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a b s t r a c t 

Natural vision engages a wide range of higher-level regions that integrate visual information over the large- 
scale brain network. How interareal connectivity reconfigures during the processing of ongoing natural visual 
scenes and how these dynamic functional changes relate to the underlaying anatomical links between regions is 
not well understood. Here, we hypothesized that macaque visual brain regions are poly-functional sharing the 
capacity to change their configuration state depending on the nature of visual input. To address this hypothesis, 
we reconstructed networks from in-vivo diffusion-weighted imaging (DWI) and functional magnetic resonance 
imaging (fMRI) data obtained in four alert macaque monkeys viewing naturalistic movie scenes. At first, we 
characterized network properties and found greater interhemispheric density and greater inter-subject variability 
in free-viewing networks as compared to structural networks. From the structural connectivity, we then captured 
modules on which we identified hubs during free-viewing that formed a widespread visuo-saccadic network across 
frontal (FEF, 46v), parietal (LIP, Tpt), and occipitotemporal modules (MT, V4, TEm), and that excluded primary 
visual cortex. Inter-subject variability of well-connected hubs reflected subject-specific configurations that largely 
recruited occipito-parietal and frontal modules. Across the cerebral hemispheres, free-viewing networks showed 
higher correlations among long-distance brain regions as compared to structural networks. From these findings, 
we hypothesized that long-distance interareal connectivity could reconfigure depending on the ongoing changes 
in visual scenes. Testing this hypothesis by applying temporally resolved functional connectivity we observed 
that many structurally defined areas (such as areas V4, MT/MST and LIP) were poly-functional as they were 
recruited as hub members of multiple network states that changed during the presentation of scenes containing 
objects, motion, faces, and actions. We suggest that functional flexibility in macaque macroscale brain networks 
is required for the efficient interareal communication during active natural vision. To further promote the use of 
naturalistic free-viewing paradigms and increase the development of macaque neuroimaging resources, we share 
our datasets in the PRIME-DE consortium. 
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. Introduction 

During natural vision, the brain is in a high dynamical state gen-
rating perception and action from the collective interactions among
idespread brain areas. Interareal interactions can be studied by mea-

uring the temporal correlation between BOLD signals of any pair of
rain areas. These interactions are known to fluctuate between states
f high and low connectivity strength over time and relate to patterns
f synchrony over the macroscale brain network ( Zalesky et al., 2014 ).
ow these state fluctuations relate to internal or external triggers for

econfiguration remains challenging to infer via resting-state paradigms
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uring dynamic natural vision. 

Recently, an increasing number of studies, in both human and mon-
eys, began to implement naturalistic viewing paradigms for map-
ing whole-brain activity with rich temporal dynamics ( Bartels and
eki, 2004 ; Bartels et al., 2008 ; Hung et al., 2015 ; McMahon et al.,
015 ; Russ and Leopold, 2015 ; Russ et al., 2016 ). In humans, stud-
es using the naturalistic free-viewing paradigm demonstrated the
igh degree of similarity between activation maps obtained during
ovie viewing and maps obtained with controlled fixation ( Bartels and
eki, 2004 ; Bartels et al., 2008 ). Additional studies demonstrated how
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Fig. 1. Analytical framework for construct- 

ing free-viewing and structural networks. 

A . Workflow for the acquisition of structural 
T1, T2, DWI, and fMRI datasets. All data was 
approximately acquired within less than two 
hours of scanning time (see Supplementary 

Fig. 1 for the complete pipeline). B . Prelimi- 
nary assessment of the quality of the dataset 
prior to construction of structural and func- 
tional networks. The NHP-specific parcellation 
was obtained from the D99 atlas (left), while 
functional data was initially assessed via stan- 
dard GLM analysis (middle). The bundle trac- 
tography of the visual cortex was also assessed 
prior to the construction of structural networks 
as a strategy to evaluate the quality of dif- 
fusion data obtained during the awake state 
(right, see Supplementary Fig. 6 and Supple- 

mentary Fig. 7 for example subject data). C . 
Following preliminary analyses, we then build 
three types of networks: Dynamic free-viewing 
networks, static-free viewing networks, and 
structural networks. Dynamic free-viewing net- 
works were obtained over 18 ‑sec temporal win- 
dow partitions, while average free-viewing net- 
works were obtained over the whole time series 
of regional pairs ( i) and ( j) . Structural networks 
were obtained from the number of streamlines 
( n > 10) that connected any pair of regions ( i) 
and ( j) . 
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unctional connectivity patterns were synchronized across individuals
atching the same movie scenes ( Hasson et al., 2004 ; Lahnakoski et al.,
012 ), further highlighting the reliability and effectiveness of the
pproach. 

Comparative research between humans’ and macaques’ watching the
ame movies identified homologous and divergent brain regions across
rimate species ( Betti et al., 2013 ; Mantini et al., 2012 ), with more de-
ailed mapping revealing a previously unknown predominance of vi-
ual motion in areas well-described for face processing in the macaque
 Russ and Leopold, 2015 ; Russ et al., 2016 ), and similarly in the hu-
an brain ( Hasson et al., 2004 ). Moreover, recent studies ( Russ and

eopold, 2015 ; Sliwa and Freiwald, 2017 ) highlighted how the free-
iewing paradigm can be used for mapping specialized functional re-
ions of the inferotemporal cortex and beyond. 

In this study, we build subject-specific macaque brain networks that
ely on the interareal interactions present during movie watching. From
he recent network studies in humans demonstrating the reconfiguration
f inferotemporal networks during the viewing of faces ( Rosenthal et al.,
017 ) and from the recent free-viewing studies in NHPs reviewed above
e hypothesized that macaque brain networks– including those from

he inferotemporal cortex–are more poly-functional in their represen-
ational state than previously conveyed with trial-by-trial designs. To
apture dynamical changes in networks we evaluated time-varying
unctional connectivity using a sliding window across the time-series
 Fig. 1 ). Prior to assessing dynamic functional connectivity, we first
aptured the static state of the network via diffusion tractography
 Bassett and Sporns, 2017 ; Bullmore and Sporns, 2009 ). Furthermore,
e characterized networks and identified a widespread visuo-saccadic
etwork with central hubs connecting over long-range distances. From
hese results we hypothesized that long-distance hub regions could re-
onfigure depending on the ongoing changes in visual scenes. Depart-
ng from the static structure and via time-varying functional connec-
2 
ivity we captured dynamical changes in interareal interactions across
ortico-cortical and thalamocortical areas during each main scene. In
he discussion, we relate our findings with the well-known functional
nd anatomical properties of the macaque visual system and discuss
ow natural-viewing paradigms in NHPs combined with network neuro-
cience can provide new insights into the nature of macroscale cognitive
ystems during active natural vision. 

. Materials and methods 

.1. Subjects 

Four female rhesus monkeys ( Macaca mulatta ) were used to obtain
ll neuroimaging data; (VL, six years of age, weighing 7 kg; DP, six
ears of age, weighing 9 kg; FL 4 years of age, weighting 6 kg; AL, five
ears of age, weighing 9 kg). All animals were socially housed in an
nvironmentally enriched home cage. 

An essential facet of NHP neuroimaging, as opposed to human neu-
oimaging, is the requirement for head stabilization during data acquisi-
ion. Head stabilization in NHPs requires head post implants. Crucially,
he size and material of implants affect the quality of echo-planar im-
ges near the implantation region, which further affects the reliabil-
ty and construction of whole-brain networks from imaging data. Here,
e applied a customized head-post implant procedure and obtained
istortion-free MR images of the entire brain. All surgical and anesthesia
rocedures, postoperative care, and implant methods were described in
revious work ( Ortiz-Rios et al., 2018 ). 

The UK Home Office approved all procedures, complying with the
nimal Scientific Procedures Act (1986) for the care and use of animals

n research and the European Directive on protecting animals used in
esearch (2010/63/EU). 
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.2. Awake macaque neuroimaging 

Before data acquisition, we trained monkeys to voluntarily approach
he inside of a wooden box from which they learned to enter a cylindri-
al MRI-compatible chair. Using positive reinforcement techniques, we
rained animals to lift their heads outside of the chair and to remain
alm in the chair. 

Once habituated, we exposed the animals to the scanner environ-
ent and trained them to remain calm. Acclimatization within the scan-
er took one month to accomplish. Once animals were implanted and
omfortable with the procedure, their heads were immobilized to the
RI chair using a PEEK head holder after two months post-implantation.
e protected the monkey’s hearing from the scanner noise by using

tandard ear muffs. During the scanning period, animals remained calm
hile watching five minutes movie clips. Typically, while being trained
r scanned in the absence of any visual stimulation, in darkness, or dur-
ng anatomical scanning, animals remained calm or in a sleep-relaxed
ondition. Acclimatizing the macaques for awake imaging took approx-
mately three months to accomplish. 

.2.1. Stimuli presentation 

A 45-degree angled back-projection mirror system was used to dis-
lay all movie stimuli. A projector (NEC NP1150) displayed images onto
 screen (size: 35 length × 32 width cm) placed at a distance of 73.5 cm
rom the center of the monkey’s head. The projection created a visual
eld of 26 × 24° of visual angle. 

An infrared-based eye-tracking system (iView, SensoMotoric In-
truments GmbH, Teltow, Germany) received video signals from an
RI-compatible camera (12M-I with integrated LED, MRC Systems,
mbH) placed behind a mirror in front of the animal’s eye. An
nalog-to-digital conversion card (NI-USB 6212- BNC, National Instru-
ents) then sampled the analog signal from the eye-tracker. Addition-

lly, we used the digital-to-analog output from the NI-card to con-
rol the reward system and trigger data acquisition. MWorks software
 https://mworks.github.io ) installed on a MacMini computer (2.8 GHz,
ore i5) managed the NI-card for controlling all peripheral devices. 

.2.2. Movie experiment one 

The initial movie clips contained unfamiliar visual scenes with
go-perspective camera motion. For example, the movie clips showed
n ego perspective of a human driving a bike across rough terrain
 https://zenodo.org/record/5026036#.YTINgC2Q2uU . The following
wo segments showed two human individuals climbing a transmission
ower tower. We presented five movie clips (30 sec on and OFF) lasting
 total of five minutes within an imaging run. During the OFF period,
he screen remained dark. To avoid jaw movements, we opted for no
eward delivery during the scan. Instead, we delivered a juice reward
o the animal after the movie and acquisition period ended. For com-
arisons, the movie content was kept constant across repetitions and
essions, allowing us to relate connectivity patterns across all subjects. 

.2.3. Movie experiment two 

For the second series of free-viewing experiments, each movie seg-
ent lasted 30 s, followed by a dark interval period of 15 s. We pre-

ented twenty-five movie segments in a run which lasted ∼20 min. We
odified each movie category to control for low-level visual features on
 frame-by-frame basis. For the phase scrambling, the original frames
ere Fourier transformed using Matlab. The phase was then random-

zed and added to the initial phase. We calculated the inverse Fourier
ver the transformed data to generate an image. For the additional con-
rols, we used the Matlab functions randblock for tile scrambling, the
pectral visual saliency toolbox to create saliency contour images, and the
pticalFlow Matlab function to create vector motion direction on each

rame. 
3 
.3. Multimodal data acquisition 

We used a 4.7 Tesla vertical magnet running ParaVision 5.1 (Bruker,
ioSpin GmbH, Ettlingen, Germany) and equipped with a 4-channel
hase-array coil ( https://www.wkscientific.com ) for data acquisition.
ll neuroimaging data was based on three sequence types: 1) Diffusion-
eighted imaging (DWI) for tractography, 2) echo-planar imaging (EPI)

or functional imaging, and 3) 3D-modified driven equilibrium Fourier
ransform (MDEFT) for anatomical imaging (see Supplementary Table

 ). 

.4. Overall pipeline workflow for the analyses of multimodal imaging data

We illustrate the complete workflow of data pre-processing and
nalyses for constructing networks in Supplementary Fig. 1 . The
ipeline consisted of two pre-processing steps for each dataset type:
1 (blue in steps 1–4), DWI (green 5–7), and EPI (red in steps
–10). The final output of the pre-processing pipeline provided
tructural (magenta in step 7) and free-viewing networks (pink in
tep 11). All pre-processing analyses were performed using open
oftware provided in the packages of AFNI ( Cox, 1996 ), SUMA
 Saad et al., 2004 ) and Freesurfer ( Dale et al., 1999 ). Connectivity
nd network measures were performed using the Brain Connec-
ivity Toolbox (BCT) ( https://sites.google.com/site/bctnet/Home
nd the Network analysis and visualization toolbox in Matlab
ttps://uk.mathworks.com/help/bioinfo/network-analysis-and- 
isualization-1.html ). 

.5. Anatomical data pre-processing and atlas parcellation 

The in-session T1 volume was warped into the D99
 Reveley et al., 2017 ) atlas generating a surrogate brain. We used
he align_macaque_script (Step 1) to generate all atlas files. We then
ptimize small ROIs for network construction. For white matter
egmentation (Step 2), we used the command 

3dSeg -anat “input.nii ” -mask AUTO -classes output.nii -bias_classes “out-

ut.ni ” -bias_fwhm 25 -mixfrac UNI -main_N 5 -blur_meth BFT, to obtain
 white matter (WM) mask. The output from the align_macaque_script

ncluded the atlas ROIs parcellation of the D99 template (Step 3). To
egment the cortical gray matter, we binarized the D99 atlas using the
rograms 3dAutomask and 3dcalc (Step 4). To generate a rendered white,
ial (Step 5), and inflated surfaces (Step 6), we provided the masks to
reeSurfer for rendering. For displaying the ROIs on the brain surface,
e first created a color mappable .niml file of the atlas volume using

he command, 
3dVol2Surf -spec input.spec -surf_A lh.surface.gii -sv input.nii -

rid_parent rois.nii -use_norms -norm_len 2.5 -map_func max -f_steps 10 -

_index nodes -out_niml Lh.output.niml.dset. 

We then display the activation results in SUMA along with ROIs con-
ours. 

.6. fMRI data pre-processing 

fMRI data was pre-processed using (Analyses of functional
euroimages–AFNI). Time series preprocessing (Step 8) included: slice-
iming correction, motion correction, spatial smoothing, and normal-
zation (a voxel-by-voxel scaling of the time series by the mean). Slice-
iming differences were corrected from the fMRI time-series using the
ommand 

3dTshift -tzero 0 -prefix “output.nii ” “input.nii ”. 
The potential occurrence of spikes–transient artifacts often caused by

mall electrical discharges or movement–were detected using the com-
and, 

3dDespike -NEW25 -localedit -prefix “output.nii ” “input.nii ”. 
For despiking, we fitted a linear regression curve into the time series

nd calculated the mean absolute deviation (MAD) of the residuals. The

https://mworks.github.io
https://zenodo.org/record/5026036\043.YTINgC2Q2uU
https://www.wkscientific.com
https://sites.google.com/site/bctnet/Home
https://uk.mathworks.com/help/bioinfo/network-analysis-and-visualization-1.html
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raction of outliers was then calculated from the time series using the
ommand, 

3dToutcount -automask “input.nii ” > “output.1D ”. 
Next, we performed motion correction by first calculating a mean

aseline volume using the command, 
3dTstat -prefix “epi.mean.nii ” “input.nii ”. 
We then proceeded with motion correction with the command, 
3dvolreg -verbose -base “epi.mean.nii ” -dfile “output.1D ” -prefix “out-

ut.nii ” “input.nii ”. 

3dvolreg applied a rigid body transformation with six motion param-
ters (three translations and three rotations) to each time-point in the
ime series to match the voxelwise mean. The output of 3dvorleg pro-
ided motion parameters (output.1D file) which were used in the re-
ression analyses as nuances of no-interest. Using the python script, 

1d_tool.py -infile input.1D -set_nruns 1 -show_censor_count -overwrite -

ensor_motion 0.5 “output.1D ”, we detected motion shifts greater than
.5 mm and rotations greater than 0.5 °. The output time-series included
ore than 98% of the volumes since movement deviations were minimal

r non-detectable. From the motion parameters, we calculated deriva-
ives using the command, 

1d_tool.py -infile “input.1D ” -set_run_lengths 200 -set_tr 1.5 -
erivative -overwrite -write “output.1D ”. 

To improve the signal-to-noise ratio and to reduce anatomical dif-
erences, we performed spatial smoothing by convoluting a Gaussian
ernel filter with a size of 2.4 mm full-width-half-max (FWHM). The
ommand, 

3dmerge − 1blur_fwhm 2.4 -doall -prefix “output ” “input ”, was used for
n-volume spatial smoothing, and the output data was used for visual-
zation. We created a brain mask using the command, 

3dAutomask -peels 5 -prefix “output.nii ” “input.nii ”, allowing the re-
oval of surrounding non-brain tissue and enabling the selection of

rain voxels from the time series. Next, we calculated a mean EPI from
he skull-stripping datasets for each run and calculated a grand average
ean EPI for all the in-session data. We then used the mean EPI to cal-

ulate a non-linear warp between the mean EPI data and the in-session
natomy using the command, 

3dQwarp -source “input.anat.nii ” -base “input mean.EPI.nii ” -prefix

output.nii ” -mi -verb -iwarp mi -blur 0 3 -Qfinal -verb -blur 0. 

The inverse transformation warp was then applied to the original
ime series using the command, 

3dNwarpApply -nwarp “WARPINV.nii ” -source “input.nii ” -master “in-

ut.nii ” -prefix “output.nii ”. 

After non-linear alignment, all data was then ready for the first pass
egression and general linear modeling using 3dDeconvolve . 

.7. General linear-modeling (GLM) analyses 

For the first series of experiments, we presented two movie segments
artitioned into five movie clips. Each segment lasted 30 s, followed by
 30 s period of no visual stimulation (darkness). We presented five
ovie segments (30 s each) within a run total of 5 min per scan (300 s,
.5 s TR, n vol = 200). For the input dataset to 3dDeconvolve(Step 9),
e provided the detrended time-series and then applied ordinary least

quares to a regression model of the BOLD signal, which included a
amma variate block design of the hemodynamic response to the movie
eriod. We performed general linear T-tests between movie periods and
he baseline/blank period to assess functional activation. Stimulus times
ere created with the script ( make_stim_times.py ) and included the vol-
mes assigned to movie and baseline (e.g., 30 s ON/ TR = 1.5 s = 20
ol ones and 20 vol zeros). To visualize the block design, we used the
ommands ( 3dDeconvolve and 1dplot) . General linear modeling was per-
ormed using ( 3dDeconvolve ) and the output visualized within AFNI for
valuation of functional activation. The threshold was chosen as sig-
ificant t-value (T-value colormap range 2.3 < 10) and at a corrected
ange for false discovery rate (FDR q value < 0.05). We confirmed sig-
ificant activation across visual and higher-visual-related regions in all
4 
our macaque monkeys ( Supplementary Fig.2A ). GLM analyses were
erformed during data acquisition to evaluate the significance of BOLD
esponse and to decide whether or not more data was needed. Overall,
e observed a classical general pattern of activation in all four macaque
onkeys, similarly to previous reports on NHPs visual fMRI experiments

 Goense et al., 2012 ; Logothetis et al., 1999 ). 

.8. Diffusion data pre-processing 

For the DWI data, we first corrected the volumes for slice-timing
ifferences using the command, 

3dTshift -tzero 0 -prefix input.nii. 

We then averaged the five-volume repetitions on each dataset using
he command, 

3dcalc -a input.nii’[0..63]’ -b input.nii’[64..127]’ -c in-

ut.nii’[128..191]’ -d input.nii’[192..255]’ input.nii’[256..319]’ -expr

(a + b + c + d + e)/5 ′ -prefix “output.nii ”. 

The average dataset was then aligned to a reference image using the
ommand, 

3dAllineate -base “input.nii[0]’ -input.nii -prefix output.nii -cost mi -verb

EPI . 
We then selected the 64 directional data using the command, 
3dcalc -a input.nii’ [3..63]’ -expr ’a’ -prefix output.nii, and entered the

utput into 3dDWItoDT (Step 5) to compute the six directional vectors
Dxx, Dxy, Dyy, Dxz, Dyz, and Dzz) and reference gradient vectors (Gxi,
yi, and Gzi). With the command, 

3dDWItoDT -prefix output.nii -automask -reweight -verbose 100 -

ep_dsets -eigs bvecs input.nii, we obtained all vectors. Additionally,
dDWItoDT provided eigenvalues (L1, L2, and L3), eigenvectors (V1, V2,
nd V3), fractional anisotropy (FA), mean diffusivity (MD), and radial
iffusivity (RD). We transformed the FA data into an RGB color-coded
ap using the command, 

3dThreetoRGB -prefix output.nii -anat input.nii’[0]’ . 
The image shows the color-coded FA and overall white matter fiber

undles of each monkey ( Supplementary Fig.2B ). We then computed
he uncertainty via jackknife of DTI estimates on-voxel-by-voxel basis
sing the command, 

3dDWUncert -inset input.nii -mask input.nii -prefix output.nii -

nput.tensors -grads bvecs -iters 50 . 
To render the streamline tracts from the visual cortex we tracked

hite matter bundle pathways with the program 3dTrackID (Step 6).
dTrackID is based on the fiber assessment by continuous tracking, in-
luding diagonals ( Taylor and Saad, 2013 ). For diffusion tractography,
e implemented the command, 

3dTrackID -mode MINIP -dti_in DTI.tensors -dti_extra mask.input.nii -

etrois input.rois.nii -logic AND -mini_num 5 -uncert input.nii -alg_Thresh_FA

.45 -prefix output.nii 

To track visual bundles, a pair of ROIS were selected of the same
emisphere from the atlas via their numerical index. We used the LGN as
 source and V1 as a target ROI for tracking the optic radiation. To track
he forceps major pathway, we selected V1 ROIS on both hemispheres,
eft V1 as a source and right V1 as a target (see Supplementary Fig.6

nd 7 ). 

.9. Independent component analysis (ICA) 

To reveal functional patterns during free-viewing we used in-
ependent component analysis (ICA) using the Multivariate Ex-
loratory Linear Optimized Decomposition into Independent Compo-
ents (MELODIC: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC ) of the
SL package. ICA estimates the consistency of a set of spatially and tem-
orally overlapping components over the fMRI time series. Components
ight consist of meaningful organizing patterns such as those typically
easured during resting state conditions in addition to other artifac-

ual effects such as head motion, heart pulsation, or respiration, each
arrying an independent spatial pattern and time course. We aimed at

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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apping the overall pattern during free-viewing from the spatiotempo-
ally rich signals. The MELODIC ICA algorithm attempts to segregate
he spatial overlap between the components based on the independence
f the fMRI-BOLD signals. ICA is a “model-free ” algorithm that aims to
etect cortical and subcortical responses prevalent among a cluster of
oxels, instead of the classical modeled BOLD response for comparing
he fMRI signal. Previous NHPs studies suggested that the optimal num-
er of components lies within the range of 20–30 independent compo-
ents for RS-fMRI data ( Mantini et al., 2012 ). Here we mainly aimed at
eplicating our previous results with GLM but with ICA. All runs across
onkeys showed the predominance of the free-viewing pattern and the
odulation of the BOLD signal by block design as the leading first com-
onent detected, explaining 7–14% of the variance (see Supplementary

ig.3 and Supplementary Table 2 ). 

.10. Temporal signal-to-noise ratio 

To demonstrate the quality of the awake macaque EPI data, we cal-
ulated the temporal signal-to-noise ratio (tSNR). The tSNR is the mean
ignal divided by the standard deviation of the signal over the voxel
ime series ( Welvaert and Rosseel, 2013 ). We used the command, 

3dTstat -tsnr -prefix output.nii input.nii to calculate the tSNR on
he minimally preprocessed time series (e.g., after alignment to the
natomy). The temporal tSNR maps ranged between 0 and 100 for easy
isual comparison across subjects ( Supplementary Fig. 4 ). Addition-
lly, we calculated the mean tSNR for each run acquisition which ranged
etween 46–82 across subjects and runs (see Supplementary Table 2

or details). In general, the maps show high tSNR across gray matter
tructures, with more tSNR in temporal regions that were closer to the
hase-array coil loops. 

.11. Coherence analyses 

An additional useful model-free approach for mapping functional ac-
ivation is the measured of coherence between the BOLD response to the
timulation frequency. Coherence measures the amplitude ratio at the
undamental stimulation frequency to the signal variance, ranging be-
ween 0 and 1 ( Brewer et al., 2002 ). The measure of coherence is, 

 

(
𝑓 0 
)
= 𝐴 

(
𝑓 0 
)
∕ ( 

𝑓 0 + 
Δ𝑓 
2 ∑

𝑓= 𝑓 0 − 
Δ𝑓 
2 

𝐴 ( 𝑓 ) 2 ) 
1 
2 

here, 𝑓 0 is the stimulus frequency, 𝐴 ( 𝑓 0 ) the amplitude of the sig-
al at that frequency, 𝐴 ( 𝑓 ) the amplitude of the harmonic term at the
oxel temporal frequency 𝑓 and Δ𝑓 the bandwidth of frequencies in cy-
les/scan around the fundamental frequency 𝑓 0 . For all movie stimuli,
 0 corresponds to one cycle (1/60 s = 0.016 Hz), and Δ𝑓 corresponds to
he frequencies around the fundamental (see Supplementary Fig. 6B ).

e choose a threshold at a coherence level > 0.35. For all monkeys, the
ovie scenes within a single 5-minute-long scan (2 scan repetitions)

licited a significant BOLD response modulation (coherence > 0.35) in
 large number of cortical areas, including occipital, temporal, parietal,
nd frontal regions ( Supplementary Fig. 6C and 7A ). 

.12. Construction of free-viewing networks 

In contrast to functional mapping analyses, network analyses enable
he detection of regional hubs. Specialized regions that might become
ore relevant than others during the viewing of visual scenes. Towards

his end, we construct free-viewing networks (see Fig. 1 C and Supple-

entary Fig. 1 ) via the individualized brain parcellations of the D99
acaque brain atlas ( Reveley et al., 2017 ). First, we obtained regional

ime series using the program (3dNetCorr). Next, we down-sampled the
natomical-based regions to match the underlying EPI 3D-grid (3dFrac-
ionize) and used each ROI to get the mean time series. The time series
5 
utput from 3dNetCorr was then read into Matlab for connectivity mea-
ures. For movie one, the time-series were analyzed for both visual and
ark periods. 

Previous studies in humans have utilized the maximal over-
ap discrete wavelet transform (MODWT) for connectivity stud-
es of resting-state fMRI and task-based conditions. Similarly, we
sed the MODWT to decompose each mean regional time se-
ies into wavelet scales corresponding to specific frequency bands
Sizemore and Bassett, 2018). The time-series were decomposed
nto wavelets using the orthogonal Daubechies wavelet function
 https://uk.mathworks.com/help/wavelet/ref/modwt.html ), which re-
ulted in five-level decompositions ranging from 0.001 to 0.25 Hz. We
oncentrated on two levels (0.125–0.06) and (0.06–0.03), since hemo-
ynamic events occurred within the movie viewing periods and at a
elatively low-frequency range of 6 to 24 s. To demonstrate level de-
ompositions, we constructed each matrix across the different wavelet
evels ( Supplementary Fig. 5 ). Overall, the network pattern remained
cross much of the level decompositions with the noise level increasing
or higher frequency levels and decreasing for lower frequency levels.
he correlation coefficients between the original matrix and levels 2 and
 were highest, while lowest for high-frequency (level 5). 

From the low frequency (0.125–0.03) fMRI signals, we then com-
uted the temporal correlation between the activity of each pair of brain
egions over the whole time series (e.g., average free-viewing networks).
he weighted matrices ( Fig. 2 A ) for each NHP subject were based on
he absolute value in the pairwise correlations among regions. Impor-
antly to consider when building functional networks is the potential of
mall non-zero values in the matrices, which may reflect the measure-
ent of noise rather than the presence of an actual correlation ( van Wijk

t al., 2010 ). To overcome this potential issue, we applied a false dis-
overy rate threshold (FDR p-value < 0.01) to the undirected adjacency
atrices, ( A 𝑖𝑗 ) to determine which connections should be kept in the
atrices. 

𝐴 𝑖𝑗 

)
= { 𝐶 𝑖𝑗 𝑖𝑓 𝐶 𝑖𝑗 > 𝑡, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Using this threshold, the edges of ( 𝐶 𝑖𝑗 ) are a subset of the edges in
 𝐴 𝑖𝑗 ) . Subsequently, we mostly relied on the Brain Connectivity Tool-
ox ( https://sites.google.com/site/bctnet/measures/list ) to character-
ze network properties from the binarized matrices. 

.13. Construction of structural networks 

The program 3dTrackID (Step 7) tracked DTI tensors along a pair of
OIs from the D99 atlas and provided the structural matrix. The output
atrix from 3dTrackID is based on the number of streamlines touching

ach pair of ROIs. For creating structural networks, we detected the
umber of streamlines ( n > 10) that connected any pair of regions i and
 . We then arranged the logarithmically scaled number of streamlines
n a 184 × 184 connectivity matrix ( 𝐴𝑖𝑗 ) of brain regions ( Fig. 2 B ) for
ach NHP subject. For characterizing the matrices and for subsequent
etwork measures we used the binarized matrix. 

.14. Modularity of structural networks 

We calculated network modularity ( 𝑄 ) via a hierarchical consensus
lgorithm. To calculate ( 𝑄 ) maximization, we compare the adjacency
atrix ( 𝐴 𝑖𝑗 ) with the expected null connectivity model ( 𝑃 𝑖𝑗 ) , where

arger ( 𝑄 ) values indicate higher quality. The data-driven approach al-
ows grouping nodes into modules that show high internal density as
ould maximally be expected from the null model. Consensus modular-

ty ( 𝑄 ) is defined as: 

 

(
𝑦, 
{
𝑔 𝑖 
})

= 

∑
𝑖𝑗 

[
𝐴 𝑖𝑗 − 𝛾𝑃 𝑖𝑗 

][
𝛿( 𝑔 𝑖,𝑔 𝑗 ) 

]

here 𝛾 is the resolution parameter used for optimization; 𝑔 𝑖 𝜖{ 1 , … , 𝐶 }
s the module assignment of node 𝑖 , where the Kronecker delta function

https://uk.mathworks.com/help/wavelet/ref/modwt.html
https://sites.google.com/site/bctnet/measures/list
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Fig. 2. Moderate relationship between free- 

viewing and structural networks. A . Subject- 
specific, average free-viewing matrices, show 

the absolute correlation coefficient between 
every pair of mean time series from each 
ROI. B . Static structural matrices for each 
macaque monkey. C . Matrix showing the re- 
lationship between-subject structural (inter- 
subject, upper right quadrant) and between- 
subject free-viewing networks (intersubject, 
lower left quadrant). The matrix shows the 
Spearman correlation coefficients (r) between 
pairs of matrices. Notice how the similarity and 
correlations among structural networks is rela- 
tively closer in comparison to free-viewing net- 
works which showed more variance and rel- 
atively lower correlations. The diagonal high- 
lights (white squares) the correlation within 
the same subject but across network types (e.g., 
within subject free-viewing networks versus 
structural networks or intrasubject). D . Aver- 
age structural connectivity showing the log- 
arithmic number of streamlines touching ev- 
ery pair of ROIs for both hemispheres. E . Av- 
erage free-viewing matrix (184 × 184) ma- 
trix taken across subjects ( n = 4). F . Scat- 
ter plot of correlation coefficients between av- 
erage structural network and average free- 
viewing network with linear regression fit line 
(red) and 95% prediction interval (shaded gray 
area) showing a moderate positive correlation 
(Spearman’s r = 0.37). 
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( 𝑔 𝑖 , 𝑔 𝑗 ) equals one, if nodes 𝑖 and 𝑗 belong to the same module ( 𝑔 𝑖 = 𝑔 𝑗 ).
he function ensures the total weight of within-module edges is less than
hat of the null model. We used the multiresolution consensus function
o calculate modularity ( Jeub et al., 2018 ) ( https://github.com/LJeub/
ierarchicalConsensus ). 

.15. Centrality in free-viewing networks 

To find the most critical–or central–regions in the network, we calcu-
ated eigenvector centrality (EC) for each brain region ( Lohmann et al.,
010 ). Eigenvector centrality (EC) measures the degree of a node’s influ-
nce in the network by scoring the node’s eigenvalue. A high eigen value
ndicates that the node is well-connected to many other well-connected
odes. For the threshold matrix ( 𝐶 𝑖𝑗 ) , let 𝑥 𝑖 be the eigenvector centrality
f node 𝑖 and 𝜆 largest eigenvalue and 𝑥 the corresponding eigenvector.
igenvector centrality is defined as, 

 𝑖 = 

1 
𝜆

𝑛 ∑
𝑗=1 

𝐶 𝑖𝑗 𝑥 𝑗 
6 
he proportional factor 1 
𝜆
, is such that 𝑥 𝑖 is proportional to the

um of similarity scores of all connected nodes. We used the Brain
onnectivity Toolbox to calculate eigenvector centrality. The MAT-
AB function is available at the Brain Connectivity Toolbox website
 https://sites.google.com/site/bctnet/measures/list ). 

.16. Time-varying functional connectivity of free-viewing networks 

Time-varying functional connectivity was estimated using the multi-
lication of temporal derivatives (MTD), which calculates each sample
roduct of temporal derivatives for pairwise time series ( Shine et al.,
015 ). For each time point 𝑡 , the MTD is defined for the pairwise inter-
ction between region 𝑖 and 𝑗, 

𝑇 𝑆 𝑖𝑗𝑡 = 

1 
𝑤 

𝑡 + 𝑤 ∑
𝑡 

(
𝑑 𝑡 𝑖𝑡 × 𝑑 𝑡 𝑗𝑡 

)
(
𝜎𝑑 𝑡 𝑖 

× 𝜎𝑑 𝑡 𝑗 
)

here 𝑑𝑡 is the first temporal derivative of either 𝑖 and 𝑗 at time 𝑡 , and 𝜎
s the standard deviation of the temporal derivative for time series 𝑖 and

https://github.com/LJeub/HierarchicalConsensus
https://sites.google.com/site/bctnet/measures/list
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, and 𝑤 is the window length (n samples = 12 × 1.5 TR = 18 s) of the
oving average. For epoch specific periods, we average over matrices
oints of the presentation period. See coupling for more details ( https:
/github.com/macshine/coupling/ ). 

. Results 

In the present study, we characterize the macaque functional brain
onnectivity and its relationship with the underlying neuroanatomy.
rom the structural connectivity, we evaluate the static architecture of
ach NHP network, while from the functional connectivity we aim at
rst assessing the average functional connectivity (Experiment movie
) and then the dynamic functional connectivity (Experiment movie 2,
ee Fig. 1 ). Prior to the implementation of time-varying functional con-
ectivity, we characterized the properties for each NHP subject network
ithin and across hemispheres. 

.1. Moderate relationship between free-viewing networks and structural 

euroanatomy 

The connectivity matrix forms the basis of all network measures and
s essential to quantify its properties prior to additional measures. To
uantify free-viewing matrices of each NHP ( Fig. 2 A ), we calculated
etwork density ( 𝜌) , which is proportional and varies between zero and
ne, where 𝜌 = 0 indicates no connection available, while 𝜌 = 1 indicates
hat all possible connections exist, and 0 < 𝜌 < 1 represents the fraction
f all possible connections that are present in the network. We summa-
ize all density measures for each monkey and for each hemisphere of
oth free-viewing and structural networks in Supplementary Table 3 . 

For free-viewing matrices, the density from half of the matrix cor-
esponding to the left hemisphere was similarly dense as that of right
emispheres (Lh, 𝜇 = 0.16, ± 𝜎 = 0.01; Rh, 𝜇 = 0.21, ± 𝜎, = 0.05).
he density over the whole brain ( 𝜇 = 0.17; 𝜎 = 0.03) did not differ

argely from the connectivity density of a single hemisphere alone, in-
icating the existence of similar functional properties in both left and
ight hemispheres. Such symmetrical features in the network could also
e appreciated from visual inspection of the free-viewing connectivity
atrices of each NHPs subject. 

In contrast, the density of structural networks showed higher
ntrahemispheric density ( 𝜌) (Lh, 𝜇 = 0.42, ± 𝜎 = 0.03; Rh,
= 0.40, ± 𝜎 = 0.04) as compared to the total density when sampling

oth hemispheres (both; 𝜇 = 0.28, ± 𝜎 = 0.02). Such smaller connection
ensity across hemispheres (interhemispheric) than within the hemi-
phere (intrahemispheric) largely reflected the smaller number of large
istance streamlines passing through the corpus callosum. The smaller
nterhemispheric connections in structural networks could also be ap-
reciated from visual inspection of the matrices of each NHP subject
 Fig. 2 B ). Similar results were described in human anatomical brain
etworks derived from DTI ( Bonilha et al., 2015 ). 

To better estimate the similarities or differences among free-viewing
nd structural networks, we calculated the Spearman correlation co-
fficient ( 𝑟 ) between any pair of matrices. The intersubject correla-
ion among structural networks showed high correlations coefficients
see upper right quadrant of the matrix in Fig. 2 C , range of cor-
elation coefficients ( 𝑟 ) = 0.60–0.79) indicating an overall similarity
hared across NHPs structural networks. In contrast, intersubject cor-
elations of free-viewing networks showed relatively lower correlations
see lower left quadrant of the matrix in Fig. 2 C , range of correla-
ion coefficients ( 𝑟 ) = 0.35–0.4) than structural networks, suggesting an
ncreased variability among free-viewing networks. To evaluate intra-
ubject correlations–the correlations between free-viewing and struc-
ural networks of the same subject–we also calculated the Spearman
orrelation coefficient ( 𝑟 ) between matched pairs of structural and func-
ional networks. These comparisons showed relatively low correlations
see diagonal of the matrix in Fig. 2 C , range of correlation coefficients,
7 
 𝑟 ) = 0.26–0.36) between structural and functional networks of the same
ubject indicating stark differences between networks. 

To further evaluate the differences between networks, we extended
ur analyses by evaluating the relationship between function and struc-
ure per node. Towards this end, we averaged all NHP subject structural
atrices into a grand average structural matrix ( Fig. 2 D ) and performed

he same average for free-viewing matrices ( Fig. 2 E ). From the two av-
raged matrices we then computed the correlations per node and fitted
 linear regression line (see Fig. 2 F , Spearman’s r = 0.37, linear fit 95%
rediction interval) which at most indicated a moderate positive rela-
ionship, indicating an imperfect correspondence between structure and
unction in NHP macroscale networks. 

In summary, structural networks show differential connectivity ar-
hitecture as compared to free-viewing networks. We demonstrated a) a
igher interhemispheric density in free-viewing networks as compared
o structural networks, b) denser intrahemispheric connections in struc-
ural than free-viewing networks, c) closer similarity among subjects’
tructural networks, d) greater variability in subjects free-viewing net-
orks and, e) a moderate positive correlation between free-viewing and

tructural networks. 

.2. A closer relationship between free-viewing and structure in visual 

ubnetworks 

To further expand the relationship between free-viewing and struc-
ural networks, we then compared all identified networks with those
btained from available tract-tracing macaque data. Toward this end,
e matched the ROI label nomenclature of the regions from the F99
tlas ( Markov et al., 2014 ), to the D99 ( Reveley et al., 2017 ). We found
welve matching ROIs and used these ROIs to compare networks across
odalities. The average partial matrices ( Fig. 3 A , see Supplementary

ig.13 for each partial monkey matrix) were used to evaluate the rela-
ionship between networks across modalities. The Rho value correlation
etween free-viewing and structural track-tracing networks showed rel-
tively high rho values ( p = 0.7) and similarly to the DTI-based struc-
ural networks ( p = 0.6, see Fig. 3 B ). In contrast, tract-tracing versus
TI-based networks show good correspondence but lower rho values
 p = 0.42). 

The higher correspondence between macaque structural and free-
iewing visual subnetworks highlighted a closer relationship between
tructure and function, largely reflecting an increase in functional con-
ectivity during visual processing of the movie scenes. 

.3. Modularity and centrality reveal hubs within frontoparietal lobules 

orming a visuo-saccadic network 

.3.1. Node degree of structural and free-viewing networks 

A basic principle in network science is understanding how connec-
ivity varies between nodes. A simple calculation is to count the number
f connections each node has with respect to the rest of the network, a
easure called node degree. Node degree ( 𝜅) measures the number of

dges (e.g., number of streamlines in structural networks) of each node
 𝑖 ) with all other nodes ( 𝑗) in the network. In most biological networks,
he distribution of node degree is heterogeneous, with a large number
f nodes sharing a few connections while a smaller number of nodes
ake a large number of connections, making them putative hubs since
he small number of nodes have the potential to integrate information in
he network. We evaluated the cumulative distribution function (CDF)
f node degree ( 𝜅) in structural networks which showed a decay in the
robability of finding a node with high node degree (see Fig. 4 A for av-
rage network and Supplementary Fig. 10 for each independent hemi-
phere). The ( 𝜅) range across macaque structural networks ( 𝜅) was 148–
59. For free-viewing networks, node degree ( 𝜅) ranged between 58–86
cross subjects indicating the existence of a small number of nodes with
 large number of connections (e.g., ∼70 > connections, see Fig. 4 D , for
ach monkey and hemisphere, see Supplementary Fig. 8 ). 

https://github.com/macshine/coupling/


M. Ortiz-Rios, F. Balezeau, M. Haag et al. NeuroImage 244 (2021) 118615 

Fig. 3. Closer relationship between free- 

viewing and structure in visual subnet- 

works A . Partial network matrices: structural 
matrix (based on DTI, left), free-viewing matrix 
(based on fMRI, center), and macaque anatom- 
ical matrix (based on track tracing, right). 
B . (Left) scatter plot of vectorized Log trans- 
formed tract-tracing, and structural-DTI matri- 
ces. The legend shows estimated regression val- 
ues along with rho ( p ) values with the linear 
fit regression line shown in red. (Center) semi- 
log plot for tract-tracing and free-viewing (z- 
scored) and (right) structural-DTI versus free- 
viewing. Notice a higher correlation between 
free-viewing and track-tracing or with DTI- 
based structural subnetworks. 

Fig. 4. Centrality and modularity reveal 

hubs forming a visuo-saccadic network in 

occipito-parietal and frontal modules A . 
Complementary cumulative distribution func- 
tion (cCDF) of node degree of structural net- 
work shows a decrease in the probability of 
finding a highly connected done ( k ), indicating 
the existence of a small number of nodes with 
high connections. B . Co-assignment matrix ob- 
tained from the average structural connectiv- 
ity ( n = 8 hemispheres) and hierarchical den- 
drogram highlights module classification (red 
squares) based on a data-driven Q-value max- 
imization algorithm. C . Modules plotted in 3- 
dimensional space with nodes (visual, occip- 
itotemporal, temporal, occipitoparietal, pari- 
etal, and frontal modules) color-coded accord- 
ing to their modular assignment. D . The com- 
plementary cumulative distribution function 
(cCDF) of node degree of free-viewing net- 
work shows a decrease in the probability of 
finding a highly connected node ( k ), simi- 
larly indicating the existence of a small num- 
ber of nodes with high connections. E . Av- 
erage free-viewing network (92 × 92) matrix 
from each subject and hemisphere ( n = 8) 
and organized according to the structural mod- 
ularity obtained from the structural network 
above. F . Hubs with high eigenvector central- 
ity which measures the degree of a node in- 
fluence in the network by scoring the node’s 
eigenvalue. A high-eigenvalue indicates that 
a node is well-connected to many other well- 
connected nodes. For the average free-viewing 
networks we chose to highlight the topmost 
central regions with an eigenvector centrality 
value (EC) > threshold (t) = 14 × 10 − 3 corre- 
sponding to a z-score > 1. The 3-dimensional 
graph highlights hub regions that formed a 

visuo-saccadic network. G . Rank centrality averaged (mean + /- std) over 14 hemispheres shows the consistency in hubs during free-viewing. Groups are shown 
for the static modular architecture obtained from structural networks. Supplementary Fig. 15 shows the centrality networks for each monkey hemisphere. 

8 
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Node degree of both structural and free-viewing networks showed a
istribution decay indicating the existence of a large number of nodes
ith few connections and a smaller number of nodes with many con-
ections. The small number of nodes with many connections are consid-
red essential in brain networks, as their increased connectivity enables
lobal and efficient communication ( Bassett and Sporns, 2017 ). 

.3.2. Clustering coefficient of structural and free-viewing networks 

Anatomical tract-tracing ( Markov et al., 2014 ) and graph-theoretical
tudies ( Song et al., 2014 ) established that brain regions in macroscale
etworks tend to be densely connected with proximal neighboring re-
ions. By measuring the clustering coefficient ( 𝐶) , we could quantify
he number of connections between the node’s nearest neighbor as com-
ared to the total number of all possible connections. To evaluate the
alidity of clustering coefficients, we require random networks which
end to have on average lower clustering than normal brain networks
 Bullmore and Sporns, 2009 ). 𝐶 takes a value between zero and one,
here a value of zero indicates lack of clustering while a value of one

ndicates a fully connected network. 
For the binarized structural networks, 𝐶 showed a relatively higher

alue (see Supplementary Fig. 12A and Supplementary Table 3 , NHP
ange: 0.69–0.71; 𝜇 = 0.7, ± 𝜎 = 0.01) as compared to rewired net-
orks with the same degree distribution under the null- hypothesis

NHP range: 0.45–0.52, 𝜇 = 0.5, ± 𝜎 = 0.69 × 10 − 3 ). For the binarized
ree-viewing networks, 𝐶 showed similarly higher values (see Supple-

entary Fig. 12C and Supplementary Table 3 , NHP range: 0.48–0.62;
= 0.5, ± 𝜎 = 0.001) as compared to rewired networks with the same

egree distribution under the null-hypothesis (NHP range: 0.12–0.24,
= 0.18, ± 𝜎 = 0.001). 

The clustering coefficient analyses indicated that both structural and
unctional networks show the topological capacity for integration in lo-
al subgraphs with the potential to facilitate functional specialization
e.g., segregation) known to be critical for efficient network communi-
ation ( Hilgetag and Kaiser, 2004 ; Kaiser and Hilgetag, 2006 ). 

.3.3. Modularity of structural networks 

Network modules are groups of densely connected regions that are
parsely connected across groups ( Sporns and Betzel, 2016 ). To identify
etwork modules from the average structural matrix, we used modu-
arity maximization, a data-driven approach for the hierarchical clus-
ering of nodes into network groups or modules ( Betzel, 2020 ). Using
his approach, we found six hierarchical partitions that captured lobu-
ar brain organization ( Fig.4 B and Supplementary Fig. 16A ). The or-
anized brain structure is evident on the 3-dimensional anatomical net-
ork plot, where regions preserve their center of mass and anatomical

oordinate. The nodes formed visual, occipitotemporal, temporal, oc-
ipitoparietal, parietal, and frontal groups ( Fig.4 C ). Some of the mod-
les showed the ability to further subdivide within the hierarchy (e.g.,
rontal module). However, the six levels subdivisions largely recapitu-
ated the macaque overall structural brain connectivity ( Harriger et al.,
012 ). To ease the visualization of the connectivity structure, we illus-
rate the network in a circular dendrogram with hierarchical bundling
f the edges to reduce visual clutter ( Holten, 2006 ). The bundle edge
echnique allowed us to map the implicit adjacency across modules and
onnectivity within regions (see Supplementary Fig. 16B ). Addition-
lly, on the same graph, we mapped the number of connecting edges to
ach node or node degree ( 𝜅) on the node face size. The visualization
echnique allows mapping the most important network features into a
ingle graph enabling a complete summary of the macroscale connec-
ivity architecture. 

Modularity of structural networks largely captured the well-known
natomical organization of the macaque brain ( Harriger et al., 2012 ) us-
ng a data driven approach. Furthermore, our findings also demonstrate
he potential of structural networks derived from DTI in awake monkeys
or mapping the macroscale organization of the macaque anatomical
rain network ( Hilgetag and Kaiser, 2004 ; Kaiser and Hilgetag, 2006 ;
9 
arkov et al., 2014 ). Most importantly, the organized modules allowed
s to obtain the static architecture critical for inferring changes in func-
ional brain networks. 

.3.4. Centrality of free-viewing networks 

Very often, functional activation reveals regions with different de-
rees of activation strength challenging the inference and extent to
hich a region engages in a particular cognitive task. Network central-

ty instead allows us to identify brain regions with high importance by
easuring the degree of a node’s influence in the network and by scor-

ng the node’s eigenvalue ( Bassett and Sporns, 2017 ). 
In brief, a high eigenvalue indicates that a node is well-connected

o many other well-connected nodes. For the average free-viewing net-
orks, we chose to highlight highly central regions with an eigenvec-

or centrality value (EC) threshold (t) > 14 × 10 − 3 corresponding to
 Z-score > 1. Using this method, we identified a large-scale network
ngaged during movie watching (Z-score > 1 average free-viewing net-
ork; EC = 14 × 10 − 4 ) with the following functional hubs: MT/MST,
4, TEpd, IPa, Tpt, LIP, 8B, 46v, ProC, 12l, 13a, and striatum ( Fig. 4 F ).
any of the regions are known to carry out specific visual functions

elated to object recognition, visual motion processing, eye movement
ontrol, and visual attention ( Buschman and Kastner, 2015 ; Gilbert and
i, 2013 ; Russ and Leopold, 2015 ; Russ et al., 2016 ). The centrality for
ach independent NHP subject showed variable patterns of centrality
see Supplementary Fig. 15 ), however hub regions were mostly ob-
erved within frontal and occipito-parietal modules. The average cen-
rality taken over each monkey, runs and hemispheres ( n = 20) showed
onsistent patterns of centrality highlighting a visuo-saccadic network
 Fig. 4 G ). 

While we observed many cortical regions known to have roles in
isual function (e.g., LIP, FEF, MT/MST, V4, TEpd, IPa), the central-
ty measures enabled the identification of additional hubs that included
Tpt, 46v, ProC, 12l, 13a, striatum). Many of these additional regions
re not well delineated in terms of their contribution to visual function.
owever, half of the identified regions are known to belong to a group
f ‘rich clubs’ of areas or hubs (e.g., TEpd, LIP, 8B, 46v, 12l, and 13a)
s derived from structural connectivity analyses of the macaque mon-
ey ( Harriger et al., 2012 ). These regions in the macaque connectome
re thought to be part of a network that could facilitate global network
ommunication. 

Centrality during free-viewing revealed a widespread long-range net-
ork of cortical and subcortical hub regions consistently present in each
onkey. To explore the state of the network further we measured the

dge distance of the long-range interactions present during free-viewing.

.4. Path length and long-range interactions during free-viewing 

.4.1. Path length of structural and free-viewing networks 

Previous network studies in both humans and monkeys indicated
hat multiple network properties emerged from the anatomical location
nd distance of regions within the brain ( Hilgetag and Kaiser, 2004 ). An
ncrease in local connectivity results in networks that prefer short-range
onnections, reflecting intrinsic structural properties of brain connec-
ivity that reduce the metabolic cost of synchronizing activity among
 wide range of brain areas. The distance between local or clustered
odes tend to be short, thus anatomically nearby regions are therefore
onsidered to be “economical ”, whereas the edges of long-range projec-
ions are fewer and sparse but had the capacity for integration over the
etwork ( Watts and Strogatz, 1998 ). 

The characteristic path length ( 𝐿 ) , measures the average shortest
ath for all possible pairs of nodes in the network or the average num-
er of steps to reach from one node to another. We explored the charac-
eristic path length ( 𝐿 ) of binarize structural matrices which showed
 classical shorter path length ( 𝐿 range across NHPs, structural net-
orks: 1.73–1.8 mm, 𝜇 = 1.76 mm, ± 𝜎 = 0.001) as compared to the
ull-model rewired networks (see Supplementary Fig. 12B , 𝐿 rewired
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Fig. 5. Highly-weighted long-range connec- 

tions across the cerebral hemispheres indi- 

cate large-scale integrative properties dur- 

ing free-viewing. A . Distribution of path 
lengths shows a sharp decay as a function of 
Euclidean distance for structural networks. B . 
In contrast, the distribution of path lengths for 
free-viewing networks shows a wider mono- 
tonic decay as a function of Euclidean dis- 
tance. Such increases in large-scale connec- 
tions might enable a neuronal network to in- 
tegrative information across widespread inter- 
areal interactions. C . Connectivity matrix orga- 
nized from left to right hemispheres. C . Scatter 
plot of left and right hemisphere correlations 
showing high similarity across hemispheres. 
D . Scatter plot of node distance and correla- 
tion magnitude showing inter (black) and in- 
trahemispheric correlations (red). The outset 
panel to the right shows the average counts 
of correlation coefficients. The outset bottom 

panel shows the average counts of distance 
lengths. Both correlations decrease as a func- 
tion of distance. However, a small number of 
long-distance interhemispheric correlations re- 
mains. 
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tructural networks: 1.7–1.75 mm, 𝜇 = 1.72 mm, ± 𝜎 = 0.4 × 10 − 5 ).
he connection length distribution ( Fig. 5 A) , showed a peak distance
etween 10-12 mm and a exponential decay as a function of distance
onsistent with previous reports of anatomical tract-tracing studies in
he macaque ( Markov et al., 2014 ). In contrast, the average path length
f free-viewing matrices was relatively longer as compared to struc-
ural matrices ( 𝜇 = 2.21 mm, ± 𝜎 = 0.04, range: 2–2.5 mm,) and
howed greater differential distance as compare to their respective
ull-model rewired matrices (see Supplementary Fig. 12D, 𝐿 rewired
= 1.8 mm, ± 𝜎 = 0.002, free-viewing networks: 1.8–1.9 mm). Supple-

entary Table 3 , and Supplementary Fig. 11 summarizes the charac-
eristic path length for each hemisphere and macaque network. 

Important to clarify is that the measure of path length in correlation-
ased functional networks is susceptible to interpretation challenges,
iven that a strong correlation does not necessarily indicate the presence
f physical anatomical connection. Furthermore, strongly correlated ac-
ivity might result from one or more indirect, multi-synaptic connec-
ions ( Rubinov and Sporns, 2010 ). Importantly to consider, is the fact
hat path length in functional networks represent sequences of statisti-
al associations, and might not necessarily represent an actual route
f information flow. Despite their interpretational difficulties, short-
aths in functional networks could potentially capture direct connection
ia suppression of indirect connections ( Marrelec et al., 2009 ). To fur-
her explore connection lengths in free-viewing networks, we measured
he connection weights (e.g., correlations coefficients) as a function of
heir Euclidean node to node distance (node center of mass). We found
hat the degree of correlation decreased monotonically as a function of
ode distance ( Fig. 5 B ), but with a peak distance around 15–20 mm
see Supplementary Fig.8 for each monkey and hemisphere). Such
idespread high-weighted correlations could reflect integrative proper-

ies during cognitive processing in free-viewing. To further explore this
eature of free-viewing networks, we analyzed correlations across hemi-
pheres (interhemispheric) and within hemispheres (intrahemispheric,
m  

10 
ee Fig. 5 C ). The interhemispheric relationship showed a positive cor-
elation (Spearman’s r = 0.77, Fig. 5 D ) indicating similar patterns of
onnectivity within each hemisphere (also evident from visual inspec-
ion of the connectivity matrix in Fig. 5 C ). Furthermore, we dissociate
etween interhemispheric and intrahemispheric correlations and show
hat the majority of the highly-weighted interhemispheric weights con-
ections were found beyond 20 mm with a peak at 40 mm ( Fig. 5 E ).
hese findings demonstrate the existence of long-distance associations
ith anatomically distal related regions across the cerebral hemispheres
resented during free-viewing. 

In sumarry, edges of both structural and free-viewing networks
howed a monotonic decrease in path length. The path length distri-
ution of structural networks was consistent with the interareal dis-
ances previously described for the cerebral cortex of multiple mam-
alian species ( Song et al., 2014 ). Interestingly, for free-viewing net-
orks we found a small number of long-distance interhemispheric cor-

elations that might serve as additional functional architecture for the
ynchronization of regional activity over large distances during cogni-
ive processing ( Stisoand Bassett, 2018 ). 

.4.2. Time varying functional connectivity during free-viewing 

Previous analyses highlighted the existence of highly-weighted long-
ange correlations that we hypothesized had the potential to re-
onfigure depending on the categorical changes coming from the stream
f visual scenes. Furthermore, from the structural analyses we capture
he static architecture (see Supplementary Fig. 16B ) of each macaque
rain network. Using this fixed architecture as underlying template, we
hen aimed to characterize any change in hub centrality and interareal
onnectivity during free-viewing that departed from the overall modular
lassification. 

Since several regions showed specific scene-content-dependent acti-
ation ( Supplementary Fig. 14 ), our next aim was to understand how
unctional interactions between areas might change across the different
ovie epochs ( Fig. 6 A ). To this end, we built on our previous analyses
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Fig. 6. Dynamic reconfiguration of free- 

viewing network hubs. A . Example categor- 
ical image from the scenes presented to the 
NHPs during natural free-viewing of movie se- 
quence two. The presentation periods (30 s 
each) include object, hand action, ego-motion, 
and face scenes. B . Dynamic fluctuations in 
network centrality. Gray plots show all ROI’s 
centrality as a function of the sliding win- 
dow. Black trace shows an example region 
(MT) with dynamic fluctuations in centrality 
during free-viewing. C . Eigenvector centrality 
(c) identifies network hubs ( c > 1 ×10 − 4 ; n 
for size < = 6), highlighting the central nodes 
during the presentation of each main categor- 
ical scene. The hubs change across the dif- 
ferent scenes highlighting differential network 
states during natural free-viewing. D . Hierar- 
chical edge bundling allows visualization of 
connectivity patterns in free-viewing networks 
for each scene category on the underlying 
structural network modularity (face node color 
code). The node size illustrates the overall net- 
work centrality value for all nodes with the 
threshold indicated on the black color of the 
node label. The edges that touch a highly cen- 
tral region show an increase in the edge thick- 
ness (size = 1). 
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nd calculated network centrality for all regions during a moving time
indow. 

The overall network showed dynamic changes in network centrality
hroughout the entire MRI scanning period (see example fluctuations
n centrality from area MT in Fig. 6 B ). Interestingly, while the overall
lobal centrality pattern largely reflected the induced sensory modu-
ation, we observed that many regions significantly vary in their cen-
rality across both the movie and darkness periods. From the specific
cene epoch matrix, we calculated eigenvector centrality (Z-score > 1,
 > 1 × 10 − 4 for n for size < = 6) and identified network hubs for each
ain scene category ( Fig. 6 C ). 

As a first instance, we observed changes in network centrality across
ll four original movie scenes. To ease visualization of regional inter-
ctions for each scene, we organized the network in a circular dendro-
ram with the node face size representing degree centrality. We used the
odular classification of the static structure to classify each region. The

dge-width highlights the principal projection bundles between hubs
n the network, while the widths of all other edges were kept constant
 Fig. 6 D ). In what follows, we describe the functional connections for
ach network state (e.g., object, hand action, ego-motion, and face)
nd relate connectivity patterns to existing knowledge about macaque
natomical connectivity of the hub regions identified using centrality. 

For the object scene, we observed high network centrality in area
4 (see the occipitotemporal module color-coded in purple). The major-

ty of connections to or from V4 diffuse into prefrontal (red) and supe-
ior temporal (yellow) modules. The high network centrality of V4 and
ts connectivity to prefrontal and temporal lobe areas observed during
he object scene reaffirms the importance of this connectivity for object
ecognition ( Roe et al., 2012 ). The interactions we observed between V4
nd 8B (FEF) were also consistent with the reciprocal anatomical con-
11 
ections between both areas ( Markov et al., 2014 ) and the proposed
mportance of this network in visuo-saccadic planning and attention
 Roe et al., 2012 ). 

Dynamic changes in centrality occur from passively viewing the
oving object scene (in allocentric perspective) towards the more ac-

ively manipulated ruby cube scene (in egocentric perspective). This
cene change re-configured the functional network. For the hand-action
cene, we found high centrality in regions MT, FST, LIPd, and subcorti-
ally in the inferior pulvinar (PI) nucleus. Regions MT, FST show in-
eractions that associate all five network modules with convergence
n areas LIP in the parietal module (orange) and the PI nucleus (vi-
ual module in green). Area LIP is known for his role in visuospa-
ial attention ( Buschman and Kastner, 2015 ) and for the spatial co-
rdination of limb movements ( Oristaglio et al., 2006 ), which in ac-
ordance with the connectivity patterns we found for the hand-action
cene. Further, we identified functional connections between the infe-
ior pulvinar and area MT/MST, an anatomical connection previously
escribed from tract-tracing studies in the macaque ( Boussaoud et al.,
990 ; Kaas and Lyon, 2007 ). Moreover, dorsal motion areas are also
nown to be anatomically connected with the posterior parietal cor-
ex, including area LIP ( Boussaoud et al., 1990 ; Markov et al., 2014 ),
upporting our network results. For comparison, during the hand-action
cene, the V4 centrality observed during the object viewing vanished
nd its hub centrality became dormant. 

A similar network configuration occurred again during ego-motion
iewing. Though V4 was again involved in the processing of this scene,
he overall recruited network showed stark differences in comparison
o the object scene pattern, which recruited additional hubs in MT,
ST, TEO, with functional connections between these hub regions and
re/frontal lobe region such areas 8av (e.g., FEF region). Anatomi-
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ally, it is well established that areas V4, TEO, MT, FST, MST are
nter-connected, linking information processing between dorsal and ven-
ral visual pathways for motion analyses ( Boussaoud et al., 1990 ). Our
ndings with the ego-motion scenes recapitulate recent fMRI studies

n macaques, indicating a prominent visual motion drive during free-
iewing of visual scenes ( Russ and Leopold, 2015 ; Russ et al., 2016 ). 

The macroscale network configuration dynamically adjusted once
ore with the onset of scenes that contained faces. For the face net-
ork, we found hubs in areas LIP, Tpt, 46, ventral premotor cortex (e.g.,
reas F5/6Va/6Vb), and subcortically the lateral pulvinar nucleus (PL).
hese results indicated that our centrality measures could capture ad-
itional features of the interareal interactions not available with stan-
ard GLM contrast analyses. While area V4 is sometimes reported in
raditional face activation studies ( Tsao et al., 2003 ), it does not appear
o be part of the face processing network we captured. More specifi-
ally, interareal interactions for the face scene within the frontal mod-
le showed increases in local connectivity and with large edges con-
ecting regions in the superior temporal module (area Tpt), parietal
area LIP), and visual (lateral pulvinar) modules. The lateral pulvinar is
nown to anatomically project to the ventral cortical stream ( Kaas and
yon, 2007 ) and to receive projections specifically from cortical face
atches in the temporal lobe ( Grimaldi et al., 2016 ). Moreover, the ven-
rolateral and ventral premotor cortex is connected to regions in the su-
erior temporal and parietal cortex ( Petrides and Pandya, 2009 ), a path-
ay that integrates social facial gestures ( Shepherd and Freiwald, 2018 )
ith vocal sounds ( Ortiz-Rios et al., 2015 ). Our centrality measures fur-

her implicate this network in social communication ( Sliwa and Frei-
ald, 2017 ) as similarly found in human brain networks during movie
iewing ( Lahnakoski et al., 2012 ). 

In summary, connectivity analyses allowed us to observe changes
n network interactions across cortico-cortical and thalamocortical net-
ork pathways. The dynamic changes we observed highlight the impor-

ance of the ongoing motor and cognitive interactions present during
ore naturalistic experimental conditions. 

. Discussion 

In this study we used a free-viewing paradigm combined with graph-
heoretical analyses to investigate how functional networks reorganize
uring active natural vision. Importantly, varying functional connectiv-
ty revealed specific thalamocortical and cortico-cortical functional in-
eractions that reconfigured depending on the passive viewing of visual
bjects, motion, faces, and actions present within the scenes. Overall,
cross monkeys and movie scenes, we found a consistent functional net-
ork engaged during free-viewing that included hub regions in frontal

FEF), parietal (LIP, Tpt), and occipitotemporal cortex (MT, V4, and
Epd), among others. 

In the following section, we discuss our results concerning the cur-
ent knowledge of the anatomical connectivity between hub regions and
he involvement of these regions in visual cognitive processes. Lastly, we
nvision how new naturalistic paradigms, combined with network neu-
oscience, can help us gain new insights into the dynamics of macroscale
etworks in NHPs. 

.1. Network state configurations during natural vision 

One fundamental principle of brain organization is hubs in networks,
hich enable efficient neuronal communication and the integration of

nformation over long distances ( van den Heuvel and Sporns, 2013 ). By
pplying graph-theoretical methods, we were able to identify regions
eyond the traditional visually engaged areas. These regions included
ultimodal areas (Tpt, 46v), the prefrontal cortex (12l, 13a, ProC), pul-

inar, and the striatum. 
When we focused analyses on movie scenes that contained faces, we

ound hubs in parietal (LIP), superior temporal (Tpt), prefrontal (area
6), premotor (F5), and subcortically in the lateral pulvinar nucleus.
12 
he dorsal network that connects premotor regions with the superior
emporal and parietal areas ( Petrides and Pandya, 2009 ) is known to
ntegrate social facial gestures ( Shepherd and Freiwald, 2018 ) and vo-
al sounds ( Ortiz-Rios et al., 2015 ). The hubs we found in the frontal
nd premotor cortex (e.g., 46 and F5) along with the superior tem-
oral (Tpt) region suggest that the free-viewing of faces engaged this
etwork for the extraction of higher-order social features within the
cenes ( Shepherd and Freiwald, 2018 ). The projections from the supe-
ior temporal region (Tpt) and parietal cortex (LIP) may provide multi-
odal and spatial information to the face-sensitive areas in the IT cor-

ex ( Cusick et al., 1995 ; Seltzer and Pandya, 1994 ). Subcortically, we
lso found high centrality of the lateral pulvinar (PL) during the face
cene periods. The PL anatomically projects to the inferotemporal cor-
ex ( Kaas and Lyon, 2007 ) and receives projections specifically from face
atches ( Grimaldi et al., 2016 ). An additional interesting point relates to
he medial pulvinar (ML), which projects to the anterior STG and func-
ionally is involved in higher-level features of vocal sounds. Both thala-
ic nuclei (medial and lateral pulvinar) might be a source for the modu-

ation of vocal and facial information at the STS level ( Bruce et al., 1981 ;
rimaldi et al., 2016 ; Scott et al., 2017 ; Smiley and Falchier, 2009 ). 

Our analysis also revealed the recruitment of a different network en-
aged in the processing of hand action scenes. For these, we observed
pecific connections with areas LIP, MT/MST, and the inferior pulvinar
PI). Regions in the dorsal stream (e.g., LIP, MT/MST) are well-known
o coordinate visuospatial information from eye and limb movements
 Oristaglio et al., 2006 ). Moreover, these areas receive projections from
he inferior pulvinar ( Boussaoud et al., 1990 ; Kaas and Lyon, 2007 ),
onsistent with the observed connectivity patterns for the hand-action
etwork. In the cortex, we found regions FEF, LIP, 46, 13, 24, F5, and
E as network hubs, in line with previous graph-theoretical analyses of
acaque anatomical networks ( Harriger et al., 2012 ). Area TE corre-

ponds to the well-known AF face patch region of the inferotemporal
ortex ( Tsao et al., 2003 ) and their neurons respond to the spatial lay-
ut of natural visual scenes ( McMahon et al., 2015 ). Additionally, area
E response to complex biological actions and received projections from
he overlying poly-sensory STS region ( Bruce et al., 1981 ) and parietal
ortices, which might provide TE regions with multimodal spatial infor-
ation. 

Additionally, we also found recurrent network hubs, such as the mo-
ion complex network (e.g., areas MT/MST/FST), that emerge as central
uring the presentation of multiple visual scenes. Not surprisingly, the
mergence of the motion complex network during free-viewing indicates
he necessity for processing a substantial increase in visual complexity
nd visual motion in our selection of visual scenes. These findings also
ollow recent macaque fMRI studies using naturalistic stimulation that
nvestigated the influence of self-induced and visual motion ( Russ et al.,
016 ) and found a strong dominance of visual motion in the fMRI acti-
ation patterns along the STS. 

Similar to MT hubness, we also found high centrality in area V4,
hich is known to be involved in visual shape and object recognition
 Roe et al., 2012 ). For our object scene condition, it follows the role
f area V4 in processing object features. The object network showed
tark differences in comparison to the ego-motion network. The ego-
otion network engages beyond V4 and incorporates motion complex

egions (MT/MST FST). Additionally, area V4 plays a role in visuospa-
ial attention ( Moran and Desimone, 1985 ; Roe et al., 2012 ) and re-
eives inputs from and projects to the FEF region ( Markov et al., 2014 )
ollowing our findings showing high centrality for area FEF. The connec-
ions we observed in free-viewing networks confirm the role that area
EF and V4 play in top-down visuo-saccadic functions ( Ekstrom et al.,
009 ; Moore and Armstrong, 2003 ; Roe et al., 2012 ). Additionally,
bject motion-related regions (e.g., V4, MT, MST) became functional
ubs along with saccade-related areas (e.g., LIP and FEF), indicating
hat, in general, movie viewing strongly engages this network config-
ration. Moreover, these results are in close accordance with previous
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go-motion fMRI studies in macaques ( Cottereau et al., 2017 ), showing
he involvement of MST and FEF during ego-flow motion conditions. 

It is well established that areas LIP and FEF are involved in saccadic
ye movements and the visuospatial guidance of eye movements and at-
ention ( Bisley and Goldberg, 2010 ; Buschman and Kastner, 2015 ). We
efer to this network configuration as a visuo-saccadic network. We be-
ieve this network requires higher-level visual object processes and mo-
ion analyses (e.g., V4 and MT/MST). Additionally, the network involves
xtracting and guiding the visuospatial coordination of eye movements
e.g., LIP and FEF) during free-viewing. Single-unit studies of macaque
EF during natural visual search indicated that FEF activity contributes
o top-down selection ( Glaser et al., 2020 ; Juan et al., 2004 ; Phillips and
egraves, 2010 ; Ramkumar et al., 2016 ). On the other hand, neurons
n area V4 converge bottom-up salient visual information with a top-
own selection of eye movements for target locations ( Mazer and Gal-
ant, 2003 ; Zhou and Desimone, 2011 ). Moreover, similar visuo-saccadic
etworks were also reported in marmosets and humans during free-
iewing ( Schaeffer et al., 2019 ), indicating a conservation of this net-
ork across primate species. 

Overall, our findings suggest that free-viewing networks captured
 large part of the underlying anatomical and functional architecture
 Kaiser and Hilgetag, 2006 ; McMahon et al., 2015 ). Moreover, the ro-
ustness of the visuo-saccadic network and the high feasibility of detect-
ng it during free-viewing (e.g., no task-based training inside the scan-
er) makes it an ideal network for studying dysfunctional changes in
atients with Parkinson’s ( Fukushima et al., 1994 ) and other neurode-
enerative diseases ( Antoniades and Kennard, 2015 ) often expressing
eficits in saccadic function. 

.2. Imperfect relationship between structure and function in NHP brain 

etworks 

The relationship between structure and function in macroscale brain
etworks is a critical step for developing large-scale neural simulations
nd informative models of brain function ( Shen et al., 2019 ). Our initial
ork here demonstrates the feasibility of obtaining meaningful struc-

ural and functional graphs derived from awake NHP neuroimaging data
ith multiple features showing well known brain networks properties. 

From our comparative networks analyses, we observed differential
onnectivity architecture between structural and free-viewing networks.
tructural networks showed higher intrahemispheric connectivity than
ree-viewing networks, which rather showed higher interhemispheric
onnectivity. This differential architecture is in close correspondence
ith human macroscale network studies showing greater intrahemi-

pheric density in DTI-based networks as compared to functional brain
etworks ( Bonilha et al., 2015 ). The direct comparisons between net-
orks show only a positive moderate correlation in correspondence with

he relationship between function and structure in human brain net-
orks ( Honey et al., 2009 ; Suárez et al., 2020 ). Moreover, when we
erived visual subnetworks from matching regional parcellations (n re-
ions = 12), we observed a closer relationship between free-viewing
nd anatomical networks (either track-tracing or structural networks
erived from DTI). We believe that these results generally reflect the
ominance of the visual sub-network in the Markov study and on the
act that during free-viewing an increased functional connectivity is
o be expected. Important to consider in our comparisons, is the dis-
dvantage that relates to the unavailability of standard tract-tracing
atasets independent of brain atlases. Thus, our results across networks
re rather limited to the matching nomenclature across different brain
tlases ( n = 12) which is a small sample of the larger macro structure.
n the future, the availability of track-tracing datasets independent of
tlas type will benefit comparisons across macaque brain networks and
omains. 

When we expanded our comparisons to path length distributions be-
ween free-viewing and structural networks we found an increase in path
ength in free-viewing networks. The path length distribution of struc-
13 
ural networks is consistent with the interareal distances described for
he cerebral cortex of multiple mamallian species ( Song et al., 2014 ),
ncluding those derived from macaque tract-tracing data ( Markov et al.,
014 ). An important biological facet to consider for path length mea-
ures in structural networks is the fact that connections are physi-
ally constrained by the embedded brain architecture which carries a
etabolic cost, decreasing the probability of finding long-range con-
ections ( Horvát et al., 2016 ). This feature is additionally evident from
he local clustering and the hierarchical modular structure and segre-
ation in the structural networks. In contrast, free-viewing networks
howed an increase in the number of highly weighted nodes with long
ath length distribution. These long-distance connections might result
rom synchronous time-series among poly-synaptic distal regions sug-
esting that during free-viewing functional interactions might be less
istance-dependent than structural connections ( Bettinardi et al., 2017 ;
tisoand Bassett, 2018 ). However, it is important to consider the fact
hat path length in correlation-based functional networks are suscepti-
le to interpretation difficulties, given that a strong correlation does not
ecessarily imply the existence of anatomical connection. Path length
easures in functional networks represent sequences of statistical asso-

iations ( Rubinov and Sporns, 2010 ), and might not necessarily repre-
ent an actual route of information flow. 

.3. Advantages, limitations and future directions for free-viewing networks

In primates, most macroscale functional mapping studies have fo-
used on the existence of intrinsic functional networks that show
imilar properties as those found in humans’ resting-state networks
 Vincent et al., 2007 ). Resting-state networks are, however, highly vari-
ble across individuals and evolving periods of an imaging session
 Hutchison et al., 2013 ; Nikolaou et al., 2016 ; Preti et al., 2017 ). As
 result, under resting-state conditions, it is very challenging to predict
he internal states that could trigger dynamical shifts in functional con-
ectivity across any given time window and individual. 

Naturalistic imaging in NHPs provides similar advantages as
hose previously demonstrated in human neuroimaging studies
 Eickhoff et al., 2020 ). These advantages include: (1) the ability to relate
etwork structure with the external stimulation (e.g., movie) sequence
aradigm. (2) the ability to drive distal and higher-order regions within
he network (e.g., cognitive states). (3) the ability to induce reliable ac-
ivation patterns across individuals (e.g., high intersubject correlations).
4) increases in contrast-to-noise ratio (e.g., improve data quality). Fur-
hermore, naturalistic imaging engages NHPs during movie watching,
ossibly comforting animals during scanning periods, resulting in less
ovement artifacts. In our data, we experienced minimal motion de-

iations (e.g., shifts below 0.5 mm and rotations below 0.5°), which
esulted in a practical motion-free time series. Furthermore, the activa-
ion patterns we obtained across subjects were reliable and highlighted
he effectiveness of the naturalistic imaging approach. Finally, the fact
hat we obtained our data within two repetitions of a five-minute scan
emonstrates the high contrast to noise ratio available in our dataset,
dditionally evident from the temporal SNR analyses. 

Most importantly, we capture network dynamics with distinct thala-
ocortical and cortico-cortical interactions present in more ecological

tates than trial-by-trial designs. Crucially, we point out that while we
inked network interactions with the movie’s content, our study is lim-
ted by the epoch of presentation rather than by the evolving structural
emporal motifs in networks ( Sizemore and Bassett, 2018 ). Another lim-
tation relates to the variation of movie content that we presented. It is
onceivable that a broader range of scene content might have further
efined the implicated network patterns. For example, Hasson et al.,
008 showed that higher-level regions (such as FEF, TPJ, and STS)
howed disruptions in the temporal structure during scramble scenes
hile motion-sensitive areas (MT + ) were insensitive to disruptions in

he time domain. An interesting future approach for capturing network
ynamics might be to induce gradual changes in scene content (either
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orward or backward) as a strategy for shifting the degree of macroscale
nteractions. 

Another avenue of interest for exploiting the dynamics of natural-
stic networks lies in the simultaneous recording of eye movements.
he study by Russ et al., 2016 specifically quantified the effects of sac-
adic eye movements on the functional activation maps utilizing regres-
ion analysis ( Russ et al., 2016 ). Their study demonstrated that eye-
ovement variation resulted in very similar eye-movement patterns

cross the same movie scene repetitions. From our data, we expect that
ifferential eye movement patterns could have contributed to the net-
ork states we observed during the more ecologically valid conditions

han during a more controlled fixation-based task. On a more technical
ote, we sampled functional data at a 1.5 sec per scan, limiting our abil-
ty to infer network effects from multiple instances of saccades events
ccurring during a movie viewing epoch. 

Moreover, eye-movement recordings were not always successful on
ll our animals, limiting our ability to relate brain networks with in-
rinsic eye-movement data. In the future, it will be of interest to further
xplore the link between network dynamics and eye movements, in-
luding pupil dilation, which is known to cause fluctuations in arousal
tates that involve cholinergic modulation of large-circuits ( Shine et al.,
016 ). Together with the application of more advanced network analy-
es, it will further aid the detection of recurrent temporal network states
 Bassett et al., 2011 ) during free-viewing in NHPs. 

Given the expansion of graph-theoretical tools in the neurosciences,
 robust computational framework has emerged in human neuroimag-
ng ( Bassett and Sporns, 2017 ; Bullmore and Sporns, 2009 ), which has
ed to dramatic advances in our understanding of the principles guiding
he organization of macroscale brain networks. In our study in NHPs, we
elieve that new analytical network strategies will enable disentangling
patiotemporal dynamics emerging from repeatable states during cogni-
ive processing. The implementation of multimodal neuroimaging with
europhysiological recordings in NHPs will be critical for characterizing
he underlying network principles available in brain networks. In the fu-
ure, the use of network analysis tools in combination with optogenetic
 Klein et al., 2016 ; Ortiz-Rios et al., 2021 ; Tervo et al., 2016 ) or chemo-
enetic interrogation techniques ( Inoue et al., 2015 ; Oyama et al., 2021 )
ight enable the targeted control of neural circuits via intervention of

entral nodes, possibly affecting global network states. 
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