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Abstract

Finding clear connectome biomarkers for temporal lobe epilepsy (TLE) patients, in

particular at early disease stages, remains a challenge. Currently, the whole-brain

structural connectomes are analyzed based on coarse parcellations (up to 1,000

nodes). However, such global parcellation-based connectomes may be unsuitable for

detecting more localized changes in patients. Here, we use a high-resolution network

(�50,000-nodes overall) to identify changes at the local level (within brain regions)

and test its relation with duration and surgical outcome. Patients with TLE (n = 33)

and age-, sex-matched healthy subjects (n = 36) underwent high-resolution (�50,000

nodes) structural network construction based on deterministic tracking of diffusion

tensor imaging. Nodes were allocated to 68 cortical regions according to the

Desikan–Killany atlas. The connectivity within regions was then used to predict surgi-

cal outcome. MRI processing, network reconstruction, and visualization of network

changes were integrated into the NICARA (https://nicara.eu). Lower clustering coeffi-

cient and higher edge density were found for local connectivity within regions in

patients, but were absent for the global network between regions (68 cortical regions).

Local connectivity changes, in terms of the number of changed regions and the mag-

nitude of changes, increased with disease duration. Local connectivity yielded a bet-

ter surgical outcome prediction (Mean value: 95.39% accuracy, 92.76% sensitivity,

and 100% specificity) than global connectivity. Connectivity within regions, compared

to structural connectivity between brain regions, can be a more efficient biomarker

for epilepsy assessment and surgery outcome prediction of medically intractable TLE.
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1 | INTRODUCTION

Brain network disorders lead to changes in structural and functional

connectivity between brain regions (Bonilha et al., 2012). These

changes are supposed to result from changes within brain regions

such as cell death or changes in synaptic connectivity (Jenner &

Olanow, 1998; McGlashan & Hoffman, 2000). While cell death,

unless being compensated by excess growth of other cell types, can

be observed through changes in cortical thickness (Pereira

et al., 2012), changes in local connectivity remain elusive. Using

high-resolution structural connectivity, where the cortical surface is

parcellated into 50,000 regions of interest (ROIs) of comparable

size, we test whether brain network disorders are visible at this

local level, observing connectivity within brain regions, by looking at

the case of epilepsy.

Temporal lobe epilepsy (TLE) as the most common type of epi-

lepsy is characterized by recurrent seizures and can be controlled

using antiepileptic medications or surgery (Wiebe, Blume, Girvin, &

Eliasziw, 2001). For surgery, locating, and removing epileptogenic

zones (EZ) which are involved in seizure generation is crucial; how-

ever, seizures can be caused by a complex network rather than a

single region (Bartolomei, Chauvel, & Wendling, 2008). Structural

connectivity between regions shows distinct changes for patients

leading to changes in network dynamics (Hutchings et al., 2015).

However, despite studies on cortical thickness (Pereira

et al., 2012), surface area (SA) (Taylor et al., 2015), or gray/white

matter volume (Beheshti et al., 2018; Bernasconi et al., 2004),

there have been no studies investigating network changes within

brain regions.

In this study, we constructed high-resolution structural net-

works with around 50,000 nodes that form cortical regions to

observe local connectivity within brain regions. We compared our

results with a low-resolution global network where 68 cortical

regions formed the network nodes. High-resolution networks with

1,000 or more nodes were proposed in the past (Besson

et al., 2017; Irimia & Van Horn, 2016; Taylor, Wang, &

Kaiser, 2017) and, using the parcellation into 50,000 nodes on

healthy subjects, a modular organization within brain regions could

be established (Taylor, Wang, & Kaiser, 2017).

Based on this approach, we investigated how epileptogenic net-

works change at the local level, within brain regions. Do these local

changes also correlate with epilepsy duration (Besson et al., 2017)?

Which cortical regions are most informative when predicting surgery

outcome? And, most importantly, is the predictive power for surgery

outcome based on high-resolution local network measures more

informative than that based on normal low-resolution global

networks?

2 | METHODS

2.1 | Subject information

Data were studied retrospectively for 33 patients with mesial TLE and

36 age- and sex-matched healthy control subjects (Table 1). Diffusion

tensor imaging (DTI) data (voxel size =2�2�2mm, TR = 10,000 ms,

TE = 91 ms, FOV = 256 mm) with 64 diffusion directions

(b = 1000s/mm�2 ) and 12 b0 images were obtained. T1-weighted

MRI scans used 1 mm isovoxel, FOV = 256 mm, TR = 2,500 ms and

TE = 3.5 ms. All patients underwent a comprehensive pre-surgical

evaluation, and all had a confident diagnosis of mesial TLE based on

semiological, electrophysiological and imaging investigations.

Amygdalohippocampectomy and hippocampalsclerosis were con-

firmed histologically using standard criteria (Kreilkamp, Weber, Rich-

ardson, & Keller, 2017). No patients had undergone any previous

neurosurgery before mesial TLE surgery. Informed written consent

was signed for all participants. Disease duration was computed from

age at first seizure onset to age at scan time. For surgery outcome,

measured at least 1 year of postsurgical follow-up, patients were clas-

sified using the International League Against Epilepsy (ILAE) surgical

outcome scale.

2.2 | Data pre-processing and structural network
reconstruction

T1 images were pre-processed with FreeSurfer (http://surfer.nmr.

mgh.harvard.edu). Briefly, the pre-processing steps included intensity

normalization, skull stripping, and brain tissue segmentation. Cortical

surfaces, such as the pial surface, were extracted and manually

checked, edited so that its boundary did not cross the white matter

surface boundary. All defects arising from this procedure were manu-

ally corrected. We down-sampled the pial surface files with an output

ratio of 0.1 using the Matlab toolbox “IsoMesh” (Fang & Boas, 2009)

and constructed structural connectomes (Taylor, Wang, &

Kaiser, 2017). The final surfaces were composed of �50,000 triangles,

each representing a node in the network and with an average SA of

approximately 3.5 mm2.

We used “DSI Studio” (http://dsi-studio.labsolver.org) to get

deterministic streamline tractography from eddy current-corrected

diffusion tensor images which have been processed in FSL (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/). Generalized q-sample imaging (GQI)

method with diffusion sampling length ratio of 1.25, 8-fold orientation

distribution function (ODF) tessellation with five peaks resolved on an

ODF was chosen when reconstructing FIB files. Directions at corpus

callosum were checked to look well (i.e., clean fiber direction at mid

3778 CHEN ET AL.
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corpus callosum and crossing patterns at lateral corpus callosum).

Whole-brain seeding, 0.6*(Otsu's threshold) quantitative anisotropy

level, 60 turning angle threshold, 10 mm < tracts length < 300 mm

were set and a total of 10,000,000 streamlines was saved. Surface

files, streamlines, and “aparc+aseg.nii” files generated by FreeSurfer

were linearly registered into the same space. Streamlines whose

endpoints terminating within the gray matter were acquired. The

high-resolution connectivity matrix was defined by streamline counts

between the centers of the closet triangles (Euclidean distance) and

was normalized by triangle area. Nodes were sorted according to the

default FreeSurfer parcellation, the Desikan–Killany (DK) atlas. Each

cortical DK area included hundreds of nodes and can shape an intra-

TABLE 1 Demographics of study participants and the difference between patients and controls

Num.

Gender

male/female

Age [years]

m/S.D.

Duration [years]

m/S.D.

Surgical outcome

ILAE 1–2/ ILAE 3–5

Con 36 17/19 39.06/12.32 – –

TLE 33 15/18 38.79/12.79 23.45/15.03 21/12

LTLE 19 7/12 39.42/11.68 24.21/14.19 12/7

RTLE 14 8/6 37.93/14.57 22.43/16.60 9/5

Con vs TLE – χ2 = 0.022;

p = 0.883

p = 0.923 – –

Con versus LTLE – χ2 = 0.545;

p = 0.460

p = 0.903 – –

Con versus RTLE – χ2 = 0.397;

p = 0.529

p = 0.772 – –

LTLE versus RTLE – χ2 = 0.134;

p = 0.247

p = 0.734 p = 0.744 χ2 = 0.004;

p = 0.947

Note: Con: healthy controls; TLE: all patients; LTLE/RTLE: patients who had left/right-side surgery; m and S.D. represent the mean value and the standard

deviation of each group, respectively. Chi-square test was used to check for group differences in gender and surgical outcome. 5,000 permutation test was

applied for age comparison. Bonferroni correction was performed due to the multiple comparisons. There is no difference in age, gender, duration, and

surgical outcome between groups.
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F IGURE 1 Constructing global (between-area) and local (within-area) structural networks. The final high-resolution connectivity is composed
of around 50,000 nodes. Zooming into the high-resolution networks, each within-area structure, for example within the fusiform gyrus (inset), can
be considered as a small local network. Note that the local network contained connections among nodes within regions, but contained no
connections between regions. The connectivity and 3D visual graphs, generated by NICARA, of an intra-area network, for example, within-
fusiform gyrus network are shown here. The low-resolution global connectivity has 68 nodes, each corresponding to a DK atlas area. The 3D
subset of low-resolution network connections is also shown by NICARA (in the right of low-resolution network)
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area network. We counted inter-area streamlines and normalized with

a logistic function to create weighted low-resolution networks (68 cor-

tical areas) (Hutchings et al., 2015). Refer to Figure 1 and Supplemen-

tary Text S1 in Supplementary Material for more details. To allow for

a combination of left and right TLE and investigate ipsi- and contra-

lateral differences, the right regions were flipped in patients who had

a right-side surgery (Mueller et al., 2009; Taylor et al., 2018). The

demographics of 14 right TLE patients were shown in Table 1.

The same was done with control images. Supplementary Material

Table S1 lists the abbreviations of all cortical DK areas. We use the

term “area” or “region” to refer to a FreeSurfer (DK) area in the

following.

To handle the massive amount of connectivity data that is gener-

ated by our within region connectivity workflow, we used NICARA

(https://nicara.eu) (Kopetzky & Butz-Ostendorf, 2018) – a novel soft-

ware solution to manage large connectome data sets. We configured

the above-described imaging workflow in NICARA so that all external

pre- and processing steps could be executed via the NICARA web

portal. The resulting brain connectivity was automatically imported,

partially analyzed and visualized by the NICARA.

2.3 | Network analysis

TLE is often accompanied by surface-based morphometry changes,

such as SA reduction in the whole or parts of the brain (Taylor

et al., 2015). Beyond surface abnormalities, structural topological

organizations between regions were significantly different in patients.

To investigate and elucidate epileptic brain pathology within and

between cortical areas, nine metrics including SA before down-sam-

pling, average fiber length (FL), connectivity strength (S), and six topo-

logical network properties (Kaiser, 2011; Rubinov & Sporns, 2010)

were considered. For the low-resolution network of connections

between 68 regions, we used nodal connectivity strength (Si), effi-

ciency (Ei), and clustering coefficient (Ci). Average FL was the sum of

all of the streamline trajectory lengths divided by the total number

of streamlines. Connectivity strength was the sum of connection

weights which were normalized by triangle SA for high-resolution net-

works (Besson, Lopes et al., 2014) and by a logistic function for low-

resolution networks (Hutchings et al., 2015). As the high-resolution

network is very sparse with about 50,000 nodes and fewer stream-

lines between nodes, we used binary (unweighted) connectivity to cal-

culate network properties. On contrary, the denser low-resolution

network with 68 nodes was weighted in line with previous studies

(Bonilha et al., 2015; Hutchings et al., 2015).

Concerning six topological network features, edge density (d) rep-

resents the ratio of present connections relative to the number of

possible connections. Characteristic path length (L) is the average

number of connections within the shortest path from one node to

another. Global efficiency (Eglobal) is a measure of the shortest paths in

the network. The average clustering coefficient (C) measures how well

neighbors of a node are connected. Local efficiency (Elocal) is an

alternative measure of connectivity between neighbors. As the previ-

ous study mentioned, above properties are always sensitive to the

sparsity of the network (Van Wijk, Stam, & Daffertshofer, 2010). For

our sparse high-resolution network, we therefore normalized by net-

work properties of 1,000 randomly rewired networks with the same

degree distribution. We also normalized low-resolution network mea-

sures by values from 100 rewired networks with the same degree and

strength distribution. Finally, we calculated small-worldness (σ). Brain

Connectivity Toolbox was used to compute network properties

(Rubinov & Sporns, 2010). All measures were corrected for age and

gender using a general linear regression model generated from healthy

subjects. The relative definitions of all above metrics were listed in

Supplementary Material Text S1.

2.4 | Within-area local organization analysis

Zooming into high-resolution networks, each DK cortical area can

be regarded as a relatively small subnetwork that has 100–1,500

nodes. Regardless of inter-area interactions, the SA of each DK cor-

tical regions was first examined. As the morphometry variation may

lead to changes in connectivity, we then regressed out the SA

effect by a general linear regression model to pinpoint the influence

of other metrics, especially for topological properties (see Supple-

mentary Material Figure S1). Network size (i.e., the number of

nodes) is another potentially confounding factor: comparisons

between networks with different sizes can yield spurious results

(Van Wijk, Stam, & Daffertshofer, 2010). We, therefore, checked

network size effects using Spearman's rank correlation on metrics of

all controls that included within-area networks of variable size (see

Supplementary Material Figures S2 and S3). In the following analy-

sis, we excluded features that showed significant changes in

network size.

2.5 | Epilepsy duration and surgical outcome
analysis

Brain features were proved to change with the duration of epilepsy

in patients. Gray matter concentration (gray matter volume divided

by total intracranial volume) had a negative association with the

duration of epilepsy within the hippocampus, temporal lobe and

several limbic structures (Bonilha et al., 2006). Hippocampal volume

reduced more if patients had a long history of epilepsy before sur-

gery (Theodore et al., 1999). The alterations of cortical thickness

correlation networks intensify over time (Bernhardt et al., 2011). To

study epilepsy duration effects, we grouped epilepsy patients into

two categories (fewer and more than 20-year duration). At the

threshold of 20-year disease duration, two groups had matched

group size, gender, surgical outcome, and surgery side distribution,

which was beneficial for the following group comparison. For com-

parison, controls were also categorized into two groups whose age

3780 CHEN ET AL.
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and gender were matched with patient groups. Two control groups

were maximum overlapped so that patients can be compared to the

same healthy controls. Shorter epilepsy duration is demonstrated to

make good surgery outcomes more likely (Bjellvi, Olsson, Mal-

mgren, & Ramsay, 2019). We therefore also examined network dif-

ferences between patients with surgical outcome. Patients here

were classified into two groups: good postsurgical outcome (class

ILAE 1–2, 21 patients) and bad (class ILAE 3–5, 12 patients) post-

surgical outcome. Refer to Supplementary Material Figure S4,

Table S2 for more details.

2.6 | Statistical analysis

Network metrics comparison used a two-sided 5,000 permutation

test (Zhang et al., 2011) with a statistical significance set as p<0.05.

Cohen's d measures difference size between two means with effect

size “huge,” “very large,” “large,” “medium,” “small,” “very small” set

correspond to thresholds of d = 2.0, d = 1.2, d = 0.8, d = 0.5,

d = 0.2, d = 0.01, respectively. To balance left/right TLE effects

and make results more reliable, the Cohen's d values of group com-

parisons were weighted by the sample sizes of left/right TLE

patients (Borenstein, Hedges, Higgins, & Rothstein, 2009). The

weighted Cohen's d was defined by n1�d1þn2�d2
n1þn2

, where n1/n2 was the

sample size of left/right patients; d1/d2 represented the group com-

parison effect size between left/right TLE patients and control sub-

jects. Spearman's rank correlation and Pearson's linear correlation

were calculated to study changes related to epilepsy duration. The

absolute z-scores of patients, showing the deviation of measures from

the control group, were then tested to predict surgical outcome.

Bonferroni correction was performed, since multiple comparisons

were analyzed.

2.7 | Outcome prediction analysis

Classification learner, a component of MATLAB, was applied to test

the outcome predictive ability of network metrics. For surgical out-

come prediction, only one feature was tested at once for classification

and every measure including average FL, connectivity strength, and

six topological network properties in each local region was checked to

get measures with good prediction performance. Training models

were selected among six classical methods: tree (TR), discriminant

(DM), logistic regression (LR), support vector machines (SVM), k-

nearest neighbor (KNN), and ensemble (ENS). To avoid overfitting,

5-fold cross-validation was performed by partitioning the data set into

folds and estimating accuracy on each fold. The same procedure was

repeated and the average estimation was taken over 50 times. The

optimal point of receiver operating characteristic (ROC) curve was

used as a threshold for classification and was shown as the best pre-

diction point. To explore how metrics make the good and poor surgi-

cal outcome, 5,000 permutation tests and Cohen's d-score were

considered.

3 | RESULTS

3.1 | Changes in whole high- and low-resolution
networks

In line with previous studies (Taylor et al., 2015), the whole brain SA

was reduced in patients compared to controls (Supplementary Mate-

rial Figure S5). The majority of cortical regions, in particular around

the ipsi-lateral temporal and frontal lobe, had significantly decreased

SA in patients. Unlike the low-resolution 68 region networks, the

high-resolution networks with around 50,000 nodes showed distinct

higher connectivity strength, edge density, and lower global clustering

coefficient. Both low- and high-resolution networks observed a

decreased average FL (between-nodes) in patients.

3.2 | Within-region local changes identification

The changed metrics were plotted in Figure 2 across all intra-area net-

works after network size effects were eliminated. The absolute

Cohen's d values of all metrics were summed for each region to mea-

sure how different the areas are in patients (Supplementary Material

Table S3). Ipsi-lateral precentral gyrus (PREC) and contra-lateral supra

marginal (SMAR) showed great changes with both decreased cluster-

ing coefficient. Moreover, contra-lateral SMAR, lateral occipital

(LOCC), pars triangularis (PTRI), and ipsi-lateral insula (INS), SMAR,

pars opercularis (POPE) showed increased connectivity strength.

About half of the affected regions were located in the temporal and

frontal lobe. The increase of average FL within-region was dramatic

and widespread. However, the average FL across the whole brain was

reduced (Supplementary Material Figure S5) which suggests the loss

of long-length fibers between regions in patients.

To show examples for within-region local changes, we select two

regions which have the most changes in patients compared with con-

trols (cf. Supplementary Material Table S3): the ipsi-lateral PREC and

the contra-lateral SMAR (See Figure 3). Compared to controls with a

matched number of nodes, the modular organization was reduced

with lower clustering coefficient (C) and local efficiency (Elocal) in ipsi-

lateral PREC, specifically given that more local neighbor nodes were

disconnected (e.g., the network in the left panel of Figure 3(b) is less

locally connected with several separate branches and isolated small

cliques compared with that in Figure 3(a)). Looking at the connected

networks in the brain (i.e., the right panel of Figure 3(a) and (b)), we

observed that, unlike in the control, the local short connections in

light-gray color were fewer in the lateral PREC gyrus marked by a blue

circle. That may cause a reduced clustering coefficient and local effi-

ciency. While the superior PREC gyrus marked by green circles

showed more long connections in dark color. Similarly, even though

there were more connections of contra-lateral SMAR in patients (see

increased connectivity strength (S) in Figures 2 and 3(d)), the more

remote long connections (i.e., zones marked by blue circles) may make

within-region networks less localized leading to lower clustering coef-

ficient and small-worldness (σ).

CHEN ET AL. 3781
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3.3 | Duration effects for epileptogenic intensity

Although the local network architecture is widely changed for

patients, the number of changed network features and the extent of

their alteration, relative to controls, vary between regions. Indeed,

more regions are affected in patients with longer epilepsy duration

(>20 years; Figure 4(a)). By summing up z-scores across network fea-

tures for regions related to duration (Supplementary Material

Table S4) to give a distance from controls, we see a positive relation-

ship (Figure. 4(b)) between alteration intensity and epilepsy duration

(Pearson's correlation coefficient: 0.6652, Spearman's rank coeffi-

cient: 0.6887). Moreover, the patient-control distance is significantly

larger than the within-control distance (5,000 permutation tests,

p<0.001, Cohen
0
s d = 1.5369). Compared to shorter duration, for lon-

ger duration more ipsilateral regions were affected beyond the

temporal-frontal regions (Cohen's d > 0.5; Figure 4(c), (d)). The abnor-

mality for longer duration is more obvious in the ipsi-lateral hemi-

sphere compared with the contra-lateral hemisphere. Regions that

change the most for patients with more than 20-year epilepsy were

mostly distributed around the ipsi-lateral PREC and cingulate (see Fig-

ure. 4(d)), such as the banks of the superior temporal sulcus (BSTS),

the isthmus of the cingulate (ISTC), and the posterior cingulate (PC).

Ipsi-lateral caudal anterior cingulate (CAC) and contra-lateral per-

icalcarine (PCAL) are highly related to duration (Supplementary Mate-

rial Table S4). Notably, according to the mapping between DK regions

and functional networks (Kabbara et al., 2017), precuneus (PCUN), lat-

eral orbitofrontal (LOF) cortex, which are part of default-mode net-

work (DMN) and CAC, POPE, pars orbitalis (PORB) that are in the

dorsal attentional network (DAN) show a positive duration relation.

3.4 | Surgical outcome difference

Does the extent of local network changes also indicate surgery suc-

cess? Indeed, patients with bad outcome show more abnormal regions

(Figure 5(a)). By summing up all Cohen's d-score for locally changed

network features (Figure 5(b)) to estimate abnormality, regions such

as the ipsi-lateral BSTS and insula (INS) were clearly changed for both

good- and bad-outcome patients but differences were stronger for

bad-outcome patients. However, regions such as contra-lateral SMAR,

CAC, caudal middle frontal (CMF) show abnormality for bad-outcome

but not for good-outcome patients. Overall, bad surgical outcome was

related to more regions showing strong changes, in particular ipsi-

lateral temporal-cingulate-frontal regions and contra-lateral frontal–

parietal brain regions (Figure 5(c), (d)). We also found abnormal

regions were more obvious and widespread in bad-outcome patients

and even had larger abnormalities in regions of the contra-lateral

hemisphere.

3.5 | Prediction of surgical outcome

Can the network changes be biomarkers for predicting surgery out-

come? For the within-area network shown in Table 2, ipsi-laterally, for

example, the metrics of BSTS (80.31±5.39% accuracy), the cuneus

(CUN, 77.37±2.35% accuracy), INS (74.05±1.91% accuracy), pars

triangularis (PTRI, 75.40±1.96% accuracy), and the superior temporal

(ST, 73.23±1.24%) were tested as good predictors of surgery out-

come. Contra-laterally, the metrics of CAC (accuracy: 81.20±2.37%),

CMF (77.80±2.12% accuracy), LOF (78.50±2.98% accuracy), PORB

(74.65±1.86% accuracy), SMAR (74.41±2.14% accuracy), and tempo-

ral pole (80.40±3.67% accuracy) were successful predictors as well.

Combining within-region information, the predictive power results in a

remarkable 0.93±0.01 AUC (Area under the ROC curve), 93.81

±0.60% accuracy, 90.38±0.67% sensitivity, and 99.83±1.18% specific-

ity. If considering SA effect (Supplementary Material Table S5), the

prediction performance improves to an 0.97±0.02 AUC, 95.39±1.86%

accuracy, 92.76±2.92% sensitivity, and 100±0.00% specificity.

How does this performance compare to the standard approach of

observing changes in the connectivity between regions, that is, our
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F IGURE 2 Identification of changed within-area local networks. All Metrics of intra-area networks shown in color are significantly different
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controls. Several regions, both ipsi- and contra-lateral to the epileptic focus, showed changes in one or more local network features. Network
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coefficient (C), global efficiency (Eglobal), average local efficiency (Elocal), and small-worldness (σ)
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low-resolution network with 68 cortical regions? For the low-

resolution network, the clustering coefficient of the ipsi-lateral INS

predicts outcome well with 75.76±4.29% accuracy performance

(AUC: 0.74±0.05) which is similar to the 74.05±1.91% accuracy (AUC:

0.79±0.03) we get for the same region based on intra-regional local

connectivity. Moreover, across all regions, the top prediction is 0.76

±0.02 AUC, 81.58±1.03% accuracy for inter-area global network met-

rics (Supplementary Material Table S5) and 0.82±0.01 AUC, 81.20

±2.37% accuracy for intra-area local metrics (Table 2). Combining

information from all low-resolution network regions and including SA

effects, performance improves (top: 0.95±0.01 AUC, 91.45±2.43%

accuracy, 93.05±2.76% sensitivity, 88.67±4.38% specificity). How-

ever, performance for high-resolution local network (0.97±0.02 AUC,

95.39±1.86% accuracy) is better than for the low-resolution network.

Predicted surgical outcomes for 33 patients by applying methods

based on low- and high-resolution networks are summarized in

Table 3. About 93.81% of patients were predicted to be the same as

the actual surgical outcome with about 90.38% sensitivity and

Subject: Control; gender: female; age: 39ys;
SA: 6.0186*103;  network size: 1386;
FL: 32.6007; C: 4.0902; Elocal: 4.5275;

Subject: Patient; gender: female; age: 29ys;
SA: 5.7316*103;  network size: 1382;
FL: 32.7805; C: 3.4145; Elocal: 3.8162;

3D structure of ipsi-lateral precentral gyrus

(a) (b)

(c) (d)

3D structure of contra-lateral supramarginal

Subject: Control; gender: female; age: 39ys;
SA: 4.6941*103;  network size: 1116;
S: 2.3309*103; C: 3.4190; σ: 2.3315

Subject: Patient; gender: female; age: 41ys;
SA: 4.5928*103;  network size: 1096;
S: 2.9205*103; C: 2.2971; σ: 1.7060;

F IGURE 3 Visualization of local network changes as exemplified for the ipsi-lateral precentral and contra-lateral supra marginal region. From
left to right, two subjects (one control, one patient) are shown for both ipsi-lateral precentral gyrus ((a) and (b)) and contra-lateral supra marginal
((c) and (d)). While the network size (the number of nodes) and surface area size [mm2] (SA) remain comparable, clustering coefficient (c), local
efficiency (Elocal) are reduced in ipsi-lateral precentral gyrus (the upper panel: (a) and (b)) for patients. And reduced clustering coefficient, small-
worldness (σ), and increased connectivity strength (S) are found in contra-lateral supra marginal for patients (the lower panel: (c) and (d)). Local
networks were visualized by two methods: force-directed layout in the left of all sub-figures and anatomical layout by the NICARA in the right of
all sub-figures. Compared with the control (a), the patient (b) had more long connections in the precentral gyrus marked by green circles and
fewer short connections in the blue-circle zones. Similarly, compared with the control (c), the patient (d) had more remote long connections in the
zone marked by blue circles. Anatomical layout connections were plotted in white to dark color to represent short to long fibers in figures
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99.83% specificity for the high-resolution network versus �81.33%

accuracy, 80.67% sensitivity and 82.50% specificity for the low-

resolution network. The major difference between high- and low- res-

olution methods was that the outcome prediction, in particular cor-

rectly identifying bad surgery outcomes, was much better for the

high-resolution within-region network approach.

4 | DISCUSSION

By using structural connectivity within and between cortical areas,

based on DTI, we found significant alterations for TLE that were

related to disease duration and surgery outcome. Different from pre-

vious epilepsy structural connectivity studies that focused on low-

resolution networks between brain regions (Taylor et al., 2018; Zhang

et al., 2011), we focused on higher-resolution structural networks

with about 50,000 nodes for the first time, which showed more obvi-

ous topological changes than low-resolution networks. For the local

network within regions, significant changes in patients occurred, in

particular for the ipsi-lateral PREC and contra-lateral SMAR. More-

over, the number of abnormal regions and the magnitude of network

changes increased with disease duration in patients. While we have

no longitudinal data, the link between local changes and disease dura-

tion suggests that within-area connectivity could be a biomarker of

TLE, potentially even before the onset of seizures. Finally, local

changes within regions were successful predictors of surgery outcome

(�95.39%/93.81% accuracy with/without SA effect). Predictive per-

formance was better than for the standard approach of observing

global changes in connections between regions indicating that within-

area connectivity can be useful in the future for planning surgical

interventions.

4.1 | Relationships to epileptic seizure pathways

Some regions with changes in local connectivity overlapped with sei-

zure spreading pathways. A very common path for seizure spreading

(Lieb, Dasheiff, & Engel, 1991) originates in the ipsi-lateral temporal
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F IGURE 4 The intra-regional change patterns related to duration. Patients were grouped into two parts: one whose epilepsy duration is
smaller than 20 years, the others above. (a) The number of abnormal cortical areas among 68 regions increased with duration when changed
regions were thresholded through medium (Cohen's d > 0.5) to very large (Cohen's d > 1.2) changes in network features. (b) Changed distance
was computed by summing up absolute z-scores across all metrics and for all duration-related regions. Blue dots show the distribution of self-
control distance. Red dots represent the patient-control distance showing that the intensity increases with disease duration. Furthermore, using a
permutation test, there was a wider range of distances to the average control group value for epilepsy patients than for controls (Cohen's
d = 1.5639). (c) and (d) depict changed regions (p<0.05, Cohen's d threshold = 0.5) for both durations. The color shows the sum of Cohen's d
scores across all significantly changed metrics of a region. For the longer duration (> 20 years), changes get stronger especially in the ipsi-lateral
hemisphere and more largely changed regions are around ipsi-lateral cingulate regions
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lobe and spread to the ipsi-lateral frontal lobe before affecting the

contra-lateral frontal and temporal lobe. In our study, about half of

the changed regions were located in the temporal and frontal lobe

which could result from changes along activity propagation pathways.

For example, the ipsi-lateral entorhinal cortex (ENT), which partici-

pates in seizure generation and propagation, showed localized FL

increase and decreased connectivity strength. The insular cortex as on

the spreading pathways (Isnard et al., 2000) was observed a dramati-

cally increased connectivity strength and higher edge density, which

could be the reason for bad surgery outcomes when the insula was

not considered as a surgery target (Harroud, Bouthillier, Weil, &

Nguyen, 2012; Isnard et al., 2000). Besides, its higher connectivity

strength was a good outcome predictor (�74.05% accuracy in

Table 2). The locally changed subtemporal cortex, such as fusiform

(FUS, decreased global efficiency) and parahippocampal gyrus (PARH,

reduced SA), is also known to be involved in seizures (Alarcon

et al., 1997). Changed regions beyond seizure propagation pathways

might be indirectly affected by a region that is involved in seizure

spreading.

4.2 | Changes in TLE and their relation to function

Local network changes might also relate to functional changes in brain

connectivity for epilepsy patients. For example, we see network

changes in the primary motor cortex, the PREC gyrus, in line with pre-

viously reported ictal hyperperfusion due to seizure discharges (Tae

et al., 2005). And pathological structural changes occur in PREC gyrus

with smaller clustering coefficient and local efficiency indicating des-

troyed local interaction and lower stability to resist external
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F IGURE 5 Local network abnormalities related to surgical outcome. Patients were categorized into two groups: good surgery outcome (ILAE
1–2) and bad surgery outcome (ILAE 3–5). (a) The number of abnormal cortical areas, for medium (Cohen's d > 0.5) and very large (Cohen's
d > 1.2) changes in network features, was higher for bad outcome patients. (b) Abnormal regions were further grouped into ipsi- and contra-
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region. For bad-outcome patients, more regions are affected and changes are more pronounced (higher Cohen's d). (c, d) Changed regions
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interaction from other regions, which may reveal motor symptoms

during epileptic seizures. Unfortunately, we cannot investigate

whether the lost local connectivity involves excitatory or inhibitory

(e.g., lateral inhibition) circuits. The loss of short-length fibers within-

regions may cause a reduced local cluster organization. Fewer short-

length connections among some local nodes were observed in

patients with locally increased mean FL. The decreased global mean

FL between regions across the whole brain (Supplementary Material

Figure S5(A)), however, indicates a loss of long-length connections or

more short-range connections between regions in patients. It is consis-

tent with the study of structure–function coupling during epileptic

seizures (Shah et al., 2018) that demonstrated seizures may mainly

rely on the underlying short-range structural connections to propa-

gate, in terms of both fiber trajectory length and Euclidean distance.

The SMAR gyrus, a portion of the parietal lobe of the brain, plays a

role in phonological processing (i.e., of spoken and written language)

and emotional response. Changes in bilateral SMAR gyrus and ipsilat-

eral POPE may be associated with abnormal language processing or a

partial displacement of language processing to other regions due to

the neuroplastic response to cortical insult, abnormal electrical cir-

cuitry, or underlying anatomical anomalies (Devinsky et al., 2000;

Hartwigsen et al., 2010).

Changes in specific anatomical regions were associated with dis-

ease duration. Notably, the abnormalities of PCUN and LOF which

are part of the DMN (Kabbara et al., 2017) strongly related to dura-

tion. Prior functional imaging studies showed decreased functional

connectivity throughout the DMN and also a relation with disease

duration for TLE (Pittau et al., 2012). Epileptic activity was suggested

to possibly spread from the temporal lobe into DMN areas (Laufs

et al., 2007). The difference in DMN regions compared with controls

in our study gets larger with duration (shown in Supplementary Mate-

rial Table S4), indicating that the DMN might be more severely

affected for patients with long-term TLE. Studies have shown TLE-

related aberrant connectivity was associated with connectivity

changes not only to DMN nodes, but also to the DAN (Burianov�a

et al., 2017; Zhang et al., 2009) and the salience network (SAN)

(Burianov�a et al., 2017). This is in accord with our duration-related

and outcome-related results (Table 2 and Supplementary Material

TABLE 2 Predictions of surgical outcome for within-region metrics

Area Metric AUC Acc.(%) Sen.(%) Spec.(%) Model FN

(I)BSTS L" 0.74±0.02 74.24±1.87 80.42±4.28 63.43±6.48 ENS –

(I)BSTS Elocal" 0.79±0.05 80.31±5.39 85.20±5.59 71.60±8.93 TR –

(I)CUN L 0.72±0.01 77.37±2.35 89.84±3.48 55.56±4.00 SVM –

(I)CUN Eglobal 0.77±0.04 73.33±1.94 84.20±5.43 54.20±8.12 ENS –

(I)INS S" 0.79±0.03 74.05±1.91 80.65±4.42 62.50±7.45 TR SAN

(I)PTRI σ# 0.74±0.04 75.40±1.96 84.78±3.11 58.22±6.02 SVM DAN

(I)PTRI FL# 0.73±0.02 73.11±1.07 88.10±2.55 46.88±4.31 TR DAN

(I)ST C# 0.72±0.01 73.23±1.24 83.33±2.61 55.56±4.30 SVM –

(C)CAC σ 0.82±0.01 81.20±2.37 83.00±2.58 77.91±4.04 SVM DAN

(C)CMF S 0.81±0.02 77.80±2.12 78.78±4.41 76.00±7.68 ENS SAN

(C)LOF C 0.78±0.03 78.50±2.98 82.90±3.25 71.80±4.13 ENS DMN

(C)LING σ 0.73±0.02 76.74±1.93 96.50±3.17 42.16±2.00 SVM –

(C)PORB L 0.72±0.01 74.65±1.86 88.57±2.68 50.28±5.12 ENS DAN

(C)PSTC L 0.73±0.01 73.43±1.33 94.51±1.79 36.54±4.22 KNN –

(C)PSTC Eglobal 0.74±0.02 73.81±1.51 90.48±0.00 44.64±4.44 SVM –

(C)SMAR C# 0.73±0.02 74.41±2.14 78.04±4.36 68.06±4.29 ENS SAN

(C)TP L 0.86±0.04 80.40±3.67 77.45±3.47 85.54±9.28 TR –

(C)TT Eglobal" 0.75±0.04 73.83±1.53 81.82±4.16 59.85±8.18 TR –

ALL – 0.93± 0.01 93.81± 0.60 90.38± 0.67 99.83± 1.18 DM

ALL+SA – 0.97± 0.02 95.39± 1.86 92.76± 2.92 100± 0.00 DM

Note: (I) and (C) represent ipsi-lateral and contra-lateral areas, respectively. 50 repetitions were performed to calculate the mean value and standard

deviation. The metrics marked with #(") were significantly smaller (larger) in poor-surgery patients (p<0.01) compared with good-surgery patients. Others

without marks only show the good classification of z-score but a slight difference between two surgical outcome groups. 5,000 permutation tests were

used in predictions. The prediction performance of one metric is significant when p<0.05 and metrics with good predictions were shown in the table.

Abbreviations: AUC: area under ROC curve; Acc.: accuracy; Sen.: sensitivity; Spec.: specificity; DMN: default mode network; DAN: dorsal attentional

network: SAN: salience network. Three networks are mentioned as some areas are part of specific functional networks. Predictive model types: Tree: TR;

Discriminant: DM; Logistic Regression: LR: Support Vector Machines: SVM; K-Nearest Neighbor: KNN; Ensemble: ENS. The best predictive models were

shown in the table. ALL: means using the summed absolute z-score values of all above measures to predict surgical outcome. ALL+SA: means using all

predictors shown in Table 2 and SA metrics shown in Supplementary Material Table S5 to predict surgical outcome.
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Table S4). For example, PORB and POPE which were located in infe-

rior frontal lobe and associated with DAN showed increasing changed

intensity with duration. Especially, the characteristic path length of

contra-lateral PORB was suggested to be a good surgical outcome

predictor. Likewise, the INS cortex as parts of SAN, showed large dif-

ferences in patients and their abnormal intensities get stronger with

disease duration. The connectivity strength in the ipsi-lateral INS net-

work was also stronger for poor surgical outcome patients.

4.3 | Considerations for surgery

Our analysis of local within-area networks indicated several regions

were related to surgery success. Local changes were found to predict

epilepsy surgery outcome with an accuracy of about 95.39%. Indeed,

the prediction performance is better than the current standard

approach of observing global connectivity between regions which has

an accuracy of only 88% and better than earlier surgery outcome pre-

dictions with 81–88% accuracy (Bonilha et al., 2015; Coan

et al., 2016; Sinha et al., 2017). Compared with low-resolution net-

work studies of between-regions, our high-resolution predictive

method showed better capability with higher AUC (mean: 0.97

vs. 0.95), accuracy (mean: 95.39% vs. 91.45%), and specificity (mean:

100% vs. 88.67%). The predictive power of poor surgery outcome

expressed by specificity in our work is crucial since alternative re-

section targets could be suggested instead of the planned approach.

While some of the regions related to bad outcome are also regions

relate to a longer disease duration, which in turn makes a bad out-

come more likely (such as ipsi-lateral INS, contra-lateral LOF, and

PORB), other indicated regions are independent of duration. Notably,

not all changed regions are facilitating surgery and would therefore be

potential surgery targets. Some changes could be due to a relocation

of function away from regions affected by seizures that can no longer

perform a function. For example, the developing brain can re-establish

language organization in the right hemisphere after left-side injury

(Krägeloh-Mann, 2004). Indeed, language-related brain regions have a

wider spatial distribution in epilepsy patients (Devinsky et al., 2000).

However, the locally changed regions could be good biomarkers for

clinical diagnosis before surgery is performed. Making strategies

according to the network metric distance to intervene, for example,

interrupting ipsi-lateral INS/PTRI interactions might be promising

strategies. Not considering the effects of contralateral regions in cur-

rent temporal lobectomy may be one reason of surgery failure as our

studies demonstrated strong contralateral abnormalities in bad-

outcome patients. The marked regions by up/down arrows in Table 2

and Supplementary Table S5 may provide new directions for future

TABLE 3 Confusion matrix indicating the performance of high- and low-resolution network in predicting surgical outcome

Network Predicted outcome

Actual surgical outcome

Good = 21 Bad = 12

HighRes (SA out) Good = 19.00±0.20

Bad = 14.00±0.20

Accuracy = 93.81±0.60 (%)

True positive = 18.98±0.14

False negative = 2.02±0.14

True positive rate, or sensitivity =

90.38±0.67 (%)

False negative rate, or miss rate =

9.62±0.67 (%)

False positive = 0.02±0.14

True negative = 11.98±0.14

False positive rate, or fall-out = 0.17±1.18 (%)

True negative rate, or specificity =

99.83±1.18 (%)

LowRes (SA out) Good = 19.04±0.35

Bad = 13.96±0.35

Accuracy = 81.33±1.28 (%)

True positive = 16.94±2.40

False negative = 4.06±2.40

True positive rate, or sensitivity =

80.67±1.14 (%)

False negative rate, or miss rate =

19.33±1.14 (%)

False positive = 2.10±0.30

True negative = 9.9±0.30

False positive rate, or fall-out

= 17.50±2.53 (%)

True negative rate, or specificity =

82.50±2.53 (%)

HighRes (SA in) Good = 19.48±0.61

Bad = 13.52±0.61

Accuracy = 95.39±1.86 (%)

True positive = 19.48±0.61

False negative = 1.52±0.61

True positive rate, or sensitivity =

92.76±2.92 (%)

False negative rate, or miss rate =

7.24±2.92 (%)

False positive = 0.00±0.00

True negative = 12.00±0.00

False positive rate, or fall-out =0.00±0.00 (%)

True negative rate, or specificity = 100±0.00 (%)

LowRes (SA in) Good = 20.9±0.76

Bad = 12.1±0.76

Accuracy = 91.45±2.43 (%)

True positive = 19.54±0.58

False negative = 1.46±0.58

True positive rate, or sensitivity =

93.05±2.76 (%)

False negative rate, or miss rate =

6.95±2.76 (%)

False positive = 1.36±0.53

True negative = 10.64±0.53

False positive rate, or fall-out = 11.33±4.38 (%)

True negative rate, or specificity =

88.67±4.38 (%)

Note: The predictors here were combined predictors that used the summed absolute z-score values of all measures shown in Table 2 or Supplementary

Table S5 to predict surgical outcome. 50 repetitions were performed to calculate the mean value and standard deviation. HighRes (LowRes): the overall

prediction power combined with all high-resolution/local predictors (low-resolution/global predictors). SA in (SA out): the overall prediction power

considering (not considering) SA predictors using high-(HighRes) and low-resolution (LowRes) method.
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surgery and diagnosis since there are differences in patients with

good and poor surgical outcome. Structural network metrics of within-

regions may therefore help to inform the planning of surgical inter-

ventions in the future.

4.4 | Brain parcellation and network resolution
effect

In our analysis, the DK atlas was used to assign regions to the high-

resolution network. One of the motivations to select the DK atlas is

that it has relatively fewer parcellations (68 regions). The computa-

tional time therefore less, especially when multiple network metrics

for all regions are analyzed. The other reason is that the smallest

region had around 100 nodes for a high-resolution parcellation with

about 50,000 nodes. The smallest network size matched the number

of nodes at the global scale with 68 cortical regions (Supplementary

Material Figure S2). For an atlas with �1,000 regions, the minimum

local network size could be fewer than 10 nodes, which seems not

suitable for within-region network analysis. However, given that the

DK atlas is based on the brain's geometric information derived from

its cortical model, it is unclear if other types of parcellations, such as

biological-informed parcellations, would perform better. To explore

the effect of the different atlas, the “HCP-MMP” atlas (Glasser

et al., 2016) with 360 cortical regions was additionally used to con-

struct a low-resolution network using the NICARA platform. Note that

the “HCP-MMP” atlas was created from clustering multi-modal data

from the Human Connectome Project (https://humanconnectome.

org/). The final prediction results based on the new 360-node net-

work were shown in Supplementary Material Table S6. Compared to

the best predictive power of the original 68-node network (shown in

Supplementary Material Table S5, Accuracy: 91.45±2.43%, Sensitivity:

93.05±2.76%, Specificity: 88.67±4.38%), the performance was quite

similar (Accuracy: 89.64±1.94%, Sensitivity: 92.48±3.35%, Specificity:

84.67±3.09%), which indicated a small effect of brain parcellation on

the predictive ability of epilepsy surgery outcome by using low-

resolution networks.

While the parcellation scheme does not have a big impact on the

results, it remains unclear what the effect of node density on the cur-

rent results as well. Therefore, two additional node densities were

tested to construct the structural connectome and re-assess results:

one consisted of �25,000 nodes (25 k, average vertex area:

�6.3mm2); the other consisted of �12,500 nodes (12 k, average ver-

tex area: �12.6mm2). The structural connectivity comparison at dif-

ferent resolutions was shown in Supplementary Material Figure S6.

Edge density was smaller in the fine-grained network (50 k, that is,

�50,000 nodes) compared with connectomes at 12 k and 25 k resolu-

tion. However, the 50 k networks had a larger characteristic path

length, local efficiency, and smaller global efficiency compared with

the 12 k-resolution network which is in agreement with previous

studies (Rafael, Mercedes, Line, & Jose, 2012; Zalesky et al., 2010).

When looking at the results about duration (Supplementary Material

Figure S7), the number of abnormal cortical areas decreased with the

Cohen's d threshold (i.e., lines decline in the figure, Figure S7(a)).

Longer-duration patients had more changed regions at both 25 k and

12 k network resolution. Besides, they all saw positive relations

between alteration intensity and epilepsy duration (Figure S7(b),

Pearson's correlation coefficient for 25 k/12 k cases: 0.6672/0.6588;

Spearman's rank coefficient for 25 k/12 k: 0.7505/0.7188). The linear

fitting lines at three resolutions were almost parallel (Pearson's corre-

lation coefficient for 50 k/25 k/12 k: 0.6652/0.6672/0.6588) which

indicated a similar change rate with duration regardless of network

resolutions. For patients with more than 20-year epilepsy, changes

also got stronger in the ipsi-lateral hemisphere at 25 k and 12 k reso-

lution (Figure S7(c), (d)), and regions that changed the most were

mostly distributed around ipsi-lateral PREC and cingulate as well. Sim-

ilar patterns occurred in outcome-related results concerning the num-

ber of abnormal cortical areas (Supplementary Material Figure S8(a))

and their spatial distribution (Figure S8(b), (c)). As expected, the

regional abnormal patterns for the 25 k resolution network as shown

in Figure S8(d) were quite similar to the 50 k results shown in

Figure 5. The abnormal intensity difference between good- and bad-

outcome patients for 12 k and 50 k resolution network was less alike,

but there existed some similar regions, such as ipsi-lateral INS, LING

with strong abnormalities in bad-outcome patients (Figure S8(e)). For

the final surgery outcome predictive power (Supplementary Material

Table S6), high-resolution networks were better predictors than low-

resolution networks and among the three high-resolution networks,

while all showing a strong prediction performance, the 50 k-network

was the best.

Overall, both parcellation scheme and node density do introduce

some variability in our studies. For the low-resolution networks, com-

pared to the structural DK atlas, the multi-modal atlas affects the pre-

dictive capacity of epilepsy surgery outcome slightly. While there

seems to be no significant difference between the geometric- or

biological-informed parcellation for the low-resolution analysis, the

DK atlas with larger intra-region networks could be better for analysis

of connectivity within-regions. Besides, varying node density from

�50,000 nodes (�3.5 mm2) to �12,500 nodes (�12.6 mm2), high-

resolution networks indicate stronger performance than low-

resolution networks. The density of �50,000 nodes which are con-

strained by the 68-node ROIs (DK atlas) would be preferred as the

50 k-network showed the best prediction and was composed of big-

ger regions that can benefit other network analyses, such as modular-

ity, in the future.

4.5 | Methodological limitations and future studies

Concerning limitations of this study, we created structural connectiv-

ity only based on cortical regions and while sub-cortical structures are

crucial for seizure propagation, our approach was sufficient to yield

biomarkers of epilepsy and of surgery outcome. Secondly, although

we found structural network changes, the identification of primary

pathology regions should be further examined by other modalities,

including EEG and electrocorticography (ECoG) when planning
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surgical interventions (Lieb, Dasheiff, & Engel, 1991). Thirdly, some

region size effects remain even though we eliminated measures that

are affected by network size. Although fixing edge density would have

been an alternative approach for this challenge in the previous studies

(Van Wijk, Stam, & Daffertshofer, 2010), it seems impossible as our

high-resolution network is very sparse and would easily lose local

structures if connections were removed to yield a fixed edge density

or thresholds across subjects. That is also the reason why we only use

the binary high-resolution structural connectivity without

thresholding to get global network properties. To avoid overfitting for

the surgery outcome prediction, we used the k-fold cross-validation

method. However, it also has a big risk of overfitting if the group size

is small. More patients should be included in the following analysis to

examine results further. Evidence has shown the left TLE patients

showed larger differences compared to controls than right TLE

(Ahmadi et al., 2009; Besson, Dinkelacker, et al., 2014). To balance the

left/right effects, we tried to mitigate this by ensuring the proportion

of left and right patients in each duration/outcome group were similar

(p = 0.335/0.947, Supplementary Table S2). Besides, the group differ-

ences were weighted by the sample size of the left and right TLE

patients. Nevertheless, the left/right side bias still exists. Future stud-

ies would analyze group differences further at the high-resolution

level among left-/right-side TLE groups. Finally, we only chose

50,000/25,000/12,500 nodes to generate high-resolution networks

for analysis. Future work may explore more to test which resolutions

are most informative for diagnosis and intervention. Besides, the

whole high-resolution network is also informative, studies may also

focus on the effect of the whole high-resolution network on diseases

in the next step.

4.6 | Conclusion

In conclusion, TLE patients show characteristic changes in their struc-

tural connectivity within regions based on a high-resolution network.

The ipsilateral PREC and the contralateral SMAR gyrus showed large

topological changes and some regions, such as the ipsilateral BSTS,

PTRI, and contralateral CAC, CMF, LOF, were good predictors of sur-

gery outcome. Specially, ipsilateral INS and contralateral LOF, PORB

showed both duration-related changes and good outcome predictive

power. Such areas with local connectivity changes might be candi-

dates for surgery in medically intractable epilepsy. Indeed, within-area

connectivity was a better predictor of surgery outcome (mean:

95.39% accuracy) than connectivity changes between regions.
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