendix D. Comparison with a static detector in Minkowski spacetime

In this appendix we compare our infalling detector results to the response of a static detector in a thermal
state in Minkowski spacetime, and, as the zero temperature limit, to the response of an inertial detector in
Minkowski vacuum.

Starting with the general expression (5) for the response function, and assuming that W(τ , τ ′) depends
on its two arguments only through their difference, W(τ , τ ′) = W(τ − τ ′), the response function takes the
form [29]

F(Ω) =
1

2π

∫ ∞

−∞
dω |χ̂(ω)|2Ŵ(Ω− ω), (D1)

where the hat stands for the Fourier transform, in the convention

χ̂(ω) =

∫ ∞

−∞
dτ e−iωτ χ(τ). (D2)

We now specialise to four-dimensional Minkowski spacetime. For a detector that is static in the rest
frame of a thermal state of temperature β−1 > 0, we have [33]

Ŵβ(ω) =
ω

2π(eβω − 1)
. (D3)

We write the switching function (16) as

χ(τ) =

{
cos4

(
τ/(2α)

)
for |τ | < πα,

0 otherwise,
(D4)

where the positive parameter α is related to ∆ in (16) by α = ∆/π, and the parameter τmid in (16) has
been dropped, by time translation invariance of the Minkowski thermal state. It follows that

χ̂(ω) = αH(αω), (D5)

where

H(z) =
3 sin(πz)

z(1 − z2)(4 − z2)
. (D6)

Combining these observations, the response function takes the form

Fβ(Ω) =
1

4π2

∫ ∞

−∞

dz z
1 − e−(β/α)z

H2(z + αΩ). (D7)

A plot of Fβ is given in figure 7. In the zero temperature limit, β →∞, Fβ reduces to the Minkowski
vacuum response,

Fvac(Ω) =
1

4π2

∫ ∞

0
dz z H2(z + αΩ), (D8)

which can be expressed as a sum of sine and cosine integrals [34].
We wish to compare Fβ and Fvac with the Schwarzschild response shown in figure 1, in which

∆ = 0.3 × 2M and Ω = 5/(2M). In terms of our parameters, this means αΩ = 1.5/π, and, using for β the
Schwarzschild infinity value 8πM, β/α = 40π2/3. With these values, we have Fvac ≈ 0.033 4638 and
Fβ ≈ 0.033 4861, shown as horizontal dashed lines in figure 1.
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In the Schwarzschild responses shown in figures 2 and 3, the normalisation at infinity is obtained by
setting Fasymp to Fβ with β = 8πM and α = ∆/π.

ORCID iDs

Keith K Ng https://orcid.org/0000-0002-6552-8549
Chen Zhang https://orcid.org/0000-0002-2650-6873
Jorma Louko https://orcid.org/0000-0001-8417-7679
Robert B Mann https://orcid.org/0000-0002-5859-2227

References

[1] Mathur S D 2009 The information paradox: a pedagogical introduction Class. Quantum Grav. 26 224001
[2] Mann R B 2015 Black Holes: Thermodynamics, Information, and Firewalls SpringerBriefs in Physics (Berlin: Springer)
[3] Almheiri A, Marolf D, Polchinski J and Sully J 2012 Black holes: complementarity or firewalls? J. High Energy Phys.

JHEP02(2013)062
[4] Hawking S W 1975 Particle creation by black holes Commun. Math. Phys. 43 199

Hawking S W 1976 Particle creation by black holes Commun. Math. Phys. 46 206(erratum)
[5] Unruh W G 1976 Notes on black-hole evaporation Phys. Rev. D 14 870
[6] Hartle J B and Hawking S W 1976 Path-integral derivation of black-hole radiance Phys. Rev. D 13 2188
[7] Israel W 1976 Thermo-field dynamics of black holes Phys. Lett. A 57 107
[8] Hu B L, Lin S-Y and Louko J 2012 Relativistic quantum information in detectors-field interactions Class. Quantum Grav. 29

224005
[9] DeWitt B S 1979 Quantum gravity: the new synthesis General Relativity: An Einstein Centenary Survey ed S W Hawking and W

Israel (Cambridge: Cambridge University Press)
[10] Hodgkinson L and Louko J 2012 Static, stationary and inertial Unruh-DeWitt detectors on the BTZ black hole Phys. Rev. D 86

064031
[11] Hodgkinson L, Louko J and Ottewill A C 2014 Static detectors and circular-geodesic detectors on the Schwarzschild black hole

Phys. Rev. D 89 104002
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