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a b s t r a c t

In this work we report for the first time a mathematical approach to model the behaviour
of a single oleosome (oil body) within a seed cellular environment. To describe the
behaviour of the oleosome membrane, we adopted a dynamical continuum model based
on the principle of the virtual work where the intrinsic energy of the lipid membrane is
assumed to obey the Canham–Helfrich model with the rheology of the viscous interface
governed by the Boussinesq–Scriven law. To show the suitability of this approach to
study the mechanical behaviour of oleosomes, we present some numerical simulations
of a single oleosome deformation occurring under in vivo and ex vivo conditions. This
work aims to show how the mathematical and computational modelling allows studying
the impact of otherwise hard-to-measure physical quantities in this field of biological
applications.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In plant tissues energy is commonly stored in the form of carbohydrates and lipids. These energy resources support
eriods of active metabolism such seed germination and initial growth [1]. The most abundant lipid molecules in plants
re triglycerides (or triacylglycerols), which are stored in specialised subcellular organelles called oleosomes, also referred
o as ‘‘oil bodies’’, ‘‘lipid bodies’’ or ‘‘spherosomes’’. The size and composition of these organelles is affected by type
f plant and of tissue (seeds, fruit mesocarps, leaves, microalgae), nutritional status and environmental factors [2]. In
rder to understand their biogenesis and functional role, oleosomes have been isolated from natural and genetically
ngineered plants and their structure and composition extensively investigated [2–9]. The oleosomes recovered from
eeds are recognised to have a size mostly ranging between 0.2 to 2.5 µm [10]. Oleosome structure consists of a neutral
ipid rich core stabilised by a monolayer membrane of phospholipids (PLs) and unique integral proteins [11]. The neutral
ipid core includes the triacylglycerol molecules (TAG, molecules composed of three fatty acyl chains esterified to a glycerol
ackbone) and sterol esters. The PLs are oriented to expose the acyl moieties to the TAGs and the polar head group towards
he external cytosol environment. Among the interfacial proteins, oleosin is the most abundant accounting for 75 − 90%
f the total proteins, together with two minor proteins, caleosins and steroleosins [12]. In the accepted structural model
f oleosomes found in angiosperm seeds, oleosin is believed to provide coverage to the PL head groups and to be exposed
o the cytosol [13].
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Fig. 1. Oleosome sketch with the triacylglycerol (TAG) matrix (in yellow) surrounded by a membrane (a portion of which in orange) of phospholipids
and proteins. In the mathematical abstraction, the nodal points {Y i

} (in grey) characterise the Y membrane configuration.

In recent years oleosomes have attracted growing attention as sustainable natural ingredient for food and phar-
maceutical applications. To fulfil this purpose, oleosomes are recovered using aqueous media from seeds (soybean,
rapeseed, pumpkin, etc.) or nuts (pecan nut) and applied to manufacture dairy free alternatives to conventional milk and
yogurts [14–17] as well as to produce natural cosmetics and pharmaceutical systems [18]. Despite its potential, molecular
biology, food sciences, and chemistry have enabled much of the progress in this research area while mathematical studies
are lacking. In recent years the mathematical and computational modelling of biological systems has significantly evolved
proving to be a useful tool for the study of both biological membranes [19] and single cell phenomena [20]. In the case of
living cells this kind of approach proved to be a suitable tool to understand and characterise the mechanical responses of
cells subjected to both transient and dynamic loads [21] and continues to be a field of research for active and enthusiastic
interest underpinning innovations of technologies of the future [22].

The goal of this paper is to address new interdisciplinary research questions: Can a mathematical modelling approach
help to understand the physico-chemical and mechanical behaviour of oleosomes? And if so, can the tools of applied
mathematics directly tackle some of the challenges associated with the study of oleosomes in applied bio-soft matter
science? Therefore, the aim of this work was to test the suitability of a mathematical approach to model the behaviour
of a single oleosome within a seed cellular environment. The long term objective of this work is to develop mathematical
predictive tools to improve our knowledge of the mechanical and physico-chemical behaviour of oleosomes in-vivo
i.e., within seed environment) and ex-vivo (i.e., in technological applications).

. Mathematical formulation

From a mathematical point of view, we can consider an oleosome as a mechanical system that has a configuration
escribed by the state Y of the monolayer membrane of phospholipids and proteins. In Fig. 1 we show a scheme of our
athematical abstraction of an oleosome. The configuration Y is a configuration of the lipid membrane, which in the
xact problem is an element of an infinite-dimensional manifold of possible membrane shapes. For numerical purposes,
owever, it is modelled as a finite-dimensional manifold spanned by generalised coordinates. In our case we adopt
arameterisations that are defined by the positions of NY points, the nodes of the membrane model. The coordinates of any
onfiguration Y are thus {Y i

}
NY
i=1. We remark that the nodes do not correspond to any specific membrane constituent. From

hese coordinates the geometrical position of the membrane, Γ (Y) = {y ∈ R3
| y belongs to the membrane surface}, can

e reconstructed and, in the discrete case, being FK (ξ) =
∑3

j=1 Y
C(K ,j)N j(ξ), admits the explicit form

Γ (Y) =
{
y ∈ R3

: y = FK (ξ), ξ ∈ K̂ , K = 1, . . . ,MY
}

(1)

here C(·, ·) is the connectivity matrix (that is, C(K , j) is the index of the jth node of triangular element number K ),
ˆ ∈ R2 is the master element and N j

: K̂ → R are the shape (or basis) functions (see also [23]). This discretisation of the
urface leads to a faceted (triangulated) Γ (Y), over which a normal field n (constant by element) is defined.
The instantaneous motion of the membrane particles is characterised by the rates of change of Y, as follows W =

dY
dt .

his means that the tracking of the surface is Lagrangian and that, in the discrete case, the velocity of the ith membrane
node, W i

=
dY i

dt , coincides with that of the lipid particle at Y i(t). In this latter sentence ‘‘lipid particle’’ is to be understood
not as a single molecule but as a small but macroscopic portion of membrane, in the spirit of Continuum Mechanics. Other
2
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fields over Γ (Y) will be discretised in the same way as the geometry. More specifically, the vector field w that represents
he motion given the nodal velocities {W i

} is

w(FK (ξ)) =

3∑
j=1

W C(K ,j)N j(ξ) . (2)

An other important field over Γ (Y) is the mean curvature vector κ, equal to H n, with H the mean curvature, with
nodal values {K i

}
NY
i=1 when discretised, so that

κ(y ∈ Γ (Y)) = κ(FK (ξ)) =

3∑
j=1

K C(K ,j)
N

j(ξ). (3)

The geometrical equation for κ is the Laplace–Beltrami identity −∆Γ x = κ that in weak form reads∫
Γ (Y)

∇Γ x · ∇Γ ζ =

∫
Γ (Y)

κ · ζ (4)

where x is the identity mapping,

x(y) = y, x(FK (ξ)) =

3∑
j=1

Y C(K ,j)
N

j(ξ) (5)

and ∇Γ x is the tangential projector P,

P = ∇Γ x(y) = I − n(y) ⊗ n(y). (6)

The energy of the proposed system is the intrinsic membrane energy EY that clearly depends on Y. To study the
volution of the system, we will refer to the ‘‘principle of virtual work’’, that, in our case, states that the work done
y the energies yet defined for an admissible virtual variation of the configuration variables and the work done by the
issipative forces is equal to the work done by the external forces of the system [24]. The corresponding expression can
herefore be formally written as

dYE(Y) • δ Y + D(Y,W) • δ Y = FY • δ Y (7)

where

• dYE(Y) • δ Y is the infinitesimal change of energy δE, when the state of the system is perturbed from Y to Y + δ Y,
• the bullet • is an appropriate duality product which will be detailed later (Section 2.1),
• D(Y,W) • (δ Y) is the dissipation of the system (i.e., the work of its internal dissipative forces), when the system is

perturbed by δY, and,
• FY • δ Y is the virtual work of external forces.

An explicit expression of the lipid layer model is presented below, describing in detail its mathematical formulation
rising from Eq. (7).

.1. Membrane energy and dissipation

Let us now consider the term dYE(Y) of Eq. (7). The intrinsic energy EY of the layer is given adopting the Canham–
elfrich model [25,26], i.e., considering the contribution of the curvature κ. The bending rigidity (or stiffness) is expressed
y the parameter cCH. Moreover, we introduce the addition due to the surface tension σ as follows

EY (Y) =

∫
Γ (Y)

( cCH
2

∥κ∥
2

+ σ

)
dΓ . (8)

ince the momentum equations are obtained from the virtual work principle, an expression for the variation of EY is
eeded. This expression describes the consequence of a perturbation of the layer shape along a vector field z defined on

Γ (Y). The shape derivative of a functional I in the direction of a virtual vector field z is defined as

dI(Y) • z = lim
ϵ→0

I(Y + ϵz) − I(Y)
ϵ

(9)

where in synthetic form Y + ϵz = {Y + ϵz,Y ∈ Y}. According to [27] for the Canham–Helfrich energy we obtain

dEY (Y) · zn =

∫
Γ (Y)

[
cCH

(
−∆Γ H −

1
2
H3

+ 2KH
)

+ σ H
]
zn dΓ (10)

ith zn = z · n being the normal component of z and n the exterior normal to Y, ∆Γ the Laplace–Beltrami operator,
nd H the mean curvature. Note that tangential gradient operator ∇ is defined by ∇ f = P∇ ĝ , where g : Γ → R
Γ Γ

3
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is any function and ĝ an arbitrary extension of g to an open neighbourhood of Γ ⊂ R3. We remark that the curvature
orce occurs exclusively in the normal direction: tangential motions of Y do not change its shape. With some calculations
see [27]) the (10) leads to

dEY (Y) · z =

∫
Γ (Y)

{
cCH

[
(I − 2P)∇Γ κ : ∇Γ z +

1
2
(∇Γ · κ) (∇Γ · z)

]
+σ ∇Γ

}
·zdΓ (11)

here we remember x is the identity mapping, κ obeys to the (4), and P = I − ň ⊗ ň is the tangential projector.
The dissipation function of the layer D(Y, w) • z is also needed. This is defined similarly to the viscous dissipation in

olume fluids,

DY (Y, w) • z =

∫
Γ (Y)

Σ : DΓ z dΓ , (12)

here DΓ z =
1
2P(∇Γ z + ∇Γ zT )P represents the virtual surface strain rate of field z .

The rheology of a viscous interface Γ is governed by the Boussinesq–Scriven law [28–30], which is the tangential
nalogue to the Newtonian constitutive law, leading to the following viscous dissipative surface stress

Σv = λ∇Γ · wP + 2µDΓ w, (13)

here λ and µ are surface viscosity coefficients. Consequently, we can write the dissipation term (12) as follows:

DY (Y, w) • z =

∫
Γ (Y)

[λ ∇Γ · w ∇Γ · z + 2µDΓ w : DΓ z ] dΓ . (14)

.2. Lipid layer model

Over Γ we define the space of kinematically admissible motions, enforced with restrictions of local volume preservation,
hich is given by

V(Γ (Y)) =
{
w : Γ (Y) −→ R3, s.e.,

∫
Γ (Y)

w · n dΓ = 0
}

. (15)

pecifically, the condition concerning the volume the osmotic equilibrium
∫

Γ
w ·n dΓ = 0 ⇒

dV

d t =
∫

Γ
w ·n dΓ = 0. In

iscrete time, nevertheless, this condition is not satisfied exactly. This fact may lead to an accumulation of volume errors.
he restriction can be therefore implemented as∫

Γ

w · n dΓ −
V∗

− V(t)
τVV(t)

= 0. (16)

uch equation forces V(t) to the value V∗ with the characteristic time τV. The actual velocity field w and any virtual ones
v must belong to V(Γ (Y)) for all configurations Y of the surface.

In this context, the virtual work principle for the layer, with δY represented by the vector field z , reads

dEY (Y) · z + DY (Y, w) · z =

∫
Γ (Y)

f · z dΓ , (17)

z ∈ V(Γ (Y)).
In the model adopted here we have greatly simplified the interaction with the surrounding fluid. In fact, the only force

he surrounding fluid exerts on the layer comes from a uniform pressure difference, denoted by p, between the interior and
xterior of Γ . We observe in fact that the (16) leads to an internal pressure p uniform which is expressed on the surface

as a superficial force

f p = pn. (18)

With these deductions, we arrive at the following algebraic–differential problem: Solve
d Y
d t

= w(Y , t), (19)

here (w, κ, p) ∈ W × Q × K × R such that∫
Γ

λ ∇Γ · w ∇Γ · z + 2µDΓ w : DΓ z (20)

+ cCH

∫
Γ

[
(I − 2P)∇Γ κ : ∇Γ z +

1
2
(∇Γ · κ) (∇Γ · z)

]
= p

∫
z · n +

∫
f ext,Γ · z −

∫
σ∇Γ · z
Γ Γ Γ

4
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∫
Γ

κ · ζ =

∫
Γ

P : ∇Γ ζ (21)∫
Γ

w · n =
V∗

− V

τV
, (22)

(z, ξ , ζ) ∈ W × Q × K .
Above, K is the mean-curvature-vector space, essentially equal to (H1(Γ ))3. The space Q = L2(Γ ) corresponds to the

urface tension field. The force field f ext,Γ : Γ → R3 encompasses all forces acting on the layer by external interventions.

. Results and simulations

.1. Numerical methods

For the layer continuum one we need to discretise it. We consider triangulation surfaces in 3D space, which for
fixed mesh connectivity are uniquely described by the vector Y of vertex positions. Time is discretised so that a

equence of triangulation surfaces Γ 0, Γ 1, . . . , Γ n, . . . are computed, corresponding to vertex positions Y 0,Y 0, . . .Y n, . . ..
ollowing the approach proposed by Rodrigues et al. [31], on each Γ n we define the piecewise-affine finite element
pace Pn

1 = {f ∈ C0(Γ n) : f |K is affine, ∀K triangle in Γ n
} and the approximation spaces for velocity, surface and

urvature W n
h = (Pn

1 )
3/R,Q n

h = Pn
1 ,K n

h = (Pn
1 )

3. We define ∆ t = tn+1 − tn and we update the nodal positions in a
agrangian way, specifically, Y j,n+1

= Y j,n
+ W j,n+1δt . With these definitions we can arrive at a fully discrete non-linear

roblem corresponding to the weak formulation of the system (20)–(22) only introducing one temporal stabilisation term∫
Γ n τk ∇Γ wn+1

h : ∇Γ ζh, suggested by Bänsch [32] and described also in [31], for which the usual choice is τk = δt . In
ections 3.2 and 3.3 we present some preliminary results of some numerical resolution with finite elements method (FEM)
f this fully-discrete numerical model. We avoid a detailed description of the parameters setup to focus on the qualitative
bservation of the results. Evidences show the uncertainty of evaluating dynamical parameters as well material quantities
uch as the surface tension [33]. The simulations presented in the following sections aim at illustrating the possibilities
nd the potentiality of the model to shed light over the role and measuring of the physical quantities. This model can be
sed in combination with laboratory work.

.2. Hypothesis, equilibrium, and lipid layer stress

We discretise the surface of the oleosome in a surface of triangles, i.e., in a mesh with 642 nodes 1280 edges. For the
ime discretisation we adopted a time step ∆ t of the magnitude order of 10−3 time unit. We refer to an ellipsoidal initial
orm of the oleosome with an average radius of the order of 1, corresponding to and initial volume and initial surface area
f V0 = 4.15 and A0 = 13.24, respectively. Also we put an arbitrary Canham–Helfrich constant cCH = 1 that corresponds
o establish the energy unit to 1 kT. We recall that according our model we assume condition (a) of constant volume, due
o the fact that we consider the oil fluid inside the membrane incompressible, and the hypothesis (b) of variable surface
rea that guarantees the deformability of the lipid layer.
With respect to the set-up of dynamical parameters, we take µ = 1 since any other value would only change the time

cale but not the equilibrium configuration. Since it has not been experimentally proven otherwise, the ratio µ/λ is set
o 1, which gives similar significance to shear and dilatational dissipation actions. It should be kept in mind that here
e are focusing on natural and/or laboratory studies (as hydration or drying out) which are slow processes. A reasonable
hoice of surface tension σ corresponds to that such that the characteristic length L (which is R) of the system is of
he order of

√
cCH
σ
. The value of σ affects the internal pressure value at equilibrium, for instance in the case of a sphere

of p =
2σ
R . We will focus on the possibility of evaluating the internal pressure value because in the laboratory process

f oleosomes extraction, the pressure influences the probability of breaking them and therefore the quality of the final
xtract. Extracting intact oleosomes is of paramount importance to formulate stable natural oil-in-water emulsions for
ood and pharma applications. Another factor possibly responsible for the fragmentation of the lipid membranes during
he extraction process is the development of regions with very large bending moment, defined as M = −2 cCH H [34].

Let us first introduce the simulation with our model of a relaxation process, i.e., starting from a initial configuration and
n absence of external forces, we allow the system to evolve towards the equilibrium state. In Fig. 2 we display the time
volution of the interfacial layer and the magnitude of the mean curvature vector κ in the case with σ = 1. The top-left
anel corresponds to the initial configuration. It appears clear that, although the oleosome starts from a stressed condition
assuming it has deformed by external forces as shown in the top left panel), it converges with time to its equilibrium
ondition which is spherical and therefore with constant average curvature (bottom right panel). From a physical and
athematical point of view this behaviour is due to the tendency of the system to go to a condition of minimal energy. In
ig. 3 we can see as the energy decreases over time achieving a ‘‘plateau’’ level modelled using different values of σ . This
onfiguration corresponds also to a minimum value of the pressure that the core liquid oil exerts from inside towards
he membrane (pressure data shown in the centre-panel of Fig. 3). We note that these results are consistent with the
revious discussion over the internal pressure.
5
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Fig. 2. Panels of the evolution of the lipid layer during the relaxation process: at initial condition (t = 0, top left panel) and at time t = 0.26 (top
ight), t = 0.73 (bottom left) and t = 3.85 (bottom right).

Fig. 3. Lipid layer energy and internal oleosome pressure (insert) over time. A qualitative detail about the velocity field is shown.

As we can see from the previous results (Fig. 3), the surface tension influences the velocity of degrowth of energy
ut not its equilibrium value, a fact which is coherent because the organelle (without external perturbations) tends to
sphere. Let us now suppose to subject the lipid membrane to a compression stress between two rigid planes. In this
ase the evolution of the internal pressure is not of trivial calculation. In Fig. 4 we report some snapshots of the evolution
f the membrane shape and the corresponding solution for the internal pressure over time and for different values of
he interfacial tensions. We are also interested in evaluating the bending moment during the process. In Fig. 4 on the
ottom panel we show the evolution of the maximum magnitude of the bending moment evaluated by the model (with
= 1, because with the other values of σ the graph is analogous). These simulations results allow to study the impact

f otherwise hard-to-measure physical quantities as well as gaining information over the possible breaking limit of the
nterfacial layer under stress.
6
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Fig. 4. Time evolution of the internal pressure (top) and the bending moment (below) exercising compression stress.

3.3. Senescence: a virtual experiment

Compression stress is not only a key element of laboratory (or industrial) processes but also of natural phenomena. In
order to show the potentiality of this new approach we present here a virtual experiment of seeds senescence. As it can
be seen from the microscopy picture of Peng and Tzen [35] of a sesame seed (Fig. 5), it is observed experimentally that
inside the seed evolving towards its the senescence phase (when water is lost) the oleosomes come into contact with
each other and take polygonal shapes to allow a better packing within the available space.

We simulated the natural phenomenon while applying our model to a virtual senescence experiment to reproduce
the events occurring in vivo. For sake of example, one oleosome is hypothesised to be surrounded by four other rigid
organelles, increasingly approaching towards the centre and exerting a contact interaction. The inset plotted in Fig. 5
shows as (from an initial spherical shape) the oleosome, due to influence of the interaction with the approaching
organelles, assumes the peculiar shape in agreement with what is observed experimentally in seed tissues. The apparently
polygonal shape reveals (as shown in a blue-scale line around the layer) a complex curvature distribution, with flat parts
7
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Fig. 5. Electron microscopy of a cell in a mature sesame seed (adopted and modified from [35]). The typical polygonal shape assumed by oleosomes
due to the interaction/contact with other organelles can be observed. The inset contains a digital reproduction of an oleosome displaying its polygonal
shape.

of the membrane, others with an almost circular curvature (where interaction with external organelles is negligible) and
areas with maximum curvatures (and consequently, as we have seen, maximum bending moments).

4. Conclusions and opportunities for future developments

In this work we presented for the first time a model of a single oleosome, providing a detailed mathematical
formulation. Although only qualitative, these results show the potential of such approach. Therefore, the main outcome of
this interdisciplinary concept study is to offer a starting point for a new research line combining a mathematical modelling
approach with laboratory experimental results for oleosome research.

Understanding and modelling the behaviour of oleosomes is relevant from both a fundamental and applied science
point of view. These organelles display in-vivo the remarkable ability to preserve their structural integrity over a wide
temperature and hydration range [12,36,37], which triggers fundamental questions referring to the membrane fluid
behaviour and mechanical properties under those environmental conditions. We believe mathematical modelling could
provide new insights to understand oleosomes behaviour during seed maturation, storage and energy mobilisation.
Understanding their ex-vivo (i.e., following extraction from plant seed tissues) functionalities is also pivotal for food and
pharmaceutical applications; oleosomes could be used as natural alternative for emulsion formulations (i.e., ice cream,
mayonnaise, and salad dressings). This approach would allow reducing synthetic emulsifiers usage, processing costs and
environmental impacts providing support to tackle global sustainability challenges.
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