sPlot – a new tool for global vegetation analyses

Journal:	Journal of Vegetation Science
Manuscript ID	JVS-R-04700.R1
Manuscript Type:	Report
Date Submitted by the Author:	n/a
Complete List of Authors:	Bruelheide, Helge; Institute of Biology, Geobotany and Botanical Garden Dengler, Jürgen; Zurcher Hochschule fur Angewandte Wissenschaften Life Sciences und Facility Management, Institute of Natural Resource Management (IUNR); Universitat Bayreuth Bayreuther Centrum fur Okologie und Umweltforschung, Plant Ecology; German Centre for Integrative Biodiversity Research (iDiv) Jiménez-Alfaro, Borja; University of Oviedo; Martin-Luther-Universitat Halle-Wittenberg Institut fur Biologie; German Centre for Integrative Biodiversity Research (iDiv) Purschke, Oliver Hennekens, Stephan; Alterra, Wageningen University and Research Centre, Wageningen Environmental Research (Alterra) Chytrý, Milan: Masaryk University, Department of Botany and Zoology
	Pillar, Valerio; Universidade Federal do Rio Grande do Sul, Ecologia Jansen, Florian; Universitat Rostock, Faculty of Agriculture and Environmental Sciences
	Kattge, Jens; Max Planck Institute for Biogeochemistry; German Centre for Integrative Biodiversity Research (iDiv) Sandel, Brody; Santa Clara University, Department of Biology Aubin, Isabelle; Canadian Forest Service, Natural Resources Canada,
	Biurrun, Idoia; University of the Basque Country, Plant Biology and Ecology
	Field, Richard; University of Nottingham, Geography Haider, Sylvia; Martin-Luther-Universitat Halle-Wittenberg Institut fur Biologie
	Biologie Lenoir, Jonathan; Jules Verne University of Picardie, Ecologie et Dynamiques des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS- UPJV)
	Peet, Robert; University of North Carolina, Deparment of Biology Peyre, Gwendolyn; University of the Andes, Department of Civil and Environmental Engineering Sabatini, Francesco; Martin-Luther-Universitat Halle-Wittenberg Institut fur Biologie; German Centre for Integrative Biodiversity Research (iDiv) Schmidt, Marco; Senckenberg Biodiversity and Climate Research Centre (BiK-F), Data and Modelling Centre Schrodt, Franziska; University of Nottingham, School of Geography Winter, Marten; German Centre for Integrative Biodiversity Research

(iDiv),
Acić, Svetlana; University of Belgrade, Faculty of Agriculture,
Agrillo, Emiliano; University of Roma "La Sapienza", Department of
Alvarez, Miguel; University of Bonn, Plant Nutrition, INRES
Ambarli, Didem; Düzce University, Department of Agricultural
Angelini, Pierangela; ISPRA, Biodiversity Conservation Department Apostolova, Iva; Bulgarian Academy of Sciences, Institute of biodiversity and ecosystem research
Arfin Khan, Mohammed A.S. ; Shahjalal University of Science & Technology, Forestry & Environmental Science; University of Bayreuth, Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER)
Arnst, Elise; Manaaki Whenua - Landcare Research Attorre, Fabio; Sapienza University of Rome, Department of
Baraloto, Christopher; The Kampong of the National Tropical Botanical Garden, International Center for Tropical Botany (ICTB); Florida International University, Department of Biological Sciences Beckmann, Michael; UFZ-Helmholtz Centre for Environmental Research,
Bergeron, Yves; Université du Québec en Abitibi-Témiscamingue, Forest
Bergmeier, Erwin; University of Goettingen, Vegetation Ecology and Phytodiversity
Bjorkman, Anne; Aarhus Universitet, Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics &
Biodiversity, Department of Bioscience Bondareva, Viktoria; Institute of Ecology of the Volga River Basin, Laboratory of Phytocoenology
Borchardt, Peter; University of Hamburg, Institute of Geography, CEN - Center for Earth System Research and Sustainability
Botta-Dukát, Zoltán; Centre for Ecological Research, Hungarian Academy of Sciences, Institute of Ecology and Botany
Boyle, Brad; University of Arizona, Ecology and Evolutionary Biology Breen, Amy; University of Alaska, International Arctic Research Center Brisse, Henry; Faculté des Sciences, MEP
Byun, Chaeho; Seoul National University, Biological Sciences Cabido, Marcelo; Multidisciplinary Institute for Plant Biology (IMBIV -
Casella, Laura; ISPRA, Biodiversity Conservation Department Cayuela, Luis; Universidad Rey Juan Carlos, Department of Biology, Ceology, Physics and Inorganic Chemistry
Černý, Tomáš; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Department of Forest Ecology
Chepinoga, Victor; The V.B. Sochava Institute of Geography SB RAS, Laboratory of Physical Geography and Biogeography
CSIKY, Janos; University of Pecs, Department of Ecology Curran, Michael; Swiss Federal Institute of Technology (ETH) Zürich, Institute of Environmental Engineering
Ćušterevska, Renata; Institute of Biology, Faculty for Natural Science and Mathematics, Skopje., Department of Botany
Dajić Stevanović, Zora; University of Belgrade, Faculty of Agriculture, Department of Agrobotany
De Bie, Els; Research Institute for Nature and Forest (INBO), Departement of Biodiversity and Natural Environment
De Sanctis, Michele; Sapienza University of Rome, Department of

Environmental Biology Dimopoulos, Panayotis; University of Patras, Institute of Botany, Division of Plant Biology, Department of Biology Dressler, Stefan; Senckenberg Research Institute Frankfurt, Department
of Botany and molecular Evolution Ejrnaes, Rasmus; Aarhus University, Department of Bioscience El Sheikh, Mohamad; College of Science, King Saud University, Botany and Microbiology Department; Damanhour University, Botany Department
Enquist, Brian; University of Arizona, Department of Ecology and Evolutionary Biology
Ewald, Jörg; University of Applied Sciences Weihenstephan-Triesdorf, Hochschule Weihenstephan-Triesdorf
Fagúndez, Jaime; University of A Coruña, Faculty of Science Finckh, Manfred; University of Hamburg, Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology Font, Xavier; Universitat de Barcelona, Plant Biodiversity Resource Centre
Forey, Estelle; Normandie University, Laboratoire Ecodiv, EA 1293 URA IRSTEA
Fotiadis, Georgios; TEI of Sterea Ellada, Department of Forestry & Natural Environment Management
GARCIA-MIJANGOS, ITZIAR; Universidad del Pais Vasco, Plant Biology and Ecology
de Gasper, André Luis; Regional University of Blumenau, Departament of Natural Science
Phytocoenology
Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronomicas
Hatim, Mohamed Z.; Tanta University, Botany, Faculty of Science, He, Tianhua; Curtin University, School of Molecular and Life Sicences Higuchi, Pedro; Universidade do Estado de Santa Catarina, Forestry
Department Michalcová, Dana; Masaryk University, Department of Botany and Zaology
Hölzel, Norbert; University of Muenster, Institute of Landscape Ecology Homeier, Jürgen; University of Göttingen, Plant Ecology and Ecosystems Research
Indreica, Adrian; Universitatea Transilvania din Brasov, Department of Silviculture
Işık Gürsoy, Deniz; Celal Bayar University, Biology Jansen, Steven; Universitat Ulm Fakultat fur Naturwissenschaften,
Institute of Systematic Botany and Ecology Janssen, John; Wageningen University and Research, Wageningen Environmental Research (Alterra)
Jedrzejek, Birgit; University of Münster, Institute of Landscape Ecology Jiroušek, Martin; Masaryk University, Inst. of Botany and Zoology;
Jürgens, Norbert; University of Hamburg, Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology
Kącki, Zygmunt; University of Wroclaw, Botanical Garden Kavgacı, Ali; Southwest Anatolia Forest Research Institute, Silviculture
Kearsley, Elizabeth; Ghent University, Department of Environment Kessler, Michael; Zurich University, Department of Systematic and
Evolutionary Botany Knollová, Ilona; Masaryk University, Department fo Botany and Zoology Kolomiychuk, Vitaliy; O. V. Fomin Botanical Garden at the Educational and Scientific Centre «Institute of Biology», Taras Shevchenko National

University of Kviv.
Korolyuk, Andrei: Central Siberia Botanical Garden, Russian Academy of
Sciences, Geosystem Laboratory
Kozhevnikova Maria: Kazanskij federal'nvi universitet Institute of
Environmental Sciences
Kozub, Lukasz: Uniwersytet Warszawski Wydział Biologii, Department of
Plant Ecology and Environmental Conservation
Krstonošić Daniel: University of Zagreb, Faculty of forestry
Kibl Hialmar: Max Planck Institute for Evolutionary Anthropology (MPI-
EVA) Primatology: Martin-Luther-Universitat Halle-Wittenberg Institut
fur Biologio: Corman Contro for Integrative Biodiversity Desearch (iDiv)
Kühn Ingelft Helmheltz Centre for Environmental Desearch (IDIV)
Community Ecology (PZE): Martin Luther Universitat Halle Wittenberg
Linetitut fur Dielogie, Cormon Contro for Integrative Diediversity Decorre
(IDIV) Kuzamka, Anna, M.C. Khaladay, Instituta of Batany, NAC of Ukraina
Kuzeniko, Anna, M.G. Knolouny Institute of Boldny NAS of Okraine
Ruzinic, Filip; Scientific Research Centre of the Slovenian Academy of
Sciences and Art, Institute of Biology
Landucci, Flavia; Masaryk University, Department of Botany and Zoology
Lee, Michael, NatureServe
Levesley, Aurora; University of Leeds, School of Geography
LI, Ching-Felig, National Talwan University, School of Forestry and
Resource Conservation
Liu, Hongyan; Peking University, College of Orban and Environmental
Sciences
Lugenke, Tatianay Institute of Feelegy of the Vales Diver Dasin DAS
Lysenku, Taliana, Institute of Ecology of the volga River Dashi RAS,
Macapović Armin: University of Sarajovo, Conter for Ecology and
Natural Pocourcos - Acadomician Suloiman Podžić, Dopartment of
Biology
Mahdavi Paractoo: C v O Universität Oldenhurg Dent of Ecology and
Environmental Science
Manning Peter: Senckenberg Research Institute Project Group Causes
and Consequences of Climate Change
Marcenò, Corrado: University of the Basque Country UPV/EHU, Plant
Biology and Ecology
Martynenko, Vassiliv: Ufa Institute of Biology of Ufa Federal Scientific
Centre of the Russian Academy of Sciences
Mencuccini, Maurizio: Institucio Catalana de Recerca i Estudis Avancats.
Centre Research Ecology and Forestry Applications (CREAF)
Minden, Vanessa: Carl von Ossietzky-University Oldenburg, Institute of
Biology an Environmental Sciences
Moeslund, Jesper: Aarhus University, Department of Bioscience
Moretti, Marco; Swiss Federal Research Institute WSL. Biodiversity and
Conservation Biology
Müller, Jonas V.; Royal Botanic Gardens, Kew, Conservation Science
Munzinger, Jérôme; Université Montpellier, AMAP - Botany and Modelling
of Plant Architecture and Vegetation, IRD, CIRAD, CNRS, INRA,
Niinemets, Ülo; Estonian University of Life Sciences, Chair of Crop
Science and Plant Biology
Nobis, Marcin; Jagiellonian University, Institute of Botany
Noroozi, Jalil; University of Vienna, Department of Botany and
Biodiversity Research
Nowak, Arkadiusz; Polish Academy of Sciences, Botanical Garden
Onyshchenko, Viktor; M.G.Kholodny Institute of Botany, NAS of Ukraine
Overbeck, Gerhard; Universidade Federal do Rio Grande do Sul,
Department of Ecology
Ozinga, Wim; Wageningen Environmental Research, Team Vegetation,
Forest and Landscape Ecology
Pauchard, Anibal; Universidad de Concepcion, Laboratorio de Invasiones
1

Biológicas (LIB) Pedashenko, Hristo Penuelas, Josep; CSIC, Global Ecology Unit CREAF-CSIC-UAB; CREAF Pérez-Haase, Aaron; University of Barcelona, Department of Evolutionary Biology, Ecology and Environmental Sciences; Spanish Research Council (CEAB-CSIC), Center for Advanced Studies of Blanes Peterka, Tomáš; Masaryk University, Faculty of Science, Department of Botany and Zoology Petřík, Petr; The Czech Academy of Sciences, Department of GIS and Remote Sensing, Institute of Botany Phillips, Oliver; University of Leeds, School of Geography Prokhorov, Vadim; Kazanskij federal'nyj universitet, Institute of Environmental Sciences Rašomavičius, Valerijus; Gamtos tyrimr centras, Institute of Botany Revermann, Rasmus; University of Hamburg, Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology Rodwell, John Ruprecht, Eszter; Babes-Bolyai University, Hungarian Department of Biology and Ecology, Faculty of Biology and Geology Rüsipa, Solvita; University of Latvia, Department of Geography Samimi, Cyrus; University of Bayreuth, Climatology, Bayreuth Center of Ecology and Environmental Research (BayCEER) Schaminée, Joop; Alterra, Wageningen University and Research Centre Schniedel, Ute; University of Hamburg, Biodiversity, Evolution and Ecology of Plants, Institute for Plant Science and Microbiology Sibík, Jozef; Plant Science and Biodiversity Centre Slovak Academy of Sciences, Institute of Botany Silc, Urban; Research Centre of the Slovenian Academy of Sciences and Arts, Institute of Bology Skvorc, Żeljko; Faculty of Forestry, University of Zagreb, Smyth, Anita; University of Adelaide, TERN Sop Tenekwetche; Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Primatology; German Centre for Integrative Biodiversity Research (IDiV) Sopotlieva, Desislava; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Department of Plant and Fungal Diversity and Resources Sparrow, Ben; University of Adelaide, TERN Stančić, Zvjezdana; University of Zagreb, Faculty
Swacha, Grzegorz; University of Wroclaw, Botanical Garden Tang, Zhiyao; Peking University, Dept. of Ecology, College of Urban and Environmental Sciences Tsiripidis, Ioannis; Aristolte University of Thessaloniki, School of Biology Turtureanu, Pavel Dan; Babeş-Bolyai University, A. Borza Botanical Garden
Ugurlu, Emin; Bursa Teknik Universitesi, Forest Engineering Department, Faculty of Forestry Logintas, Domas: Nature Research Centre, Institute of Botany
Valachovič, Milan; Plant Science and Biodiversity Centre Slovak Academy of Sciences, Institute of Botany
Vanselow, Kim; University of Erlangen-Nuremberg, Department of Geography Vashenvak, Yulia: Khmelnytskyi Institute of Interregional Academy of
Personnel Management Vassilev, Kiril; Balgarska academija na naukite, Department of Plant and
Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research

	 Vélez-Martin, Eduardo; Universidade Federal do Rio Grande do Sul, Department of Ecology Venanzoni, Roberto; Universita degli Studi di Perugia, Department of Chemistry, Biology and Biotechnology Vibrans, Alexander Christian; Universidade Regional de Blumenau, Departamento de Engenharia Florestal Violle, Cyrille; Universite Paul-Valery Montpellier, CNRS - Université de Montpellier, EPHE, Centre d'Ecologie Fonctionnelle et Evolutive (UMR5175) Virtanen, Risto; University of Oulu, Ecology and Genetics Research Unit, Biodiversity Unit; Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity; German Centre for Integrative Biodiversity Research (IDiv) von Wehrden, Henrik; Leuphana Universitat Luneburg, Institute of Ecology Wagner, Viktoria; University of Alberta, Department of Biological Sciences Walker, Donald; University of Alaska Fairbanks, Institute of Arctic Biology Wana, Desalegn; Addis Ababa University, Department of Geography & Environmental Studies Weiher, Evan; University of Wisconsin - Eau Claire, Department of Biology Wesche, Karsten; Senckenberg Museum of Natural History, Botany; German Centre for Integrative Biodiversity Research (IDiv); Technische Universitat Dresden, International Institute Zittau Whilfeld, Timothy; Brown University, Department of Ecology and Evolutionary Biology, Brown University, Department of Forest, Snow and Landscape Research WSL, Research Unit Forest Dynamics Yamalov, Sergey; Ufa Scientific Centre, Russian Academy of Sciences, Laboratory of Wild-Growing Flora, Botanical Garden-Institute Zizka, Georg; Senckenberg Research Institute Frankfurt, Department of Botany and molecular Evolution
Keywords:	Biodiversity, community ecology, ecoinformatics, functional diversity, global scale, macroecology, phylogenetic diversity, plot database, sPlot, taxonomic diversity, vascular plant, vegetation relevé

SCHOLARONE[™] Manuscripts

JVS-R-04700 Response letter

L549: Not sure this is the best reference, it is about bird occurrences in different sources and not about local communities nor about vegetation.

We deleted the reference. Since this sentence states something that is missing, there is no need of using any reference here.

L560: But some species might be dormant (belowground organs only). Truly absent from the aboveground vegetation?

We added the suggested specification

L563: Only if exact coordinates are known! In a way, GBIF occurrences are also spatially explicit and can be resurveyed.

A significant proportion of sPlot plots have precise coordinates (see Fig. S2.2). We do not claim that all plots would allow exact relocalisation. We however added "many plots"

L566: For plots which has exact locations only! Do you have data how precise are coordinates? See above.

L567: This is also not unique to plots, you can sample a taxon from another trophic level from the very same point where a plant taxon has been recorded in gbif!

We believe that a plot of a certain size can contain multiple taxa, but a point cannot. To clarify this, we now say "vegetation plots represent a snapshot of the primary producers of a terrestrial ecosystem"

L569a: This reference is about N and P concentration in leaves and roots in response to drought, elevated CO2, and fertilization. This is relevant to decomposers but no other trophic levels included to the study!

We agree and have changed this reference.

L569b: I doubt that this is the best reference for multi trophic level sampling. Yes, the Bruelheide e al. (2018) reference was cited in the wrong place.

L591: If you will use only "species pool", many readers understand this as all plant species in the dataset, or perhaps in the whole Denmark. Use "site-specific species pool", or, since the absent portion of this is considered in the paper, you might consider calling this "dark diversity". Done – thanks for the suggestion

L596: current? (i.e. not LGM precipitation)?

Actually it is current precipitation, which now has been added

L609: This depends on research question. If the aim is to find CWM for grid cell species composition, it is fine. If a such study aims to explain traits in local communities, there is likely a bias.

Our sentence describes the likely biases of the approach used so far. We deleted the last sentence to avoid confusion.

Table 1a: You can also use just a single vegetation plot and get all measures what you have in the left column? Here listing additional information only?

We added the new line "to derive information on..." to clarify that our meaning is slightly different from what you understood. We hope that the table is clearer now.

Table 1b: Well, direct interaction of plant species has often demonstrated for very fine scales (comparable to plant size).

Admittedly, the larger plots in sPlot are probably not suited for this purpose, but one indeed needs plots.

Table 1c: Also depends on sampling intensity? If all vegetation types are well sampled, this can form local flora better than more random inventories.

We added a qualifier, but we believe that you will not find any grid in sPlot where it is really possible. We added sampling intensity here.

Table 1d: of the grid cell?

Now clarified by the second head line

Table 1e: + the grid cell (if sampling is intense enough). Even for habitat-specific species pools sampling need to be intense enough!

Yes, in principle you are right. But the aim of our table is not to describe all rare exceptions but the typical things that can or cannot be done with a database like sPlot. If we would add all rare exceptions, the table would get very long and uniformative, we believe.

Table 1f: Remove "I"

Done

Table 1g: and also dark diversity!

You are right, but dark diversity does not fit into the line with alpha, beta and gamma diversity, so we prefer not to add it here.

Table 1h: + frequency in the grid cell Added, good point.

Table 1i: And also grid cell (if sampling intensity is enough). See response on Table 1e.

L629: Since this is a Report, I suggest to replace traditional "Materials and Methods" and "Results" with more descriptive headings (e.g. "Compilation of the sPlot database", "General description of the sPlot data" or something similar)

Done

L638: Put the full stop after "S"

Done

L645: Why not visible?

Because the authors opted not to make this information public. Still we use GIVD as our tool for metadata.

L648: Use "S1"

Appendix 1 (different from Appendix S1) was a remainder from the original submission to GEB. GEB uses printed appendices to present references to data sources in small print in the main paper (which will be used by Web of Science etc.). Since JVS does not have such a separation into two reference lists, we included the references to the databases into the main reference list and dissolved Appendix 1. Please note that the sPlot Rules force us to print one reference per database if required by these, so there would be no way to transfer these references to an online-only appendix.

- L658: Cite also Appendix (S2) Done
- L691: This function is using the same the Plant List web application? Yes, the tpf function connects to the plant list website.
- L795: Did not find the shape file! We have uploaded the shapefile now as Appendix S 5
- L857: Is it possible to assign a likely plot size for the rest (or range? or with uncertainty?) No, unfortunately no plot size means that we have no information on it. However, one can assume that in each region of the world the plots without plot size information do not differ systematically in size from those where the information has been recorded in the database.

L872: Even if a single plot is in the 1-degree cell?

There are only a very few cells consisting on a single plot (n=142/2633). We provide this information now in the Caption of Fig. 4. This can also be seen from the maps in Figure 3 for plot density.

L914: I understand these rules. However, while keeping the advantage of having co-occurrence data, I strongly suggest that you will make occurrence data available through GBIF. You can discuss with GBIF how this can be done without revealing co-occurrence in plots (perhaps using a certain resolution of coordinates?)

Please note that the sPlot Rules do not allow this currently. The sPlot Steering Committee is fully aware of the strong potential sPlot would have for GBIF, but we would have to leave this to future developments of the sPlot Consortium and its rules.

We would also like to point out that since 2 years, GBIF can also handle co-occurrence data, using the Darwin core. For example, the vegetation plots of the Netherlands have been uploaded already. We believe that we should take time to discuss who will upload the data, to avoid multiple entries. We think that doing this should be the responsibility of the data base curators, as it would be also them to update these data.

L928: What about previous versions? If some data has withdrawn from a previous version, reproducibility is not functioning any more?

We keep all previous sPlot versions. sPlot Rules do not allow withdrawing data from already started projects. Our understanding is that this includes the right of sPlot to maintain the specific sPlot version used in a project for studies that aim at reproduction/testing this study.

- L946: This is partly overlapping with Introduction and Table 1. Can this be combined? We would like to keep this part because it explains "what to do with the data" while the Intro presents "why the data is necessary". However, we agree that is makes sense to shorten this part and have removed some sections.
- L984: This is not plot specific feature? We believe that it is, see comment on L567

L1001: Is it possible to add few lines at which research questions these shortcomings are most critical, what can be done to minimize their effects?

Actually, L996-1001 already contained some core research questions that would suffer from such limitations and potential remedies. We have now expanded a little bit on that, but we generally believe that the limitations and the remedies are very case-specific and this report is not the appropriate place to elaborate in detail on them. Each of the ongoing sPlot paper projects, of course, unavoidably will have to address them.

L1002: What about BIEN? It was designed for Americas but include some other regions as well? While BIEN indeed contains (few) plot data, they hitherto have only used the plot data to enrich their species occurrence data and they were not able to export the plot data in any meaningful way. sPlot had signed a MoU with BIEN that they should contribute their plot data, but after long trials they admitted that they are not able to do so and we got the majority of their plot data from their contributing databases, like VegBank, directly. Moreover, the amount of plot data and the spatial coverage of sPlot and BIEN are not comparable. While sPlot has perhaps 90% of the plots that are in BIEN, BIEN has only perhaps 10% of the plots of sPlot.

L1003: adding "relatively" Methods still vary a lot. Done

L1005: BIEN? See response to L1002

L1008: Strange to have alien species topic "In summary" paragraph without any prior mentioning. Can this be discussed above a bit?

Indeed, this was strange. We added this topic now already under point (1) of Expected Impact.

L1235: Please list all appendices with short titles. Done

S2.1: It would be good to have some more information how this was assigned post hoc.We have added this information. Post-hoc assignment of plot uncertainty was based on the number of decimal places of the given coordinates. We have added this information now.

1 TITLE PAGE

2

3 REPORT PAPER

4

5 sPlot – a new tool for global vegetation analyses

6 Helge Bruelheide^{x,1,2}, Jürgen Dengler^{x,3,4,2}, Borja Jiménez-Alfaro^{x,5,1,2}, Oliver Purschke^{x,6}, Stephan M. 7 Hennekens⁷, Milan Chytrý⁸, Valério D. Pillar⁹, Florian Jansen¹⁰, Jens Kattge^{11,2}, Brody Sandel¹², Isabelle 8 Aubin¹³, Idoia Biurrun¹⁴, Richard Field¹⁵, Sylvia Haider¹, Ute Jandt¹, Jonathan Lenoir¹⁶, Robert K. Peet¹⁷, 9 Gwendolyn Peyre¹⁸, Francesco Maria Sabatini^{1,2}, Marco Schmidt¹⁹, Franziska Schrodt¹⁵, Marten Winter², Svetlana Aćić²⁰, Emiliano Agrillo²¹, Miguel Alvarez²², Didem Ambarlı²³, Pierangela Angelini²⁴, Iva 10 Apostolova²⁵, Mohammed A.S. Arfin Khan^{26,27}, Elise Arnst²⁸, Fabio Attorre²¹, Christopher Baraloto^{29,30}, 11 12 Michael Beckmann³¹, Christian Berg³², Yves Bergeron³³, Erwin Bergmeier³⁴, Anne D. Bjorkman³⁵, Viktoria 13 Bondareva³⁶, Peter Borchardt³⁷, Zoltán Botta-Dukát³⁸, Brad Boyle³⁹, Amy Breen⁴⁰, Henry Brisse⁴¹, Chaeho Byun⁴², Marcelo R. Cabido⁴³, Laura Casella²⁴, Luis Cayuela⁴⁴, Tomáš Černý⁴⁵, Victor Chepinoga⁴⁶, János 14 Csiky⁴⁷, Michael Curran⁴⁸, Renata Ćušterevska⁴⁹, Zora Dajić Stevanović²⁰, Els De Bie⁵⁰, Patrice De 15 Ruffray⁵¹, Michele De Sanctis²¹, Panayotis Dimopoulos⁵², Stefan Dressler⁵³, Rasmus Ejrnæs⁵⁴, Mohamed 16 17 Abd El-Rouf Mousa El-Sheikh^{55,56}, Brian Enquist³⁹, Jörg Ewald⁵⁷, Jaime Fagúndez⁵⁸, Manfred Finckh⁵⁹, Xavier Font⁶⁰, Estelle Forey⁶¹, Georgios Fotiadis⁶², Itziar García-Mijangos¹⁴, André Luis de Gasper⁶³, 18 19 Valentin Golub³⁶, Alvaro G. Gutierrez⁶⁴, Mohamed Z. Hatim⁶⁵, Tianhua He⁶⁶, Pedro Higuchi⁶⁷, Dana 20 Holubová⁸, Norbert Hölzel⁶⁸, Jürgen Homeier⁶⁹, Adrian Indreica⁷⁰, Deniz Isık Gürsov⁷¹, Steven Jansen⁷², John Janssen⁷, Birgit Jedrzejek⁶⁸, Martin Jiroušek^{8,73}, Norbert Jürgens⁵⁹, Zygmunt Kacki⁷⁴, Ali Kavgaci⁷⁵, 21 22 Elizabeth Kearsley⁷⁶, Michael Kessler⁷⁷, Ilona Knollová⁸, Vitaliy Kolomiychuk⁷⁸, Andrey Korolyuk⁷⁹, Maria Kozhevnikova⁸⁰, Łukasz Kozub⁸¹, Daniel Krstonošić⁸², Hjalmar Kühl^{83,2}, Ingolf Kühn^{84,1,2}, Anna Kuzemko⁸⁵, 23 Filip Küzmič⁸⁶, Flavia Landucci⁸, Michael T. Lee⁸⁷, Aurora Levesley⁸⁸, Ching-Feng Li⁸⁹, Hongyan Liu⁹⁰, 24 Gabriela Lopez-Gonzalez⁸⁸, Tatiana Lysenko⁹¹, Armin Macanović⁹², Parastoo Mahdavi⁹³, Peter Manning⁹⁴, 25 26 Corrado Marcenò¹⁴, Vassiliy Martynenko⁹⁵, Maurizio Mencuccini⁹⁶, Vanessa Minden⁹⁷, Jesper Erenskjold Moeslund⁵⁴, Marco Moretti⁹⁸, Jonas V. Müller⁹⁹, Jérôme Munzinger¹⁰⁰, Ülo Niinemets¹⁰¹, Marcin Nobis¹⁰², 27 28 Jalil Noroozi¹⁰³, Arkadiusz Nowak¹⁰⁴, Viktor Onyshchenko⁸⁵, Gerhard E. Overbeck⁹, Wim A. Ozinga¹⁰⁵,

29 Anibal Pauchard¹⁰⁶, Hristo Pedashenko¹⁰⁷, Josep Peñuelas^{108,109}, Aaron Pérez-Haase^{110,111}, Tomáš

- 30 Peterka⁸, Petr Petřík¹¹², Oliver L. Phillips⁸⁸, Vadim Prokhorov⁸⁰, Valerijus Rašomavičius¹¹³, Rasmus
- 31 Revermann⁵⁹, John Rodwell¹¹⁴, Eszter Ruprecht¹¹⁵, Solvita Rūsiņa¹¹⁶, Cyrus Samimi¹¹⁷, Joop H.J.
- 32 Schaminée⁷, Ute Schmiedel⁵⁹, Jozef Šibík¹¹⁸, Urban Šilc⁸⁶, Željko Škvorc⁸², Anita Smyth¹¹⁹, Tenekwetche
- 33 Sop^{83,2}, Desislava Sopotlieva²⁵, Ben Sparrow¹¹⁹, Zvjezdana Stančić¹²⁰, Jens-Christian Svenning³⁵,
- 34 Grzegorz Swacha⁷⁴, Zhiyao Tang⁹⁰, Ioannis Tsiripidis¹²¹, Pavel Dan Turtureanu¹²², Emin Ugurlu¹²³, Domas
- 35 Uogintas¹¹³, Milan Valachovič¹¹⁸, Kim André Vanselow¹²⁴, Yulia Vashenyak¹²⁵, Kiril Vassilev²⁵, Eduardo
- 36 Vélez-Martin⁹, Roberto Venanzoni¹²⁶, Alexander Christian Vibrans¹²⁷, Cyrille Violle¹²⁸, Risto
- 37 Virtanen^{129,130,2}, Henrik von Wehrden¹³¹, Viktoria Wagner¹³², Donald A. Walker¹³³, Desalegn Wana¹³⁴,
- 38 Evan Weiher¹³⁵, Karsten Wesche^{136,2,137}, Timothy Whitfeld¹³⁸, Wolfgang Willner¹³⁹, Susan Wiser²⁸, Thomas
- 39 Wohlgemuth¹⁴⁰, Sergey Yamalov¹⁴¹, Georg Zizka⁵³, Andrei Zverev¹⁴²
- 40
- 41 * Helge Bruelheide, Jürgen Dengler, Borja Jiménez-Alfaro and Oliver Purschke should be
- 42 considered joint first authors
- 43

44 **AFFILIATIONS**

- ⁴⁵ ¹Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg,
- 46 Halle, Germany
- 47 ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- 48 ³Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied
- 49 Sciences (ZHAW), Wädenswil, Switzerland
- ⁴Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of
- 51 Bayreuth, Bayreuth, Germany
- ⁵Research Unit of Biodiversity (CSUC/UO/PA), University of Oviedo, Mieres, Spain
- ⁶Leipzig, Germany
- ⁷Wageningen Environmental Research (Alterra), Wageningen University and Research, Wageningen,
- 55 Netherlands

- ⁸Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- ⁹Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ¹⁰Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
- 59 ¹¹Max Planck Institute for Biogeochemistry, Jena, Germany
- 60 ¹²Department of Biology, Santa Clara University, Santa Clara, CA, United States
- 61 ¹³Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste Marie
- 62 (Ontario), Canada
- ¹⁴Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain
- ¹⁵School of Geography, University of Nottingham, Nottingham, United Kingdom
- ¹⁶Ecologie et Dynamiques des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS-UPJV), Université de
- 66 Picardie Jules Verne, Amiens, France
- ¹⁷Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- ¹⁸Department of Civil and Environmental Engineering, University of the Andes, Bogota, Colombia
- ¹⁹Data and Modelling Centre, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt
- 70 am Main, Germany
- ²⁰Department of Agrobotany, Faculty of Agriculture, Belgrade-Zemun, Serbia
- 72 ²¹Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
- 73 ²²Plant Nutrition, INRES, University of Bonn, Bonn, Germany
- ²³Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Düzce
- 75 University, Düzce, Turkey
- 76 ²⁴Biodiversity Conservation Department, ISPRA Italian National Institute for Environmental Protection
- 77 and Research, Rome, Italy
- ²⁵Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem
- 79 Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
- 80 ²⁶Forestry & Environmental Science, Shahjalal University of Science & Technology, Sylhet, Bangladesh

- ²⁷Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of
- 82 Bayreuth, Bayreuth, Germany
- 83 ²⁸Manaaki Whenua -- Landcare Research, Lincoln, New Zealand
- ²⁹International Center for Tropical Botany (ICTB), The Kampong of the National Tropical Botanical
- 85 Garden, Coconut Grove, Florida, United States
- ³⁰Department of Biological Sciences, Florida International University, Miami, Florida, United States
- 87 ³¹Landscape Ecology, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
- 88 ³²Botanical Garden, University of Graz, Graz, Austria
- ³³Forest Research Institute, Université du Québec en Abitibi-Témiscamingue , Rouyn-Noranda, Canada
- ³⁴Vegetation Ecology and Phytodiversity, University of Göttingen, Göttingen, Germany
- ³⁵Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics &
- 92 Biodiversity, Department of Bioscience, Aarhus University, Aarhus C, Denmark
- ³⁶Laboratory of Phytocoenology, Institute of Ecology of the Volga River Basin, Toljatty, Russian
- 94 Federation
- ³⁷Institute of Geography, CEN Center for Earth System Research and Sustainability, University of
- 96 Hamburg, Hamburg, Germany
- ³⁸Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, Hungary
- ³⁹Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
- ⁴⁰International Arctic Research Center, University of Alaska, Fairbanks, United States
- 100 ⁴¹Faculté des Sciences, MEP, Marseille cedex 20, France
- 101 ⁴²School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
- ⁴³Multidisciplinary Institute for Plant Biology (IMBIV CONICET), University of Cordoba CONICET,
- 103 Cordoba, Argentina
- ⁴⁴Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos,
- 105 Móstoles, Spain

- ⁴⁵Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences
- 107 Prague, Praha 6 Suchdol, Czech Republic
- ⁴⁶Laboratory of Physical Geography and Biogeography, V.B. Sochava Insitute of Geography SB RAS,
- 109 Irkutsk, Russian Federation
- ⁴⁷Department of Ecology, University of Pécs, Pécs, Hungary
- ⁴⁸Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Zürich,
- 112 Switzerland
- ⁴⁹Institute of Biology, Faculty of Natural Sciences and Mathematics, Skopje, Republic of Macedonia
- ⁵⁰Departement of Biodiversity and Natural Environment, Research Institute for Nature and Forest (INBO),
- 115 Brussels, Belgium
- 116 ⁵¹IBMP, Strasburg, France
- ⁵²Institute of Botany, Division of Plant Biology, Department of Biology, University of Patras, Patras,
- 118 Greece
- ⁵³Dept. Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany
- 120 ⁵⁴Department of Bioscience, Aarhus University, Roende, Denmark
- 121 ⁵⁵Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- ⁵⁶Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
- ⁵⁷Hochschule Weihenstephan-Triesdorf, University of Applied Sciences, Freising, Germany
- ⁵⁸Faculty of Science, University of A Coruña, A Coruña, Spain
- ⁵⁹Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology, University of
- 126 Hamburg, Hamburg, Germany
- 127 ⁶⁰Plant Biodiversity Resource Centre, University of Barcelona, Barcelona, Spain
- 128 ⁶¹Laboratoire Ecodiv, EA 1293 URA IRSTEA, Normandie University, Mont-Saint-Aignan, France
- 129 ⁶²Department of Forestry & Natural Environment Management, TEI of Sterea Ellada, Karpenissi, Greece
- 130 ⁶³Departament of Natural Science, Regional University of Blumenau, Blumenau, Brazil

- 131 ⁶⁴Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias
- 132 Agronomicas, Universidad de Chile, Santiago, Chile
- 133 ⁶⁵Botany, Faculty of Science, Tanta University, Tanta, Egypt
- 134 ⁶⁶School of Molecular and Life Sicences, Curtin University, Bentley, WA, Australia
- 135 ⁶⁷Forestry Department, Santa Catarina State University, Lages, Brazil
- 136 ⁶⁸Institute of Landscape Ecology, University of Münster, Münster, Germany
- 137 ⁶⁹Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- 138 ⁷⁰Department of Silviculture, Transilvania University of Brasov, Brasov, Romania
- ⁷¹Department of Biology, Celal Bayar University, Manisa, Turkey
- 140 ⁷²Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- 141 ⁷³Department of Plant Biology, Mendel University in Brno, Brno, Czech Republic
- 142 ⁷⁴Botanical Garden, University of Wrocław, Wrocław, Poland
- 143 ⁷⁵Silviculture and Forest Botany, Soutwest Anatolia Forest Research Institute, Antalya, Turkey
- 144 ⁷⁶Department of Environment, Ghent University, Gent, Belgium
- ⁷⁷Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- 146 ⁷⁸O.V. Fomin Botanical Garden, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- ⁷⁹Geosystem Laboratory, Central Siberian Botanical Garden, Siberian Branch, Russian Academy of
- 148 Sciences , Novosibirsk, Russian Federation
- 149 ⁸⁰Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation
- 150 ⁸¹Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and
- 151 Chemical Research Centre, University of Warsaw, Warsaw, Poland
- 152 ⁸²Faculty of Forestry, University of Zagreb, Zagreb, Croatia
- ⁸³Primatology, Max Planck Institute for Evolutionary Anthropology (MPI-EVA, Leipzig, Germany)
- 154 ⁸⁴Dept. Community Ecology, Helmholtz Centre for Environmental Research UFZ, Halle, Germany

- 155 ⁸⁵M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- 156 ⁸⁶Institute of Biology, Research Centre of Slovenian Academy of Sciences and Arts (ZRC SAZU), Ljubljana,
- 157 Slovenia
- 158 ⁸⁷NatureServe, Durham, United States
- 159 ⁸⁸School of Geography, University of Leeds, Leeds, United Kingdom
- 160 ⁸⁹School of Forestry and Resource Conservation, National Taiwan University, Hsinchu, Taiwan
- 161 ⁹⁰College of Urban and Environmental Sciences, Peking University, Beijing, China
- ⁹¹Dept. of the Phytodiversity Problems, Institute of Ecology of the Volga River Basin RAS, Togliatti,
- 163 Russian Federation
- ⁹²Center for Ecology and Natural Resources Academician Sulejman Redžić, Department of Biology,
- 165 University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- ⁹³Research Group Vegetation Science & Nature Conservation, Dept. of Ecology and Environmental
- 167 Science, Carl von Ossietzky-University Oldenburg, Oldenburg, Germany
- ⁹⁴Project Group Causes and Consequences of Climate Change, Senckenberg Research Institute, Frankfurt
- 169 am Main, Germany
- ⁹⁵Ufa Institute of Biology of Ufa Federal Scientific Centre of the Russian Academy of Sciences, Ufa,
- 171 Russian Federation
- ⁹⁶Centre Research Ecology and Forestry Applications (CREAF), ICREA, Barcelona, Spain
- ⁹⁷Institute of Biology an Environmental Sciences, Carl von Ossietzky-University Oldenburg, Oldenburg,
- 174 Germany
- ⁹⁸Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- ⁹⁹Conservation Science, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
- ¹⁰⁰AMAP Botany and Modelling of Plant Architecture and Vegetation, IRD, CIRAD, CNRS, INRA,
- 178 Université Montpellier, Montpellier, France
- 179 ¹⁰¹Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
- 180 ¹⁰²Institute of Botany, Jagiellonian University, Kraków, Poland

- 181 ¹⁰³Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- 182 ¹⁰⁴Botanical Garden Center for Biological Diversity Conservation, Polish Academy of Sciences,
- 183 Warszawa, Poland
- ¹⁰⁵Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, Wageningen,
- 185 Netherlands
- 186 ¹⁰⁶Laboratorio de Invasiones Biológicas (LIB), University of Concepción, Concepción, Chile
- 187 ¹⁰⁷Amsterdam, Netherlands
- 188 ¹⁰⁸Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Spain
- 189 ¹⁰⁹CREAF, Cerdanyola del Vallès, Spain
- ¹¹⁰Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona,
- 191 Barcelona, Spain
- ¹¹¹Continental Ecology, Center for Advanced Studies of Blanes, Spanish Research Council (CEAB-CSIC),
- 193 Blanes, Girona, Spain
- ¹¹²Department of GIS and Remote Sensing, Institute of Botany, The Czech Academy of Sciences,
- 195 Průhonice, Czech Republic
- 196 ¹¹³Institute of Botany, Nature Research Centre, Vilnius, Lithuania
- 197 ¹¹⁴Lancaster, United Kingdom
- 198 ¹¹⁵Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeş-Bolyai
- 199 University, Cluj-Napoca, Romania
- 200 ¹¹⁶Department of Geography, University of Latvia, Riga, Latvia
- ¹¹⁷Climatology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of
- 202 Bayreuth, Bayreuth, Germany
- ¹¹⁸Institute of Botany, Plant Science and Biodiversity Centre Slovak Academy of Sciences, Bratislava,
- 204 Slovakia
- 205 ¹¹⁹TERN, University of Adelaide, Adelaide, Australia
- 206 ¹²⁰Faculty of Geotechnical Engineering, University of Zagreb, Varaždin, Croatia

- 207 ¹²¹School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 208 ¹²²A. Borza Botanical Garden, Babeș-Bolyai University, Cluj-Napoca, Romania
- 209 ¹²³Forest Engineering Department, Faculty of Forestry, Bursa Technical University, Yıldırım, Bursa, Turkey
- 210 ¹²⁴Department of Geography, University of Erlangen-Nuremberg, Erlangen, Germany
- 211 ¹²⁵Khmelnytskyi Institute of Interregional Academy of Personnel Management, Khmelnytskyi, Ukraine
- 212 ¹²⁶Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- 213 ¹²⁷Departamento de Engenharia Florestal, Universidade Regional de Blumenau, Blumenau, Brazil
- ¹²⁸Centre d'Ecologie Fonctionnelle et Evolutive (UMR5175), CNRS Université de Montpellier Université
- 215 Paul-Valéry Montpellier EPHE, Montpellier, France
- 216 ¹²⁹Ecology and Genetics Research Unit, Biodiversity Unit, University of Oulu, Oulu, Finland
- ¹³⁰Department of Physiological Diversity, Helmholtz Center for Environmental Research UFZ, Leipzig,
- 218 Germany
- ¹³¹Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
- 220 ¹³²Department of Biological Sciences, University of Alberta, Edmonton, Canada
- ¹³³Institute of Arctic Biology, University of Alaska, Fairbanks, United States
- ¹³⁴Department of Geography & Environmental Studies, Addis Ababa University, Addis Ababa, Ethiopia
- ¹³⁵Department of Biology, University of Wisconsin Eau Claire, Eau Claire, WI, United States
- ¹³⁶Botany Department, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- 225 ¹³⁷International Institute Zittau, Technische Universität Dresden, Zittau, Germany
- ¹³⁸Department of Ecology and Evolutionary Biology/Brown University Herbarium, Brown University,
- 227 Providence, United States
- ¹³⁹Vienna Institute for Nature Conservation & Analyses, Vienna, Austria
- ¹⁴⁰Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
- 230 Birmensdorf, Switzerland

- 231 ¹⁴¹Laboratory of Wild-Growing Flora, Botanical Garden-Institute, Ufa Scientific Centre, Russian Academy
- 232 of Sciences, Ufa, Russian Federation
- 233 ¹⁴²Department of Botany, Tomsk State University, Tomsk, Russian Federation
- 234

235 Correspondence:

- 236 Helge Bruelheide, Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-
- 237 Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
- 238 Email: helge.bruelheide@botanik.uni-halle.de
- 239
- 240 **ORCID**:
- 241 Helge Bruelheide http://orcid.org/0000-0003-3135-0356
- 242 Jürgen Dengler http://orcid.org/0000-0003-3221-660X
- 243 Borja Jiménez-Alfaro http://orcid.org/0000-0001-6601-9597
- 244 Oliver Purschke http://orcid.org/0000-0003-0444-0882
- 245 Milan Chytrý http://orcid.org/0000-0002-8122-3075
- 246 Valério D. Pillar http://orcid.org/0000-0001-6408-2891
- 247 Jens Kattge http://orcid.org/0000-0002-1022-8469
- 248 Idoia Biurrun http://orcid.org/0000-0002-1454-0433
- 249 Richard Field http://orcid.org/0000-0003-2613-2688
- 250 Jonathan Lenoir http://orcid.org/0000-0003-0638-9582
- 251 Francesco M. Sabatini http://orcid.org/0000-0002-7202-7697
- 252 Marco Schmidt http://orcid.org/0000-0001-6087-6117
- 253 Franziska Schrodt http://orcid.org/0000-0001-9053-8872
- 254 Emiliano Agrillo http://orcid.org/0000-0003-2346-8346

- 255 Miguel Alvarez http://orcid.org/0000-0003-1500-1834
- 256 Pierangela Angelini http://orcid.org/0000-0002-5321-9757
- 257 Mohammed A.S. Arfin Khan http://orcid.org/0000-0001-6275-7023
- 258 Fabio Attorre http://orcid.org/0000-0002-7744-2195
- 259 Michael Beckmann http://orcid.org/0000-0002-5678-265X
- 260 Yves Bergeron http://orcid.org/0000-0003-3707-3687
- 261 Erwin Bergmeier http://orcid.org/0000-0002-6118-4611
- 262 Zoltán Botta-Dukát http://orcid.org/0000-0002-9544-3474
- 263 Chaeho Byun http://orcid.org/0000-0003-3209-3275
- 264 Laura Casella http://orcid.org/0000-0003-2550-3010
- 265 Luis Cayuela http://orcid.org/0000-0003-3562-2662
- 266 Victor Chepinoga http://orcid.org/0000-0003-3809-7453
- 267 Michele De Sanctis http://orcid.org/0000-0002-7280-6199
- 268 Jaime Fagúndez http://orcid.org/0000-0001-6605-7278
- 269 Xavier Font http://orcid.org/0000-0002-7253-8905
- 270 Estelle Forey http://orcid.org/0000-0001-6082-3023
- 271 André Luis de Gasper http://orcid.org/0000-0002-1940-9581
- 272 Alvaro G. Gutierrez http://orcid.org/0000-0001-8928-3198
- 273 Tianhua He http://orcid.org/0000-0002-0924-3637
- 274 Pedro Higuchi http://orcid.org/0000-0002-3855-555X
- 275 Norbert Hölzel http://orcid.org/0000-0002-6367-3400
- 276 Steven Jansen http://orcid.org/0000-0002-4476-5334
- 277 Martin Jiroušek http://orcid.org/0000-0002-4293-478X
- 278 Norbert Jürgens http://orcid.org/0000-0003-3211-0549

- 279 Ali Kavgacı http://orcid.org/0000-0002-4549-3668
- 280 Elizabeth Kearsley http://orcid.org/0000-0003-0046-3606
- 281 Michael Kessler http://orcid.org/0000-0003-4612-9937
- 282 Ingolf Kühn http://orcid.org/0000-0003-1691-8249
- 283 Flavia Landucci http://orcid.org/0000-0002-6848-0384
- 284 Ching-Feng Li http://orcid.org/0000-0003-0744-490X
- 285 Peter Manning http://orcid.org/0000-0002-7940-2023
- 286 Corrado Marcenò http://orcid.org/0000-0003-4361-5200
- 287 Maurizio Mencuccini http://orcid.org/0000-0003-0840-1477
- 288 Vanessa Minden http://orcid.org/0000-0002-4933-5931
- 289 Jesper Erenskjold Moeslund http://orcid.org/0000-0001-8591-7149
- 290 Marco Moretti http://orcid.org/0000-0002-5845-3198
- 291 Jérôme Munzinger http://orcid.org/0000-0001-5300-2702
- 292 Ülo Niinemets http://orcid.org/0000-0002-3078-2192
- 293 Arkadiusz Nowak http://orcid.org/0000-0001-8638-0208
- 294 Gerhard E. Overbeck http://orcid.org/0000-0002-8716-5136
- 295 Wim A. Ozinga http://orcid.org/0000-0002-6369-7859
- 296 Hristo Pedashenko http://orcid.org/0000-0002-6743-0625
- 297 Josep Penuelas http://orcid.org/0000-0002-7215-0150
- Aaron Pérez-Haase http://orcid.org/0000-0002-5974-7374
- 299 Petr Petřík http://orcid.org/0000-0001-8518-6737
- 300 Oliver L. Phillips http://orcid.org/0000-0002-8993-6168
- 301 Jozef Šibík http://orcid.org/0000-0002-5949-862X
- 302 Urban Šilc http://orcid.org/0000-0002-3052-699X

- 303 Jens-Christian Svenning http://orcid.org/0000-0002-3415-0862
- 304 Emin Ugurlu http://orcid.org/0000-0003-0824-1426
- 305 Eduardo Vélez-Martin http://orcid.org/0000-0001-8028-8953
- 306 Roberto Venanzoni http://orcid.org/0000-0002-7768-0468
- 307 Risto Virtanen http://orcid.org/0000-0002-8295-8217
- 308 Evan Weiher http://orcid.org/0000-0002-5375-9964
- 309 Susan Wiser http://orcid.org/0000-0002-8938-8181
- 310
- 311 email:
- 312 <u>Helge Bruelheide: helge.bruelheide@botanik.uni-halle.de</u>
- 313 <u>Jürgen Dengler: juergen.dengler@uni-bayreuth.de</u>
- 314 Borja Jiménez-Alfaro: jimenezalfaro.borja@gmail.com
- 315 <u>Oliver Purschke: oliverpurschke@web.de</u>
- 316 <u>Stephan M. Hennekens: stephan.hennekens@wur.nl</u>
- 317 <u>Milan Chytrý: chytry@sci.muni.cz</u>
- 318 Valério De Patta Pillar: vpillar@ufrgs.br
- 319 <u>Florian Jansen: florian.jansen@uni-rostock.de</u>
- 320 Jens Kattge: jkattge@bgc-jena.mpg.de
- 321 Brody Sandel: bsandel@scu.edu
- 322 <u>Marten Winter: marten.winter@idiv.de</u>
- 323 <u>Isabelle Aubin: isabelle.aubin@canada.ca</u>
- 324 Idoia Biurrun: idoia.biurrun@ehu.es
- 325 <u>Richard Field: Richard.Field@nottingham.ac.uk</u>
- 326 <u>Sylvia Haider: sylvia.haider@botanik.uni-halle.de</u>
- 327 <u>Ute Jandt: ute.jandt@botanik.uni-halle.de</u>

- 328 Jonathan Lenoir: jonathan.lenoir@u-picardie.fr
- 329 Robert K. Peet: peet@unc.edu
- 330 Gwendolyn Peyre: gf.peyre@uniandes.edu.co
- 331 Francesco M. Sabatini: francesco.maria.sabatini@botanik.uni-halle.de
- Marco<u>Schmidt: marco.schmidt@stadt-frankfurt.de</u> 332
- 333 Franziska Schrodt: f.i.schrodt@gmail.com
- 334 Svetlana Aćić: acic@agrif.bg.ac.rs
- 335 Emiliano Agrillo: emiliano.agrillo@uniroma1.it
- 336 Miguel Alvarez: malvarez@uni-bonn.de
- 337 Didem Ambarlı: didemambarli@duzce.edu.tr
- 338 Pierangela Angelini: pierangela.angelini@isprambiente.it
- 339 Iva Apostolova: iva.apostolova@gmail.com
- 340 Mohammed A.S. Arfin Khan: nobelarfin@yahoo.com
- 341 Elise Arnst: arnste@landcareresearch.co.nz
- 342 Fabio Attorre: fabio.attorre@uniroma1.it
- 343 Christian Berg: christian.berg@uni-graz.at
- 344 Yves Bergeron: yves.bergeron@uqat.ca
- 5/2/2 345 Erwin Bergmeier: erwin.bergmeier@bio.uni-goettingen.de
- 346 Anne D. Bjorkman: annebj@gmail.com
- 347 Viktoria Bondareva: bondarevavictoria@yandex.ru
- 348 Peter Borchardt: pbo1@gmx.de
- 349 Zoltán Botta-Dukát: botta-dukat.zoltan@okologia.mta.hu
- 350 Brad Boyle: bboyle@email.arizona.edu
- 351 Amy Breen: albreen@alaska.edu
- 352 Henry Brisse: brisse.henry@orange.fr
- 353 Marcelo R. Cabido: mcabido@imbiv.unc.edu.ar

- 354 Laura Casella: laura.casella@isprambiente.it
- 355 <u>Luis Cayuela: luis.cayuela@urjc.es</u>
- 356 <u>Tomáš Černý: cernyt@fld.czu.cz</u>
- 357 Victor Chepinoga: victor.chepinoga@gmail.com
- 358 János Csiky: moon@ttk.pte.hu
- 359 <u>Michael Curran: currmi01@gmail.com</u>
- 360 Renata Ćušterevska: renatapmf@yahoo.com
- 361 <u>Zora Dajić Stevanović: dajic@agrif.bg.ac.rs</u>
- 362 <u>Els De Bie: els.debie@inbo.be</u>
- 363 Patrice De Ruffray: patrice.de-ruffray@wanadoo.fr
- 364 <u>Michele De Sanctis: michedes@gmail.com</u>
- 365 <u>Panayotis Dimopoulos: pdimopoulos@upatras.gr</u>
- 366 <u>Stefan Dressler: stefan.dressler@senckenberg.de</u>
- 367 <u>Rasmus Ejrnæs: rasmus@bios.au.dk</u>
- 368 Mohamed Abd El-Rouf Mousa El-Sheikh: el_sheikh_eg@yahoo.co.uk
- 369 Brian Enquist: benquist@email.arizona.edu
- 370 <u>Jörg Ewald: joerg.ewald@hswt.de</u>
- 371 <u>Manfred Finckh: manfred.finckh@uni-hamburg.de</u>
- 372 Xavier Font: xfont@ub.edu
- 373 Georgios Fotiadis: gfotiad95@gmail.com
- 374 Itziar García-Mijangos: itziar.garcia@ehu.es
- 375 <u>André Luis de Gasper: algasper@furb.br</u>
- 376 Valentin Golub: vbgolub2000@mail.ru
- 377 <u>Alvaro G. Gutierrez: bosqueciencia@gmail.com</u>
- 378 Mohamed Z. Hatim: mohamed.zakaria@science.tanta.edu.eg
- 379 <u>Norbert Hölzel: nhoelzel@uni-muenster.de</u>

- 380 Dana Holubová: danmich@sci.muni.cz
- 381 <u>Jürgen Homeier: jhomeie@gwdg.de</u>
- 382 <u>Adrian Indreica: adrianindreica@unitbv.ro</u>
- 383 Deniz lşık Gürsoy: biodeniz-04@hotmail.com
- 384 John Janssen: john.janssen@wur.nl
- 385 Birgit Jedrzejek: siegb@uni-muenster.de
- 386 Martin Jiroušek: machozrut@mail.muni.cz
- 387 <u>Norbert Jürgens: norbert.juergens@uni-hamburg.de</u>
- 388 Zygmunt Kącki: zygmunt.kacki@uwr.edu.pl
- 389 Ali Kavgacı: alikavgaci1977@yahoo.com
- 390 <u>Elizabeth Kearsley: elizabeth.kearsley@ugent.be</u>
- 391 Michael Kessler: michael.kessler@systbot.uzh.ch
- 392 <u>Ilona Knollová: ikuzel@sci.muni.cz</u>
- 393 Vitaliy Kolomiychuk: vkolomiychuk@ukr.net
- 394 Andrey Korolyuk: akorolyuk@rambler.ru
- 395 Maria Kozhevnikova: mania_kazan@mail.ru
- 396 Łukasz Kozub: kozub.lukasz@gmail.com
- 397 Daniel Krstonošić: dkrstonosic@sumfak.hr
- 398 <u>Hjalmar Kühl: kuehl@eva.mpg.de</u>
- 399 Anna Kuzemko: anyameadow.ak@gmail.com
- 400 Filip Küzmič: filip.kuzmic@zrc-sazu.si
- 401 Flavia Landucci: flavia.landucci@gmail.com
- 402 Michael T. Lee: michael_lee@natureserve.org
- 403 <u>Aurora Levesley: a.levesley@leeds.ac.uk</u>
- 404 Ching-Feng Li: chingfeng.li@gmail.com
- 405 <u>Hongyan Liu: lhy@urban.pku.edu.cn</u>

- 406 <u>Gabriela Lopez-Gonzalez: g.lopez-gonzalez@leeds.ac.uk</u>
- 407 <u>Tatiana Lysenko: ltm2000@mail.ru</u>
- 408 Parastoo Mahdavi: parastoo.mahdavi@uni-oldenburg.de
- 409 Armin Macanović: arminecology@gmail.com
- 410 <u>Corrado Marcenò: marceno.corrado@ehu.eus</u>
- 411 Vassiliy Martynenko: vasmar@anrb.ru
- 412 Jesper Erenskjold Moeslund: jesper.moeslund@bios.au.dk
- 413 Jonas V. Müller: j.mueller@kew.org
- 414 Jérôme Munzinger: jerome.munzinger@ird.fr
- 415 Marcin Nobis: m.nobis@uj.edu.pl
- 416 Jalil Noroozi: noroozi.jalil@gmail.com
- 417 <u>Arkadiusz Nowak: anowak@uni.opole.pl</u>
- 418 Viktor Onyshchenko: labzap@ukr.net
- 419 Gerhard E. Overbeck: gerhard.overbeck@ufrgs.br
- 420 Anibal Pauchard: pauchard@udec.cl
- 421 <u>Hristo Pedashenko: hristo_pedashenko@yahoo.com</u>
- 422 <u>Aaron Pérez-Haase: aaronperez@ub.edu</u>
- 423 <u>Tomáš Peterka: peterkatomasek@seznam.cz</u>
- 424 Petr Petřík: petr.petrik@ibot.cas.cz
- 425 <u>Oliver L. Phillips: o.phillips@leeds.ac.uk</u>
- 426 Vadim Prokhorov: vadim.prokhorov@gmail.com
- 427 Valerijus Rašomavičius: valerijus.rasomavicius@botanika.lt
- 428 Rasmus Revermann: rasmus.revermann@gmail.com
- 429 John Rodwell: johnrodwell@tiscali.co.uk
- 430 Eszter Ruprecht: eszter.ruprecht@ubbcluj.ro
- 431 Solvita Rūsiņa: rusina@lu.lv

- 432 <u>Cyrus Samimi: cyrus.samimi@uni-bayreuth.de</u>
- 433 Joop H.J. Schaminée: joop.schaminee@wur.nl
- 434 <u>Ute Schmiedel: ute.schmiedel@uni-hamburg.de</u>
- 435 Jozef Šibík: jozef.sibik@savba.sk
- 436 Urban Šilc: urban@zrc-sazu.si
- 437 <u>Željko Škvorc: skvorc@sumfak.hr</u>
- 438 Anita Smyth: anita.smyth@adelaide.edu.au
- 439 <u>Tenekwetche Sop : tenekwetche_sop@eva.mpg.de</u>
- 440 Desislava Sopotlieva: desislava.sopotlieva@iber.bas.bg
- 441 Ben Sparrow: ben.sparrow@adelaide.edu.au
- 442 Zvjezdana Stančić: zvjezdana.stancic@gfv.hr
- 443 Jens-Christian Svenning: svenning@bios.au.dk
- 444 <u>Grzegorz Swacha: gswacha@gmail.com</u>
- 445 Zhiyao Tang: zytang@urban.pku.edu.cn
- 446 <u>loannis Tsiripidis: tsiripid@bio.auth.gr</u>
- 447 Pavel Dan Turtureanu: turtureanudan@gmail.com
- 448 <u>Emin Ugurlu: emin.ugurlu@btu.edu.tr</u>
- 449 Domas Uogintas: domas.uogintas@botanika.lt
- 450 Milan Valachovič: milan.valachovic@savba.sk
- 451 Kim André Vanselow: kim.vanselow@fau.de
- 452 Yulia Vashenyak: vasheniyak@mail.ru
- 453 Kiril Vassilev : kiril5914@abv.bg
- 454 Eduardo Vélez-Martin: velezedu@portoweb.com.br
- 455 Roberto Venanzoni: roberto.venanzoni@unipg.it
- 456 <u>Alexander Christian Vibrans: acv@furb.br</u>
- 457 <u>Cyrille Violle: cyrille.violle@cefe.cnrs.fr</u>

- 458 <u>Risto Virtanen: risto.virtanen@oulu.fi</u>
- 459 <u>Henrik von Wehrden: henrik.von_wehrden@leuphana.de</u>
- 460 <u>Viktoria Wagner: viktoria.wagner@ualberta.ca</u>
- 461 <u>Donald A. Walker: dawalker@alaska.edu</u>
- 462 Desalegn Wana: deswana2002@yahoo.com
- 463 Karsten Wesche: karsten.wesche@senckenberg.de
- 464 <u>Timothy Whitfeld: timothy_whitfeld@brown.edu</u>
- 465 <u>Wolfgang Willner: wolfgang.willner@vinca.at</u>
- 466 <u>Susan Wiser: wisers@landcareresearch.co.nz</u>
- 467 <u>Thomas Wohlgemuth: thomas.wohlgemuth@wsl.ch</u>
- 468 <u>Sergey Yamalov: yamalovsm@mail.ru</u>
- 469 <u>Georg Zizka: georg.zizka@senckenberg.de</u>
- 470 <u>Andrei Zverev: ibiss@rambler.ru</u>
- 471

472 ACKNOWLEDGMENTS

473 We are grateful to thousands of vegetation scientists who sampled vegetation plots in the field or

iez

- digitized them into regional, national or international databases. We also appreciate the support
- 475 of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118)
- research platforms, and the organization of three workshops through the sDiv calls. We
- acknowledge this support with naming the database "sPlot", where the "s" refers to the sDiv
- 478 synthesis workshops. The study was supported by the TRY initiative on plant traits
- 479 (http://www.try-db.org). We thank Meelis Pärtel for the very fast and constructive feedback on an
- 480 earlier version of this manuscript.
- 481

482 AUTHOR CONTRIBUTIONS

483 H.Bru. had the original idea and led the consortium from the start, while O.Pu. and J.D.

484 coordinated the sPlot workshops. J.D., S.M.H. and U.J. compiled the databases to be included

485 in sPlot. J.D. and later B.J.-A. and F.M.S. coordinated the network and the database. O.P.

prepared the taxonomic and phylogenetic data. S.M.H programmed the Turboveg software.

- 487 B.Sa., F.J., H.Bru., J.D., J.K., M.Ch., and V.D.P. organized the network in the Steering
- 488 Committee. B.J.-A. and H.Bru. led the writing together with J.D. and input from S.M.H., O.Pu.,
- 489 M.Ch., F.J., J.K., V.D.P., B.Sa., I.Au., I.B., R.K.P., R.F., S.H., U.J., J.L., G.P., F.M.S., M.S., F.S.
- and M.W. The rest of authors (ordered alphabetically) contributed the plot and trait data. All
- 491 authors agreed with the final manuscript.
- 492

493 BIOSKETCH

- 494 sPlot is a consortium established during three workshops held at the German Centre of
- 495 Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The consortium currently comprises
- 496 110 member databases, two data aggregators and 43 personal members, including plant
- 497 ecologists, biogeographers, field botanists and data analysts. More information about the
- 498 consortium and its projects can be accessed at <u>www.idiv.de/splot</u>.
- 499

501 SHORT RUNNING TITLE

- 502 sPlot the global vegetation database
- 503

504 ABSTRACT

- 505 **Questions:** Vegetation-plot records provide information on presence and cover or abundance of
- 506 plants co-occurring in the same community. Vegetation-plot data are spread across research
- 507 groups, environmental agencies and biodiversity research centers, and thus, are rarely
- accessible at continental or global scales. Here we present the sPlot database, which collates
- 509 vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional
- and phylogenetic diversity at the plant community level.
- 511 **Location:** sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise
- 512 23,586,216 records of plant species and their relative cover or abundance in plots collected
- 513 between 1885 and 2015.
- 514 **Methods:** We complemented the information for each plot by retrieving environmental conditions
- (i.e. climate and soil) and the biogeographic context (i.e. biomes) from external sources, and by
- 516 calculating community-weighted means and variances of traits using gap-filled data from the
- 517 global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the
- 518 54,519 species identified in the plots.
- 519 **Results:** We present the first maps of global patterns of community richness and community-
- 520 weighted means of key traits.
- 521 Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation522 analysis at the global scale.
- 523
- 524 KEYWORDS

525 Biodiversity; community ecology; ecoinformatics; functional diversity; global scale;

526 macroecology; phylogenetic diversity; plot database; sPlot; taxonomic diversity; vascular plant;
527 vegetation relevé.

528

529 **INTRODUCTION**

530 Studying global biodiversity patterns is at the core of macroecological research (Kreft & Jetz, 2007; Wiens, 2011; Costello, Wilson & Houlding, 2012), since their exploration may provide 531 insights into the ecological and evolutionary processes acting at different spatio-temporal scales 532 533 (Ricklefs, 2004). The opportunities enabled by the compilation of large collections of biodiversity 534 data into widely accessible global (GBIF, www.gbif.org) or continental databases (e.g. BIEN, 535 www.bien.nceas.ucsb.edu/bien) have recently advanced our understanding of global biodiversity patterns, especially for vertebrates, but also for vascular plants (Swenson et al., 2012; Lamanna 536 537 et al., 2014; Engemann et al., 2016; Butler et al., 2017). Although this development has led to 538 the formulation of several macroecological theories (Currie et al., 2004; Pärtel, Bennett & Zobel, 539 2016), a more mechanistic understanding of how assembly processes shape ecological communities and consequently global biodiversity patterns, is still missing (Lessard, Belmaker, 540 541 Myers, Chase & Rahbek, 2012).

542 Understanding the links between biodiversity patterns and assembly processes requires 543 fine-grain data on the co-occurrence of species in ecological communities, sampled across continental or global spatial extents (Beck et al., 2012; Wisz et al., 2013). For example, such co-544 545 occurrence data have been used to compare changes in vegetation composition over time 546 spans of decades (Jandt, von Wehrden & Bruelheide 2011; Perring et al. 2018). Unfortunately, 547 information on fine-grain vegetation data up to now has not been readily available, as most of 548 the continental to global biodiversity datasets have been derived from occurrence data (i.e. 549 presence-only data), and after being aggregated spatially, have a relatively coarse-grain scale 550 (e.g. 1-degree grid cells) and no information on species co-occurrence at the meaningful scale of

Page 32 of 162

local communities. In contrast, vegetation-plot data record the cover or abundance of each plant
species that occurs in a plot of a given size at the date of the survey, representing the main
reservoir of plant community data worldwide (Dengler et al., 2011).

554 Vegetation-plot data differ in fundamental ways from databases of occurrence records of individual species aggregated at the level of grid cells or regions of hundreds or thousands of 555 556 square kilometers (Figure 1). First, vegetation plots usually provide information on species relative cover or relative abundance, allowing for the testing of central theories of biogeography, 557 such as the abundance-range size relationship (Gaston & Curnutt, 1998) or the relationship 558 559 between local abundance and niche breadth (Gaston et al., 2000). Second, they contain 560 information on which plant species co-occur in the same locality (Chytrý et al., 2016), which is a 561 necessary precondition for direct biotic interactions among plant individuals. Third, unrecorded species can be considered truly absent from the aboveground vegetation at this scale because 562 563 the standardized methodology of taking a vegetation record requires a systematic search for all 564 species in a plot, or at least all species of the dominant functional group. Fourth, many plots are 565 spatially explicit and can be resurveyed through time to assess possible consequences of land use and climate change (Steinbauer et al. 2018; Perring et al. 2018). Fifth, vegetation plots 566 represent a snapshot of the primary producers of a terrestrial ecosystem, which can be 567 568 functionally linked to organisms from different trophic groups sampled in the same plots (e.g. 569 multiple taxa surveys) and related processes and services both below (e.g. decomposition, nutrient cycling) and above ground (e.g. herbivory, pollination) (e.g. Schuldt et al. 2018). 570 571 Recently several projects at the regional to continental scale have demonstrated the 572 potential of using vegetation-plot databases for exploring biodiversity patterns and the underlying 573 assembly processes. Using vegetation data of French grasslands, Borgy et al. (2017) 574 demonstrated that weighting leaf traits by species abundance in local communities is pivotal to 575 capture leaf trait-environment relationships. Analyzing United States forest assemblages

576 surveyed at the community level, Šímová, Rueda & Hawkins (2017) were able to relate cold or

577 drought tolerance to leaf traits, dispersal traits and traits related to stem hydraulics. Using plotbased tree inventories of the United States forest service, Zhang, Niinemets, Sheffield & 578 579 Lichstein (2018) found that shifts in tree functional composition amplifies the response of forest 580 biomass to droughts. Based on >15.000 plots from a wide number of habitat types in Denmark, Moeslund et al. (2017) showed that typical plant species that are part of the site-specific species 581 582 pool, but are absent in a community tend to depend on mycorrhiza, are mostly adapted to low light and low nutrient levels, have poor dispersal abilities and are ruderals and stress intolerant. 583 By collating >40,000 vegetation plots sampled in European beech forests, Jiménez-Alfaro et al. 584 585 (2018) found that current local community diversity and species pool sizes calculated at different 586 scales were mainly explained by proximity to glacial refugia and current precipitation. 587 Although large collections of vegetation-plot data are now available from national to continental levels (e.g. Schaminée, Hennekens, Chytrý & Rodwell, 2012; Peet, Lee, Jennings & 588 589 Faber-Langendoen, 2012; Schmidt et al., 2012; Chytrý et al., 2016; Enquist, Condit, Peet, 590 Schildhauer & Thiers, 2016), they are rarely used in global-scale biodiversity research (Wiser, 591 2016; Franklin, Serra-Díez, Syphard & Regan, 2017). This is unfortunate because vegetationplot data may reveal important patterns that cannot be captured by grid-based datasets (Table 592 593 1). Functional composition patterns, for instance, may differ substantially when considering 594 vegetation-plot data rather than single species occurrences aggregated at the level of coarse-595 grain grid cells. Using plant height for illustration reveals that the trait means calculated on all the species occurring in a grid cell may differ strongly from the community-weighted means (CWMs) 596 597 averaged across local communities (Figure 1). Nevertheless, only the grid-based approach has 598 been used to date in studies of the geographic distribution of trait values (Swenson et al., 2012,

599 2017; Wright et al., 2017).

Here, we present sPlot, a global database for compiling and integrating plant community data.

601 We describe (i) main steps in integrating vegetation-plot data in a repository that provides

taxonomic, functional and phylogenetic information on co-occurring plant species and links it to

global environmental drivers; (ii) principal sources and properties of the data and the procedure

for data usage; and (iii) expected impacts of the database in future ecological research. To

605 illustrate the potential of sPlot we also show global diversity patterns that can be readily derived

from the current content.

607

608 2. COMPILATION OF THE sPlot DATABASE

609 **2.1 Vegetation-plot data**

The sPlot consortium currently collates 110 vegetation-plot databases of regional, national or 610 611 continental extents. Some of the databases have been previously aggregated by and contributed 612 through two (sub-) continental database initiatives (Table 2 and Appendix S1 in Supporting 613 Information). All data from Europe and nearby regions were contributed via the European Vegetation Archive (EVA), using the SynBioSys taxon database as a standard taxonomic 614 615 backbone (Chytrý et al., 2016). Three African databases were contributed via the Tropical 616 African Vegetation Archive (TAVA). In addition, multiple U.S. databases were contributed 617 through the VegBank archive maintained in support of the U.S. National Vegetation Classification (Peet et al. 2012). The data from other regions (South America, Asia) were 618 contributed as separate databases. 619

620 We stored the vegetation-plot data from the individual databases in the database 621 software TURBOVEG v2 (Hennekens & Schaminée, 2001). Our general procedure was to preserve the original structure and content of the databases as much as possible in order to 622 623 facilitate regular updates through automated workflows. The individual databases were then 624 integrated into a single SQLite database using TURBOVEG v3 (S.M. Hennekens, ALTERRA, 625 The Netherlands; www.synbiosys.alterra.nl/turboveg3/help/en/index.html). TURBOVEG v3 626 combines the species lists from the original databases in a single repository and links the plot attributes (so-called header data) to 58 descriptors of vegetation-plots (Table S2.1 in Appendix 627 S2). The metadata of the databases collated in sPlot were managed through the Global Index of 628

Vegetation-Plot Databases (GIVD; Dengler et al. 2011), using the GIVD ID as the identifier. The
current sPlot version 2.1 was created in October 2016 and contains 1,121,244 vegetation plots
with 23,586,216 plant species × plot observations (i.e. ords of a species in a plot). Most records
(1,073,737; 95.8%) have information on cover, 29,288 on presence/absence, 5,854 on basal
area, 3,265 on counts of individuals, 148 on importance value, 1,895 on per cent frequency,
4,883 on number of stems, and further 2,174 have a mix of these types of these different
metrics.

636

637 2.2 Taxonomic standardization

To combine the species lists of the different databases in sPlot, we constructed a taxonomic 638 639 backbone. To link co-occurrence information in sPlot with plant traits, we expanded this backbone to integrate plant names used in the TRY database (Kattge et al., 2011). The taxon 640 641 names (without nomenclatural authors) from sPlot 2.1 and TRY 3.0 were first concatenated into 642 one list, resulting in 121,861 names, of which 61,588 (50.5%) were unique to sPlot; 35,429 643 (29.1%) unique to TRY; and 24,844 (20.4%) shared between TRY and sPlot. Taxon names were parsed and resolved using the Taxonomic Name Resolution Service web application (TNRS 644 version 4.0; Boyle et al., 2013; iPlant Collaborative, 2015), using the five TNRS standard 645 646 sources ranked by default. We allowed for (i) partial matching to the next higher rank (genus or 647 family) if the full taxon name could not be found and (ii) full fuzzy matching, to return names that were matched within a maximum number of four single-character edits (Levenshtein edit 648 649 distance of 4), which corresponds to the minimum match accuracy of 0.05 in TNRS, with 1 650 indicating a perfect match.

We accepted all names that were matched, or converted from synonyms, with an overall match score of 1. In case with no exact match (i.e. the overall match score was <1), names were inspected on an individual basis. All names that matched at taxonomic ranks lower than species (e.g. subspecies, varieties) were accepted as correct names. The name matching procedure
Page 36 of 162

655 was repeated for the uncertain names (i.e. with match accuracy scores below the threshold 656 value from the first matching run), with a preference on first using the source 'Tropicos' (Missouri 657 Botanical Garden; http://www.tropicos.org/; accessed 19 Dec 2014) because here matching 658 scores were often higher for names of low taxonomic rank. The remaining 9,641 non-matched names were resolved using (i) the additional source 'NCBI' (Federhen, 2010) within TNRS, (ii) 659 660 the matching tools in the Plant List web application (The Plant List 2010), (iii) the 'tpl'-function within the R-package 'Taxonstand' (Cayuela, Stein & Oksanen, 2017) and (iv) manual inspection 661 (i.e. to resolve vernacular names). All subspecies were aggregated to the species level. Names 662 663 that could not be matched were classified as 'No suitable matches found'. Because sPlot and 664 TRY contain taxa of non-vascular plants, we tagged vascular plant names based on their family 665 and phylum affiliation, using the 'rgbif' library in R (Chamberlain, 2017). Of the full list of plant names in sPlot and TRY, 79,171 (94.6%) plant names were matched at the species level, 4,343 666 667 (5.2%) at the genus level, 152 (0.2%) at the family level and 13 names at higher taxonomic 668 levels. Overall, this led to 58,066 accepted taxon names in sPlot. Family affiliation was classified 669 according to APG III (Bremer et al., 2009). A detailed description of the workflow, including R-670 code, is available in Purschke (2017a).

One potential shortcoming of our taxonomic backbone is that for most regions it was necessary to standardize taxa using standard sets of taxonomic synonyms. Thus, if a taxonomic name represents multiple taxonomic concepts, e.g. such as created by the splitting and lumping of taxa, or a name has been misapplied in a region, we must trust that this problem has been addressed in our component databases (Franz, Peet & Weakley, 2004; Jansen & Dengler, 2010).

677

678 2.3 Physiognomic information

To achieve a classification into forests vs. non-forests that is applicable to all plots irrespective of the structural and habitat data provided by the source database, we defined as

Journal of Vegetation Science

681 forest all plot records that had >25% absolute cover of the tree layer, making use of the attribute data of sPlot. This threshold is similar to the classification of Ellenberg & Müller-Dombois (1967), 682 683 who defined woodland formations with trees covering more than 30%. There were 16,244 tree 684 species in the sPlot database. There were 16,244 tree species in the sPlot database. As tree layer cover was available for only 25% of all plots, we additionally used the information whether 685 686 the taxa present in a plot were trees (usually defined as being taller than 5 m), using the plant growth form information from TRY (see below). Thus, plots lacking tree cover information were 687 defined as forests if the sum of relative cover of all tree taxa was >25%. Similarly, we defined 688 689 non-forests by calculating the cover of all taxa that were not defined as trees or shrubs (also taken from the TRY plant growth form information) and that were not taller than 2 m, using the 690 691 TRY data on mean plant height. In total, 21,888 taxa belonged to this category. We defined all plots as non-forests if the sum of relative cover of these low-stature, non-tree and non-shrub 692 693 taxa was >90%. As we did not have the growth form and height information for all taxa, a fraction 694 of about 25% of the plots remained unassigned (i.e. was neither forest, nor non-forest. In 695 addition, more detailed classifications of plots into physiognomic formations (Table S3.2 in Appendix S3) and naturalness (Table S3.3 in Appendix S3) were derived from various types of 696 plot-level or database-level information provided by the sources and stored in five separate fields 697 698 (see Table S2.1 in Appendix S2).

699

700 2.4 Phylogenetic information

We developed a workflow to generate a phylogeny of the vascular plant species in sPlot, using the phylogeny of Zanne et al. (2014), updated by Qian & Jin (2016). Species present in sPlot but missing from this phylogeny were added next to a randomly selected congener (see also Maitner et al., 2018). This approach has been demonstrated to introduce less bias into subsequent analyses than adding missing species as polytomies to the respective genera (Davies et al., 2012). We only added species based on taxonomic information on the genus level, thus not

707 making use of family affiliation. Because of the absence of congeners in the reference 708 phylogeny, 7,147 species could not be added (11.7% of all resolved taxa in sPlot and TRY). This 709 resulted in a phylogeny with 54,067 resolved taxon names from 61,214 standardized taxa in the 710 combined list of sPlot and TRY. The tree was finally pruned to the vascular plant taxa of the current sPlot version 2.1, resulting in a phylogenetic tree for 53,489 out of the 58,066 taxa in 711 712 sPlot. Of these 53,489 names, 16,026 are also found among the 31,389 taxa in the phylogenetic tree of Qian & Jin (2016), i.e. 51.1%. The full procedure and the R code is available in Purschke 713 714 (2017b).

715

716 **2.5 Associated environmental plot information**

To complement the plot data, we harmonized geographical coordinates (in decimal degrees),
elevation (m above sea level), aspect (degrees) and slope (degrees) as provided by the
contributing databases. All other variables were too sparsely and too inconsistently sampled
across databases to be combined in the global set, but were retained in the original data sources
and can be retrieved for particular purposes.

We used the geographic coordinates to create a geodatabase in ArcGIS 14.1 (ESRI, 722 723 Redlands, CA) to link sPlot 2.1 to these climate and soil data. We retrieved data for all the 19 724 bioclimatic variables provided by CHELSA v1.1 (Karger et al., 2017) by averaging climatic data 725 from the period 1979–2013 at 30 arc seconds (about 1 km in grid cells near to the equator). These variables are the same as the ones used in WorldClim (www.worldclim.org; Hijmans, 726 727 Cameron, Parra, Jones & Jarvis, 2005), but calculated with a downscaling approach based on 728 estimates of the ERA-Interim climatic reanalysis. While the CHELSA climatological data have a 729 similar accuracy as other products for temperature, they are more precise for precipitation 730 patterns (Karger, et al. 2017). We also calculated growing degree days for 1 °C (GDD1) and 5 731 °C (GDD5), according to Synes & Osborne (2011) and based on CHELSA data, and included 732 the index of aridity and potential evapotranspiration extracted from the CGIAR-CSI website

733 (www.cgiar-csi.org). In addition, we extracted seven soil variables from the SOILGRIDS project 734 (https://soilgrids.org/; licensed by ISRIC – World Soil Information), downloaded at 250-m 735 resolution and then converted to the same 30-arc second grid format of CHELSA. To explore the 736 distribution of sPlot data in the global environmental space, we subjected all 30 climate and soil variables of the global terrestrial surface rasterized on a 2.5 arc-minute grid resolution to a 737 738 principal component analysis (PCA) on standardized and centered data. We subsequently created a grid of 100 × 100 cells within the bi-dimensional environmental space defined by the 739 first two PCA axes (PC1 and PC2) and counted the number of terrestrial cells per environmental 740 741 grid cell of the PC1-PC2 space. Then, we counted the number of plots in sPlot in the same PCA 742 grid (Figure 2).

743 We linked all vegetation plots to two global biome classifications. We used the World Wildlife Fund (WWF) spatial information on terrestrial ecoregions (Olson et al., 2001) to assign 744 745 plots to one of the 867 ecoregions, 14 biomes and eight biogeographic realms. The WWF 746 approach is based on a bottom-up expert system using various regional biodiversity sources to 747 define ecoregions, which in turn are grouped into realms and biomes (Olson et al., 2001). In addition, we created a shapefile for the ecozones defined by Schultz (2005) to represent major 748 749 biomes in response to global climatic variation. Since these zones are climatically 750 heterogeneous in mountain regions, we differentiated an additional "alpine" biome for mountain 751 areas above the lower mountain thermal belt, as defined in the classification of world mountain regions by Körner et al. (2017). This resulted in a distinction of 10 major biomes (Fig. S4.5 in 752 753 Appendix S4), whose shape file is freely available (Appendix S5).

754

755 **2.6 Trait information**

To broaden the potential applications of the global vegetation database in functional contexts,
we linked sPlot to TRY. We accessed plant trait data from TRY version 3.0 on August 10, 2016
and included 18 traits that describe the leaf, wood and seed economics spectra (Westoby, 1998;

759 Reich, 2014; Table S6.4 in Appendix S6), and are known to affect different key ecosystem 760 processes and to respond to macroclimatic drivers. These traits were represented across all 761 species in the TRY database by at least 1,000 trait records. We excluded trait records from 762 manipulative experiments and outliers (Kattge et al., 2011), which resulted in a matrix with 632,938 individual plant records on 52,032 taxa in TRY, having data records for an average of 763 764 3.08 for the 18 selected traits. On average, each trait has been measured at least once in 17.1% of all taxa. In order to attain data for these 18 traits for all species with at least one trait value in 765 766 TRY, we employed hierarchical Bayesian modelling, using the R package 'BHPMF' (Schrodt et 767 al., 2015; Fazayeli, Banerpee, Kattge, Schrodt & Reich, 2017), to fill a gap in the matrix of 768 individual plant records in TRY. Gap-filling allows to obtain trait values for a species on which 769 this trait has not been measured, but for which other traits were available. To assess gap-filling quality, we used the probability density distributions provided by BHPMF for each imputation and 770 771 removed highly uncertain imputations with a coefficient of variation >1. We then log_e-transformed 772 all gap-filled trait values and averaged them by taxon. For taxa recorded at genus level only, we 773 calculated genus means, resulting in a full trait matrix for 26,632 out of the 54,519 taxa in sPlot (45.9%), with 6, 1,510 and 25,116 taxa at the family, genus and species level, respectively. 774 775 These species covered 88.7% of all species-by-plot combinations.

For every trait *j* and plot *k*, we calculated the community-weighted mean (CWM) and the community-weighted variance (CWV) for each of the 18 traits in a plot (Enquist et al., 2015):

778

779

$$CWV_{j,k} = \sum_{i}^{n_k} p_{i,k} (t_{i,j} - CWM_{j,k})^2$$

 $CWM_{j,k} = \sum_{i}^{n_k} p_{i,k} t_{i,j}$

where n_k is the number of species with trait information in plot k, $p_{i,k}$ is the relative abundance of species i in plot k calculated as the species' fraction in cover or abundance of total cover or abundance, and $t_{i,i}$ is the mean value of species i for trait j. CWMs and CWVs were calculated for 18 traits in 1,117,369 and 1,099,463 plots, respectively, the second being a smaller number as
at least two taxa were needed for CWV calculation.

785

786 3. CONTENT OF sPlot 2.1

787 **3.1 Plot community data**

788 sPlot 2.1 contains 1,121,244 vegetation plots from 160 countries and from all continents (Figure 3). The global coverage is biased towards Europe, North America and Australia, reflecting 789 790 unequal sampling effort across the globe (Table 1). At the ecoregion level, major gaps occur in 791 the wet tropics of South America and Asia, as well as in subtropical deserts worldwide and in the 792 North American taiga. Although the plots are highly clustered geographically, their coverage in 793 the environmental space is much more representative: the highest concentration of plots is found in environments that are most abundant globally (Figure 2), while they are lacking in the 794 795 very moist parts of the environmental space, which are also spatially rare, and in the very cold 796 parts, which are sparsely vegetated.

797 In most cases (98.4%), plot records in sPlot include full species lists of vascular plants, while 1.6% had only wood species above a certain diameter or only the most dominant species 798 799 recorded. Terricolous bryophytes and lichens were additionally identified in 14% and 7% of plots, 800 respectively. (Table S2.1 in Appendix S2). Forest and non-forest plots comprise 330,873 801 (29.7%) and 513,035 (46.0%) of all plots in sPlot, respectively. In most cases, species abundance was estimated using different variants of the Braun-Blanquet cover-abundance scale 802 803 (66%), followed by percentage cover (15%) and 55 other numeric or ordinal scales. The temporal extent of the data spans from 1885 to 2015, but >94% of vegetation plots were 804 805 recorded later than 1960 (Fig. S2.1 in Appendix S2). Almost all plots are georeferenced 806 (1,120,686) and most plots have location uncertainty of 10 m or less (Fig. S2.2 in Appendix 807 S2).

808 Vascular plant richness per plot ranges from 1 to 723 species (median = 17 species). The most frequent richness class is between 20 and 25 species (Fig. S2.3 in Appendix S2). Plot 809 810 size is reported in 65.4% of plots, ranging from less than 1 m² to 25 ha, with a median of 36 m². 811 While forest plots have plot sizes \geq 100 m², and in most cases \leq 1,000 m², non-forest plots range 812 between \geq 5 and \leq 100 m² (Fig. S2.4 in Appendix S2). When using these size ranges, forest plots tend to be richer in species (Figure 4a). The fact that the gradient in richness found in our 813 814 plots was at least one order of magnitude stronger than differences that could be expected by 815 the differences in plot sizes, prompted us to produce the first global maps of plot-scale species richness, separately for forests and non-forests (Figure 4a). While plots with complete vascular 816 species composition are largely lacking from the wet tropics, for the remaining biomes the plot-817 818 scale richness data do not show the typical latitudinal richness gradient in either formation. 819 Particularly species-rich forests are found in the wet subtropics (such as SE United States, Taiwan and the East coast of Australia) as well as in some mountainous regions of the nemoral 820 and steppic biomes of Eurasia. Likewise, non-forest communities, have a particularly high mean 821 822 vascular plant species in mountainous regions of the nemoral and steppic biomes of Eurasia. 823 824 825 3.2 Phylogenetic information 826 The phylogenetic tree for sPlot was produced from 53,489 vascular plant names contained in the 827 database, comprising 5518 genera (Appendix S7). Moderately to highly frequent species in 828 sPlot 2.1 are equally distributed across the phylogeny (corresponding to yellowish to reddish 829 colors for low and high peaks, respectively, in Fig. S7.6 in Appendix S7). Coverage of species 830 included in the phylogeny ranges from 89% of species that occur only once in all plots to 100% of species with a frequency >10,000 plots (Fig. S7.7 in Appendix S7). 831

832

833 **3.3 Functional information**

Page 43 of 162

Journal of Vegetation Science

The proportion of species with trait information increases with the species' frequency in plots. Gap-filled trait information is available for 77.2% and 96.2% for taxa that occurred in more than 100 and 1,000 plots, respectively. Trait coverage is similar across biomes (**Fig. S8.8 in Appendix S8**). Across all biomes, the proportion of species for which gap-filled trait data are available increases with the species' frequency across plots. Compared to gap-filled data, trait coverage for the original trait data is considerably lower, being highest for height, seed mass, leaf area and specific leaf area (SLA, **Fig. S8.9 in Appendix S8**).

The high representation of the 18 traits in the gap-filled trait data and the high degree of 841 842 trait coverage for frequent species across all biomes (>75%) made us confident to produce the 843 first maps of global patterns of community-weighted means (CWMs) (Figure 4b-d). The maps 844 show the main trait dimensions of SLA, height and seed mass, separately for forests and nonforests, for those regions of the world that are already sufficiently covered by sPlot data. 845 846 Accordingly, CWMs of SLA are guite similar for forest and non-forest plots, being highest in 847 western North America and Europe and lowest in eastern North America, East and South 848 Australia (Figure 4b). Non-forest vegetation shows lowest CWMs of SLA in the desert regions of the Namib and Sinai. Forests with highest CWMs of canopy height are found along the western 849 and eastern coast of North America, some regions in Europe, East Asia and southern Australia 850 851 (Figure 4c). These areas only partly coincide with those of highest seed masses for forests, 852 while seed mass in non-forests is highest in the eastern Mediterranean Basin and in Central Asia (Figure 4d). The corresponding patterns for CWV are shown in Appendix Fig. S9.10 in 853 854 Appendix S9.

855

856 **4. DATA USAGE**

The sPlot database (the vegetation-plot data, including the environmental information for each plot and the species phylogeny) is released in fixed versions to allow reproducibility of results, but also due to the enormous effort needed for data integration and harmonization and for

updating the phylogeny. By delivering few fixed versions while keeping older versions available,
the sPlot consortium ensures that the same data can be used in parallel projects and that the
data underlying a specific study remain accessible in the future, thus allowing re-analysis. Each
new version will be matched to the current TRY database.

Data access to sPlot is regulated by the Governance and Data Property Rules 864 865 (www.idiv.de/sPlot) to ensure a fair balance between the interests of data contributors and data analysts. In brief, the sPlot Rules state that: (1) all contributing vegetation-plot databases 866 become members of the sPlot consortium, represented by their custodian and deputy custodian; 867 868 (2) vegetation-plot data contributed to sPlot remain the property of the data contributors and can 869 be withdrawn at any time except for approved projects; (3) other scientists (e.g. data managers 870 or participants of the sPlot workshops) with particular responsibilities may also be appointed as personal members to the sPlot consortium; (4) sPlot data can be requested for projects that 871 872 involve at least one member of the sPlot consortium; (5) whenever a project has been proposed, 873 all sPlot consortium members will be informed and can declare their interest in becoming co-874 authors of manuscripts resulting from this project and then becoming actively involved in data evaluation and writing; and (6) if also the matched gap-filled or original trait data from TRY are 875 876 requested for a project, likewise members from the TRY consortium can opt-in as co-authors. 877 The sPlot database is, therefore, available according to a 'give-and-receive' system. Moreover, 878 the data are available to any researcher by establishing a collaboration that includes and is supported by at least one sPlot consortium member. 879

The sPlot consortium is governed by a Steering Committee elected by all consortium members for two-year, renewable terms. Project proposals can be submitted to the Steering Committee, which ensures that the sPlot Rules are followed and redundant work between overlapping projects is avoided. The lists of databases, sPlot consortium members and the Steering Committee members are updated regularly on the sPlot website, as are the sPlot Rules and the list of approved projects.

0	0	~
×	×	h

886 **5. EXPECTED IMPACT AND LIMITATIONS** 887 888 The main aim of the sPlot database is to catalyze a collaborative network for understanding 889 global diversity patterns of plant communities in space and time. sPlot provides a unique, 890 integrated global repository of data that would otherwise be fragmented in unconnected and 891 structurally inconsistent databases at regional, national or continental levels. Together with the 892 provision of harmonized phylogenetic, functional and environmental information, sPlot allows, for 893 the first time, global analyses of plant community data. Compared to approaches using data 894 aggregated from species occurrences in grid cells, sPlot will significantly advance ecological 895 analyses and future interdisciplinary research in at least four different ways. 896 1.) Using sPlot, one can predict the species that can co-exist in a community and also the frequencies of their co-occurrence (Breitschwerdt, Jandt & Bruelheide, 2015) or niche 897 898 overlap (Broennimann et al., 2012). In addition, emerging tools such as Markov networks 899 can be used to infer strengths of interspecific interactions (Harris, 2016). When 900 investigating community assembly rules, the same information can be used to derive 901 species pools for specific vegetation types (de Bello et al., 2016; Lewis, Szava-Kovats & 902 Pärtel, 2016; Karger et al., 2016). Moreover, the co-occurrence data from sPlot can be 903 used to address fundamental patterns and drivers of plant invasions better than 904 information on large geographic entities (e.g. van Kleunen et al., 2015) alone could. 905 2.) sPlot data can be aggregated across all types of plots, by grid cells, ecoregions, 906 environment, or even vegetation type or formation. Furthermore, replicated plots within 907 grid cells, ecoregions, or any other subdivision of environmental conditions or vegetation 908 types allow users to derive measures of compositional differences between plant 909 communities within grid cells (= beta diversity; **Table 1**). Thus, the community data are an 910 important complement to regional-scale species occurrence data (e.g. Kreft & Jetz, 2007; 911 Enquist et al., 2016).

Page 46 of 162

912 3.) sPlot data provide information on the proportion of species in communities. When 913 combined with functional trait information, relative abundance of species allows 914 calculation of community abundance-weighted mean trait values (Bruelheide et al. 2018). 915 Information on the relative contribution of species to a community-aggregated trait value is 916 particularly necessary when traits are used as proxies for vegetation functions and 917 processes, allowing to test, among other things, the mass ratio hypothesis (Grime, 1998; Garnier et al., 2004) and to assess the role of divergent traits (Díaz et al., 2007; Kröber et 918 919 al., 2015).

920 4.) Plant species within plots can be linked to traits that predict interactions with organisms
921 from other trophic groups, both belowground (mycorrhizae, soil decomposers) and
922 aboveground (herbivores and pollinators). This will allow to link vegetation plot information
923 to ecosystem processes and services such as pest control, pollination and nutrient cycling
924 (e.g. de Bello et al., 2010).

925 Despite the large amount of available data and its potential suitability for global research, 926 a number of limitations must be considered by future users of sPlot, such as i) biases towards certain regions and communities, ii) near-complete lack of plots with complete vascular plant 927 928 species composition for certain regions (e.g. the wet tropics), iii) identification or sampling errors 929 by the surveyors and incomplete records because the detection of some species may be 930 precluded in certain seasons by their phenology, iv) taxonomic uncertainty particularly in the tropics, v) strongly varying plot sizes employed in different studies and regions, vi) lack of trait 931 932 measures at the plot level. For example, patterns of diversity components are typically affected 933 by grain size. This means that using sPlot data for such studies either requires filtering for plots 934 with identical or at least similar size or accounting for the plot-size effects in the statistical model. 935 In addition, analyses of functional diversity with sPlot data is limited by the absence of trait data 936 for a (small) portion of the species and by the lack of plot-specific trait measures. Furthermore, 937 the non-random and geographically and ecologically very unequal distribution of the plots

contained in sPlot call for stratified resampling to balance records of different environments (e.g.
stratified by climate, Figure 2) or physiognomic formations (Figure 4). Users of sPlot need to be
aware of these and other limitations and to correct potential biases for their specific research
question.

942

943 6. CONCLUSION

944 sPlot is a unique global database of plant community records sampled with relatively similar methods widely used in vegetation ecology. The integration of co-occurrence data into a unified 945 946 database that can be directly linked to environmental, functional and phylogenetic information, makes sPlot an unprecedented and essential tool for analyzing global plant diversity, the 947 948 structure of plant communities and the co-occurrence of plant species. The compatibility of this consolidated database with other global databases, e.g. via a joint taxonomic backbone with 949 950 TRY and the Global Naturalized Alien Flora (GloNAF; van Kleunen et al., 2015) (via taxon 951 names), or via standardized geo-reference with databases of environmental information such as 952 CHELSA, WorldClim or SoilGrids (Bruelheide et al. 2018), facilitates data integration and creates new research opportunities. The adaptive management of the database employed by the sPlot 953 954 consortium allows regular incorporation of new data, resulting in a dynamic platform for storing 955 and analyzing the most comprehensive compilation of plant community data worldwide. 956

957 **REFERENCES**

- Aćić, S., Petrović, M., Šilc, U., & Dajić Stevanović, Z. (2012). Vegetation Database Grassland
 Vegetation of Serbia. *Biodiversity & Ecology*, *4*, 418–418.
- Agrillo, E., Alessi, N., Massimi, M., Spada, F., De Sanctis, M., Francesconi, F., ... Attorre, F.
 (2017). Nationwide Vegetation Plot Database Sapienza University of Rome: state of the art,
 basic figures and future perspectives. *Phytocoenologia*, 47, 221–229.

- Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. (2012). Bulgarian
 Vegetation Database: historic background, current status and future prospects. *Biodiversity & Ecology*, *4*, 141–148.
- Aubin, I., Gachet, S., Messier, C., & Bouchard, A. (2007). How resilient are northern hardwood
 forests to human disturbance? An evaluation using a plant functional group approach. *Ecoscience*, *14*, 259–271.
- Beck, J., Ballesteros-Mejia, L., Buchmann, C. M., Dengler, J., Fritz, S. A., Gruber, B., ...
- Dormann, C.F. (2012). What's on the horizon for macroecology? *Ecography*, 35, 673–683.
- Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M., & Loidi, J. (2012). Vegetation-Plot
- Database of the University of the Basque Country (BIOVEG). *Biodiversity & Ecology*, *4*, 328–
 328.
- Boakes, E. H., McGowan, P. J., Fuller, R. A., Chang-qing, D., Clark, N. E., O'Connor, K., &
- Mace, G. M. (2010). Distorted views of biodiversity: spatial and temporal bias in species
 occurrence data. *PLoS Biology*, *8*(*6*), e1000385.
- 977 Borchardt, P., & Schickhoff, U. (2012). Vegetation database of Southern-Western Kyrgyzstan -
- the walnut-wildfruit forests and alpine pastures. *Biodiversity* & *Ecology*, *4*, 309–309.
- Borgy, B., Violle, C., Choler, P., Denelle, P., Munoz, F., Kattge, J., ... Garnier, E. (2017). Plant
- 980 community structure and nitrogen inputs modulate the climate signal on leaf traits. *Global*981 *Ecology and Biogeography*, 26, 1138-1152.
- Boyle, B., Hopkins, N., Lu, Z., Raygoza Garay, J. A., Mozzherin, D., Rees, T., ... Enquist, B. J.
- 983 (2013). The taxonomic name resolution service: An online tool for automated
- 984 standardization of plant names. *BMC Bioinformatics*, *14*, Article 16.
- Breitschwerdt, E., Jandt, U., & Bruelheide, H. (2015). Do newcomers stick to the rules of the
- 986 residents? Designing trait-based community assembly tests. *Journal of Vegetation Science*,
- 987 26, 219–232.

988	Bremer, B., Bremer, K., Chase, M. W., Fay, M., Reveal, J. L., Soltis, D. E., Stevens, P.
989	(2009). An update of the Angiosperm Phylogeny Group classification for the orders and
990	families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-
991	121.
992	Brisse, H., de Ruffray, P., Grandjouan, G., & Hoff, M., (1995). The Phytosociological Database
993	"SOPHY" Part 1: Calibration of indicator plants, Part II: Socio-ecological classification of the
994	relevés. Annali di Botanica, 53, 177–223.
995	Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G.,
996	Guisan, A. (2011). Measuring ecological niche overlap from occurrence and spatial
997	environmental data. Global Ecology and Biogeography, 21, 481–497.
998	Bruelheide, H., Böhnke, M., Both, S., Fang, T., Assmann, T., Baruffol, M., Schmid, B. (2011).
999	Community assembly during secondary forest succession in a Chinese subtropical forest.
1000	Ecological Monographs, 81, 25–41.
1001	Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M.,
1002	Botta-Dukát, Z., Jandt, U. (2018). Global trait–environment relationships of plant
1003	communities. Nature Ecology and Evolution (in the press).
1004	Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R., Fazayeli, F., Reich, P.
1005	B. (2017). Mapping local and global variability in plant trait distributions. Proceedings of the
1006	National Academy of Sciences of the United States of America, 114, E10937-E10946.
1007	Casella, L., Bianco, P. M., Angelini, P., & Morroni, E. (2012). Italian National Vegetation
1008	Database (BVN/ISPRA). Biodiversity & Ecology, 4, 404–404.
1009	Cayuela, L., Gálvez-Bravo, L., Pérez Pérez, R., Albuquerque, F. S., Golicher, D. J., Zahawi, R.
1010	A., Zamora, R. (2012). The Tree Biodiversity Network (BIOTREE-NET): Prospects for
1011	biodiversity research and conservation in the Neotropics. Biodiversity & Ecology, 4, 211–224.

- 1012 Cayuela, L., Stein, A., & Oksanen, J. (2017). *Taxonstand: Taxonomic Standardization of Plant*
- 1013 Species Names. R package version 2.0. <u>https://CRAN.R-project.org/package=Taxonstand</u>

- 1014 Černý, T., Kopecký, M., Petřík, P., Song, J.-S., Šrůtek, M., Valachovič, M., ... Doležal, J. (2015).
- 1015 Classification of Korean forests: patterns along geographic and environmental gradients.

1016 *Applied Vegetation Science*, 18, 5–22.

- 1017 Chamberlain, S. (2017). rgbif: Interface to the Global 'Biodiversity' Information Facility 'API'. R
- 1018 package version 0.9.8. <u>https://CRAN.R-project.org/package=rgbif</u>
- 1019 Chepinoga, V. V. (2012). Wetland vegetation database of Baikal Siberia (WETBS). *Biodiversity* 1020 & *Ecology*, *4*, 311–311.
- 1021 Chytrý, M. (2012). Database of Masaryk University's Vegetation Research in Siberia. 1022 *Biodiversity & Ecology*, *4*, 290–290.
- 1023 Chytrý, M., & Rafajová, M. (2003). Czech National Phytosociological database: basic statistics of
- the available vegetation-plot data. *Preslia*, 75, 1–15.
- 1025 Chytrý, M., Hennekens, S. M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., ...
- 1026 Yamalov, S. (2016). European Vegetation Archive (EVA): an integrated database of
- 1027 European vegetation plots. *Applied Vegetation Science*, *19*, 173–180.
- 1028 Costello, M. J., Wilson, S., & Houlding, B. (2012). Predicting total global species richness using
- 1029 rates of species description and estimates of taxonomic effort. Systematic Biology, 61, 871–
- 1030 883.
- 1031 Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guégan, J.-F., Hawkins, B. A., ...
- Turner, J. R. G. (2004). Predictions and tests of climate-based hypotheses of broad-scale
 variation in taxonomic richness. *Ecology Letters*, 7, 1121–1134.
- 1034 Davies, T. J., Kraft, N. J., Salamin, N., & Wolkovich, E. M. (2012). Incompletely resolved
- 1035 phylogenetic trees inflate estimates of phylogenetic conservatism. *Ecology*, 93, 242–247.
- de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., ...
- 1037 Harrison, P. (2010). Towards an assessment of multiple ecosystem processes and services
- 1038 via functional traits. *Biodiversity and Conservation, 19,* 2873-2893.

- 1039 de Bello, F., Fibich, P., Zelený, D., Kopecký, M., Mudrák, O., Chytrý, M., ... Pärtel, M. (2016).
- 1040 Measuring size and composition of species pools: a comparison of dark diversity estimates.

1041 *Ecology and Evolution*, 6, 4088–4101.

- 1042 De Sanctis, M., & Attorre, F. (2012). Socotra Vegetation Database. *Biodiversity & Ecology*, *4*, 1043 315–315.
- 1044 De Sanctis, M., Fanelli, G., Mullaj, A., & Attorre, F. (2017). Vegetation Database of Albania. 1045 *Phytocoenologia*, 47, 107–108.
- Dengler, J., & Rūsiņa, S. (2012). Database Dry Grasslands in the Nordic and Baltic Region.
 Biodiversity & Ecology, *4*, 319–320.
- 1048 Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., ... Spencer, N.
- (2011). The Global Index of Vegetation-Plot Databases (GIVD): a new resource for
 vegetation science. *Journal of Vegetation Science*, *22*, 582–597.
- 1051 Díaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating
- plant functional diversity effects in ecosystem service assessments. *Proceedings of the*
- 1053 National Academy of Sciences of the United States of America, 104, 20684–20689.
- 1054 Dimopoulos, P., & Tsiripidis, I. (2012). Hellenic Natura 2000 Vegetation Database (HelNAtVeg).
- 1055 *Biodiversity & Ecology*, *4*, 388–388.
- Ellenberg, H., & Müller-Dombois, D. (1967). Tentative physiognomic-ecological classification of
 plant formations on earth. *Berichte des Geobotanischen Instituts ETH Stiftung Rübel Zürich* 37, (1965/66), 21-55.
- 1059 Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper,
- 1060 E. J., ... Wipf, S. (2012). Plot-scale evidence of recent vegetation change and links to 1061 summer warming. *Nature Climate Change*, 2, 453–457.
- 1062 Engemann, K., Sandel, B., Enquist, B. J., Jørgensen, P. M., Kraft, N., Marcuse-Kubitza, A., ...
- 1063 Svenning, J. C. (2016). Patterns and drivers of plant functional group dominance across the

1064	Western Hemisphere: a macroecological re-assessment based on a massive botanical
1065	dataset. Botanical Journal of the Linnaean Society, 180, 141–160.
1066	Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M., & Thiers, B. M. (2016).
1067	Cyberinfrastructure for an integrated botanical information network to investigate the
1068	ecological impacts of global climate change on plant biodiversity. PeerJ Preprints e2615v1.
1069	Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A.,Savage, V.
1070	M. (2015). Scaling from traits to ecosystems: developing a general trait driver theory via
1071	integrating trait-based and metabolic scaling theories. Advances in Ecological Research, 52,
1072	249–318.
1073	Ewald, J., May, R., & Kleikamp, M. (2012). VegetWeb - the national online-repository of
1074	vegetation plots from Germany. <i>Biodiversity & Ecology</i> , 4, 173–175.
1075	Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F., & Reich, P. B. (2017). BHPMF: Uncertainty
1076	Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization. R Package
1077	Version 1.0. https://rdrr.io/cran/BHPMF/.
1078	Federhen, S. (2010). The Taxonomy Project. In J. McEntyre & J. Ostell (Eds)., The NCBI
1079	Handbook [Internet]. National Center for Biotechnology Information, Bethesda, MD, USA,
1080	[Accessed: 25 Oct 2011]. Available from: http://www.ncbi.nlm.nih.gov/guide/taxonomy/
1081	Finckh, M. (2012). Vegetation Database of Southern Morocco. Biodiversity & Ecology, 4, 297-
1082	297.
1083	Fotiadis, G., Tsiripidis, I., Bergmeier, E., & Dimopoulos, P. (2012). Hellenic Woodland database.
1084	Biodiversity & Ecology, 4, 389–389.
1085	Franklin, J., Serra-Diaz, J. M., Syphard, A., & Regan, H. M. (2017). Big data for forecasting the
1086	impacts of global change on plant communities. Global Ecology and Biogeography, 26, 6–
1087	17.

Franz, N. M., Peet R. K., & Weakley, A. S. (2004). On the use of taxonomic concepts in support
of biodiversity and taxonomy. In Q. D. Wheeler (Ed.), The New Taxonomy (pp. 63–86).

1090 Boca Raton, FL: Taylor & Francis.

- 1091 Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., ... Toussaint, J.-P.
- 1092 (2004). Plant functional markers capture ecosystem properties during secondary
- 1093 succession. *Ecology*, *85*, 2630–2637.
- Gaston, K. J., & Curnutt, J. L. (1998). The dynamics of abundance-range size relationships. *Oikos*, *81*, 38–44.
- 1096 Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M., Lawton, J. H.
- 1097 (2000). Abundance–occupancy relationships. *Journal of Applied Ecology*, 37, 39–59.
- 1098 Golub, V., Sorokin, A., Starichkova, K., Nikolaychuk, L., Bondareva, V., & Ivakhnova, T. (2012).
- Lower Volga Valley Phytosociological Database. *Biodiversity & Ecology*, *4*, 419–419.
- Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder
 effects. *Journal of Ecology*, *86*, 902–910.
- Harris, D. J. (2016). Inferring species interactions from co-occurrence data with Markov
 networks. *Ecology*, *97*, 3308–3314.
- Hatim, M. (2012). Vegetation Database of Sinai in Egypt. *Biodiversity & Ecology, 4*, 303–303.
- Hennekens, S. M., & Schaminée, J. H. J. (2001). TURBOVEG, a comprehensive data base
- 1106 management system for vegetation data. *Journal of Vegetation Science*, *12*, 589–591.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high
- resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965-1978.
- 1110 Ibanez, T., Munzinger, J., Dagostini, G., Hequet, V., Rigault, F., Jaffré, T., & Birnbaum, P.
- 1111 (2014). Structural and floristic characteristics of mixed rainforest in New Caledonia: New data
- 1112 from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). Applied
- 1113 *Vegetation Science*, *17*, 386–397.

- 1114 Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. (2017). Romanian Forest Database: a
- 1115 phytosociological archive of woody vegetation. *Phytocoenologia*, 47, 389–393.
- 1116 iPlant Collaborative (2015). *The Taxonomic Name Resolution Service. Version 4.0.* Available
- 1117 from: http://tnrs.iplantcollaborative.org/ [Accessed: 20 Sep 2015].
- Jandt, U., & Bruelheide, H. (2012). German Vegetation Reference Database (GVRD). *Biodiversity* & Ecology, *4*, 355–355.
- Jandt, U., von Wehrden, H. & Bruelheide, H. (2011). Exploring large vegetation databases to
 detect temporal trends in species occurrences. *Journal of Vegetation Science*, 22, 957-972.
- Jansen, F., & Dengler, J. (2010). Plant names in vegetation databases a neglected source of
- bias. Journal of Vegetation Science, 21, 1179-1186.
- Jansen, F., Dengler, J., & Berg, C. (2012). VegMV, The vegetation database of Mecklenburg-Vorpommern. *Biodiversity & Ecology*, *4*, 149–160.
- 1126 Janßen, T., Schmidt, M., Dressler, S., Hahn, K., Hien, M., Konaté, S., ... Zizka, G. (2011).
- 1127 Addressing data property rights concerns and providing incentives for collaborative data
- pooling: the West African Vegetation Database approach. *Journal of Vegetation Science*, 22,
- 1129 614–620.
- Jiménez-Alfaro, B., Girardello, M., Chytrý, M., Svenning, J.-C., Willner, W., Gégout, J.-C., ...
- 1131 Wohlgemuth, T. (2018). History and environment shape species pools and community
- diversity in European beech forests. *Nature Ecology & Evolution*. DOI: 10.1038/s41559-0170462-6.
- Kącki, Z., & Śliwiński, M. (2012). The Polish Vegetation Database: structure, resources and
 development. *Acta Societatis Botanicorum Poloniae*, *81*, 75–79.
- 1136 Karger, D. N, Cord, A. F., Kessler, M., Kreft, H., Kühn, I., Pompe, S., ... Wesche, K. (2016).
- 1137 Delineating probabilistic species pools in ecology and biogeography. *Global Ecology and*
- 1138 *Biogeography*, 25, 489-501.

1139	Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Kessler, M.
1140	(2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4,
1141	Article 170122.
1142	Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Wirth, C. (2011).
1143	TRY – a global database of plant traits. <i>Global Change Biology</i> , 17, 2905–2935.
1144	Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Verbeeck,
1145	H. (2013). Conventional tree height-diameter relationships significantly overestimate
1146	aboveground carbon stocks in the Central Congo Basin. Nature Communications, 4, Article
1147	2269.
1148	Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K., & Spehn, E. M. (2017). A
1149	global inventory of mountains for bio-geographical applications. Alpine Botany, 127, 1–15.
1150	Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity.
1151	Proceedings of the National Academy of Sciences of the United States of America, 104,
1152	5925–5930.
1153	Kröber, W., Li, Y., Härdtle, W., Ma, K. P., Schmid, B., Schmidt, K., Bruelheide, H. (2015).
1154	Early subtropical forest growth is driven by community mean trait values and functional
1155	diversity rather than the abiotic environment. <i>Ecology and Evolution</i> , 5, 3541-3556.
1156	Kuzemko, A. (2012). Ukrainian Grasslands Database. Biodiversity & Ecology, 4, 430–430.
1157	Lájer, K., Botta-Dukát, Z., Csiky, J., Horváth, F., Szmorad, F., Bagi, I., Rédei, T. (2008).
1158	Hungarian Phytosociological database (COENODATREF): sampling methodology,
1159	nomenclature and its actual stage. Annali di Botanica, Nuova Series, 7, 197–201.
1160	Lamanna, C., Blonder, B., Violle, C., Kraft, N. J. B., Sandel, B., Šímová, I., Enquist, B. J.
1161	(2014). Functional trait space and the latitudinal diversity gradient. Proceedings of the
1162	National Academy of Sciences of the United States of America, 111, 13745–13750.

- Landucci, F., Acosta, A. T. R., Agrillo, E., Attorre, F., Biondi, E., Cambria, V. E., ... Venanzoni,
- 1164 R. (2012). Vegltaly: The Italian collaborative project for a national vegetation database. *Plant*
- 1165 *Biosystems*, *146*, 756–763.
- 1166 Landucci, F., Řezníčková, M., Šumberová, K., Chytrý, M., Aunina, L., Biţă-Nicolae, C., ...
- 1167 Willner, W. (2015). WetVegEurope: a database of aquatic and wetland vegetation of Europe.
- 1168 *Phytocoenologia*, *45*, 187–194.
- 1169 Lenoir, J., Graae, B. J., Aarrestad, P. A., Alsos, I. G., Armbruster, W. S., Austrheim, G., ...
- 1170 Svenning, J.-C. (2013). Local temperatures inferred from plant communities suggest strong 1171 spatial buffering of climate warming across Northern Europe. *Global Change Biology*, *19*,
- 1172 1470–1481.
- 1173 Lessard, J.-P., Belmaker, J., Myers, J. A., Chase, J. M., & Rahbek, C. (2012). Inferring local
- ecological processes amid species pool influences. *Trends in Ecology & Evolution*, 27, 600–
 607.
- 1176 Lewis, R. J., Szava-Kovats, R., & Pärtel, M. (2016). Estimating dark diversity and species pools:
- an empirical assessment of two methods. *Methods in Ecology and Evolution*, 7, 104–113.
- Liu, H., Cui, H., Pott, R., & Speier, M. (2000) Vegetation of the woodland-steppe ecotone in
- southeastern Inner Mongolia, China. *Journal of Vegetation Science*, *11*, 525–532
- 1180 Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011). ForestPlots.net: a web
- application and research tool to manage and analyse tropical forest plot data. *Journal of Vegetation Science*, *22*, 610–613.
- Lysenko, T., Mitroshenkova, A., & Kalmykova, O. (2012). Vegetation Database of the Volga and
 Ural Rivers Basins. *Biodiversity & Ecology*, *4*, 420–421.
- 1185 Maitner, B. S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Durán, S. M., ... Enquist, B. J.
- 1186 (2018). The BIEN R package: A tool to access the Botanical Information and Ecology
- 1187 Network (BIEN) database. *Methods in Ecology and Evolution*, *9*, 373–379.

- 1188 Marcenò, C., & Jiménez-Alfaro, B. (2017). The Mediterranean Ammophiletea Database: a 1189 comprehensive dataset of coastal dune vegetation. *Phytocoenologia*, *47*, 95–105.
- 1190 Moeslund, J. E., Brunbjergm, A. K., Dalby, L., Fløjgaard, C., Juel, A. & Lenoir, J. (2017). Using
- 1191 dark diversity and plant characteristics to guide conservation and restoration. *Journal of*
- 1192 *Applied Ecology*, *54*, 1730–1741.
- 1193 Muche, G., Schmiedel, U., & Jürgens, N. (2012). BIOTA Southern Africa Biodiversity 1194 Observatories Vegetation Database. *Biodiversity & Ecology*, *4*, 111–123.
- 1195 Müller, J. (2003). Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos.
- 1196 Ph.D. thesis, FB Biologie und Informatik, J.W. Goethe-Universität Frankfurt a.M., Frankfurt.
- 1197 Nowak, A., Nobis, M., Nowak, S., Nobis, A., Swacha, G., & Kącki, Z. (2017). Vegetation of
- 1198 Middle Asia the project state of the art after ten years of survey and future perspectives. 1199 *Phytocoenologia*, 47, 395–400.
- 1200 Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
- 1201 Underwood, E. C., ... Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New
- 1202 Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool
- 1203 for conserving biodiversity. *Bioscience*, *51*, 933–938.
- Pärtel, M., Bennett, J. A., & Zobel, M. (2016). Macroecology of biodiversity: disentangling local
 and regional effects. *New Phytologist*, 211, 404–410.
- Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R., & Marticorena, A. (2013). Alien plants
 homogenise protected areas: evidence from the landscape and regional scales in south
 central Chile. In: L.-C. Foxcroft, P. Pyšek, D. M. Richardson & P. Genovesi (Eds.), *Plant invasions in protected areas: patterns, problems and challenges* (pp. 191–208). Dordrecht:
 Springer.
- Peet, R. K., Lee, M. T., Jennings, M. D., & Faber-Langendoen, D. (2012a). VegBank a
 permanent, open-access archive for vegetation-plot data. *Biodiversity & Ecology*, *4*, 233–241.

- 1213 Peet, R. K., Lee, M. T., Boyle, M. F., Wentworth, T. R., Schafale, M. P. & Weakley, A. S.
- (2012b). Vegetation-plot database of the Carolina Vegetation Survey. *Biodiversity & Ecology*,
 4, 243–253.
- 1216 Perring, M.P., Bernhardt-Römermann, M., Baeten, L., Midolo, G., Blondeel, H., Depauw, L.,
- 1217 Landuyt, D., ... Verheyen, K. (2018). Global environmental change effects on plant
- 1218 community composition trajectories depend upon management legacies. *Global Change*

1219 *Biology*, 24,1722–1740.

- 1220 Peterka, T., Jiroušek, M., Hájek, M., & Jiménez-Alfaro, B. (2015). European Mire Vegetation
- 1221 Database: a gap-oriented database for European fens and bogs. *Phytocoenologia, 45*, 291– 1222 298.
- 1223 Peyre, G., Balslev, H., Martí, D., Sklenář, P., Ramsay, P., Lozano, P., ... Font, X. (2015).
- 1224 VegPáramo, a flora and vegetation database for the Andean páramo. *Phytocoenologia*, *45*,
 1225 195–201.
- Prokhorov, V., Rogova, T., & Kozhevnikova, M. (2017). Vegetation Database of Tatarstan.
 Phytocoenologia, 47, 309–313.
- 1228 Purschke, O. (2017a). *oliverpurschke/Taxonomic Backbone:* First release of the workflow to
- 1229 generate the taxonomic backbone for sPlot v.2.1 and TRY v.3.0. Zenodo. Available from:
- 1230 <u>http://doi.org/10.5281/zenodo.845445.</u>
- 1231 Purschke, O. (2017b). *Phylogenetic tree for the taxa in sPlot 2.1.* Available from:
- 1232 <u>https://github.com/oliverpurschke/sPlot_Phylogeny</u>.
- 1233 Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plan
- 1234 phylogenies and an analysis of phylogenetic community structure. *Journal of Plant Ecology*,
- **1235 9**, **233–239**.
- 1236 Reich, P. B. (2014). The world-wide 'fast–slow' plant economics spectrum: a traits manifesto.
- 1237 *Journal of Ecology, 102, 275–301.*

- Revermann, R., Gomes, A.L., Gonçalves, F.M., Wallenfang, J., Hoche, T., Jürgens, N., &
 Finckh, M. (2016). Vegetation Database of the Okavango Basin. *Phytocoenologia*, *46*, 103–
 104.
- Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. *Ecology Letters*, 7, 1–15.
- 1243 Rūsiņa, S. (2012). Semi-natural Grassland Vegetation Database of Latvia. *Biodiversity* & 1244 *Ecology*, *4*, 409–409.
- Samimi, C. (2003). *Das Weidepotential im Gutu-Distrikt (Zimbabwe)*. Institut für Geographie und
 Geoökologie, Universität Karlsruhe, Karlsruhe.
- 1247 Schaminée, J. H. J., Janssen, J. A. M., Haveman, R., Hennekens, S. M., Heuvelink, G. B. M.,
- Huiskes, H. P. J., & Weeda, E. J. (2006). Schatten voor de natuur. Achtergronden, inventaris
 en toepassingen van de Landelijke Vegetatie Databank. Utrecht: KNNV Uitgeverij.
- Schaminée, J. H. J., Hennekens, S. M., Chytrý, M., & Rodwell, J. S. (2009). Vegetation-plot data
 and databases in Europe: an overview. *Preslia, 81/2,* 173-185.
- Schmidt, M., Janßen, T., Dressler, S., Hahn, K., Hien, M., Konaté, S., ... Zizka, G. (2012). The
 West African Vegetation Database. *Biodiversity and Ecology*, 4, 105–110.
- 1254 Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., ... Reich, P. B. (2015).
- 1255 BHPMF a hierarchical Bayesian approach to gap-filling and trait prediction for
- macroecology and functional biogeography. *Global Ecology and Biogeography, 24*, 1510–
 1521.
- 1258 Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Härdtle, W., He,
- 1259 J.S., Klein, A. M., Kühn, P., Liu, X. J., Ma, K. P., Niklaus, P. A., Pietsch, K. A., Purahong,
- 1260 W., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Staab, M., Tang, Z. Y., Trogisch, S.,
- von Oheimb, G., Wirth, C., Wubet, T., Zhu, C. D. & Bruelheide, H. (2018). Biodiversity
- across trophic levels drives multifunctionality in highly diverse forests. *Nature*
- 1263 *Communications*, 9, 2989.

- 1264 Schultz, J. (2005). *The ecozones of the world* (2nd ed). Berlin: Springer.
- 1265 Šibík, J. (2012). Slovak Vegetation Database. *Biodiversity & Ecology*, *4*, 429–429.
- 1266 Sieg, B., Drees, B., & Daniëls, F. J. A. (2006). Vegetation and altitudinal zonation in continental
- 1267 West Greenland. *Meddelelser om Grønland Bioscience*, 57, 1–93.
- 1268 Šilc, U. (2012). Vegetation Database of Slovenia. *Biodiversity & Ecology*, *4*, 428–428.
- 1269 Šímová, I., Rueda, M., & Hawkins, B. A. (2017). Stress from cold and drought as drivers of
- 1270 functional trait spectra in North American angiosperm tree assemblages. *Ecology and*
- 1271 *Evolution*, 7, 7548–7559.
- Stančić, Z. (2012). Phytosociological Database of Non-Forest Vegetation in Croatia. *Biodiversity & Ecology*, *4*, 391–391.
- 1274 Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H.,... Wipf, S.
- (2018). Accelerated increase in plant species richness on mountain summits is linked to
 warming. *Nature*, *556*, 231–234.
- 1277 Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A., Boyle, B., Weiser, M. D., ... Nolting, K. M.
- (2012). The biogeography and filtering of woody plant functional diversity in North and South
 America. *Global Ecology and Biogeography*, *21*, 798–808.
- 1280 Swenson, N. G., Weiser, M. D., Mao, L., Araújo, M. B., Diniz-Filho, J. A. F., Kollmann, J., ...
- Svenning, J.-C. (2017). Phylogeny and the prediction of tree functional diversity across
 novel continental settings. *Global Ecology and Biogeography*, 26, 553–562.
- 1283 Synes, N. W., & Osborne, P. E. (2011). Choice of predictor variables as a source of uncertainty
- in continental-scale species distribution modelling under climate change. *Global Ecology and Biogeography*, 20, 904–914.
- 1286 Turner, D. J., Smyth, A. K., Walker, C. M., & Lowe, A. J. (2017). ÆKOS: Next-Generation Online
- 1287 Data and Information Infrastructure for the Ecological Science Community. Pages 341-368 in
- 1288 A. Chabbi and H. W. Loescher, editors. Terrestrial Ecosystem Research Infrastructures. CRC
- 1289 Press.

- 1290 van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., ... Pyšek, P. (2015).
- 1291 Global exchange and accumulation of non-native plants. *Nature*, 525, 100–103.
- Vanselow, K. A. (2016). Eastern Pamirs A vegetation-plot database for the high mountain
 pastures of the Pamir Plateau (Tajikistan). *Phytocoenologia*, *46*, 105–105.
- Vassilev, K., Dajič, Z., Cušterevska, R., Bergmeier, E., & Apostolova, I. (2012). Balkan Dry
 Grasslands Database. *Biodiversity & Ecology*, *4*, 330–330.
- 1296 Vassilev, K., Pedashenko, H., Alexandrova, A., Tashev, A., Ganeva, A., Gavrilova, A., ...
- 1297 Vulchev, V. (2016). Balkan Vegetation Database: historical background, current status and 1298 future perspectives. *Phytocoenologia*, *46*, 89–95.
- 1299 Vassilev, K., Ruprecht, E., Alexiu, V., Becker, T., Beldean, M., Biță-Nicolae, C., ... Dengler, J.
- (2018). The Romanian Grassland Database (RGD): historical background, current status and
 future perspectives. *Phytocoenologia*. *48*, 91–100..
- Vibrans, A. C., Sevegnani, L., Lingner, D. V., de Gasper, A. L., & Sabbagh, S. (2010). The
 Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and
 operational aspects. *Pesquisa Florestal Brasileira*, *30*, 291–302.
- von Wehrden, H., Wesche, K. & Miehe, G. (2009). Plant communities of the southern Mongolian
 Gobi. *Phytocoenologia*, *39*, 331–376.
- Wagner, V. (2009). Eurosiberian meadows at their southern edge: community patterns and
 phytogeography in the NW Tien Shan. *Journal of Vegetation Science*, *20*, 199–208.
- 1309 Wagner, V., Spribille, T., Abrahamczyk, S., & Bergmeier, E. (2014). Timberline meadows along a
- 1310 1000 km transect in NW North America: species diversity and community patterns. *Applied* 1311 *Vegetation Science*, *17*, 129–141.
- 1312 Walker, D. A., Breen, A. L., Druckenmiller, L. A., Wirth, L. W., Fisher, W., Raynolds, M. K., ...
- 1313 Zona, D. (2016). The Alaska Arctic Vegetation Archive. *Phytocoenologia*, *46*, 221–229.
- 1314 Wana, D., & Beierkuhnlein, C. (2011). Responses of plant functional types to environmental
- 1315 gradients in the south-west Ethiopian highlands. *Journal of Tropical Ecology*, 27, 289-304.

- 1316 Wang, Y., Heberling, G., Görzen, E., Miehe, G., Seeber, E., & Wesche, K. 2017. Combined
- 1317 effects of livestock grazing and environment on plant species composition and soil condition

1318 across Tibetan grasslands. *Applied Vegetation Science*, 20, 327-339.

- Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and Soil*,
 1320 199, 213–227.
- 1321 Whitfeld, T. J. S., Lasky, J. R., Damas, K., Sosanika, G., Molem, K., & Montgomery, R. A. 1322 (2014). Species richness, forest structure, and functional diversity during succession in the
- New Guinea lowlands. *Biotropica*, *46*, 538–548.
- Wiens, J. J. (2011). The causes of species richness patterns across space, time, and clades and
 the role of 'ecological limits'. *The Quarterly Review of Biology*, *86*, 75–96.
- Willner, W., Berg, C., & Heiselmayer, P. (2012). Austrian Vegetation Database. *Biodiversity* & *Ecology*, *4*, 333–333.
- Wiser, S. K. (2016). Achievements and challenges in the integration, reuse and synthesis of
 vegetation plot data. *Journal of Vegetation Science*, 27, 868–879.
- 1330 Wiser, S.K., Bellingham, P.J. ,& Burrows, L. (2001). Managing biodiversity information:
- development of the National Vegetation Survey Databank. *New Zealand Journal of Ecology*,

1332 25, 1–17.

- 1333 Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., ... Svenning,
- 1334 J.-C. (2013). The role of biotic interactions in shaping distributions and realised
- 1335 assemblages of species: implications for species distribution modelling. *Biological Reviews*
- 1336 of the Cambridge Philosophical Society, 88, 15–30.
- 1337 Wohlgemuth, T. (2012). Swiss Forest Vegetation Database. *Biodiversity & Ecology, 4*, 340–340.
- 1338 Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., ... Wilf, P. (2017). Global
- 1339 climatic drivers of leaf size. *Science*, 357, 917–921.

1340	Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., …
1341	Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing
1342	environments. Nature, 506, 89–92.
1343	Zhang, T., Niinemets, Ü., Sheffield, J., & Lichstein, J. W. (2018). Shifts in tree functional
1344	composition amplify the response of forest biomass to climate. Nature, 556, 99–102.
1345	
1346	DATA ACCESSIBILITY
1347	The data contained in sPlot (the vegetation-plot data complemented by species phylogeny and
1348	environmental information) are available by request, through contacting any of the consortium
1349	members for submitting a paper proposal. The proposals should follow the Governance and
1350	Data Property Rules of the sPlot Working Group, which are available on the sPlot website
1351	(www.idiv.de/sPlot). After acceptance, the respective data will be provided. In addition to the plot
1352	data, CWMs and CWVs of 18 plant traits are available for every plot.
1353	
1354	SUPPORTING INFORMATION
1355	Additional Supporting Information may be found online in the supporting information tab for this
1356	article.
1357	Appendix S1 Additional references, attributions and disclaimers for datasets included in sPlot
1358	2.1
1359	Appendix S2 Data associated to the vegetation plot records stored in sPlot 2.1
1360	Appendix S3 Details on the workflow for setting up plot definitions in sPlot 2.1
1361	Appendix S4 Biome classification created for sPlot 2.1
1362	Appendix S5 Zip file of the biome classification of Appendix S4 containing the shapefile
1363	(Geospatial vector data for geographic information system (GIS) software) and accompanying
1364	accessory files (database, projection etc.).
1365	Appendix S6 Trait information in sPlot 2.1

- 1366 Appendix S7 Phylogenetic information in sPlot 2.1
- 1367 Appendix S8 Gap-filled trait information
- 1368 **Appendix S9** Global patterns of community-weighted variances

to Review Only

Figure 1. Conceptual figure visualizing how functional composition (in this case plant height) differs between calculations based on mean traits for grid cells and community data sampled in vegetation plots. Occurrence data (e.g. from distribution atlases, GBIF, etc.) can be used to calculate mean trait values in grid cells G1–G3. However, community weighted means (CWMs) of traits differ across local plots (P1–P6), while the mean values of CWMs in the grid cells differ from the unweighted values calculated in the grid cells. This example is simplified by showing few species and few plots. In reality, differences are generally more pronounced.

Figure 3. Global coverage of sPlot 2.1; (a) contributing databases identified by different colours with indication of the two data aggregators (EVA, TAVA) and a few particularly large individual databases; (b) available plot numbers per WWF Ecoregion; and (c) available plot density in grid cells of 100 km × 100 km.

to peries only

1396 1397 Figure 4. Examples of global community-level patterns that can be derived from (a) sPlot alone 1398 and (b-d) sPlot combined with TRY, here shown as raw data averaged by 1-degree grid cells. 1399 There are only a very few cells (142 out of 2633) comprising only a single plot. For the maps, 1400 only plots with full vascular species composition and spatial accuracy < 5 km were used. They 1401 are based on 148,474 and 218,051 plots for forests and non-forests respectively. Note that 1402 these maps are not corrected for biases caused by the facts that not all community types were

recorded in all grid cells and that plot sizes as well as the fraction of species with available trait data varied spatially. Maps show patterns of (a) fine-grain alpha diversity, expressed as vascular plant species richness (only plots with plot sizes of 100–1000 m² for forests and 5–100 m² for non-forests); (b) community-weighted means (CWMs) for log_e-transformed trait values of specific leaf area (SLA, m² kg⁻¹), (c) plant height (m) and (d) seed mass (mg).

to Review Only
- 1409 **Table 1.** Types of information provided by single vegetation plots, vegetation plots aggregated
- 1410 within grid cells (or other geographic units) and single species occurrence records aggregated
- 1411 within grid cells. The three levels are illustrated in Figure 1.

Information from	Single vegetation	Set of vegetation	Grid-cell data from floristic
	plots	plots aggregated	inventories
		within grid cells	
To derive information on the	Plot level	Grid cell level	Grid cell level
Type of occurrence	Co-occurrence,	Occurrence by	Occurrence
	occurrence by	vegetation type	
	vegetation type		
Community assembly rules	Yes (co-occurrence is	No	No
	a prerequisite for		
	species interactions)		
Absences	Yes (for the target	No (except for	Depending on sampling
	plant group in a study)	intensive sampling	intensity
		schemes)	
Floristic composition	of the local	of the species	of the total set of species
	community	pools of vegetation	
		types	
Diversity	α	β, γ	γ
Species abundance	Local cover-	Mean cover-	Occurrence only
	abundance	abundance and	
		frequency by	
		vegetation type	
Combination with traits	Functional	Functional	Functional composition of
	composition of the	composition of the	the total set of species
	local community (traits	species pool	(unweighted only)
	unweighted or	(unweighted or	
	weighted by cover:	weighted)	
	CWM, CWV)		
Environmental filtering	at the local level	at the regional	at the regional level
		level	

Table 2. Plot datasets included in sPlot 2.1. GIVD ID refers to the ID in the Global Index of Vegetation-Plot Databases (http://www.givd.info), which manages the metadata for sPlot and provides updated online descriptions of these databases; * after the GIVD ID indicates that the respective database description is currently not visible on the GIVD website. Datasets contributed in harmonized format from a continental data aggregator ("collective database" according to the sPlot Rules) are listed under its name. Further references, attributions and disclaimers for particular datasets are found Appendix S1.

GIVD ID	Database name	# of plots in sPlot 2.1	Custodian	Deputy custodian	Reference
[Aggregator]	European Vegetation Archive (EVA)	950,001	Milan Chytrý	llona Knollová	Chytrý et al. (2016)
00-00-004	Vegetation Database of Eurasian Tundra	1,132	Risto Virtanen		
00-RU-001	Vegetation Database Forest of	1,102	Vassiliy Martynenko		
00-RU-003	Database Meadows and Steppes of Southern Ural	2,354	Sergey Yamalov	Mariya Lebedeva	
00-TR-001	Forest Vegetation Database of Turkey - FVDT	919	Ali Kavgacı		
00-TR-002*	Non-forest Vegetation Database of Turkey	3,018	Deniz Işık	Didem Ambarlı	
AS-TR-002	Vegetation Database of Oak Communities in Turkey	1,181	Emin Uğurlu		
EU-00-002	Nordic-Baltic Grassland Vegetation Database (NBGVD)	7,675	Jürgen Dengler	Łukasz Kozub	Dengler & Rūsiņa (2012)
EU-00-011	Vegetation-Plot Database of the University of the Basque Country (BIOVEG)	18,441	Idoia Biurrun	Itziar García- Mijangos	Biurrun et al. (2012)
EU-00-013	Balkan Dry Grasslands Database	7,683	Kiril Vassilev	Armin Macanović	Vassilev et al. (2012)
EU-00-016	Mediterranean Ammophiletea Database	7,359	Corrado Marcenò	Borja Jiménez- Alfaro	Marcenò & Jiménez- Alfaro (2017)
EU-00-017	European Coastal Vegetation Database	4,624	John Janssen		
EU-00-018	The Nordic Vegetation Database	5,477	Jonathan Lenoir	Jens-Christian Svenning	Lenoir et al. (2013)
EU-00-019	Balkan Vegetation Database	9,118	Kiril Vassilev	Hristo Pedashenko	Vassilev et al. (2016)
EU-00-020	WetVegEurope	14,111	Flavia Landucci		Landucci et al. (2015)
EU-00-022	European Mire Vegetation Database	10,147	Tomáš Peterka	Martin Jiroušek	Peterka et al. (2015)
EU-AL-001	Vegetation Database of Albania	290	Michele De Sanctis	Giuliano Fanelli	De Sanctis et al. (2017)
EU-AT-001	Austrian Vegetation Database	34,458	Wolfgang Willner	Christian Berg	Willner et al. (2012)
EU-BE-002	INBOVEG	25,665	Els De Bie		
EU-BG-001	Bulgarian Vegetation Database	5,254	Iva Apostolova	Desislava Sopotlieva	Apostolova et al. (2012)
EU-CH-005	Swiss Forest Vegetation Database	14,193	Thomas Wohlgemuth		Wohlgemuth (2012)

EU-CZ-001	Czech National Phytosociological Database	104,697	Milan Chytrý	Dana Holubová	Chytrý & Rafajová (2003)
EU-DE-001	VegMV	53,822	Florian Jansen	Christian Berg	Jansen et al. (2012)
EU-DE-013	VegetWeb Germany	23,078	Jörg Ewald		Ewald et al. (2012)
EU-DE-014	German Vegetation Reference Database (GVRD)	30,840	Ute Jandt	Helge Bruelheide	Jandt & Bruelheide (2012)
EU-DK-002	National Vegetation Database of Denmark	24,264	Jesper Erenskjold Moeslund	Rasmus Ejrnæs	
EU-ES-001	Iberian and Macaronesian Vegetation Information System (SIVIM) Wetlands	6,560	Aaron Pérez- Haase	Xavier Font	
EU-FR-003	SOPHY	209,864	Henry Brisse	Patrice De Ruffray	Brisse et al. (1995)
EU-GB-001	UK National Vegetation Classification Database	28,533	John S. Rodwell		
EU-GR-001	KRITI	292	Erwin Bergmeier		
EU-GR-005	Hellenic Natura 2000 Vegetation Database (HelNatVeg)	5,168	Panayotis Dimopoulos	Ioannis Tsiripidis	Dimopoulos & Tsiripidis (2012)
EU-GR-006	Hellenic Woodland Database	3,199	Georgios Fotiadis	Ioannis Tsiripidis	Fotiadis et al. (2012)
EU-HR-001	Phytosociological Database of Non-Forest Vegetation in Croatia	5,057	Zvjezdana Stančić		Stančić (2012)
EU-HR-002	Croatian Vegetation Database	8,734	Željko Škvorc	Daniel Krstonošić	
EU-HU-003	CoenoDat Hungarian Phytosociological Database	8,505	János Csiky	Zoltán Botta- Dukát	Lájer et al. (2008)
EU-IT-001	Vegltaly	15,332	Roberto Venanzoni	Flavia Landucci	Landucci et al. (2012)
EU-IT-010	Italian National Vegetation Database (BVN/ISPRA)	3,562	Laura Casella	Pierangela Angelini	Casella et al. (2012)
EU-IT-011	Vegetation-Plot Database Sapienza University of Rome (VPD-Sapienza)	12,780	Emiliano Agrillo	Fabio Attorre	Agrillo et al. (2017)
EU-LT-001	Lithuanian Vegetation Database	7,821	Valerijus Rašomavičius	Domas Uogintas	
EU-LV-001	Semi-natural Grassland Vegetation Database of Latvia	5,594	Solvita Rūsiņa		Rūsiņa (2012)
EU-MK-001	Vegetation Database of the Republic of Macedonia	1,417	Renata Ćušterevska		
EU-NL-001	Dutch National Vegetation Database	102,327	Joop H.J. Schaminée	Stephan M. Hennekens	Schaminée et al. (2006)
EU-PL-001	Polish Vegetation Database	22,229	Zygmunt Kącki	Grzegorz Swacha	Kącki & Śliwiński (2012)
EU-RO-007	Romanian Forest Database	6,017	Adrian Indreica	Pavel Dan Turtureanu	Indreica et al. (2017)
EU-RO-008	Romanian Grassland Database	1,921	Eszter Ruprecht	Kiril Vassilev	Vassilev et al. (2018)
EU-RS-002	Vegetation Database Grassland Vegetation of Serbia	5,587	Svetlana Aćić	Zora Dajić Stevanović	Aćić et al. (2012)
EU-RU-002	Lower Volga Valley Phytosociological Database	14,853	Valentin Golub	Viktoria Bondareva	Golub et al. (2012)
EU-RU-003	Vegetation Database of the Volga and the Ural Rivers Basins	1,516	Tatiana Lysenko		Lysenko et al. (2012)
EU-RU-011	Vegetation Database of Tatarstan	7,471	Vadim Prokhorov	Maria Kozhevnikova	Prokhorov et al. (2017)
EU-SI-001	Vegetation Database of Slovenia	10,986	Urban Šilc	Filip Küzmič	Šilc (2012)
EU-SK-001	Slovak Vegetation Database	36,405	Milan Valachovič	Jozef Šibík	Šibík (2012)
EU-UA-001	Ukrainian Grasslands Database	4,043	Anna Kuzemko	Yulia Vashenyak	Kuzemko (2012)
EU-UA-006	Vegetation Database of Ukraine and Adjacent Parts of Russia	3,326	Viktor Onyshchenko	Vitaliy Kolomiychuk	

[Aggregator]	Tropical African Vegetation	6.677	Marco Schmidt	Stefan Dressler	Janßen et al. (2011)
[, .99. 09]	Archive (TAVA)	0,011			
AF-00-001	West African Vegetation Database	3,129	Marco Schmidt	Georg Zizka	Schmidt et al. (2012)
AF-00-008	PANAF Vegetation Database	2,469	Hjalmar Kühl	TeneKwetche Sop	
AF-BF-001	Sahel Vegetation Database	1,079	Jonas V. Müller	Marco Schmidt	Müller (2003)
	Other databases	164,566			
00-00-001	RAINFOR data managed by ForestPlots.net	1,827	Oliver L. Phillips	Aurora Levesley	Lopez-Gonzalez et al. (2011)
00-00-003	SALVIAS	4,883	Brian Enquist	Brad Boyle	
00-00-005	Tundra Vegetation Plots (TundraPlot)	577	Anne D. Bjorkman	Sarah Elmendorf	Elmendorf et al. (2012)
00-RU-002	Database of Masaryk University`s Vegetation Research in Siberia	1,547	Milan Chytrý		Chytrý (2012)
AF-00-003	BIOTA Southern Africa Biodiversity Observatories Vegetation Database	1,666	Norbert Jürgens	Gerhard Muche	Muche et al. (2012)
AF-00-006	SWEA-Dataveg	2,704	Miguel Alvarez	Michael Curran	
AF-00-009	Vegetation Database of the Okavango Basin	590	Rasmus Revermann	Manfred Finckh	Revermann et al. (2016)
AF-CD-001	Forest Database of Central Congo Basin	292	Elizabeth Kearsley	Hans Verbeeck	Kearsley et al. (2013)
AF-ET-001	Vegetation Database of Ethiopia	74	Desalegn Wana	Anke Jentsch	Wana & Beierkuhnlein (2011)
AF-MA-001	Vegetation Database of Southern Morocco	1,337	Manfred Finckh		Finckh (2012)
AF-ZA-003*	SynBioSys Fynbos Vegetation Database	3,810	John Janssen		
AF-ZW-001*	Vegetation Database of Zimbabwe	36	Cyrus Samimi		Samimi (2003)
AS-00-001	Korean Forest Database	4,885	Tomáš Černý	Petr Petřík	Černý et al. (2015)
AS-00-003	Vegetation of Middle Asia	1,381	Arkadiusz Nowak	Marcin Nobis	Nowak et al. (2017)
AS-00-004	Rice Field Vegetation Database	179	Arkadiusz Nowak		
AS-BD-001	Tropical Forest Dataset of Bangladesh	211	Mohamme <mark>d</mark> A.S. Arfin Khan	Fahmida Sultana	
AS-CN-001	China Forest-Steppe Ecotone Database	148	Hongyan Liu	Fengjun Zhao	Liu et al. (2000)
AS-CN-002	Tibet-PaDeMoS Grazing Transect	146	Karsten Wesche		Wang et al. (2017)
AS-CN-003*	Vegetation Database of the BEF China Project	27	Helge Bruelheide		Bruelheide et al. (2011)
AS-CN-004*	Vegetation Database of the Northern Mountains in China	485	Zhiyao Tang		
AS-CN-005*	Database Steppe Vegetation of Xinjiang	129	Kohei Suzuki		
AS-EG-001	Vegetation Database of Sinai in Egypt	926	Mohamed Z. Hatim		Hatim (2012)
AS-ID-001	Sulawesi Vegetation Database	24	Michael Kessler		
AS-IR-001	Vegetation Database of Iran	2,335	Jalil Noroozi	Parastoo Mahdavi	
AS-KG-001	Vegetation Database of South- Western Kyrgyzstan	452	Peter Borchardt	Udo Schickhoff	Borchardt & Schickhoff (2012)
AS-KZ-001	Database of Meadow Vegetation in the NW Tian Shan Mountains	94	Viktoria Wagner		Wagner (2009)
AS-MN-001	Southern Gobi Protected Areas Database	1,516	Henrik von Wehrden	Karsten Wesche	von Wehrden et al. (2009)
AS-RU-001	Wetland Vegetation Database of Baikal Siberia (WETBS)	2,381	Victor Chepinoga		Chepinoga (2012)

	Database of Siberian Vegetation (DSV)	9,116	Andrey Korolyuk	Andrei Zverev	
AS-RU-004	Database of the University of Münster - Biodiversity and Ecosystem Research Group's Vegetation Research in Western Siberia and Kazakhstan	445	Norbert Hölzel	Wanja Mathar	
AS-SA-001*	Vegetation Database of Saudi Arabia	919	Mohamed Abd El- Rouf Mousa El- Sheikh		
AS-TJ-001	Eastern Pamirs	282	Kim André Vanselow		Vanselow (2016)
AS-TW-001	National Vegetation Database of Taiwan	930	Ching-Feng Li	Chang-Fu Hsieh	
AS-YE-001	Socotra Vegetation Database	396	Michele De Sanctis	Fabio Attorre	De Sanctis & Attorre (2012)
AU-AU-002	TERN AEKOS	21,261	Anita Smyth	Ben Sparrow	Turner et al (2017)
AU-NC-001	New Caledonian Plant Inventory and Permanent Plot Network (NC- PIPPN)	201	Jérôme Munzinger	Philippe Birnbaum	Ibanez et al. (2014)
AU-NZ-001	New Zealand National Vegetation Databank	1,895	Susan Wiser		Wiser et al. (2001)
AU-PG-001	Forest Plots from Papua New Guinea	63	Timothy Whitfeld	George Weiblen	Whitfeld et al. (2014)
NA-00-002	Tree Biodiversity Network (BIOTREE-NET)	1,757	Luis Cayuela		Cayuela et al. (2012)
NA-CA-003	Database of Timberline Vegetation in NW North America	110	Viktoria Wagner	Toby Spribille	agner et al. (2014)
NA-CA-004	Understory of Sugar Maple Dominated Stands in Quebec and Ontario (Canada)	156	Isabelle Aubin		Aubin et al. (2007)
NA-CA-005*	Boreal Forest of Canada	89	Yves Bergeron	Louis De Grandpré	
NA-CA-005* NA-GL-001	Boreal Forest of Canada Vegetation Database of Greenland	89 664	Yves Bergeron Birgit Jedrzejek	Louis De Grandpré Fred J.A. Daniëls	Sieg et al. (2006)
NA-CA-005* NA-GL-001 NA-US-002	Boreal Forest of Canada Vegetation Database of Greenland VegBank	89 664 67,352	Yves Bergeron Birgit Jedrzejek Robert K. Peet	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee	Sieg et al. (2006) Peet et al. (2012a)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-006	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database	89 664 67,352 17,221	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-006 NA-US-014	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive	89 664 67,352 17,221 1,363	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-006 NA-US-014 SA-00-002	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo	89 664 67,352 17,221 1,363 2,643	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-006 NA-US-014 SA-00-002 SA-AR-002	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina	89 664 67,352 17,221 1,363 2,643 218	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-006 NA-US-014 SA-00-002 SA-AR-002 SA-BO-003	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots	89 664 67,352 17,221 1,363 2,643 218 75	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-014 SA-00-002 SA-AR-002 SA-BO-003 SA-BR-002	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project)	89 664 67,352 17,221 1,363 2,643 218 75 1,669	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler Alexander Christian Vibrans	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog André Luis de Gasper	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015) Vibrans et al. (2010)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-014 SA-00-002 SA-AR-002 SA-BO-003 SA-BR-002 SA-BR-002	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project) Grasslands of Rio Grande do Sul, Brazil	89 664 67,352 17,221 1,363 2,643 218 75 1,669 320	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler Alexander Christian Vibrans Eduardo Vélez- Martin	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog André Luis de Gasper Valério De Patta Pillar	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015) Vibrans et al. (2010)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-014 SA-00-002 SA-AR-002 SA-BR-003 SA-BR-002 SA-BR-003 SA-BR-004	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project) Grasslands of Rio Grande do Sul, Brazil Grassland Database of Campos Sulinos	89 664 67,352 17,221 1,363 2,643 218 75 1,669 320 161	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler Alexander Christian Vibrans Eduardo Vélez- Martin Gerhard E. Overbeck	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog André Luis de Gasper Valério De Patta Pillar Valério De Patta Pillar	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015) Vibrans et al. (2010)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-014 SA-00-002 SA-AR-002 SA-BR-003 SA-BR-003 SA-BR-003 SA-BR-004 SA-BR-004 SA-CL-002	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project) Grasslands of Rio Grande do Sul, Brazil Grassland Database of Campos Sulinos SSAForests_Plots_db	89 664 67,352 17,221 1,363 2,643 218 75 1,669 320 161 261	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler Alexander Christian Vibrans Eduardo Vélez- Martin Gerhard E. Overbeck Alvaro G. Gutierrez	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog André Luis de Gasper Valério De Patta Pillar Valério De Patta Pillar	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015) Vibrans et al. (2010)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-006 NA-US-014 SA-00-002 SA-AR-002 SA-BR-002 SA-BR-003 SA-BR-003 SA-BR-004 SA-CL-002 SA-CL-003*	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project) Grasslands of Rio Grande do Sul, Brazil Grassland Database of Campos Sulinos SSAForests_Plots_db Chilean Park Transects - Fondecyt 1040528	89 664 67,352 17,221 1,363 2,643 218 75 1,669 320 161 261 165	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler Alexander Christian Vibrans Eduardo Vélez- Martin Gerhard E. Overbeck Alvaro G. Gutierrez Aníbal Pauchard	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog André Luis de Gasper Valério De Patta Pillar Valério De Patta Pillar	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015) Vibrans et al. (2010)
NA-CA-005* NA-GL-001 NA-US-002 NA-US-014 SA-00-002 SA-AR-002 SA-BR-002 SA-BR-003 SA-BR-003 SA-BR-004 SA-CL-002 SA-CL-003* SA-EC-001	Boreal Forest of Canada Vegetation Database of Greenland VegBank Carolina Vegetation Survey Database Alaska-Arctic Vegetation Archive VegPáramo Vegetation Database of Central Argentina Bolivia Forest Plots Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project) Grasslands of Rio Grande do Sul, Brazil Grassland Database of Campos Sulinos SSAForests_Plots_db Chilean Park Transects - Fondecyt 1040528 Ecuador Forest Plot Database	89 664 67,352 17,221 1,363 2,643 218 75 1,669 320 161 261 165 172	Yves Bergeron Birgit Jedrzejek Robert K. Peet Robert K. Peet Donald A. Walker Gwendolyn Peyre Marcelo R. Cabido Michael Kessler Alexander Christian Vibrans Eduardo Vélez- Martin Gerhard E. Overbeck Alvaro G. Gutierrez Aníbal Pauchard Jürgen Homeier	Louis De Grandpré Fred J.A. Daniëls Michael T. Lee Michael T. Lee Amy Breen Xavier Font Alicia Acosta Sebastian Herzog André Luis de Gasper Valério De Patta Pillar Valério De Patta Pillar	Sieg et al. (2006) Peet et al. (2012a) Peet et al. (2012b) Walker et al. (2016) Peyre et al. (2015) Vibrans et al. (2010)

1421

1 TITLE PAGE

2

3 REPORT PAPER

4

5 sPlot – a new tool for global vegetation analyses

6 Helge Bruelheide^{x,1,2}, Jürgen Dengler^{x,3,4,2}, Borja Jiménez-Alfaro^{x,5,1,2}, Oliver Purschke^{x,6}, Stephan M. 7 Hennekens⁷, Milan Chytrý⁸, Valério D. Pillar⁹, Florian Jansen¹⁰, Jens Kattge^{11,2}, Brody Sandel¹², Isabelle 8 Aubin¹³, Idoia Biurrun¹⁴, Richard Field¹⁵, Sylvia Haider¹, Ute Jandt¹, Jonathan Lenoir¹⁶, Robert K. Peet¹⁷, Gwendolyn Peyre¹⁸, Francesco Maria Sabatini^{1,2}, Marco Schmidt¹⁹, Franziska Schrodt¹⁵, Marten Winter², 9 Svetlana Aćić²⁰, Emiliano Agrillo²¹, Miguel Alvarez²², Didem Ambarlı²³, Pierangela Angelini²⁴, Iva 10 Apostolova²⁵, Mohammed A.S. Arfin Khan^{26,27}, Elise Arnst²⁸, Fabio Attorre²¹, Christopher Baraloto^{29,30}, 11 12 Michael Beckmann³¹, Christian Berg³², Yves Bergeron³³, Erwin Bergmeier³⁴, Anne D. Bjorkman³⁵, Viktoria 13 Bondareva³⁶, Peter Borchardt³⁷, Zoltán Botta-Dukát³⁸, Brad Boyle³⁹, Amy Breen⁴⁰, Henry Brisse⁴¹, Chaeho Byun⁴², Marcelo R. Cabido⁴³, Laura Casella²⁴, Luis Cayuela⁴⁴, Tomáš Černý⁴⁵, Victor Chepinoga⁴⁶, János 14 Csiky⁴⁷, Michael Curran⁴⁸, Renata Ćušterevska⁴⁹, Zora Dajić Stevanović²⁰, Els De Bie⁵⁰, Patrice De 15 Ruffray⁵¹, Michele De Sanctis²¹, Panayotis Dimopoulos⁵², Stefan Dressler⁵³, Rasmus Ejrnæs⁵⁴, Mohamed 16 Abd El-Rouf Mousa El-Sheikh^{55,56}, Brian Enquist³⁹, Jörg Ewald⁵⁷, Jaime Fagúndez⁵⁸, Manfred Finckh⁵⁹, 17 Xavier Font⁶⁰, Estelle Forey⁶¹, Georgios Fotiadis⁶², Itziar García-Mijangos¹⁴, André Luis de Gasper⁶³, 18 19 Valentin Golub³⁶, Alvaro G. Gutierrez⁶⁴, Mohamed Z. Hatim⁶⁵, Tianhua He⁶⁶, Pedro Higuchi⁶⁷, Dana 20 Holubová⁸, Norbert Hölzel⁶⁸, Jürgen Homeier⁶⁹, Adrian Indreica⁷⁰, Deniz Isık Gürsov⁷¹, Steven Jansen⁷², John Janssen⁷, Birgit Jedrzejek⁶⁸, Martin Jiroušek^{8,73}, Norbert Jürgens⁵⁹, Zygmunt Kacki⁷⁴, Ali Kavgaci⁷⁵, 21 22 Elizabeth Kearsley⁷⁶, Michael Kessler⁷⁷, Ilona Knollová⁸, Vitaliy Kolomiychuk⁷⁸, Andrey Korolyuk⁷⁹, Maria Kozhevnikova⁸⁰, Łukasz Kozub⁸¹, Daniel Krstonošić⁸², Hjalmar Kühl^{83,2}, Ingolf Kühn^{84,1,2}, Anna Kuzemko⁸⁵, 23 Filip Küzmič⁸⁶, Flavia Landucci⁸, Michael T. Lee⁸⁷, Aurora Levesley⁸⁸, Ching-Feng Li⁸⁹, Hongyan Liu⁹⁰, 24 Gabriela Lopez-Gonzalez⁸⁸, Tatiana Lysenko⁹¹, Armin Macanović⁹², Parastoo Mahdavi⁹³, Peter Manning⁹⁴, 25 26 Corrado Marcenò¹⁴, Vassiliy Martynenko⁹⁵, Maurizio Mencuccini⁹⁶, Vanessa Minden⁹⁷, Jesper Erenskjold 27 Moeslund⁵⁴, Marco Moretti⁹⁸, Jonas V. Müller⁹⁹, Jérôme Munzinger¹⁰⁰, Ülo Niinemets¹⁰¹, Marcin Nobis¹⁰², 28 Jalil Noroozi¹⁰³, Arkadiusz Nowak¹⁰⁴, Viktor Onyshchenko⁸⁵, Gerhard E. Overbeck⁹, Wim A. Ozinga¹⁰⁵,

29 Anibal Pauchard¹⁰⁶, Hristo Pedashenko¹⁰⁷, Josep Peñuelas^{108,109}, Aaron Pérez-Haase^{110,111}, Tomáš

- 30 Peterka⁸, Petr Petřík¹¹², Oliver L. Phillips⁸⁸, Vadim Prokhorov⁸⁰, Valerijus Rašomavičius¹¹³, Rasmus
- 31 Revermann⁵⁹, John Rodwell¹¹⁴, Eszter Ruprecht¹¹⁵, Solvita Rūsiņa¹¹⁶, Cyrus Samimi¹¹⁷, Joop H.J.
- 32 Schaminée⁷, Ute Schmiedel⁵⁹, Jozef Šibík¹¹⁸, Urban Šilc⁸⁶, Željko Škvorc⁸², Anita Smyth¹¹⁹, Tenekwetche
- 33 Sop^{83,2}, Desislava Sopotlieva²⁵, Ben Sparrow¹¹⁹, Zvjezdana Stančić¹²⁰, Jens-Christian Svenning³⁵,
- 34 Grzegorz Swacha⁷⁴, Zhiyao Tang⁹⁰, Ioannis Tsiripidis¹²¹, Pavel Dan Turtureanu¹²², Emin Ugurlu¹²³, Domas
- 35 Uogintas¹¹³, Milan Valachovič¹¹⁸, Kim André Vanselow¹²⁴, Yulia Vashenyak¹²⁵, Kiril Vassilev²⁵, Eduardo
- 36 Vélez-Martin⁹, Roberto Venanzoni¹²⁶, Alexander Christian Vibrans¹²⁷, Cyrille Violle¹²⁸, Risto
- 37 Virtanen^{129,130,2}, Henrik von Wehrden¹³¹, Viktoria Wagner¹³², Donald A. Walker¹³³, Desalegn Wana¹³⁴,
- 38 Evan Weiher¹³⁵, Karsten Wesche^{136,2,137}, Timothy Whitfeld¹³⁸, Wolfgang Willner¹³⁹, Susan Wiser²⁸, Thomas
- 39 Wohlgemuth¹⁴⁰, Sergey Yamalov¹⁴¹, Georg Zizka⁵³, Andrei Zverev¹⁴²
- 40
- 41 * Helge Bruelheide, Jürgen Dengler, Borja Jiménez-Alfaro and Oliver Purschke should be
- 42 considered joint first authors
- 43

44 **AFFILIATIONS**

- ⁴⁵ ¹Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg,
- 46 Halle, Germany
- 47 ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- 48 ³Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied
- 49 Sciences (ZHAW), Wädenswil, Switzerland
- ⁴Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of
- 51 Bayreuth, Bayreuth, Germany
- ⁵Research Unit of Biodiversity (CSUC/UO/PA), University of Oviedo, Mieres, Spain
- ⁶Leipzig, Germany
- ⁷Wageningen Environmental Research (Alterra), Wageningen University and Research, Wageningen,
- 55 Netherlands

- ⁸Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- ⁹Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ¹⁰Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
- 59 ¹¹Max Planck Institute for Biogeochemistry, Jena, Germany
- 60 ¹²Department of Biology, Santa Clara University, Santa Clara, CA, United States
- 61 ¹³Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste Marie
- 62 (Ontario), Canada
- ¹⁴Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain
- ¹⁵School of Geography, University of Nottingham, Nottingham, United Kingdom
- ¹⁶Ecologie et Dynamiques des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS-UPJV), Université de
- 66 Picardie Jules Verne, Amiens, France
- ¹⁷Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- ¹⁸Department of Civil and Environmental Engineering, University of the Andes, Bogota, Colombia
- ¹⁹Data and Modelling Centre, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt
- 70 am Main, Germany
- ²⁰Department of Agrobotany, Faculty of Agriculture, Belgrade-Zemun, Serbia
- 72 ²¹Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
- 73 ²²Plant Nutrition, INRES, University of Bonn, Bonn, Germany
- ²³Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Düzce
- 75 University, Düzce, Turkey
- ²⁴Biodiversity Conservation Department, ISPRA Italian National Institute for Environmental Protection
- 77 and Research, Rome, Italy
- 78 ²⁵Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem
- 79 Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
- 80 ²⁶Forestry & Environmental Science, Shahjalal University of Science & Technology, Sylhet, Bangladesh

- 81 ²⁷Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of
- 82 Bayreuth, Bayreuth, Germany
- 83 ²⁸Manaaki Whenua -- Landcare Research, Lincoln, New Zealand
- ²⁹International Center for Tropical Botany (ICTB), The Kampong of the National Tropical Botanical
- 85 Garden, Coconut Grove, Florida, United States
- ³⁰Department of Biological Sciences, Florida International University, Miami, Florida, United States
- 87 ³¹Landscape Ecology, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
- 88 ³²Botanical Garden, University of Graz, Graz, Austria
- ³³Forest Research Institute, Université du Québec en Abitibi-Témiscamingue , Rouyn-Noranda, Canada
- ³⁴Vegetation Ecology and Phytodiversity, University of Göttingen, Göttingen, Germany
- ³⁵Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics &
- 92 Biodiversity, Department of Bioscience, Aarhus University, Aarhus C, Denmark
- ³⁶Laboratory of Phytocoenology, Institute of Ecology of the Volga River Basin, Toljatty, Russian
- 94 Federation
- ³⁷Institute of Geography, CEN Center for Earth System Research and Sustainability, University of
- 96 Hamburg, Hamburg, Germany
- ³⁸Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, Hungary
- ³⁹Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
- ⁴⁰International Arctic Research Center, University of Alaska, Fairbanks, United States
- 100 ⁴¹Faculté des Sciences, MEP, Marseille cedex 20, France
- 101 ⁴²School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
- ⁴³Multidisciplinary Institute for Plant Biology (IMBIV CONICET), University of Cordoba CONICET,
- 103 Cordoba, Argentina
- ⁴⁴Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos,
- 105 Móstoles, Spain

- ⁴⁵Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences
- 107 Prague, Praha 6 Suchdol, Czech Republic
- ⁴⁶Laboratory of Physical Geography and Biogeography, V.B. Sochava Insitute of Geography SB RAS,
- 109 Irkutsk, Russian Federation
- ⁴⁷Department of Ecology, University of Pécs, Pécs, Hungary
- ⁴⁸Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Zürich,
- 112 Switzerland
- ⁴⁹Institute of Biology, Faculty of Natural Sciences and Mathematics, Skopje, Republic of Macedonia
- ⁵⁰Departement of Biodiversity and Natural Environment, Research Institute for Nature and Forest (INBO),
- 115 Brussels, Belgium
- 116 ⁵¹IBMP, Strasburg, France
- ⁵²Institute of Botany, Division of Plant Biology, Department of Biology, University of Patras, Patras,
- 118 Greece
- ⁵³Dept. Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany
- 120 ⁵⁴Department of Bioscience, Aarhus University, Roende, Denmark
- 121 ⁵⁵Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- ⁵⁶Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
- ⁵⁷Hochschule Weihenstephan-Triesdorf, University of Applied Sciences, Freising, Germany
- ⁵⁸Faculty of Science, University of A Coruña, A Coruña, Spain
- ⁵⁹Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology, University of
- 126 Hamburg, Hamburg, Germany
- ⁶⁰Plant Biodiversity Resource Centre, University of Barcelona, Barcelona, Spain
- 128 ⁶¹Laboratoire Ecodiv, EA 1293 URA IRSTEA, Normandie University, Mont-Saint-Aignan, France
- 129 ⁶²Department of Forestry & Natural Environment Management, TEI of Sterea Ellada, Karpenissi, Greece
- 130 ⁶³Departament of Natural Science, Regional University of Blumenau, Blumenau, Brazil

- 131 ⁶⁴Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias
- 132 Agronomicas, Universidad de Chile, Santiago, Chile
- 133 ⁶⁵Botany, Faculty of Science, Tanta University, Tanta, Egypt
- 134 ⁶⁶School of Molecular and Life Sicences, Curtin University, Bentley, WA, Australia
- 135 ⁶⁷Forestry Department, Santa Catarina State University, Lages, Brazil
- 136 ⁶⁸Institute of Landscape Ecology, University of Münster, Münster, Germany
- 137 ⁶⁹Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- 138 ⁷⁰Department of Silviculture, Transilvania University of Brasov, Brasov, Romania
- ⁷¹Department of Biology, Celal Bayar University, Manisa, Turkey
- 140 ⁷²Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- ⁷³Department of Plant Biology, Mendel University in Brno, Brno, Czech Republic
- 142 ⁷⁴Botanical Garden, University of Wrocław, Wrocław, Poland
- ⁷⁵Silviculture and Forest Botany, Soutwest Anatolia Forest Research Institute, Antalya, Turkey
- 144 ⁷⁶Department of Environment, Ghent University, Gent, Belgium
- ⁷⁷Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- 146 ⁷⁸O.V. Fomin Botanical Garden, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- ⁷⁹Geosystem Laboratory, Central Siberian Botanical Garden, Siberian Branch, Russian Academy of
- 148 Sciences , Novosibirsk, Russian Federation
- 149 ⁸⁰Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation
- 150 ⁸¹Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and
- 151 Chemical Research Centre, University of Warsaw, Warsaw, Poland
- 152 ⁸²Faculty of Forestry, University of Zagreb, Zagreb, Croatia
- ⁸³Primatology, Max Planck Institute for Evolutionary Anthropology (MPI-EVA, Leipzig, Germany)
- 154 ⁸⁴Dept. Community Ecology, Helmholtz Centre for Environmental Research UFZ, Halle, Germany

- 155 ⁸⁵M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- 156 ⁸⁶Institute of Biology, Research Centre of Slovenian Academy of Sciences and Arts (ZRC SAZU), Ljubljana,
- 157 Slovenia
- 158 ⁸⁷NatureServe, Durham, United States
- 159 ⁸⁸School of Geography, University of Leeds, Leeds, United Kingdom
- 160 ⁸⁹School of Forestry and Resource Conservation, National Taiwan University, Hsinchu, Taiwan
- 161 ⁹⁰College of Urban and Environmental Sciences, Peking University, Beijing, China
- ⁹¹Dept. of the Phytodiversity Problems, Institute of Ecology of the Volga River Basin RAS, Togliatti,
- 163 Russian Federation
- ⁹²Center for Ecology and Natural Resources Academician Sulejman Redžić, Department of Biology,
- 165 University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- ⁹³Research Group Vegetation Science & Nature Conservation, Dept. of Ecology and Environmental
- 167 Science, Carl von Ossietzky-University Oldenburg, Oldenburg, Germany
- ⁹⁴Project Group Causes and Consequences of Climate Change, Senckenberg Research Institute, Frankfurt
- 169 am Main, Germany
- ⁹⁵Ufa Institute of Biology of Ufa Federal Scientific Centre of the Russian Academy of Sciences, Ufa,
- 171 Russian Federation
- ⁹⁶Centre Research Ecology and Forestry Applications (CREAF), ICREA, Barcelona, Spain
- ⁹⁷Institute of Biology an Environmental Sciences, Carl von Ossietzky-University Oldenburg, Oldenburg,
- 174 Germany
- ⁹⁸Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- ⁹⁹Conservation Science, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
- ¹⁰⁰AMAP Botany and Modelling of Plant Architecture and Vegetation, IRD, CIRAD, CNRS, INRA,
- 178 Université Montpellier, Montpellier, France
- 179 ¹⁰¹Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
- 180 ¹⁰²Institute of Botany, Jagiellonian University, Kraków, Poland

- 181 ¹⁰³Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- 182 ¹⁰⁴Botanical Garden Center for Biological Diversity Conservation, Polish Academy of Sciences,
- 183 Warszawa, Poland
- ¹⁰⁵Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, Wageningen,
- 185 Netherlands
- 186 ¹⁰⁶Laboratorio de Invasiones Biológicas (LIB), University of Concepción, Concepción, Chile
- 187 ¹⁰⁷Amsterdam, Netherlands
- 188 ¹⁰⁸Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Spain
- 189 ¹⁰⁹CREAF, Cerdanyola del Vallès, Spain
- ¹¹⁰Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona,
- 191 Barcelona, Spain
- ¹¹¹Continental Ecology, Center for Advanced Studies of Blanes, Spanish Research Council (CEAB-CSIC),
- 193 Blanes, Girona, Spain
- ¹¹²Department of GIS and Remote Sensing, Institute of Botany, The Czech Academy of Sciences,
- 195 Průhonice, Czech Republic
- ¹¹³Institute of Botany, Nature Research Centre, Vilnius, Lithuania
- 197 ¹¹⁴Lancaster, United Kingdom
- 198 ¹¹⁵Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeş-Bolyai
- 199 University, Cluj-Napoca, Romania
- 200 ¹¹⁶Department of Geography, University of Latvia, Riga, Latvia
- 201 ¹¹⁷Climatology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of
- 202 Bayreuth, Bayreuth, Germany
- 203 ¹¹⁸Institute of Botany, Plant Science and Biodiversity Centre Slovak Academy of Sciences, Bratislava,
- 204 Slovakia
- 205 ¹¹⁹TERN, University of Adelaide, Adelaide, Australia
- 206 ¹²⁰Faculty of Geotechnical Engineering, University of Zagreb, Varaždin, Croatia

- 207 ¹²¹School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 208 ¹²²A. Borza Botanical Garden, Babeș-Bolyai University, Cluj-Napoca, Romania
- 209 ¹²³Forest Engineering Department, Faculty of Forestry, Bursa Technical University, Yıldırım, Bursa, Turkey
- 210 ¹²⁴Department of Geography, University of Erlangen-Nuremberg, Erlangen, Germany
- 211 ¹²⁵Khmelnytskyi Institute of Interregional Academy of Personnel Management, Khmelnytskyi, Ukraine
- 212 ¹²⁶Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- 213 ¹²⁷Departamento de Engenharia Florestal, Universidade Regional de Blumenau, Blumenau, Brazil
- ¹²⁸Centre d'Ecologie Fonctionnelle et Evolutive (UMR5175), CNRS Université de Montpellier Université
- 215 Paul-Valéry Montpellier EPHE, Montpellier, France
- 216 ¹²⁹Ecology and Genetics Research Unit, Biodiversity Unit, University of Oulu, Oulu, Finland
- ¹³⁰Department of Physiological Diversity, Helmholtz Center for Environmental Research UFZ, Leipzig,
- 218 Germany
- ¹³¹Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
- 220 ¹³²Department of Biological Sciences, University of Alberta, Edmonton, Canada
- ¹³³Institute of Arctic Biology, University of Alaska, Fairbanks, United States
- ¹³⁴Department of Geography & Environmental Studies, Addis Ababa University, Addis Ababa, Ethiopia
- ¹³⁵Department of Biology, University of Wisconsin Eau Claire, Eau Claire, WI, United States
- 224 ¹³⁶Botany Department, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
- 225 ¹³⁷International Institute Zittau, Technische Universität Dresden, Zittau, Germany
- ¹³⁸Department of Ecology and Evolutionary Biology/Brown University Herbarium, Brown University,
- 227 Providence, United States
- ¹³⁹Vienna Institute for Nature Conservation & Analyses, Vienna, Austria
- ¹⁴⁰Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
- 230 Birmensdorf, Switzerland

- ¹⁴¹Laboratory of Wild-Growing Flora, Botanical Garden-Institute, Ufa Scientific Centre, Russian Academy
- 232 of Sciences, Ufa, Russian Federation
- 233 ¹⁴²Department of Botany, Tomsk State University, Tomsk, Russian Federation
- 234

235 Correspondence:

- 236 Helge Bruelheide, Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-
- 237 Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
- 238 Email: helge.bruelheide@botanik.uni-halle.de
- 239
- 240 **ORCID**:
- 241 Helge Bruelheide http://orcid.org/0000-0003-3135-0356
- 242 Jürgen Dengler http://orcid.org/0000-0003-3221-660X
- 243 Borja Jiménez-Alfaro http://orcid.org/0000-0001-6601-9597
- 244 Oliver Purschke http://orcid.org/0000-0003-0444-0882
- 245 Milan Chytrý http://orcid.org/0000-0002-8122-3075
- 246 Valério D. Pillar http://orcid.org/0000-0001-6408-2891
- 247 Jens Kattge http://orcid.org/0000-0002-1022-8469
- 248 Idoia Biurrun http://orcid.org/0000-0002-1454-0433
- 249 Richard Field http://orcid.org/0000-0003-2613-2688
- 250 Jonathan Lenoir http://orcid.org/0000-0003-0638-9582
- 251 Francesco M. Sabatini http://orcid.org/0000-0002-7202-7697
- 252 Marco Schmidt http://orcid.org/0000-0001-6087-6117
- 253 Franziska Schrodt http://orcid.org/0000-0001-9053-8872
- 254 Emiliano Agrillo http://orcid.org/0000-0003-2346-8346

- 255 Miguel Alvarez http://orcid.org/0000-0003-1500-1834
- 256 Pierangela Angelini http://orcid.org/0000-0002-5321-9757
- 257 Mohammed A.S. Arfin Khan http://orcid.org/0000-0001-6275-7023
- 258 Fabio Attorre http://orcid.org/0000-0002-7744-2195
- 259 Michael Beckmann http://orcid.org/0000-0002-5678-265X
- 260 Yves Bergeron http://orcid.org/0000-0003-3707-3687
- 261 Erwin Bergmeier http://orcid.org/0000-0002-6118-4611
- 262 Zoltán Botta-Dukát http://orcid.org/0000-0002-9544-3474
- 263 Chaeho Byun http://orcid.org/0000-0003-3209-3275
- 264 Laura Casella http://orcid.org/0000-0003-2550-3010
- 265 Luis Cayuela http://orcid.org/0000-0003-3562-2662
- 266 Victor Chepinoga http://orcid.org/0000-0003-3809-7453
- 267 Michele De Sanctis http://orcid.org/0000-0002-7280-6199
- 268 Jaime Fagúndez http://orcid.org/0000-0001-6605-7278
- 269 Xavier Font http://orcid.org/0000-0002-7253-8905
- 270 Estelle Forey http://orcid.org/0000-0001-6082-3023
- 271 André Luis de Gasper http://orcid.org/0000-0002-1940-9581
- 272 Alvaro G. Gutierrez http://orcid.org/0000-0001-8928-3198
- 273 Tianhua He http://orcid.org/0000-0002-0924-3637
- 274 Pedro Higuchi http://orcid.org/0000-0002-3855-555X
- 275 Norbert Hölzel http://orcid.org/0000-0002-6367-3400
- 276 Steven Jansen http://orcid.org/0000-0002-4476-5334
- 277 Martin Jiroušek http://orcid.org/0000-0002-4293-478X
- 278 Norbert Jürgens http://orcid.org/0000-0003-3211-0549

- 279 Ali Kavgacı http://orcid.org/0000-0002-4549-3668
- 280 Elizabeth Kearsley http://orcid.org/0000-0003-0046-3606
- 281 Michael Kessler http://orcid.org/0000-0003-4612-9937
- 282 Ingolf Kühn http://orcid.org/0000-0003-1691-8249
- 283 Flavia Landucci http://orcid.org/0000-0002-6848-0384
- 284 Ching-Feng Li http://orcid.org/0000-0003-0744-490X
- 285 Peter Manning http://orcid.org/0000-0002-7940-2023
- 286 Corrado Marcenò http://orcid.org/0000-0003-4361-5200
- 287 Maurizio Mencuccini http://orcid.org/0000-0003-0840-1477
- 288 Vanessa Minden http://orcid.org/0000-0002-4933-5931
- 289 Jesper Erenskjold Moeslund http://orcid.org/0000-0001-8591-7149
- 290 Marco Moretti http://orcid.org/0000-0002-5845-3198
- 291 Jérôme Munzinger http://orcid.org/0000-0001-5300-2702
- 292 Ülo Niinemets http://orcid.org/0000-0002-3078-2192
- 293 Arkadiusz Nowak http://orcid.org/0000-0001-8638-0208
- 294 Gerhard E. Overbeck http://orcid.org/0000-0002-8716-5136
- 295 Wim A. Ozinga http://orcid.org/0000-0002-6369-7859
- 296 Hristo Pedashenko http://orcid.org/0000-0002-6743-0625
- 297 Josep Penuelas http://orcid.org/0000-0002-7215-0150
- Aaron Pérez-Haase http://orcid.org/0000-0002-5974-7374
- 299 Petr Petřík http://orcid.org/0000-0001-8518-6737
- 300 Oliver L. Phillips http://orcid.org/0000-0002-8993-6168
- 301 Jozef Šibík http://orcid.org/0000-0002-5949-862X
- 302 Urban Šilc http://orcid.org/0000-0002-3052-699X

- 303 Jens-Christian Svenning http://orcid.org/0000-0002-3415-0862
- 304 Emin Ugurlu http://orcid.org/0000-0003-0824-1426
- 305 Eduardo Vélez-Martin http://orcid.org/0000-0001-8028-8953
- 306 Roberto Venanzoni http://orcid.org/0000-0002-7768-0468
- 307 Risto Virtanen http://orcid.org/0000-0002-8295-8217
- 308 Evan Weiher http://orcid.org/0000-0002-5375-9964
- 309 Susan Wiser http://orcid.org/0000-0002-8938-8181
- 310
- 311 email:
- 312 <u>Helge Bruelheide: helge.bruelheide@botanik.uni-halle.de</u>
- 313 <u>Jürgen Dengler: juergen.dengler@uni-bayreuth.de</u>
- 314 Borja Jiménez-Alfaro: jimenezalfaro.borja@gmail.com
- 315 <u>Oliver Purschke: oliverpurschke@web.de</u>
- 316 <u>Stephan M. Hennekens: stephan.hennekens@wur.nl</u>
- 317 <u>Milan Chytrý: chytry@sci.muni.cz</u>
- 318 Valério De Patta Pillar: vpillar@ufrgs.br
- 319 Florian Jansen: florian.jansen@uni-rostock.de
- 320 Jens Kattge: jkattge@bgc-jena.mpg.de
- 321 Brody Sandel: bsandel@scu.edu
- 322 <u>Marten Winter: marten.winter@idiv.de</u>
- 323 <u>Isabelle Aubin: isabelle.aubin@canada.ca</u>
- 324 Idoia Biurrun: idoia.biurrun@ehu.es
- 325 <u>Richard Field: Richard.Field@nottingham.ac.uk</u>
- 326 <u>Sylvia Haider: sylvia.haider@botanik.uni-halle.de</u>
- 327 <u>Ute Jandt: ute.jandt@botanik.uni-halle.de</u>

- 328 Jonathan Lenoir: jonathan.lenoir@u-picardie.fr
- 329 Robert K. Peet: peet@unc.edu
- 330 <u>Gwendolyn Peyre: gf.peyre@uniandes.edu.co</u>
- 331 Francesco M. Sabatini: francesco.maria.sabatini@botanik.uni-halle.de
- 332 Marco Schmidt: marco.schmidt@stadt-frankfurt.de
- 333 Franziska Schrodt: f.i.schrodt@gmail.com
- 334 <u>Svetlana Aćić: acic@agrif.bg.ac.rs</u>
- 335 Emiliano Agrillo: emiliano.agrillo@uniroma1.it
- 336 <u>Miguel Alvarez: malvarez@uni-bonn.de</u>
- 337 Didem Ambarlı: didemambarli@duzce.edu.tr
- 338 Pierangela Angelini: pierangela.angelini@isprambiente.it
- 339 Iva Apostolova: iva.apostolova@gmail.com
- 340 Mohammed A.S. Arfin Khan: nobelarfin@yahoo.com
- 341 Elise Arnst: arnste@landcareresearch.co.nz
- 342 Fabio Attorre: fabio.attorre@uniroma1.it
- 343 Christian Berg: christian.berg@uni-graz.at
- 344 <u>Yves Bergeron: yves.bergeron@uqat.ca</u>
- 345 <u>Erwin Bergmeier: erwin.bergmeier@bio.uni-goettingen.de</u>
- 346 Anne D. Bjorkman: annebj@gmail.com
- 347 <u>Viktoria Bondareva: bondarevavictoria@yandex.ru</u>
- 348 <u>Peter Borchardt: pbo1@gmx.de</u>
- 349 Zoltán Botta-Dukát: botta-dukat.zoltan@okologia.mta.hu
- 350 Brad Boyle: bboyle@email.arizona.edu
- 351 Amy Breen: albreen@alaska.edu
- 352 <u>Henry Brisse: brisse.henry@orange.fr</u>
- 353 Marcelo R. Cabido: mcabido@imbiv.unc.edu.ar

- 354 Laura Casella: laura.casella@isprambiente.it
- 355 <u>Luis Cayuela: luis.cayuela@urjc.es</u>
- 356 <u>Tomáš Černý: cernyt@fld.czu.cz</u>
- 357 Victor Chepinoga: victor.chepinoga@gmail.com
- 358 János Csiky: moon@ttk.pte.hu
- 359 <u>Michael Curran: currmi01@gmail.com</u>
- 360 <u>Renata Ćušterevska: renatapmf@yahoo.com</u>
- 361 <u>Zora Dajić Stevanović: dajic@agrif.bg.ac.rs</u>
- 362 <u>Els De Bie: els.debie@inbo.be</u>
- 363 Patrice De Ruffray: patrice.de-ruffray@wanadoo.fr
- 364 <u>Michele De Sanctis: michedes@gmail.com</u>
- 365 <u>Panayotis Dimopoulos: pdimopoulos@upatras.gr</u>
- 366 <u>Stefan Dressler: stefan.dressler@senckenberg.de</u>
- 367 <u>Rasmus Ejrnæs: rasmus@bios.au.dk</u>
- 368 Mohamed Abd El-Rouf Mousa El-Sheikh: el_sheikh_eg@yahoo.co.uk
- 369 Brian Enquist: benquist@email.arizona.edu
- 370 <u>Jörg Ewald: joerg.ewald@hswt.de</u>
- 371 Manfred Finckh: manfred.finckh@uni-hamburg.de
- 372 Xavier Font: xfont@ub.edu
- 373 Georgios Fotiadis: gfotiad95@gmail.com
- 374 Itziar García-Mijangos: itziar.garcia@ehu.es
- 375 <u>André Luis de Gasper: algasper@furb.br</u>
- 376 Valentin Golub: vbgolub2000@mail.ru
- 377 <u>Alvaro G. Gutierrez: bosqueciencia@gmail.com</u>
- 378 Mohamed Z. Hatim: mohamed.zakaria@science.tanta.edu.eg
- 379 <u>Norbert Hölzel: nhoelzel@uni-muenster.de</u>

- 380 Dana Holubová: danmich@sci.muni.cz
- 381 <u>Jürgen Homeier: jhomeie@gwdg.de</u>
- 382 <u>Adrian Indreica: adrianindreica@unitbv.ro</u>
- 383 Deniz lşık Gürsoy: biodeniz-04@hotmail.com
- 384 John Janssen: john.janssen@wur.nl
- 385 <u>Birgit Jedrzejek: siegb@uni-muenster.de</u>
- 386 Martin Jiroušek: machozrut@mail.muni.cz
- 387 <u>Norbert Jürgens: norbert.juergens@uni-hamburg.de</u>
- 388 Zygmunt Kącki: zygmunt.kacki@uwr.edu.pl
- 389 <u>Ali Kavgacı: alikavgaci1977@yahoo.com</u>
- 390 <u>Elizabeth Kearsley: elizabeth.kearsley@ugent.be</u>
- 391 Michael Kessler: michael.kessler@systbot.uzh.ch
- 392 <u>Ilona Knollová: ikuzel@sci.muni.cz</u>
- 393 Vitaliy Kolomiychuk: vkolomiychuk@ukr.net
- 394 Andrey Korolyuk: akorolyuk@rambler.ru
- 395 Maria Kozhevnikova: mania_kazan@mail.ru
- 396 Łukasz Kozub: kozub.lukasz@gmail.com
- 397 Daniel Krstonošić: dkrstonosic@sumfak.hr
- 398 <u>Hjalmar Kühl: kuehl@eva.mpg.de</u>
- 399 Anna Kuzemko: anyameadow.ak@gmail.com
- 400 <u>Filip Küzmič: filip.kuzmic@zrc-sazu.si</u>
- 401 Flavia Landucci: flavia.landucci@gmail.com
- 402 <u>Michael T. Lee: michael_lee@natureserve.org</u>
- 403 <u>Aurora Levesley: a.levesley@leeds.ac.uk</u>
- 404 <u>Ching-Feng Li: chingfeng.li@gmail.com</u>
- 405 <u>Hongyan Liu: lhy@urban.pku.edu.cn</u>

- 406 Gabriela Lopez-Gonzalez: g.lopez-gonzalez@leeds.ac.uk
- 407 <u>Tatiana Lysenko: ltm2000@mail.ru</u>
- 408 Parastoo Mahdavi: parastoo.mahdavi@uni-oldenburg.de
- 409 <u>Armin Macanović: arminecology@gmail.com</u>
- 410 <u>Corrado Marcenò: marceno.corrado@ehu.eus</u>
- 411 <u>Vassiliy Martynenko: vasmar@anrb.ru</u>
- 412 Jesper Erenskjold Moeslund: jesper.moeslund@bios.au.dk
- 413 Jonas V. Müller: j.mueller@kew.org
- 414 Jérôme Munzinger: jerome.munzinger@ird.fr
- 415 Marcin Nobis: m.nobis@uj.edu.pl
- 416 Jalil Noroozi: noroozi.jalil@gmail.com
- 417 Arkadiusz Nowak: anowak@uni.opole.pl
- 418 Viktor Onyshchenko: labzap@ukr.net
- 419 Gerhard E. Overbeck: gerhard.overbeck@ufrgs.br
- 420 Anibal Pauchard: pauchard@udec.cl
- 421 Hristo Pedashenko: hristo_pedashenko@yahoo.com
- 422 <u>Aaron Pérez-Haase: aaronperez@ub.edu</u>
- 423 <u>Tomáš Peterka: peterkatomasek@seznam.cz</u>
- 424 <u>Petr Petřík: petr.petrik@ibot.cas.cz</u>
- 425 <u>Oliver L. Phillips: o.phillips@leeds.ac.uk</u>
- 426 Vadim Prokhorov: vadim.prokhorov@gmail.com
- 427 Valerijus Rašomavičius: valerijus.rasomavicius@botanika.lt
- 428 Rasmus Revermann: rasmus.revermann@gmail.com
- 429 John Rodwell: johnrodwell@tiscali.co.uk
- 430 <u>Eszter Ruprecht: eszter.ruprecht@ubbcluj.ro</u>
- 431 Solvita Rūsiņa: rusina@lu.lv

- 432 Cyrus Samimi: cyrus.samimi@uni-bayreuth.de
- 433 Joop H.J. Schaminée: joop.schaminee@wur.nl
- 434 <u>Ute Schmiedel: ute.schmiedel@uni-hamburg.de</u>
- 435 <u>Jozef Šibík: jozef.sibik@savba.sk</u>
- 436 <u>Urban Šilc: urban@zrc-sazu.si</u>
- 437 <u>Željko Škvorc: skvorc@sumfak.hr</u>
- 438 <u>Anita Smyth: anita.smyth@adelaide.edu.au</u>
- 439 <u>Tenekwetche Sop : tenekwetche sop@eva.mpg.de</u>
- 440 Desislava Sopotlieva: desislava.sopotlieva@iber.bas.bg
- 441 Ben Sparrow: ben.sparrow@adelaide.edu.au
- 442 Zvjezdana Stančić: zvjezdana.stancic@gfv.hr
- 443 Jens-Christian Svenning: svenning@bios.au.dk
- 444 <u>Grzegorz Swacha: gswacha@gmail.com</u>
- 445 <u>Zhiyao Tang: zytang@urban.pku.edu.cn</u>
- 446 <u>loannis Tsiripidis: tsiripid@bio.auth.gr</u>
- 447 Pavel Dan Turtureanu: turtureanudan@gmail.com
- 448 <u>Emin Ugurlu: emin.ugurlu@btu.edu.tr</u>
- 449 Domas Uogintas: domas.uogintas@botanika.lt
- 450 Milan Valachovič: milan.valachovic@savba.sk
- 451 Kim André Vanselow: kim.vanselow@fau.de
- 452 Yulia Vashenyak: vasheniyak@mail.ru
- 453 Kiril Vassilev : kiril5914@abv.bg
- 454 Eduardo Vélez-Martin: velezedu@portoweb.com.br
- 455 Roberto Venanzoni: roberto.venanzoni@unipg.it
- 456 <u>Alexander Christian Vibrans: acv@furb.br</u>
- 457 <u>Cyrille Violle: cyrille.violle@cefe.cnrs.fr</u>

- 458 Risto Virtanen: risto.virtanen@oulu.fi
- Henrik von Wehrden: henrik.von wehrden@leuphana.de 459
- 460 Viktoria Wagner: viktoria.wagner@ualberta.ca
- 461 Donald A. Walker: dawalker@alaska.edu
- Desalegn Wana: deswana2002@yahoo.com 462
- 463 Karsten Wesche: karsten.wesche@senckenberg.de
- Timothy Whitfeld: timothy whitfeld@brown.edu 464
- Wolfgang Willner: wolfgang.willner@vinca.at 465
- 466 Susan Wiser: wisers@landcareresearch.co.nz
- Thomas Wohlgemuth: thomas.wohlgemuth@wsl.ch 467
- 468 Sergey Yamalov: yamalovsm@mail.ru
- Georg Zizka: georg.zizka@senckenberg.de 469 ien
- 470 Andrei Zverev: ibiss@rambler.ru
- 471

472 ACKNOWLEDGMENTS

- We are grateful to thousands of vegetation scientists who sampled vegetation plots in the field or 473
- 474 digitized them into regional, national or international databases. We also appreciate the support
- 475 of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118)
- 476 research platforms, and the organization of three workshops through the sDiv calls. We
- acknowledge this support with naming the database "sPlot", where the "s" refers to the sDiv 477
- synthesis workshops. The study was supported by the TRY initiative on plant traits 478
- (http://www.try-db.org). We thank Meelis Pärtel for the very fast and constructive feedback on an 479
- 480 earlier version of this manuscript.
- 481

482 **AUTHOR CONTRIBUTIONS**

483 H.Bru. had the original idea and led the consortium from the start, while O.Pu. and J.D.

- 484 coordinated the sPlot workshops. J.D., S.M.H. and U.J. compiled the databases to be included
- 485 in sPlot. J.D. and later B.J.-A. and F.M.S. coordinated the network and the database. O.P.
- 486 prepared the taxonomic and phylogenetic data. S.M.H programmed the Turboveg software.
- 487 B.Sa., F.J., H.Bru., J.D., J.K., M.Ch., and V.D.P. organized the network in the Steering
- 488 Committee. B.J.-A. and H.Bru. led the writing together with J.D. and input from S.M.H., O.Pu.,
- 489 M.Ch., F.J., J.K., V.D.P., B.Sa., I.Au., I.B., R.K.P., R.F., S.H., U.J., J.L., G.P., F.M.S., M.S., F.S.
- and M.W. The rest of authors (ordered alphabetically) contributed the plot and trait data. All
- 491 authors agreed with the final manuscript.
- 492

493 BIOSKETCH

- 494 sPlot is a consortium established during three workshops held at the German Centre of
- 495 Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The consortium currently comprises
- 496 110 member databases, two data aggregators and 43 personal members, including plant
- 497 ecologists, biogeographers, field botanists and data analysts. More information about the
- 498 consortium and its projects can be accessed at <u>www.idiv.de/splot</u>.
- 499

501 SHOKI RUNNING III LE

- 502 sPlot the global vegetation database
- 503

504 **ABSTRACT**

- 505 **Questions:** Vegetation-plot records provide information on presence and cover or abundance of
- 506 plants co-occurring in the same community. Vegetation-plot data are spread across research
- 507 groups, environmental agencies and biodiversity research centers, and thus, are rarely
- accessible at continental or global scales. Here we present the sPlot database, which collates
- vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional
- and phylogenetic diversity at the plant community level.
- 511 **Location:** sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise
- 512 23,586,216 records of plant species and their relative cover or abundance in plots collected
- 513 between 1885 and 2015.
- 514 **Methods:** We complemented the information for each plot by retrieving environmental conditions
- (i.e. climate and soil) and the biogeographic context (i.e. biomes) from external sources, and by
- 516 calculating community-weighted means and variances of traits using gap-filled data from the
- 517 global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the
- 518 54,519 species identified in the plots.
- 519 **Results:** We present the first maps of global patterns of community richness and community-
- 520 weighted means of key traits.
- 521 Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation522 analysis at the global scale.
- 523
- 524 **KEYWORDS**

525 Biodiversity; community ecology; ecoinformatics; functional diversity; global scale;

macroecology; phylogenetic diversity; plot database; sPlot; taxonomic diversity; vascular plant;
 vegetation relevé.

528

529 **INTRODUCTION**

530 Studying global biodiversity patterns is at the core of macroecological research (Kreft & Jetz, 2007; Wiens, 2011; Costello, Wilson & Houlding, 2012), since their exploration may provide 531 insights into the ecological and evolutionary processes acting at different spatio-temporal scales 532 533 (Ricklefs, 2004). The opportunities enabled by the compilation of large collections of biodiversity 534 data into widely accessible global (GBIF, www.gbif.org) or continental databases (e.g. BIEN, 535 www.bien.nceas.ucsb.edu/bien) -have recently advanced our understanding of global biodiversity patterns, especially for vertebrates, but also for vascular plants (Swenson et al., 536 2012; Lamanna et al., 2014; Engemann et al., 2016; Butler et al., 2017). Although this 537 538 development has led to the formulation of several macroecological theories (Currie et al., 2004; 539 Pärtel, Bennett & Zobel, 2016), a more mechanistic understanding of how assembly processes shape ecological communities and consequently global biodiversity patterns, is still missing 540 541 (Lessard, Belmaker, Myers, Chase & Rahbek, 2012).

542 Understanding the links between biodiversity patterns and assembly processes requires 543 fine-grain data on the co-occurrence of species in ecological communities, sampled across continental or global spatial extents (Beck et al., 2012; Wisz et al., 2013). For example, such co-544 545 occurrence data have been used to compare changes in vegetation composition over time 546 spans of decades (Jandt, von Wehrden & Bruelheide 2011; Perring et al. 2018). Unfortunately, 547 information on fine-grain vegetation data up to now has not been readily available, as most of 548 the continental to global biodiversity datasets have been derived from occurrence data (i.e. 549 presence-only data), and after being aggregated spatially, have a relatively coarse-grain scale

(e.g. 1-degree grid cells) and no information on species co-occurrence at the meaningful scale of
 local communities. In contrast, -(Boakes et al., 2010).v

552 Vegetation-plot data are records of the cover or abundance of each plant species that
 553 occurs in a plot of a given size at the date of the survey, representing. They represent the main
 554 reservoir of plant community data worldwide (Dengler et al., 2011).

555 These-Vegetation-plot data differ in fundamental ways from databases of occurrence records of individual species aggregated at the level of grid cells or regions of hundreds or 556 thousands of square kilometers (Figure 1). First, vegetation plots usually provide information on 557 558 species relative cover or relative abundance, allowing for the testing of central theories of 559 biogeography, such as the abundance-range size relationship (Gaston & Curnutt, 1998) or the 560 relationship between local abundance and niche breadth (Gaston et al., 2000). Second, they contain information on which plant species co-occur in the same locality (Chytrý et al., 2016), 561 562 which is a necessary precondition for direct biotic interactions among plant individuals. Third, 563 unrecorded species can be considered truly absent from the aboveground vegetation at this 564 scale because the standardized methodology of taking a vegetation record requires a systematic search for all species in a plot, or at least all species of the dominant functional group. Fourth, 565 566 they many plots are spatially explicit and can be resurveyed through time to assess possible 567 consequences of land use and climate change (Steinbauer et al. 2018; Perring et al. 2018). 568 While, so far, sPlot only contains plots that have been surveyed only once, it presents a global baseline for future resurveys. Fifth, they vegetation plots represent important a snapshot of 569 570 anthe primary producers of a terrestrial ecosystem, which patch sources of information that can be functionally linked to organisms from different trophic groups sampled in the same plots (e.g. 571 572 multiple taxa surveys) and related processes and services both below (e.g. decomposition, nutrient cycling) and above ground (e.g. herbivory, pollination) (Sardans et al. 2017, e.g. 573 574 Bruelheide Schuldt et al. 2018).

Page 100 of 162

575 Recently several projects at the regional to continental scale have demonstrated the 576 potential of using vegetation-plot databases for exploring biodiversity patterns and the underlying 577 assembly processes. Using vegetation data of French grasslands, Borgy et al. (2017) 578 demonstrated that weighting leaf traits by species abundance in local communities is pivotal to capture leaf trait-environment relationships. Analyzing United States forest assemblages 579 surveyed at the community level, Šímová, Rueda & Hawkins (2017) were able to relate cold or 580 drought tolerance to leaf traits, dispersal traits and traits related to stem hydraulics. Using plot-581 based tree inventories of the United States forest service, Zhang, Niinemets, Sheffield & 582 583 Lichstein (2018) found that shifts in tree functional composition amplifies the response of forest 584 biomass to droughts. Based on >15.000 plots from a wide number of habitat types in Denmark, 585 Moeslund et al. (2017) showed that typical plant species that are part of the site-specific species pool, but are absent in a community tend to depend on mycorrhiza, be-are mostly adapted to low 586 587 light and low nutrient levels, have poor dispersal abilities and be-are ruderals and stress 588 intolerant. By collating >40,000 vegetation plots sampled in European beech forests, Jiménez-589 Alfaro et al. (2018) found that current local community diversity and species pool sizes calculated at different scales were mainly explained by proximity to glacial refugia and current 590 591 precipitation.

592 Although large collections of vegetation-plot data are now available from national to 593 continental levels (e.g. Schaminée, Hennekens, Chytrý & Rodwell, 2012; Peet, Lee, Jennings & Faber-Langendoen, 2012; Schmidt et al., 2012; Chytrý et al., 2016; Enguist, Condit, Peet, 594 595 Schildhauer & Thiers, 2016), they are rarely used in global-scale biodiversity research (Wiser, 596 2016; Franklin, Serra-Díez, Syphard & Regan, 2017). This is unfortunate, because vegetation-597 plot data may reveal important patterns that cannot be captured by grid-based datasets (Table 598 1). Functional composition patterns, for instance, may differ substantially when considering 599 vegetation-plot data rather than single species occurrences aggregated at the level of coarse-600 grain grid cells. Using plant height for illustration reveals that the trait means calculated on all the

Journal of Vegetation Science

species occurring in a grid cell may differ strongly from the community-weighted means (CWMs) 601 602 averaged across local communities (**Figure 1**). Nevertheless, only the grid-based approach has 603 been used to date in studies of the geographic distribution of trait values (Swenson et al., 2012, 604 2017; Wright et al., 2017), even though it disregards varying species abundances in local communities and the relative spatial extent of different communities. 605 606 Compiling a global database of vegetation plots is technically and conceptually challenging as it 607 requires the integration of data from heterogeneous sources, collected and stored according to different standards, and often based on inconsistent taxonomic nomenclatures. Here, we 608 609 present an attempt to overcome these challenges with sPlot, a global database of plant co-610 occurrence data, for compiling and integrating plant community data. We describe (i) main steps 611 in integrating vegetation-plot data in a repository that provides taxonomic, functional and 612 phylogenetic information on co-occurring plant species and links it to global environmental 613 drivers; (ii) principal sources and properties of the data and the procedure for data usage; and 614 (iii) expected impacts of the database in future ecological research. To illustrate the potential of 615 sPlot we also show global diversity patterns that can be readily derived from the current content. 616

2. MATERIAL AND METHODS COMPILATION OF THE sPlot DATABASE 617

618 2.1 Vegetation-plot data

619 The sPlot consortium currently collates 110 vegetation-plot databases of regional, national or continental extents. Some of the databases have been previously aggregated by and contributed 620 621 through two (sub-) continental database initiatives (Table 2 and Appendix S1 in Supporting 622 Information). All data from Europe and nearby regions were contributed via the European 623 Vegetation Archive (EVA), using the SynBioSys taxon database as a standard taxonomic 624 backbone (Chytrý et al., 2016). Three African databases were contributed via the Tropical African Vegetation Archive (TAVA). In addition, multiple U.S. databases were contributed 625 626 through the VegBank archive maintained in support of the U.S.-. National Vegetation

627 Classification (Peet et al. 2012). The data from other regions (South America, Asia) were628 contributed as separate databases.

629 We stored the vegetation-plot data from the individual databases in the database 630 software TURBOVEG v2 (Hennekens & Schaminée, 2001). Our general procedure was to preserve the original structure and content of the databases as much as possible in order to 631 632 facilitate regular updates through automated workflows. The individual databases were then integrated into a single SQLite database using TURBOVEG v3 (S.M. Hennekens, ALTERRA, 633 The Netherlands; www.synbiosys.alterra.nl/turboveg3/help/en/index.html). TURBOVEG v3 634 635 combines the species lists from the original databases in a single repository and links the plot 636 attributes (so-called header data) to 58 descriptors of vegetation-plots (Table S2.1 in Appendix 637 S2). The metadata of the databases collated in sPlot were managed through the Global Index of Vegetation-Plot Databases (GIVD; Dengler et al. 2011), using the GIVD ID as the identifier. The 638 639 current sPlot version 2.1 was created in October 2016 and contains 1,121,244 vegetation plots 640 with 23,586,216 plant species × plot observations (i.e. ords of a species in a plot). Most records 641 (1,073,737; 95.8%) have information on cover, 29,288 on presence/absence, 5,854 on basal area, 3,265 on counts of individuals, 148 on importance value, 1,895 on per cent frequency, 642 4,883 on number of stems, and further 2,174 have a mix of these types of these different 643 644 metrics.

645

646 **2.2 Taxonomic standardization**

To combine the species lists of the different databases in sPlot, we constructed a taxonomic
backbone. To link co-occurrence information in sPlot with plant traits, we expanded this
backbone to integrate plant names used in the TRY database (Kattge et al., 2011). The taxon
names (without nomenclatural authors) from sPlot 2.1 and TRY 3.0 were first concatenated into
one list, resulting in 121,861 names, of which 61,588 (50.5%) were unique to sPlot; 35,429
(29.1%) unique to TRY; and 24,844 (20.4%) shared between TRY and sPlot. Taxon names were

Journal of Vegetation Science

parsed and resolved using the Taxonomic Name Resolution Service web application (TNRS version 4.0; Boyle et al., 2013; iPlant Collaborative, 2015), using the five TNRS standard sources ranked by default. We allowed for (i) partial matching to the next higher rank (genus or family) if the full taxon name could not be found and (ii) full fuzzy matching, to return names that were matched within a maximum number of four single-character edits (Levenshtein edit distance of 4), which corresponds to the minimum match accuracy of 0.05 in TNRS, with 1 indicating a perfect match.

We accepted all names that were matched, or converted from synonyms, with an overall 660 661 match score of 1. In case with no exact match (i.e. the overall match score was <1), names were inspected on an individual basis. All names that matched at taxonomic ranks lower than species 662 663 (e.g. subspecies, varieties) were accepted as correct names. The name matching procedure was repeated for the uncertain names (i.e. with match accuracy scores below the threshold 664 665 value from the first matching run), with a preference on first using the source 'Tropicos' (Missouri 666 Botanical Garden; http://www.tropicos.org/; accessed 19 Dec 2014) because here matching 667 scores were often higher for names of low taxonomic rank. The remaining 9,641 non-matched names were resolved using (i) the additional source 'NCBI' (Federhen, 2010) within TNRS, (ii) 668 the matching tools in the Plant List web application (The Plant List 2010), (iii) the 'tpl'-function 669 670 within the R-package 'Taxonstand' (Cayuela, Stein & Oksanen, 2017) and (iv) manual inspection 671 (i.e. to resolve vernacular names). All subspecies were aggregated to the species level. Names that could not be matched were classified as 'No suitable matches found'. Because sPlot and 672 673 TRY contain taxa of non-vascular plants, we tagged vascular plant names based on their family 674 and phylum affiliation, using the 'rgbif' library in R (Chamberlain, 2017). Of the full list of plant 675 names in sPlot and TRY, 79,171 (94.6%) plant names were matched at the species level, 4,343 676 (5.2%) at the genus level, 152 (0.2%) at the family level and 13 names at higher taxonomic 677 levels. Overall, this led to 58,066 accepted taxon names in sPlot. Family affiliation was classified

according to APG III (Bremer et al., 2009). A detailed description of the workflow, including Rcode, is available in Purschke (2017a).

One potential shortcoming of our taxonomic backbone is that for most regions it was necessary to standardize taxa using standard sets of taxonomic synonyms. Thus, if a taxonomic name represents multiple taxonomic concepts, e.g. such as created by the splitting and lumping of taxa, or a name has been misapplied in a region, we must trust that this problem has been addressed in our component databases (Franz, Peet & Weakley, 2004; Jansen & Dengler, 2010).

685 686

687 **2.3 Physiognomic information**

688 To achieve a classification into forests vs. non-forests that is applicable to all plots irrespective of the structural and habitat data provided by the source database, we defined as 689 690 forest all plot records that had >25% absolute cover of the tree layer, making use of the attribute 691 data of sPlot. This threshold is similar to the classification of Ellenberg & Müller-Dombois (1967), 692 who defined woodland formations with trees covering more than 30%. There were 16,244 tree species in the sPlot database. There were 16,244 tree species in the sPlot database. As tree 693 694 layer cover was available for only 25% of all plots, we additionally used the information whether 695 the taxa present in a plot were trees (usually defined as being taller than 5 m), using the plant 696 growth form information from TRY (see below). Thus, plots lacking tree cover information were defined as forests if the sum of relative cover of all tree taxa was >25%. Similarly, we defined 697 698 non-forests by calculating the cover of all taxa that were not defined as trees or shrubs (also 699 taken from the TRY plant growth form information) and that were not taller than 2 m, using the 700 TRY data on mean plant height. In total, 21,888 taxa belonged to this category. We defined all 701 plots as non-forests if the sum of relative cover of these low-stature, non-tree and non-shrub 702 taxa was >90%. As we did not have the growth form and height information for all taxa, a fraction of about 25% of the plots remained unassigned (i.e. was neither forest, nor non-forest. In 703

addition, more detailed classifications of plots into physiognomic formations (Table S3.2 in
 Appendix S3) and naturalness (Table S3.3 in Appendix S3) were derived from various types of
 plot-level or database-level information provided by the sources and stored in five separate fields
 (see Table S2.1 in Appendix S2).

708

709 2.4 Phylogenetic information

We developed a workflow to generate a phylogeny of the vascular plant species in sPlot, using 710 the phylogeny of Zanne et al. (2014), updated by Qian & Jin (2016). Species present in sPlot but 711 712 missing from this phylogeny were added next to a randomly selected congener (see also Maitner 713 et al., 2018). This approach has been demonstrated to introduce less bias into subsequent 714 analyses than adding missing species as polytomies to the respective genera (Davies et al., 2012). We only added species based on taxonomic information on the genus level, thus not 715 716 making use of family affiliation. Because of the absence of congeners in the reference 717 phylogeny, 7,147 species could not be added (11.7% of all resolved taxa in sPlot and TRY). This 718 resulted in a phylogeny with 54,067 resolved taxon names from 61,214 standardized taxa in the combined list of sPlot and TRY. The tree was finally pruned to the vascular plant taxa of the 719 720 current sPlot version 2.1, resulting in a phylogenetic tree for 53,489 out of the 58,066 taxa in 721 sPlot. Of these 53,489 names, 16,026 are also found among the 31,389 taxa in the phylogenetic 722 tree of Qian & Jin (2016), i.e. 51.1%. The full procedure and the R code is available in Purschke (2017b). 723

724

725 **2.5 Associated environmental plot information**

To complement the plot data, we harmonized geographical coordinates (in decimal degrees),
elevation (m above sea level), aspect (degrees) and slope (degrees) as provided by the
contributing databases. All other variables were too sparsely and too inconsistently sampled

Page 106 of 162

across databases to be combined in the global set, but were retained in the original data sourcesand can be retrieved for particular purposes.

731 We used the geographic coordinates to create a geodatabase in ArcGIS 14.1 (ESRI, 732 Redlands, CA) to link sPlot 2.1 to these climate and soil data. We retrieved data for all the 19 bioclimatic variables provided by CHELSA v1.1 (Karger et al., 2017) by averaging climatic data 733 734 from the period 1979–2013 at 30 arc seconds (about 1 km in grid cells near to the equator). These variables are the same as the ones used in WorldClim (www.worldclim.org; Hijmans, 735 736 Cameron, Parra, Jones & Jarvis, 2005), but calculated with a downscaling approach based on 737 estimates of the ERA-Interim climatic reanalysis. While the CHELSA climatological data have a 738 similar accuracy as other products for temperature, they are more precise for precipitation 739 patterns (Karger, et al. 2017). We also calculated growing degree days for 1 °C (GDD1) and 5 °C (GDD5), according to Synes & Osborne (2011) and based on CHELSA data, and included 740 741 the index of aridity and potential evapotranspiration extracted from the CGIAR-CSI website 742 (www.cgiar-csi.org). In addition, we extracted seven soil variables from the SOILGRIDS project 743 (https://soilgrids.org/; licensed by ISRIC - World Soil Information), downloaded at 250-m resolution and then converted to the same 30-arc second grid format of CHELSA. To explore the 744 745 distribution of sPlot data in the global environmental space, we subjected all 30 climate and soil 746 variables of the global terrestrial surface rasterized on a 2.5 arc-minute grid resolution to a 747 principal component analysis (PCA) on standardized and centered data. We subsequently created a grid of 100 × 100 cells within the bi-dimensional environmental space defined by the 748 749 first two PCA axes (PC1 and PC2) and counted the number of terrestrial cells per environmental grid cell of the PC1-PC2 space. Then, we counted the number of plots in sPlot in the same PCA 750 751 grid (Figure 2).

We linked all vegetation plots to two global biome classifications. We used the World Wildlife Fund (WWF) spatial information on terrestrial ecoregions (Olson et al., 2001) to assign plots to one of the 867 ecoregions, 14 biomes and eight biogeographic realms. The WWF

755 approach is based on a bottom-up expert system using various regional biodiversity sources to 756 define ecoregions, which in turn are grouped into realms and biomes (Olson et al., 2001). In 757 addition, we created a shapefile for the ecozones defined by Schultz (2005) to represent major 758 biomes in response to global climatic variation. Since these zones are climatically heterogeneous in mountain regions, we differentiated an additional "alpine" biome for mountain 759 760 areas above the lower mountain thermal belt, as defined in the classification of world mountain regions by Körner et al. (2017). This resulted in a distinction of 10 major biomes (Fig. S4.5 in 761 Appendix S4), whose shape file is freely available (from 762 763 https://www.idiv.de/en/sdiv/working_groups/wg_pool/splot/materials.html)Appendix S5). 764

765 **2.6 Trait information**

To broaden the potential applications of the global vegetation database in functional contexts, 766 767 we linked sPlot to TRY. We accessed plant trait data from TRY version 3.0 on August 10, 2016 768 and included 18 traits that describe the leaf, wood and seed economics spectra (Westoby, 1998; 769 Reich, 2014; Table S65.4 in Appendix S65), and are known to affect different key ecosystem processes and to respond to macroclimatic drivers. These traits were represented across all 770 771 species in the TRY database by at least 1,000 trait records. We excluded trait records from 772 manipulative experiments and outliers (Kattge et al., 2011), which resulted in a matrix with 773 632,938 individual plant records on 52,032 taxa in TRY, having data records for an average of 3.08 for the 18 selected traits. On average, each trait has been measured at least once in 17.1% 774 775 of all taxa. In order to attain data for these 18 traits for all species with at least one trait value in 776 TRY, we employed hierarchical Bayesian modelling, using the R package 'BHPMF' (Schrodt et 777 al., 2015; Fazayeli, Banerpee, Kattge, Schrodt & Reich, 2017), to fill a gap in the matrix of 778 individual plant records in TRY. Gap-filling allows to obtain trait values for a species on which 779 this trait has not been measured, but for which other traits were available. To assess gap-filling quality, we used the probability density distributions provided by BHPMF for each imputation and 780
781 removed highly uncertain imputations with a coefficient of variation >1. We then log_e-transformed all gap-filled trait values and averaged them by taxon. For taxa recorded at genus level only, we 782 783 calculated genus means, resulting in a full trait matrix for 26,632 out of the 54,519 taxa in sPlot 784 (45.9%), with 6, 1,510 and 25,116 taxa at the family, genus and species level, respectively. These species covered 88.7% of all species-by-plot combinations. 785

786 For every trait *j* and plot *k*, we calculated the community-weighted mean (CWM) and the community-weighted variance (CWV) for each of the 18 traits in a plot (Enguist et al., 2015): 787

$$CWM_{j,k} = \sum_{i}^{n_k} p_{i,k} t_{i,j}$$

 n_{ν}

788

789

$$CWM_{j,k} = \sum_{i} p_{i,k} t_{i,j}$$
$$CWV_{j,k} = \sum_{i}^{n_{k}} p_{i,k} (t_{i,j} - CWM_{j,k})^{2}$$

790 where n_k is the number of species with trait information in plot k, $p_{i,k}$ is the relative abundance of 791 species i in plot k calculated as the species' fraction in cover or abundance of total cover or abundance, and *t_{i,i}* is the mean value of species *i* for trait *j*. CWMs and CWVs were calculated for 792 793 18 traits in 1,117,369 and 1,099,463 plots, respectively, the second being a smaller number as at least two taxa were needed for CWV calculation. 794

795

796 3. RESULTSCONTENT OF sPlot 2.1

797 3.1 Plot community data

sPlot 2.1 contains 1,121,244 vegetation plots from 160 countries and from all continents (Figure 798 799 **3**). The global coverage is biased towards Europe, North America and Australia, reflecting unequal sampling effort across the globe (Table 1). At the ecoregion level, major gaps occur in 800 801 the wet tropics of South America and Asia, as well as in subtropical deserts worldwide and in the 802 North American taiga. Although the plots are highly clustered geographically, their coverage in 803 the environmental space is much more representative: the highest concentration of plots is found in environments that are most abundant globally (Figure 2), while they are lacking in the 804

very moist parts of the environmental space, which are also spatially rare, and in the very coldparts, which are sparsely vegetated.

807 In most cases (98.4%), plot records in sPlot include full species lists of vascular plants. 808 while 1.6% had only wood species above a certain diameter or only the most dominant species recorded. Terricolous bryophytes and lichens were additionally identified in 14% and 7% of plots, 809 810 respectively. (Table S2.1 in Appendix S2). Forest and non-forest plots comprise 330,873 (29.7%) and 513.035 (46.0%) of all plots in sPlot, respectively. In most cases, species 811 abundance was estimated using different variants of the Braun-Blanquet cover-abundance scale 812 813 (66%), followed by percentage cover (15%) and 55 other numeric or ordinal scales. The 814 temporal extent of the data spans from 1885 to 2015, but >94% of vegetation plots were 815 recorded later than 1960 (Fig. S2.1 in Appendix S2). Almost all plots are georeferenced 816 (1,120,686) and most plots have location uncertainty of 10 m or less (Fig. S2.2 in Appendix 817 **S2**).

Vascular plant richness per plot ranges from 1 to 723 species (median = 17 species). The 818 819 most frequent richness class is between 20 and 25 species (Fig. S2.3 in Appendix S2). Plot size is reported in 65.4% of plots, ranging from less than 1 m² to 25 ha, with a median of 36 m². 820 While forest plots have plot sizes \geq 100 m², and in most cases \leq 1,000 m², non-forest plots range 821 822 between \geq 5 and \leq 100 m² (Fig. S2.4 in Appendix S2). When using these size ranges, forest 823 plots tend to be richer in species (Figure 4a). The fact that the gradient in richness found in our 824 plots was at least one order of magnitude stronger than differences that could be expected by 825 the differences in plot sizes, prompted us to produce the first global maps of plot-scale species 826 richness, separately for forests and non-forests (Figure 4a). While plots with complete vascular 827 species composition are largely lacking from the wet tropics, for the remaining biomes the plotscale richness data do not show the typical latitudinal richness gradient in either formation. 828 829 Particularly species-rich forests are found in the wet subtropics (such as SE United States, 830 Taiwan and the East coast of Australia) as well as in some mountainous regions of the nemoral

and steppic biomes of Eurasia. Likewise, non-forest communities, have a particularly high mean

vascular plant species in mountainous regions of the nemoral and steppic biomes of Eurasia.

- 833
- 834

835 3.2 Phylogenetic information

The phylogenetic tree for sPlot was produced from 53,489 vascular plant names contained in the database, comprising 5518 genera (**Appendix S**<u>7</u>6). Moderately to highly frequent species in sPlot 2.1 are equally distributed across the phylogeny (corresponding to yellowish to reddish colors for low and high peaks, respectively, in **Fig. S**<u>76.6 in Appendix S67</u>). Coverage of species included in the phylogeny ranges from 89% of species that occur only once in all plots to 100% of species with a frequency >10,000 plots (**Fig. S<u>76.7 in Appendix S67</u>**).

842

843 **3.3 Functional information**

The proportion of species with trait information increases with the species' frequency in plots. Gap-filled trait information is available for 77.2% and 96.2% for taxa that occurred in more than 100 and 1,000 plots, respectively. Trait coverage is similar across biomes (**Fig. S**<u>87.8 in</u> **Appendix S**<u>78</u>). Across all biomes, the proportion of species for which gap-filled trait data are available increases with the species' frequency across plots. Compared to gap-filled data, trait coverage for the original trait data is considerably lower, being highest for height, seed mass, leaf area and specific leaf area (SLA, **Fig. S**<u>87.9 in Appendix S</u><u>78</u>).

The high representation of the 18 traits in the gap-filled trait data and the high degree of trait coverage for frequent species across all biomes (>75%) made us confident to produce the first maps of global patterns of community-weighted means (CWMs) (**Figure 4b–d**). The maps show the main trait dimensions of SLA, height and seed mass, separately for forests and nonforests, for those regions of the world that are already sufficiently covered by sPlot data. Accordingly, CWMs of SLA are quite similar for forest and non-forest plots, being highest in

western North America and Europe and lowest in eastern North America, East and South 857 858 Australia (Figure 4b). Non-forest vegetation shows lowest CWMs of SLA in the desert regions of 859 the Namib and Sinai. Forests with highest CWMs of canopy height are found along the western 860 and eastern coast of North America, some regions in Europe, East Asia and southern Australia (Figure 4c). These areas only partly coincide with those of highest seed masses for forests, 861 862 while seed mass in non-forests is highest in the eastern Mediterranean Basin and in Central Asia (Figure 4d). The corresponding patterns for CWV are shown in Appendix Fig. S98.10 in 863 864 Appendix S98.

865

866 4. DATA USAGE

867 The sPlot database (the vegetation-plot data, including the environmental information for each plot and the species phylogeny) is released in fixed versions to allow reproducibility of results, 868 869 but also due to the enormous effort needed for data integration and harmonization and for 870 updating the phylogeny. By delivering few fixed versions while keeping older versions available, 871 the sPlot consortium ensures that the same data can be used in numerous parallel projects and that the data underlying a specific study remain accessible in the future, thus allowing re-872 analysis. Each new version will be matched to the current TRY database, thus providing CWMs 873 874 and CWVs for all plots.

875 Data access to sPlot is regulated by the Governance and Data Property Rules (www.idiv.de/sPlot) to ensure a fair balance between the interests of data contributors and data 876 analysts. In brief, the sPlot Rules state that: (1) all contributing vegetation-plot databases 877 878 become members of the sPlot consortium, represented by their custodian and deputy custodian; 879 (2) vegetation-plot data contributed to sPlot remain the property of the data contributors and can 880 be withdrawn at any time except for approved projects; (3) other scientists (e.g. data managers or participants of the sPlot workshops) with particular responsibilities may also be appointed as 881 personal members to the sPlot consortium; (4) sPlot data can be requested for projects that 882

883 involve at least one member of the sPlot consortium; (5) whenever a project has been proposed, all sPlot consortium members will be informed and can declare their interest in becoming co-884 885 authors of manuscripts resulting from this project and then becoming actively involved in data 886 evaluation and writing; and (6) if also the matched gap-filled or original trait data from TRY are requested for a project, likewise members from the TRY consortium can opt-in as co-authors. 887 888 The sPlot database is, therefore, available according to a 'give-and-receive' system. Moreover, the data are available to any researcher by establishing a collaboration that includes and is 889 890 supported by at least one sPlot consortium member.

The sPlot consortium is governed by a Steering Committee elected by all consortium members for two-year, renewable terms. Project proposals can be submitted to the Steering Committee, which ensures that the sPlot Rules are followed and redundant work between overlapping projects is avoided. The lists of databases, sPlot consortium members and the Steering Committee members are updated regularly on the sPlot website, as are the sPlot Rules and the list of approved projects.

897

898 5. EXPECTED IMPACT AND LIMITATIONS

The main aim of the sPlot database is to catalyze a collaborative network for understanding 899 900 global diversity patterns of plant communities in space and time. sPlot provides a unique. 901 integrated global repository of data that would otherwise be fragmented in unconnected and 902 structurally inconsistent databases of institutions at regional, national or continental levels. Together with the provision of harmonized phylogenetic, functional and environmental 903 904 information, sPlot allows, for the first time, global analyses of plant community data. Compared 905 to approaches using data aggregated from species occurrences in grid cells, sPlot will 906 significantly advance ecological analyses and future interdisciplinary research in at least four 907 different ways.

908	1.)	Co-occurrence information in every plot allows for the identification of species that
909		potentially interact with each other (Table 1). Using this informationsPlot, one can predict
910		the species that can co-exist in a community and also the frequencies of their co-
911		occurrence (Breitschwerdt, Jandt & Bruelheide, 2015) or niche overlap (Broennimann et
912		al., 2012). In addition, emerging tools such as Markov networks can be used to infer
913		strengths of interspecific interactions (Harris, 2016). When investigating community
914		assembly rules, the same information can be used to derive species pools for specific
915		vegetation types (de Bello et al., 2016; Lewis, Szava-Kovats & Pärtel, 2016; Karger et al.,
916		2016). Moreover, the co-occurrence data from sPlot can be used to address fundamental
917		patterns and drivers of plant invasions better than information on large geographic entities
918		(e.g. van Kleunen et al., 2015) alone could.
919	2.)	sPlot provides diversity information at a very fine grain, i.e. within plant communities
920		(alpha diversity). These data can be aggregated at broader scales for complementing
921		grid-cell inventory data (Figure 1). Aggregation is also possible across all types of plots,
922		by grid cells, ecoregions, environment, or even vegetation type or formation. Furthermore,
923		replicated plots within grid cells, ecoregions, or any other subdivision of environmental
924		conditions or vegetation types allow users to derive measures of compositional
925		differences between plant communities within grid cells (= beta diversity; Table 1). Thus,
926		the community data are an important complement to regional-scale species occurrence
927		data (e.g. Kreft & Jetz, 2007; Enquist et al., 2016).
928	3.)	sPlot data provide information on the proportion of species in communities. When
929		combined with functional trait information, relative abundance of species allows
930		calculation of community abundance-weighted mean trait values (Bruelheide et al.
931		2018 Table 1). These values may differ considerably from non-weighted means calculated
932		at the grid cell level, depending on the degree to which trait values of abundant species
933		deviate from those of less abundant species and how strongly different communities in a

grid cell differ in their community mean values (Figure 1). Information on the relative
contribution of species to a community-aggregated trait value is particularly necessary
when traits are used as proxies for vegetation functions and processes, allowing to test,
among other things, the mass ratio hypothesis (Grime, 1998; Garnier et al., 2004) and to
assess the role of divergent traits (Díaz et al., 2007; Kröber et al., 2015).

939 4.) Plant species within plots can be linked to traits that predict interactions with organisms
940 from other trophic groups, both belowground (mycorrhizae, soil decomposers) and
941 aboveground (herbivores and pollinators). This will allow to link vegetation plot information
942 to ecosystem processes and services such as pest control, pollination and nutrient cycling
943 (e.g. de Bello et al., 2010).

944 Despite the large amount of available data and its potential suitability for global research, 945 a number of limitations must be considered by future users of sPlot, such as i) biases towards 946 certain regions and communities, ii) near-complete lack of plots with complete vascular plant 947 species composition for certain regions (e.g. the wet tropics), iii) identification or sampling errors 948 by the surveyors and incomplete records because the detection of some species may be precluded in certain seasons by their phenology, iv) taxonomic uncertainty particularly in the 949 tropics, v) strongly varying plot sizes employed in different studies and regions, vi) lack of trait 950 951 measures at the plot level. For example, trends-patterns of diversity components are typically 952 affected by grain size. This means that using sPlot data for such studies with sPlot data either requires filtering for plots with identical or at least similar size or accounting for the plot-size 953 954 effects in the statistical model can only be explored by adjusting plot area, as different plots size 955 may affect the results. In addition, links to phylogenetic oranalyses of functional diversity with 956 sPlot data is limited by the absence of trait data for a (smaller) portion of the species and by the 957 Ithrough databases is limited by the lack of plot-specific trait measures. Therefore, corrections for 958 bias must be undertaken in studies using sPlot and Furthermore, the non-random and geographically and ecologically very unequal distribution of the plots contained in sPlot call for 959

960 stratified resampling of plots has to be applied to balance records of different environments (e.g. stratified by climate, Figure 2) or physiognomic formations (Figure 4). Users of sPlot need to be 961 aware of these and other limitations by careful study of the sPlot documentations and to find 962 963 correct ion of potential biases for their specific research question. 964 965 6. CONCLUSION In summary, sPlot is a unique global database of plant community records sampled with 966 comparable relatively similar methods widely used in vegetation ecology. The integration of co-967 968 occurrence data into a unified database that can be directly linked to environmental, functional 969 and phylogenetic information, makes sPlot an unprecedented and essential tool for analyzing 970 global plant diversity, the structure of plant communities and the co-occurrence of plant species.

971 The compatibility of this consolidated database with other global databases, e.g. via a joint

taxonomic backbone with TRY and the Global Naturalized Alien Flora (GloNAF; van Kleunen et

al., 2015) (via taxon names), or via standardized geo-reference with databases of environmental

974 information such as_CHELSA, WorldClim or SoilGrids (Bruelheide et al. 2018), facilitates data

975 integration and creates new research opportunities. The adaptive management of the database

976 employed by the sPlot consortium allows regular incorporation of new data, resulting in a

977 dynamic platform for storing and analyzing the most comprehensive compilation of plant

978 community data worldwide.

979

980 **REFERENCES**

- 981 <u>Aćić, S., Petrović, M., Šilc, U., & Dajić Stevanović, Z. (2012). Vegetation Database Grassland</u>
 982 <u>Vegetation of Serbia. *Biodiversity & Ecology*, *4*, 418–418.
 </u>
- Agrillo, E., Alessi, N., Massimi, M., Spada, F., De Sanctis, M., Francesconi, F., ... Attorre, F.
 (2017). Nationwide Vegetation Plot Database Sapienza University of Rome: state of the art,
 basic figures and future perspectives. *Phytocoenologia*, 47, 221–229.

986	Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. (2012). Bulgarian
987	Vegetation Database: historic background, current status and future prospects. Biodiversity &
988	<u>Ecology, 4, 141–148.</u>
989	Aubin, I., Gachet, S., Messier, C., & Bouchard, A. (2007). How resilient are northern hardwood
990	forests to human disturbance? An evaluation using a plant functional group approach.
991	<u>Ecoscience, 14, 259–271.</u>
992	Beck, J., Ballesteros-Mejia, L., Buchmann, C. M., Dengler, J., Fritz, S. A., Gruber, B.,
993	Dormann, C.F. (2012). What's on the horizon for macroecology? <i>Ecography</i> , 35, 673–683.
994	Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M., & Loidi, J. (2012). Vegetation-Plot
995	Database of the University of the Basque Country (BIOVEG). Biodiversity & Ecology, 4, 328-
996	<u>328.</u>
997	Boakes, E. H., McGowan, P. J., Fuller, R. A., Chang-qing, D., Clark, N. E., O'Connor, K., &
998	Mace, G. M. (2010). Distorted views of biodiversity: spatial and temporal bias in species
999	occurrence data. PLoS Biology, 8(6), e1000385.
1000	Borchardt, P., & Schickhoff, U. (2012). Vegetation database of Southern-Western Kyrgyzstan -

- 1001 <u>the walnut-wildfruit forests and alpine pastures. *Biodiversity & Ecology*, *4*, 309–309.</u>
- Borgy, B., Violle, C., Choler, P., Denelle, P., Munoz, F., Kattge, J., ... Garnier, E. (2017). Plant
- community structure and nitrogen inputs modulate the climate signal on leaf traits. *Global Ecology and Biogeography, 26*, 1138-1152.
- Boyle, B., Hopkins, N., Lu, Z., Raygoza Garay, J. A., Mozzherin, D., Rees, T., ... Enquist, B. J.
- 1006 (2013). The taxonomic name resolution service: An online tool for automated
- standardization of plant names. *BMC Bioinformatics*, *14*, Article 16.
- Breitschwerdt, E., Jandt, U., & Bruelheide, H. (2015). Do newcomers stick to the rules of the
- 1009 residents? Designing trait-based community assembly tests. *Journal of Vegetation Science,*
- 1010 26, 219–232.

1011	Bremer, B., Bremer, K., Chase, M. W., Fay, M., Reveal, J. L., Soltis, D. E., Stevens, P.
1012	(2009). An update of the Angiosperm Phylogeny Group classification for the orders and
1013	families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–
1014	121.
1015	Brisse, H., de Ruffray, P., Grandjouan, G., & Hoff, M., (1995). The Phytosociological Database
1016	"SOPHY" Part 1: Calibration of indicator plants, Part II: Socio-ecological classification of the
1017	relevés. Annali di Botanica, 53, 177–223.
1018	Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G.,
1019	Guisan, A. (2011). Measuring ecological niche overlap from occurrence and spatial
1020	environmental data. Global Ecology and Biogeography, 21, 481–497.
1021	Bruelheide, H., Böhnke, M., Both, S., Fang, T., Assmann, T., Baruffol, M., Schmid, B. (2011).
1022	Community assembly during secondary forest succession in a Chinese subtropical forest.
1023	Ecological Monographs, 81, 25–41.
1024	Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M.,
1025	Botta-Dukát, Z., Jandt, U. (2018). Global trait-environment relationships of plant
1026	communities. Nature Ecology and Evolution (in the press).
1027	Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R., Fazayeli, F., Reich, P.
1028	B. (2017). Mapping local and global variability in plant trait distributions. Proceedings of the
1029	National Academy of Sciences of the United States of America, 114, E10937-E10946.
1030	Casella, L., Bianco, P. M., Angelini, P., & Morroni, E. (2012). Italian National Vegetation
1031	Database (BVN/ISPRA). Biodiversity & Ecology, 4, 404–404.
1032	Cayuela, L., Gálvez-Bravo, L., Pérez Pérez, R., Albuquerque, F. S., Golicher, D. J., Zahawi, R.
1033	A., Zamora, R. (2012). The Tree Biodiversity Network (BIOTREE-NET): Prospects for
1034	biodiversity research and conservation in the Neotropics. Biodiversity & Ecology, 4, 211–224.
1035	Cayuela, L., Stein, A., & Oksanen, J. (2017). Taxonstand: Taxonomic Standardization of Plant

1036 Species Names. R package version 2.0. <u>https://CRAN.R-project.org/package=Taxonstand</u>

- 1037 Černý, T., Kopecký, M., Petřík, P., Song, J.-S., Šrůtek, M., Valachovič, M., ... Doležal, J. (2015).
- 1038 <u>Classification of Korean forests: patterns along geographic and environmental gradients.</u>
 1039 Applied Vegetation Science, 18, 5–22.
- 1040 Chamberlain, S. (2017). *rgbif: Interface to the Global 'Biodiversity' Information Facility 'API'. R* 1041 *package version 0.9.8.* https://CRAN.R-project.org/package=rgbif
- 1042 <u>Chepinoga, V. V. (2012). Wetland vegetation database of Baikal Siberia (WETBS). *Biodiversity*</u>
- 1043 <u>& Ecology</u>, 4, 311–311.
- 1044 <u>Chytrý, M. (2012). Database of Masaryk University's Vegetation Research in Siberia.</u> 1045 *Biodiversity & Ecology*, *4*, 290–290.
- 1046 <u>Chytrý, M., & Rafajová, M. (2003). Czech National Phytosociological database: basic statistics of</u>
 1047 the available vegetation-plot data. *Preslia*, 75, 1–15.
- 1048 Chytrý, M., Hennekens, S. M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., ...
- 1049 Yamalov, S. (2016). European Vegetation Archive (EVA): an integrated database of
- 1050 European vegetation plots. *Applied Vegetation Science*, *19*, 173–180.
- 1051 Costello, M. J., Wilson, S., & Houlding, B. (2012). Predicting total global species richness using
- 1052 rates of species description and estimates of taxonomic effort. Systematic Biology, 61, 871–
- 1053 883.
- 1054 Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guégan, J.-F., Hawkins, B. A., ...
- 1055 Turner, J. R. G. (2004). Predictions and tests of climate-based hypotheses of broad-scale 1056 variation in taxonomic richness. *Ecology Letters*, 7, 1121–1134.
- 1057 Davies, T. J., Kraft, N. J., Salamin, N., & Wolkovich, E. M. (2012). Incompletely resolved
- 1058 phylogenetic trees inflate estimates of phylogenetic conservatism. *Ecology*, 93, 242–247.
- 1059 <u>de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., ...</u>
- 1060 Harrison, P. (2010). Towards an assessment of multiple ecosystem processes and services
- 1061 <u>via functional traits. *Biodiversity and Conservation, 19, 2873-2893.*</u>

1063

1064

de Bello, F., Fibich, P., Zelený, D., Kopecký, M., Mudrák, O., Chytrý, M., ... Pärtel, M. (2016).

Ecology and Evolution, 6, 4088–4101.

Measuring size and composition of species pools: a comparison of dark diversity estimates.

1065	de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D.,
1066	Harrison, P. (2010). Towards an assessment of multiple ecosystem processes and services
1067	via functional traits. Biodiversity and Conservation, 19, 2873-2893.
1068	De Sanctis, M., & Attorre, F. (2012). Socotra Vegetation Database. Biodiversity & Ecology, 4,
1069	<u>315–315.</u>
1070	De Sanctis, M., Fanelli, G., Mullaj, A., & Attorre, F. (2017). Vegetation Database of Albania.
1071	Phytocoenologia, 47, 107–108.
1072	Dengler, J., & Rūsiņa, S. (2012). Database Dry Grasslands in the Nordic and Baltic Region.
1073	Biodiversity & Ecology, 4, 319–320.
1074	Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., Spencer, N.
1075	(2011). The Global Index of Vegetation-Plot Databases (GIVD): a new resource for
1076	vegetation science. Journal of Vegetation Science, 22, 582–597.
1077	Díaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating
1078	plant functional diversity effects in ecosystem service assessments. Proceedings of the
1079	National Academy of Sciences of the United States of America, 104, 20684–20689.
1080	Dimopoulos, P., & Tsiripidis, I. (2012). Hellenic Natura 2000 Vegetation Database (HelNAtVeg).
1081	Biodiversity & Ecology, 4, 388–388.
1082	Ellenberg, H., & Müller-Dombois, D. (1967). Tentative physiognomic-ecological classification of
1083	plant formations on earth. Berichte des Geobotanischen Instituts ETH Stiftung Rübel Zürich
1084	37, (1965/66), 21-55.
1085	Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper,
1086	E. J., Wipf, S. (2012). Plot-scale evidence of recent vegetation change and links to
1087	summer warming. Nature Climate Change, 2, 453–457.
I	
	43

1088 Engemann, K., Sandel, B., Enquist, B. J., Jørgensen, P. M., Kraft, N., Marcuse-Kubitza, A., ...

- 1089 Svenning, J. C. (2016). Patterns and drivers of plant functional group dominance across the
- 1090 Western Hemisphere: a macroecological re-assessment based on a massive botanical

1091 dataset. *Botanical Journal of the Linnaean Society*, *180*, 141–160.

- 1092 Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M., & Thiers, B. M. (2016).
- 1093 Cyberinfrastructure for an integrated botanical information network to investigate the
- 1094 ecological impacts of global climate change on plant biodiversity. *PeerJ Preprints* e2615v1.
- 1095 Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A., ... Savage, V.
- 1096 M. (2015). Scaling from traits to ecosystems: developing a general trait driver theory via
- 1097 integrating trait-based and metabolic scaling theories. *Advances in Ecological Research, 52*,
- 1098 249–318.
- 1099 <u>Ewald, J., May, R., & Kleikamp, M. (2012). VegetWeb the national online-repository of</u>
 1100 vegetation plots from Germany. *Biodiversity & Ecology*, *4*, 173–175.
- 1101 Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F., & Reich, P. B. (2017). BHPMF: Uncertainty
- Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization. R Package
 Version 1.0. https://rdrr.io/cran/BHPMF/.
- 1104 Federhen, S. (2010). The Taxonomy Project. In J. McEntyre & J. Ostell (Eds)., The NCBI
- 1105 *Handbook* [Internet]. National Center for Biotechnology Information, Bethesda, MD, USA,
- 1106 [Accessed: 25 Oct 2011]. Available from: http://www.ncbi.nlm.nih.gov/guide/taxonomy/
- 1107 Finckh, M. (2012). Vegetation Database of Southern Morocco. *Biodiversity & Ecology*, *4*, 297–
- 1108 <u>297.</u>
- 109 Fotiadis, G., Tsiripidis, I., Bergmeier, E., & Dimopoulos, P. (2012). Hellenic Woodland database.
 110 *Biodiversity & Ecology*, *4*, 389–389.
- 1111 Franklin, J., Serra-Diaz, J. M., Syphard, A., & Regan, H. M. (2017). Big data for forecasting the
- impacts of global change on plant communities. Global Ecology and Biogeography, 26, 6–
- 1113 17.

- 1114 Franz, N. M., Peet R. K., & Weakley, A. S. (2004). On the use of taxonomic concepts in support
- of biodiversity and taxonomy. In Q. D. Wheeler (Ed.), The New Taxonomy (pp. 63–86).

1116 Boca Raton, FL: Taylor & Francis.

- 1117 Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., ... Toussaint, J.-P.
- 1118 (2004). Plant functional markers capture ecosystem properties during secondary
- succession. *Ecology*, *85*, 2630–2637.
- Gaston, K. J., & Curnutt, J. L. (1998). The dynamics of abundance-range size relationships. *Oikos*, *81*, 38–44.
- 1122 Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M., Lawton, J. H.
- 1123 (2000). Abundance–occupancy relationships. *Journal of Applied Ecology*, 37, 39–59.
- 1124 <u>Golub, V., Sorokin, A., Starichkova, K., Nikolaychuk, L., Bondareva, V., & Ivakhnova, T. (2012).</u>
 1125 Lower Volga Valley Phytosociological Database. *Biodiversity & Ecology*, *4*, 419–419.
- Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. *Journal of Ecology*, *86*, 902–910.
- Harris, D. J. (2016). Inferring species interactions from co-occurrence data with Markov
- networks. *Ecology*, 97, 3308–3314.
- 1130 Hatim, M. (2012). Vegetation Database of Sinai in Egypt. *Biodiversity & Ecology, 4*, 303–303.
- Hennekens, S. M., & Schaminée, J. H. J. (2001). TURBOVEG, a comprehensive data base
 management system for vegetation data. *Journal of Vegetation Science*, *12*, 589–591.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high
- resolution interpolated climate surfaces for global land areas. *International Journal of Climatology, 25,* 1965-1978.
- 1136 Ibanez, T., Munzinger, J., Dagostini, G., Hequet, V., Rigault, F., Jaffré, T., & Birnbaum, P.
- 1137 (2014). Structural and floristic characteristics of mixed rainforest in New Caledonia: New data
- 1138 from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). Applied
- 1139 <u>Vegetation Science</u>, 17, 386–397.

- 1140 Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. (2017). Romanian Forest Database: a
- 141 phytosociological archive of woody vegetation. *Phytocoenologia*, 47, 389–393.
- 1142 iPlant Collaborative (2015). The Taxonomic Name Resolution Service. Version 4.0. Available
- from: http://tnrs.iplantcollaborative.org/ [Accessed: 20 Sep 2015].
- 1144 Jandt, U., & Bruelheide, H. (2012). German Vegetation Reference Database (GVRD).
 1145 Biodiversity & Ecology, 4, 355–355.
- Jandt, U., von Wehrden, H. & Bruelheide, H. (2011). Exploring large vegetation databases to
 detect temporal trends in species occurrences. *Journal of Vegetation Science*, 22, 957-972.
- Jansen, F., & Dengler, J. (2010). Plant names in vegetation databases a neglected source of
- bias. Journal of Vegetation Science, 21, 1179-1186.
- Jansen, F., Dengler, J., & Berg, C. (2012). VegMV, The vegetation database of Mecklenburg Vorpommern. *Biodiversity & Ecology*, *4*, 149–160.
- 152 Janßen, T., Schmidt, M., Dressler, S., Hahn, K., Hien, M., Konaté, S., ... Zizka, G. (2011).
- 153 Addressing data property rights concerns and providing incentives for collaborative data
- 1154 pooling: the West African Vegetation Database approach. *Journal of Vegetation Science*, 22,
- 1155 <u>614–620.</u>
- Jiménez-Alfaro, B., Girardello, M., Chytrý, M., Svenning, J.-C., Willner, W., Gégout, J.-C., ...
- 1157 Wohlgemuth, T. (2018). History and environment shape species pools and community
- diversity in European beech forests. *Nature Ecology & Evolution*. DOI: 10.1038/s41559-0170462-6.
- 1160 <u>Kącki, Z., & Śliwiński, M. (2012). The Polish Vegetation Database: structure, resources and</u>
 1161 <u>development. Acta Societatis Botanicorum Poloniae, 81, 75–79.</u>
- 1162 Karger, D. N, Cord, A. F., Kessler, M., Kreft, H., Kühn, I., Pompe, S., ... Wesche, K. (2016).
- 1163 Delineating probabilistic species pools in ecology and biogeography. *Global Ecology and*
- 1164 *Biogeography, 25, 489-501.*

1165	Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Kessler, M.
1166	(2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4,
1167	Article 170122.
1168	Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Wirth, C. (2011).
1169	TRY – a global database of plant traits. <i>Global Change Biology</i> , 17, 2905–2935.
1170	Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Verbeeck,
1171	H. (2013). Conventional tree height-diameter relationships significantly overestimate
1172	aboveground carbon stocks in the Central Congo Basin. Nature Communications, 4, Article
1173	2269.
1174	Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K., & Spehn, E. M. (2017). A
1175	global inventory of mountains for bio-geographical applications. Alpine Botany, 127, 1–15.
1176	Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity.
1177	Proceedings of the National Academy of Sciences of the United States of America, 104,
1178	5925–5930.
1179	Kröber, W., Li, Y., Härdtle, W., Ma, K. P., Schmid, B., Schmidt, K., … Bruelheide, H. (2015).
1180	Early subtropical forest growth is driven by community mean trait values and functional
1181	diversity rather than the abiotic environment. Ecology and Evolution, 5, 3541-3556.
1182	Kuzemko, A. (2012). Ukrainian Grasslands Database. Biodiversity & Ecology, 4, 430–430.
1183	Lájer, K., Botta-Dukát, Z., Csiky, J., Horváth, F., Szmorad, F., Bagi, I., Rédei, T. (2008).
1184	Hungarian Phytosociological database (COENODATREF): sampling methodology,
1185	nomenclature and its actual stage. Annali di Botanica, Nuova Series, 7, 197–201.
1186	Lamanna, C., Blonder, B., Violle, C., Kraft, N. J. B., Sandel, B., Šímová, I., Enquist, B. J.
1187	(2014). Functional trait space and the latitudinal diversity gradient. Proceedings of the
1188	National Academy of Sciences of the United States of America, 111, 13745–13750.

- 1189 Landucci, F., Acosta, A. T. R., Agrillo, E., Attorre, F., Biondi, E., Cambria, V. E., ... Venanzoni,
- 1190 R. (2012). Vegltaly: The Italian collaborative project for a national vegetation database. *Plant* 1191 *Biosystems*, 146, 756–763.
- 1192 Landucci, F., Řezníčková, M., Šumberová, K., Chytrý, M., Aunina, L., Biţă-Nicolae, C., ...
- 193 <u>Willner, W. (2015). WetVegEurope: a database of aquatic and wetland vegetation of Europe.</u>
- 1194 *Phytocoenologia*, 45, 187–194.
- 1195 Lenoir, J., Graae, B. J., Aarrestad, P. A., Alsos, I. G., Armbruster, W. S., Austrheim, G., ...
- 196 Svenning, J.-C. (2013). Local temperatures inferred from plant communities suggest strong
- 1197 <u>spatial buffering of climate warming across Northern Europe. *Global Change Biology*, 19, 1198 1470–1481.</u>
- 1199 Lessard, J.-P., Belmaker, J., Myers, J. A., Chase, J. M., & Rahbek, C. (2012). Inferring local
- ecological processes amid species pool influences. *Trends in Ecology & Evolution*, *27*, 600–
 607.
- 1202 Lewis, R. J., Szava-Kovats, R., & Pärtel, M. (2016). Estimating dark diversity and species pools:
- an empirical assessment of two methods. *Methods in Ecology and Evolution*, 7, 104–113.
- 1204 Liu, H., Cui, H., Pott, R., & Speier, M. (2000) Vegetation of the woodland-steppe ecotone in
- 1205 southeastern Inner Mongolia, China. *Journal of Vegetation Science*, *11*, 525–532
- Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011). ForestPlots.net: a web
 application and research tool to manage and analyse tropical forest plot data. *Journal of* Vegetation Science, 22, 610–613.
- Lysenko, T., Mitroshenkova, A., & Kalmykova, O. (2012). Vegetation Database of the Volga and
 Ural Rivers Basins. *Biodiversity & Ecology*, *4*, 420–421.
- 1211 Maitner, B. S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Durán, S. M., ... Enquist, B. J.
- 1212 (2018). The BIEN R package: A tool to access the Botanical Information and Ecology
- 1213 Network (BIEN) database. *Methods in Ecology and Evolution*, 9, 373–379.

1214	Marcenò,	C., 8	<u>& Jiménez-Alfaro,</u>	Β.	(2017).	The	Mediterranean	Ammophiletea	Database:	а
1215	compre	hens	ive dataset of coas	stal o	dune ver	retatio	on Phytocoenol	ogia 47 95-10	5	

- 1216 Moeslund, J. E., Brunbjergm, A. K., Dalby, L., Fløjgaard, C., Juel, A. & Lenoir, J. (2017). Using
- 1217 dark diversity and plant characteristics to guide conservation and restoration. *Journal of*
- 1218 *Applied Ecology, 54,* 1730–1741.
- 1219 <u>Muche, G., Schmiedel, U., & Jürgens, N. (2012). BIOTA Southern Africa Biodiversity</u> 1220 Observatories Vegetation Database. *Biodiversity & Ecology*, *4*, 111–123.
- 1221 Müller, J. (2003). Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos.
- 1222 Ph.D. thesis, FB Biologie und Informatik, J.W. Goethe-Universität Frankfurt a.M., Frankfurt.
- 1223 Nowak, A., Nobis, M., Nowak, S., Nobis, A., Swacha, G., & Kącki, Z. (2017). Vegetation of
- 1224 <u>Middle Asia the project state of the art after ten years of survey and future perspectives.</u> 1225 *Phytocoenologia*, 47, 395–400.
- 1226 Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
- 1227 Underwood, E. C., ... Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New
- 1228 Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool
- 1229 for conserving biodiversity. *Bioscience*, *51*, 933–938.
- Pärtel, M., Bennett, J. A., & Zobel, M. (2016). Macroecology of biodiversity: disentangling local
 and regional effects. *New Phytologist*, 211, 404–410.
- Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R., & Marticorena, A. (2013). Alien plants
 homogenise protected areas: evidence from the landscape and regional scales in south
- <u>nonogenise protected areas. evidence nom the landscape and regional scales in south</u>
- 1234 <u>central Chile. In: L.-C. Foxcroft, P. Pyšek, D. M. Richardson & P. Genovesi (Eds.), Plant</u>
- 1235 <u>invasions in protected areas: patterns, problems and challenges (pp. 191–208). Dordrecht:</u>
 1236 Springer.
- 1237 Peet, R. K., Lee, M. T., Jennings, M. D., & Faber-Langendoen, D. (2012a). VegBank a
 1238 permanent, open-access archive for vegetation-plot data. *Biodiversity & Ecology*, *4*, 233–241.

- 1239 Peet, R. K., Lee, M. T., Boyle, M. F., Wentworth, T. R., Schafale, M. P. & Weakley, A. S.
- (2012b). Vegetation-plot database of the Carolina Vegetation Survey. *Biodiversity & Ecology*,
 4, 243–253.
- Peet, R. K., Lee, M. T., Jennings, M. D., & Faber-Langendoen, D. (2012). VegBank a
 permanent, open-access archive for vegetation-plot data. *Biodiversity and Ecology*, *4*, 233–
- 1244 241.
- 1245 Perring, M.P., Bernhardt-Römermann, M., Baeten, L., Midolo, G., Blondeel, H., Depauw, L.,
- 1246 Landuyt, D., ... Verheyen, K. (2018). Global environmental change effects on plant
- 1247 community composition trajectories depend upon management legacies. *Global Change*
- 1248 *Biology*, 24,1722–1740.
- 1249 Peterka, T., Jiroušek, M., Hájek, M., & Jiménez-Alfaro, B. (2015). European Mire Vegetation
- 1250 <u>Database: a gap-oriented database for European fens and bogs. *Phytocoenologia, 45, 291–* 1251 298.</u>
- 1252 Peyre, G., Balslev, H., Martí, D., Sklenář, P., Ramsay, P., Lozano, P., ... Font, X. (2015).
- 1253 VegPáramo, a flora and vegetation database for the Andean páramo. *Phytocoenologia*, 45,
 1254 195–201.
- 1255 Prokhorov, V., Rogova, T., & Kozhevnikova, M. (2017). Vegetation Database of Tatarstan. 1256 Phytocoenologia, 47, 309–313.
- 1257 Purschke, O. (2017a). *oliverpurschke/Taxonomic_Backbone: First release of the workflow to*
- 1258 generate the taxonomic backbone for sPlot v.2.1 and TRY v.3.0. Zenodo. Available from:
- 1259 <u>http://doi.org/10.5281/zenodo.845445.</u>
- 1260 Purschke, O. (2017b). *Phylogenetic tree for the taxa in sPlot 2.1.* Available from:
- 1261 https://github.com/oliverpurschke/sPlot Phylogeny.
- 1262 Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plan
- 1263 phylogenies and an analysis of phylogenetic community structure. *Journal of Plant Ecology*,
- **1264 9**, **233–239**.

- 1265 Reich, P. B. (2014). The world-wide 'fast–slow' plant economics spectrum: a traits manifesto.
- 1266 *Journal of Ecology, 102, 275–301.*
- 1267 Revermann, R., Gomes, A.L., Gonçalves, F.M., Wallenfang, J., Hoche, T., Jürgens, N., &
- 1268 Finckh, M. (2016). Vegetation Database of the Okavango Basin. Phytocoenologia, 46, 103–
- 1269 <u>104.</u>
- 1270 Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. *Ecology* 1271 *Letters*, 7, 1–15.
- 1272 <u>Rūsiņa, S. (2012). Semi-natural Grassland Vegetation Database of Latvia. *Biodiversity* & 1273 *Ecology*, 4, 409–409.</u>
- 1274 <u>Samimi, C. (2003). Das Weidepotential im Gutu-Distrikt (Zimbabwe). Institut für Geographie und</u>
 1275 Geoökologie, Universität Karlsruhe, Karlsruhe.
- 1276 Sardans, J., Grau, O., Chen, H.Y.H., Janssens, I.A., Ciais, P., Piao, S., Peñuelas, J., (2017).
- 1277 Changes in nutrient concentrations of leaves and roots in response to global change factors.
 1278 *Global Change Biology*, 23, 3849–3856.
- 1279 Schaminée, J. H. J., Janssen, J. A. M., Haveman, R., Hennekens, S. M., Heuvelink, G. B. M.,
- 1280 Huiskes, H. P. J., & Weeda, E. J. (2006). Schatten voor de natuur. Achtergronden, inventaris
- 1281 en toepassingen van de Landelijke Vegetatie Databank. Utrecht: KNNV Uitgeverij.
- Schaminée, J. H. J., Hennekens, S. M., Chytrý, M., & Rodwell, J. S. (2009). Vegetation-plot data
 and databases in Europe: an overview. *Preslia*, *81/2*, 173-185.
- 1284 Schmidt, M., Janßen, T., Dressler, S., Hahn, K., Hien, M., Konaté, S., ... Zizka, G. (2012). The
- 1285 West African Vegetation Database. *Biodiversity and Ecology*, 4, 105–110.
- 1286 Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., ... Reich, P. B. (2015).
- 1287 BHPMF a hierarchical Bayesian approach to gap-filling and trait prediction for
- 1288 macroecology and functional biogeography. *Global Ecology and Biogeography, 24*, 1510–
- 1289 1521.

1290	Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Härdtle, W., He,
1291	J.S., Klein, A. M., Kühn, P., Liu, X. J., Ma, K. P., Niklaus, P. A., Pietsch, K. A., Purahong,
1292	W., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Staab, M., Tang, Z. Y., Trogisch, S.,
1293	von Oheimb, G., Wirth, C., Wubet, T., Zhu, C. D. & Bruelheide, H. (2018). Biodiversity
1294	across trophic levels drives multifunctionality in highly diverse forests. Nature
1295	Communications, 9, 2989.
1296	Schultz, J. (2005). The ecozones of the world (2 nd ed). Berlin: Springer.
1297	Šibík, J. (2012). Slovak Vegetation Database. Biodiversity & Ecology, 4, 429–429.
1298	Sieg, B., Drees, B., & Daniëls, F. J. A. (2006). Vegetation and altitudinal zonation in continental
1299	West Greenland. Meddelelser om Grønland Bioscience, 57, 1–93.
1300	Šilc, U. (2012). Vegetation Database of Slovenia. Biodiversity & Ecology, 4, 428–428.
1301	Šímová, I., Rueda, M., & Hawkins, B. A. (2017). Stress from cold and drought as drivers of
1302	functional trait spectra in North American angiosperm tree assemblages. Ecology and
1303	Evolution, 7, 7548–7559.
1304	Stančić, Z. (2012). Phytosociological Database of Non-Forest Vegetation in Croatia. Biodiversity
1305	<u>& Ecology, 4, 391–391.</u>
1306	Steinbauer, M. J., Grytnes, JA., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Wipf, S.
1307	(2018). Accelerated increase in plant species richness on mountain summits is linked to
1308	warming. Nature, 556, 231–234.
1309	Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A., Boyle, B., Weiser, M. D., Nolting, K. M.
1310	(2012). The biogeography and filtering of woody plant functional diversity in North and South
1311	America. Global Ecology and Biogeography, 21, 798–808.

- 1312 Swenson, N. G., Weiser, M. D., Mao, L., Araújo, M. B., Diniz-Filho, J. A. F., Kollmann, J., ...
- 1313 Svenning, J.-C. (2017). Phylogeny and the prediction of tree functional diversity across
- novel continental settings. *Global Ecology and Biogeography*, 26, 553–562.

1315	Synes, N. W., & Osborne, P. E. (2011). Choice of predictor variables as a source of uncertainty
1316	in continental-scale species distribution modelling under climate change. Global Ecology
1317	and Biogeography, 20, 904–914.
1318	Turner, D. J., Smyth, A. K., Walker, C. M., & Lowe, A. J. (2017). ÆKOS: Next-Generation Online
1319	Data and Information Infrastructure for the Ecological Science Community. Pages 341-368 in
1320	A. Chabbi and H. W. Loescher, editors. Terrestrial Ecosystem Research Infrastructures. CRC
1321	Press.
1322	van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., Pyšek, P. (2015).
1323	Global exchange and accumulation of non-native plants. Nature, 525, 100–103.
1324	Vanselow, K. A. (2016). Eastern Pamirs - A vegetation-plot database for the high mountain
1325	pastures of the Pamir Plateau (Tajikistan). Phytocoenologia, 46, 105–105.
1326	Vassilev, K., Dajič, Z., Cušterevska, R., Bergmeier, E., & Apostolova, I. (2012). Balkan Dry
1327	Grasslands Database. Biodiversity & Ecology, 4, 330–330.
1328	Vassilev, K., Pedashenko, H., Alexandrova, A., Tashev, A., Ganeva, A., Gavrilova, A.,
1329	Vulchev, V. (2016). Balkan Vegetation Database: historical background, current status and
1330	future perspectives. Phytocoenologia, 46, 89–95.
1331	Vassilev, K., Ruprecht, E., Alexiu, V., Becker, T., Beldean, M., Biță-Nicolae, C., Dengler, J.
1332	(2018). The Romanian Grassland Database (RGD): historical background, current status and
1333	future perspectives. Phytocoenologia. 48, 91-100
1334	Vibrans, A. C., Sevegnani, L., Lingner, D. V., de Gasper, A. L., & Sabbagh, S. (2010). The
1335	Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and
1336	operational aspects. Pesquisa Florestal Brasileira, 30, 291–302.
1337	von Wehrden, H., Wesche, K. & Miehe, G. (2009). Plant communities of the southern Mongolian
1338	<u>Gobi. <i>Phytocoenologia</i>, 39, 331–376.</u>
1339	Wagner, V. (2009). Eurosiberian meadows at their southern edge: community patterns and
1340	phytogeography in the NW Tien Shan. Journal of Vegetation Science, 20, 199–208.

- 1341 Wagner, V., Spribille, T., Abrahamczyk, S., & Bergmeier, E. (2014). Timberline meadows along a
- 1342 <u>1000 km transect in NW North America: species diversity and community patterns. Applied</u>
 1343 Vegetation Science, 17, 129–141.
- 1344 Walker, D. A., Breen, A. L., Druckenmiller, L. A., Wirth, L. W., Fisher, W., Raynolds, M. K., ...
- 1345 Zona, D. (2016). The Alaska Arctic Vegetation Archive. *Phytocoenologia*, 46, 221–229.
- 1346 <u>Wana, D., & Beierkuhnlein, C. (2011). Responses of plant functional types to environmental</u>
- 1347 gradients in the south-west Ethiopian highlands. *Journal of Tropical Ecology*, 27, 289-304.
- 1348 Wang, Y., Heberling, G., Görzen, E., Miehe, G., Seeber, E., & Wesche, K. 2017. Combined
- effects of livestock grazing and environment on plant species composition and soil condition
 across Tibetan grasslands. *Applied Vegetation Science*, *20*, 327-339.
- 1351 Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and Soil,*
- 1352199, 213–227.
- 1353 Whitfeld, T. J. S., Lasky, J. R., Damas, K., Sosanika, G., Molem, K., & Montgomery, R. A.
- 1354 (2014). Species richness, forest structure, and functional diversity during succession in the 1355 New Guinea lowlands. *Biotropica*, *46*, 538–548.
- 1356 Wiens, J. J. (2011). The causes of species richness patterns across space, time, and clades and 1357 the role of 'ecological limits'. *The Quarterly Review of Biology*, *86*, 75–96.
- 1358 Willner, W., Berg, C., & Heiselmayer, P. (2012). Austrian Vegetation Database. *Biodiversity* &
 1359 *Ecology*, 4, 333–333.
- Wiser, S. K. (2016). Achievements and challenges in the integration, reuse and synthesis of
 vegetation plot data. *Journal of Vegetation Science*, 27, 868–879.
- 1362 Wiser, S.K., Bellingham, P.J. ,& Burrows, L. (2001). Managing biodiversity information:
 1363 development of the National Vegetation Survey Databank. *New Zealand Journal of Ecology*,
 1364 25, 1–17.
- 1365 Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., ... Svenning,
- 1366 J.-C. (2013). The role of biotic interactions in shaping distributions and realised

assemblages of species: implications for species distribution modelling. *Biological Reviews* of the Cambridge Philosophical Society, 88, 15–30.

1369 Wohlgemuth, T. (2012). Swiss Forest Vegetation Database. *Biodiversity & Ecology, 4*, 340–340.

- Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., ... Wilf, P. (2017). Global
 climatic drivers of leaf size. *Science*, *357*, 917–921.
- 1372 Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., ...
- 1373 Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing

1374 environments. *Nature*, *506*, 89–92.

- 1375 Zhang, T., Niinemets, Ü., Sheffield, J., & Lichstein, J. W. (2018). Shifts in tree functional
- 1376 composition amplify the response of forest biomass to climate. *Nature*, *556*, 99–102.
- 1377

1378 DATA ACCESSIBILITY

- 1379 The data contained in sPlot (the vegetation-plot data complemented by species phylogeny and
- 1380 environmental information) are available by request, through contacting any of the consortium
- members for submitting a paper proposal. The proposals should follow the Governance and
- 1382 Data Property Rules of the sPlot Working Group, which are available on the sPlot website
- 1383 (<u>www.idiv.de/sPlot</u>). After acceptance, the respective data will be provided. In addition to the plot

1384 data, CWMs and CWVs of 18 plant traits are available for every plot.

1385

1386 SUPPORTING INFORMATION

- Additional Supporting Information may be found online in the supporting information tab for thisarticle.
- 1389 Appendix S1 Additional references, attributions and disclaimers for datasets included in sPlot
 1390 2.1
- 1391 Appendix S2 Data associated to the vegetation plot records stored in sPlot 2.1
- 1392 Appendix S3 Details on the workflow for setting up plot definitions in sPlot 2.1

- 1393 Appendix S4 Biome classification created for sPlot 2.1
- Appendix S5 Zip file of the biome classification of Appendix S4 containing the shapefile 1394
- 1395 (Geospatial vector data for geographic information system (GIS) software) and accompanying
- 1396 accessory files (database, projection etc.).
- 1397 Appendix S65 Trait information in sPlot 2.1
- 1398 **Appendix S76** Phylogenetic information in sPlot 2.1
- 1399 **Appendix S87** Gap-filled trait information
- 1400 Appendix S98 Global patterns of community-weighted variances

Figure 1. Conceptual figure visualizing how functional composition (in this case plant height) differs between calculations based on mean traits for grid cells and community data sampled in vegetation plots. Occurrence data (e.g. from distribution atlases, GBIF, etc.) can be used to calculate mean trait values in grid cells G1–G3. However, community weighted means (CWMs) of traits differ across local plots (P1–P6), while the mean values of CWMs in the grid cells differ from the unweighted values calculated in the grid cells. This example is simplified by showing few species and few plots. In reality, differences are generally more pronounced.

Figure 3. Global coverage of sPlot 2.1; (a) contributing databases identified by different colours
with indication of the two data aggregators (EVA, TAVA) and a few particularly large individual
databases; (b) available plot numbers per WWF Ecoregion; and (c) available plot density in grid
cells of 100 km × 100 km.

to Review Only

1428 1429 Figure 4. Examples of global community-level patterns that can be derived from (a) sPlot alone and (b-d) sPlot combined with TRY, here shown as raw data averaged by 1-degree grid cells. 1430 1431 There are only a very few cells (142 out of 2633) comprising only a single plot. For the maps, only plots with full vascular species composition and spatial accuracy < 5 km were used. They 1432 1433 are based on 148,474 and 218,051 plots for forests and non-forests respectively. Note that these maps are not corrected for biases caused by the facts that not all community types were 1434

- recorded in all grid cells and that plot sizes as well as the fraction of species with available trait data varied spatially. Maps show patterns of (a) fine-grain alpha diversity, expressed as vascular plant species richness (only plots with plot sizes of 100–1000 m² for forests and 5–100 m² for non-forests); (b) community-weighted means (CWMs) for log_e-transformed trait values of specific
- 1439 leaf area (SLA, $m^2 kg^{-1}$), (c) plant height (m) and (d) seed mass (mg).

to Review Only

,	Appendix 1. References to datasets included in sPlot 2.1.
1	Acić, S., Petrović, M., Šilc, U., & Dajić Stevanović, Z. (2012). Vegetation Database Grassland Vegetation of Serbia. Biodiversity & Ecology, 4, 418– 148.
1	Agrillo, E., Alessi, N., Massimi, M., Spada, F., De Sanctis, M., Francesconi, F., Attorre, F. (2017). Nationwide Vegetation Plot Database –
	Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia, 47, 221–229.
,	Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. (2012). Bulgarian Vegetation Database: historic background, current status
	and future prospects. Biodiversity & Ecology, 4, 141–148.
,	Aubin, I., Gachet, S., Messier, C., & Bouchard, A. (2007). How resilient are northern hardwood forests to human disturbance? An evaluation
	using a plant functional group approach. Ecoscience, 14, 259–271.
1	Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M., & Loidi, J. (2012). Vegetation-Plot Database of the University of the Basque Country
	(BIOVEG). Biodiversity & Ecology, 4, 328–328.
1	Borchardt, P., & Schickhoff, U. (2012). Vegetation database of Southern-Western Kyrgyzstan – the walnut-wildfruit forests and alpine pastures.
	Biodiversity & Ecology, 4, 309–309.
	Brisse, H., de Ruffray, P., Grandjouan, G., & Hoff, M., (1995). The Phytosociological Database "SOPHY" Part 1: Calibration of indicator plants, Part
	II: Socio-ecological classification of the relevés. Annali di Botanica, 53, 177–223.
1	Bruelheide, H., Böhnke, M., Both, S., Fang, T., Assmann, T., Baruffol, M., Schmid, B. (2011). Community assembly during secondary forest
	succession in a Chinese subtropical forest. Ecological Monographs, 81, 25–41.
4	Casella, L., Bianco, P. M., Angelini, P., & Morroni, E. (2012). Italian National Vegetation Database (BVN/ISPRA). Biodiversity & Ecology, 4, 404-
	404.
	Cayuela, L., Gálvez-Bravo, L., Pérez Pérez, R., Albuquerque, F. S., Golicher, D. J., Zahawi, R. A., Zamora, R. (2012). The Tree Biodiversity Network
	(BIOTREE-NET): Prospects for biodiversity research and conservation in the Neotropics. Biodiversity & Ecology, 4, 211–224.
	Žerný, T., Kopecký, M., Petřík, P., Song, JS., Šrůtek, M., Valachovič, M., Doležal, J. (2015). Classification of Korean forests: patterns along
	geographic and environmental gradients. Applied Vegetation Science, 18, 5–22.
	Chepinoga, V. V. (2012). Wetland vegetation database of Baikal Siberia (WETBS). Biodiversity & Ecology, 4, 311–311.
(Chytrý, M., & Rafajová, M. (2003). Czech National Phytosociological database: basic statistics of the available vegetation-plot data. Preslia, 75, 1–
	15.
4	Chytrý, M. (2012). Database of Masaryk University's Vegetation Research in Siberia. Biodiversity & Ecology, 4, 290–290.
	Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Yamalov, S. (2016). European Vegetation Archive (EVA): an
	integrated database of European vegetation plots. Applied Vegetation Science, 19, 173–180.
1	De Sanctis, M., & Attorre, F. (2012). Socotra Vegetation Database. <i>Biodiversity & Ecology, 4,</i> 315–315.
	De Sanctis, M., Fanelli, G., Mullaj, A., & Attorre, F. (2017). Vegetation Database of Albania. Phytocoenologia, 47, 107–108.
	Dengler, J., & Rūsiņa, S. (2012). Database Dry Grasslands in the Nordic and Baltic Region. <i>Biodiversity & Ecology, 4</i> , 319–320.
	Dimopoulos, P., & Tsiripidis, I. (2012). Hellenic Natura 2000 Vegetation Database (HelNAtVeg). Biodiversity & Ecology, 4, 388–388.
1	Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Wipf, S. (2012). Plot-scale evidence of
	recent vegetation change and links to summer warming. Nature Climate Change, 2, 453–457.
1	Ewald, J., May, R., & Kleikamp, M. (2012). VegetWeb - the national online-repository of vegetation plots from Germany. Biodiversity & Ecology,
	4, 173–175.
1	Finckh, M. (2012). Vegetation Database of Southern Morocco. Biodiversity & Ecology, 4, 297–297.
	Fotiadis, G., Tsiripidis, I., Bergmeier, E., & Dimopoulos, P. (2012). Hellenic Woodland database. Biodiversity & Ecology, 4, 389–389.
4	Golub, V., Sorokin, A., Starichkova, K., Nikolaychuk, L., Bondareva, V., & Ivakhnova, T. (2012). Lower Volga Valley Phytosociological Database.
	Biodiversity & Ecology, 4, 419–419.
4	Hatim, M. (2012). Vegetation Database of Sinai in Egypt. <i>Biodiversity & Ecology, 4,</i> 303–303.
ł	banez, T., Munzinger, J., Dagostini, G., Hequet, V., Rigault, F., Jaffré, T., & Birnbaum, P. (2014). Structural and floristic characteristics of mixed
	rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). Applied
	Vegetation Science 17 386-397

1486	Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. (2017). Romanian Forest Database: a phytosociological archive of woody vegetation.
1487	Phytocoenologia, 47, 389–393.
1488	Jandt, U., & Bruelheide, H. (2012). German Vegetation Reference Database (GVRD). Biodiversity & Ecology, 4, 355–355.
1 <mark>489</mark>	Jansen, F., Dengler, J., & Berg, C. (2012). VegMV, The vegetation database of Mecklenburg-Vorpommern. Biodiversity & Ecology, 4, 149–160.
1490	Janßen, T., Schmidt, M., Dressler, S., Hahn, K., Hien, M., Konaté, S., Zizka, G. (2011). Addressing data property rights concerns and providing
1 <mark>4</mark> 91	incentives for collaborative data pooling: the West African Vegetation Database approach. Journal of Vegetation Science, 22, 614–620.
1492	Kącki, Z., & Śliwiński, M. (2012). The Polish Vegetation Database: structure, resources and development. Acta Societatis Botanicorum Poloniae,
1 <mark>493</mark>	81, 75–79.
1 <mark>494</mark>	Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Verbeeck, H. (2013). Conventional tree height-diameter
1 <mark>4</mark> 95	relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nature Communications, 4, Article 2269.
1 <mark>496</mark>	Kuzemko, A. (2012). Ukrainian Grasslands Database. <i>Biodiversity & Ecology, 4</i> , 430–430.
1 <mark>497</mark>	Lájer, K., Botta-Dukát, Z., Csiky, J., Horváth, F., Szmorad, F., Bagi, I., Rédei, T. (2008). Hungarian Phytosociological database (COENODATREF):
1 <mark>498</mark>	sampling methodology, nomenclature and its actual stage. Annali di Botanica, Nuova Series, 7, 197–201.
1 <mark>499</mark>	Landucci, F., Acosta, A. T. R., Agrillo, E., Attorre, F., Biondi, E., Cambria, V. E., Venanzoni, R. (2012). Vegltaly: The Italian collaborative project
1500	for a national vegetation database. <i>Plant Biosystems, 146,</i> 756–763.
1501	Landucci, F., Řezníčková, M., Šumberová, K., Chytrý, M., Aunina, L., Bită Nicolae, C., Willner, W. (2015). WetVegEurope: a database of aquatic
1502	and wetland vegetation of Europe. Phytocoenologia, 45, 187–194.
1503	Lenoir, J., Graae, B. J., Aarrestad, P. A., Alsos, I. G., Armbruster, W. S., Austrheim, G., Svenning, J. C. (2013). Local temperatures inferred from
1504	plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biology, 19, 1470–1481.
1505	Liu, H., Cui, H., Pott, R., & Speier, M. (2000) Vegetation of the woodland-steppe ecotone in southeastern Inner Mongolia, China. Journal of
1506	Vegetation Science, 11, 525–532
1507	Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011). ForestPlots.net: a web application and research tool to manage and analyse
1508	tropical forest plot data. Journal of Vegetation Science, 22, 610–613.
1509	Lysenko, T., Mitroshenkova, A., & Kalmykova, O. (2012). Vegetation Database of the Volga and Ural Rivers Basins. Biodiversity & Ecology, 4, 420-
1510	421.
1511	Marcenò, C., & Jiménez-Alfaro, B. (2017). The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation.
1512	Phytocoenologia, 47, 95–105.
1513	Muche, G., Schmiedel, U., & Jürgens, N. (2012). BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiversity & Ecology, 4,
1514	111–123.
1515	Müller, J. (2003). Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos. Ph.D. thesis, FB Biologie und Informatik, J.W.
1516	Goethe-Universität Frankfurt a.M., Frankfurt.
1517	Nowak, A., Nobis, M., Nowak, S., Nobis, A., Swacha, G., & Kącki, Z. (2017). Vegetation of Middle Asia – the project state of the art after ten years
1518	of survey and future perspectives. Phytocoenologia, 47, 395–400.
1519	Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R., & Marticorena, A. (2013). Alien plants homogenise protected areas: evidence from the
1520	landscape and regional scales in south central Chile. In: L. C. Foxcroft, P. Pyšek, D. M. Richardson & P. Genovesi (Eds.), Plant invasions in
1521	protected areas: patterns, problems and challenges (pp. 191–208). Dordrecht: Springer.
1522	Peet, R. K., Lee, M. T., Jennings, M. D., & Faber-Langendoen, D. (2012a). VegBank – a permanent, open-access archive for vegetation-plot data.
1523	Biodiversity & Ecology, 4, 233–241.
1524	Peet, R. K., Lee, M. T., Boyle, M. F., Wentworth, T. R., Schafale, M. P. & Weakley, A. S. (2012b). Vegetation-plot database of the Carolina
1525	Vegetation Survey. Biodiversity & Ecology, 4, 243–253.
1526	Peterka, T., Jiroušek, M., Hájek, M., & Jiménez-Alfaro, B. (2015). European Mire Vegetation Database: a gap-oriented database for European fens
1527	and bogs. Phytocoenologia, 45, 291–298.
1528	Peyre, G., Balslev, H., Martí, D., Sklenář, P., Ramsay, P., Lozano, P., Font, X. (2015). VegPáramo, a flora and vegetation database for the Andean
1529	páramo. <i>Phytocoenologia</i>, 45, 195–201.
1530	Prokhorov, V., Rogova, T., & Kozhevnikova, M. (2017). Vegetation Database of Tatarstan. Phytocoenologia, 47, 309–313.
I.	

1 <mark>531</mark>	Revermann, R., Gomes, A.L., Gonçalves, F.M., Wallenfang, J., Hoche, T., Jürgens, N., & Finckh, M. (2016). Vegetation Database of the Okavango
1 <mark>532</mark>	Basin. Phytocoenologia, 46, 103–104.
1 <mark>533</mark>	Rūsiņa, S. (2012). Semi-natural Grassland Vegetation Database of Latvia. Biodiversity & Ecology, 4, 409-409.
1 <mark>534</mark>	Samimi, C. (2003). Das Weidepotential im Gutu-Distrikt (Zimbabwe). Institut für Geographie und Geoökologie, Universität Karlsruhe, Karlsruhe.
1 <mark>535</mark>	Schaminée, J. H. J., Janssen, J. A. M., Haveman, R., Hennekens, S. M., Heuvelink, G. B. M., Huiskes, H. P. J., & Weeda, E. J. (2006). Schatten voor
1 <mark>536</mark>	de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank. Utrecht: KNNV Uitgeverij.
1537	Schmidt, M., Janßen, T., Dressler, S., Hahn, K., Hien, M., Konaté, S., Zizka, G. (2012). The West African Vegetation Database. Biodiversity &
1 <mark>538</mark>	Ecology, 4, 105–110.
1 <mark>539</mark>	Š ibík, J. (2012). Slovak Vegetation Database. <i>Biodiversity & Ecology, 4</i>, 429–429.
1 <mark>540</mark>	Sieg, B., Drees, B., & Daniëls, F. J. A. (2006). Vegetation and altitudinal zonation in continental West Greenland. Meddelelser om Grønland
1 <mark>541</mark>	Bioscience, 57, 1–93.
1 <mark>542</mark>	Šilc, U. (2012). Vegetation Database of Slovenia. Biodiversity & Ecology, 4, 428–428.
1 <mark>543</mark>	Stančić, Z. (2012). Phytosociological Database of Non-Forest Vegetation in Croatia. Biodiversity & Ecology, 4, 391–391.
1 <mark>544</mark>	Turner, D. J., Smyth, A. K., Walker, C. M., & Lowe, A. J. (2017). ÆKOS: Next-Generation Online Data and Information Infrastructure for the
1 <mark>545</mark>	Ecological Science Community. Pages 341-368 in A. Chabbi and H. W. Loescher, editors. Terrestrial Ecosystem Research Infrastructures. CRC
1 <mark>546</mark>	Press.
1 <mark>547</mark>	Vanselow, K. A. (2016). Eastern Pamirs - A vegetation plot database for the high mountain pastures of the Pamir Plateau (Tajikistan).
1 <mark>548</mark>	Phytocoenologia, 46, 105–105.
1 <mark>549</mark>	Vassilev, K., Dajič, Z., Cušterevska, R., Bergmeier, E., & Apostolova, I. (2012). Balkan Dry Grasslands Database. Biodiversity & Ecology, 4, 330–330.
1 <mark>550</mark>	Vassilev, K., Pedashenko, H., Alexandrova, A., Tashev, A., Ganeva, A., Gavrilova, A., Vulchev, V. (2016). Balkan Vegetation Database: historical
1 <mark>551</mark>	background, current status and future perspectives. Phytocoenologia, 46, 89–95.
1 <mark>552</mark>	Vassilev, K., Ruprecht, E., Alexiu, V., Becker, T., Beldean, M., Biță-Nicolae, C., Dengler, J. (2018). The Romanian Grassland Database (RGD):
1 <mark>553</mark>	historical background, current status and future perspectives. Phytocoenologia. 48, 91–100
1 <mark>554</mark>	Vibrans, A. C., Sevegnani, L., Lingner, D. V., de Gasper, A. L., & Sabbagh, S. (2010). The Floristic and Forest Inventory of Santa Catarina State
1555	(IFFSC): methodological and operational aspects. Pesquisa Florestal Brasileira, 30, 291–302.
1 <mark>556</mark>	von Wehrden, H., Wesche, K. & Miehe, G. (2009). Plant communities of the southern Mongolian Gobi. Phytocoenologia, 39, 331–376.
1557	Wagner, V. (2009). Eurosiberian meadows at their southern edge: community patterns and phytogeography in the NW Tien Shan. Journal of
1558	Vegetation Science, 20, 199–208.
1559	Wagner, V., Spribille, T., Abrahamczyk, S., & Bergmeier, E. (2014). Timberline meadows along a 1000 km transect in NW North America: species
1 <mark>560</mark>	diversity and community patterns. Applied Vegetation Science, 17, 129–141.
1 <mark>561</mark>	Walker, D. A., Breen, A. L., Druckenmiller, L. A., Wirth, L. W., Fisher, W., Raynolds, M. K., Zona, D. (2016). The Alaska Arctic Vegetation Archive.
1 <mark>562</mark>	Phytocoenologia, 46, 221–229.
1 <mark>563</mark>	Wana, D., & Beierkuhnlein, C. (2011). Responses of plant functional types to environmental gradients in the south west Ethiopian highlands.
1 <mark>564</mark>	Journal of Tropical Ecology, 27, 289-304.
1565	Wang, Y., Heberling, G., Görzen, E., Miehe, G., Seeber, E,. & Wesche, K. 2017. Combined effects of livestock grazing and environment on plant
1566	species composition and soil condition across Tibetan grasslands. Applied Vegetation Science, 20, 327-339.
1567	Whitfeld, T. J. S., Lasky, J. R., Damas, K., Sosanika, G., Molem, K., & Montgomery, R. A. (2014). Species richness, forest structure, and functional
1568	diversity during succession in the New Guinea lowlands. Biotropica, 46, 538–548.
1569	Willner, W., Berg, C., & Heiselmayer, P. (2012). Austrian Vegetation Database. Biodiversity & Ecology, 4, 333-333.
1570	Wiser, S.K., Bellingham, P.J., & Burrows, L. (2001). Managing biodiversity information: development of the National Vegetation Survey Databank.
1571	New-Zealand Journal of Ecology, 25, 1–17.
1572	Wohlgemuth, T. (2012). Swiss Forest Vegetation Database. <i>Biodiversity & Ecology, 4</i> , 340–340.

- **Table 1.** Types of information provided by single vegetation plots, vegetation plots aggregated
- 1574 within grid cells (or other geographic units) and single species occurrence records aggregated

1575 within grid cells. The three levels are illustrated in Figure 1.

Information onfrom	Single vegetation	Set of vegetation	Grid-cell data from floristic
	plots	plots aggregated	inventories
		within grid cells	
Tto derive information on the	Plot level	Grid cell level	Grid cell level
Type of occurrence	Co-occurrence,	Occurrence by	Occurrence
	occurrence by	vegetation type	
	vegetation type		
Community assembly rules	Yes (co-occurrence is	No	No
	a prerequisite for		
	species interactions)		
Absences	Yes (for the target	No (except for	Depending on sampling
	plant group in a study)	extraordinarily	intensity
		intensive sampling	
		<u>schemes)</u>	
Floristic composition	of the local	of the species	of the total set of species
	community	pools of vegetation	
		types	
Diversity	α	β, γ	γ
Species abundance	Local cover-	Mean cover-	Occurrence only
	abundance	abundance <u>and</u>	
		frequency by	
		vegetation type	
Combination with traits	Functional	Functional	Functional composition of
	composition of the	composition of the	the total set of species
	local community (traits	species pool	(unweighted only)
	unweighted or	(unweighted or	
	weighted by cover:	weighted)	
	CWM, CWV)		
Environmental filtering	at the local level	at the regional	at the regional level
		level	
1578 **Table 2.** Plot datasets included in sPlot 2.1. GIVD ID refers to the ID in the Global Index of

1579 Vegetation-Plot Databases (http://www.givd.info), which manages the metadata for sPlot and

1580 provides updated online descriptions of these databases; * after the GIVD ID indicates that the

- 1581 respective database description is currently not visible on the GIVD website. Datasets
- 1582 contributed in harmonized format from a continental data aggregator ("collective database"
- 1583 according to the sPlot Rules) are listed under its name. The references are included in Appendix
- 1<mark>584 <u>1, while fF</u>urther references, attributions and disclaimers for particular datasets are found</mark>
- 1585 Appendix S1.

GIVD ID	Database name	# of plots in sPlot 2.1	Custodian	Deputy custodian	Reference
[Aggregator]	European Vegetation Archive (EVA)	950,001	Milan Chytrý	llona Knollová	Chytrý et al. (2016)
00-00-004	Vegetation Database of Eurasian 🧹 Tundra	1,132	Risto Virtanen		
00-RU-001	Vegetation Database Forest of Southern Ural	1,102	Vassiliy Martynenko		
00-RU-003	Database Meadows and Steppes of Southern Ural	2,354	Sergey Yamalov	Mariya Lebedeva	
00-TR-001	Forest Vegetation Database of Turkey - FVDT	919	Ali Kavgacı		
00-TR-002*	Non-forest Vegetation Database of Turkey	3,018	Deniz Işık	Didem Ambarlı	
AS-TR-002	Vegetation Database of Oak Communities in Turkey	1,181	Emin Uğurlu		
EU-00-002	Nordic-Baltic Grassland Vegetation Database (NBGVD)	7,675	Jürgen Dengler	Łukasz Kozub	Dengler & Rūsiņa (2012)
EU-00-011	Vegetation-Plot Database of the University of the Basque Country (BIOVEG)	18,441	Idoia Biurrun	Itziar García- Mijangos	Biurrun et al. (2012)
EU-00-013	Balkan Dry Grasslands Database	7,683	Kiril Vassilev	Armin Macanović	Vassilev et al. (2012)
EU-00-016	Mediterranean Ammophiletea Database	7,359	Corrado Marcenò	Borja Jiménez- Alfaro	Marcenò & Jiménez- Alfaro (2017)
EU-00-017	European Coastal Vegetation Database	4,624	John Janssen		
EU-00-018	The Nordic Vegetation Database	5,477	Jonathan Lenoir	Jens-Christian Svenning	Lenoir et al. (2013)
EU-00-019	Balkan Vegetation Database	9,118	Kiril Vassilev	Hristo Pedashenko	Vassilev et al. (2016)
EU-00-020	WetVegEurope	14,111	Flavia Landucci		Landucci et al. (2015)
EU-00-022	European Mire Vegetation Database	10,147	Tomáš Peterka	Martin Jiroušek	Peterka et al. (2015)
EU-AL-001	Vegetation Database of Albania	290	Michele De Sanctis	Giuliano Fanelli	De Sanctis et al. (2017)
EU-AT-001	Austrian Vegetation Database	34,458	Wolfgang Willner	Christian Berg	Willner et al. (2012)
EU-BE-002	INBOVEG	25,665	Els De Bie		
EU-BG-001	Bulgarian Vegetation Database	5,254	Iva Apostolova	Desislava	Apostolova et al. (2012)

Journal of Vegetation Science

				Sopotlieva	
EU-CH-005	Swiss Forest Vegetation Database	14,193	Thomas Wohlgemuth		Wohlgemuth (2012)
EU-CZ-001	Czech National Phytosociological Database	104,697	Milan Chytrý	Dana Holubová	Chytrý & Rafajová (2003)
EU-DE-001	VegMV	53,822	Florian Jansen	Christian Berg	Jansen et al. (2012)
EU-DE-013	VegetWeb Germany	23,078	Jörg Ewald		Ewald et al. (2012)
EU-DE-014	German Vegetation Reference Database (GVRD)	30,840	Ute Jandt	Helge Bruelheide	Jandt & Bruelheide (2012)
EU-DK-002	National Vegetation Database of Denmark	24,264	Jesper Erenskjold Moeslund	Rasmus Ejrnæs	
EU-ES-001	Iberian and Macaronesian Vegetation Information System (SIVIM) Wetlands	6,560	Aaron Pérez- Haase	Xavier Font	
EU-FR-003	SOPHY	209,864	Henry Brisse	Patrice De Ruffray	Brisse et al. (1995)
EU-GB-001	UK National Vegetation Classification Database	28,533	John S. Rodwell		
EU-GR-001	KRITI	292	Erwin Bergmeier		
EU-GR-005	Hellenic Natura 2000 Vegetation Database (HelNatVeg)	5,168	Panayotis Dimopoulos	Ioannis Tsiripidis	Dimopoulos & Tsiripidis (2012)
EU-GR-006	Hellenic Woodland Database	3,199	Georgios Fotiadis	Ioannis Tsiripidis	Fotiadis et al. (2012)
EU-HR-001	Phytosociological Database of Non-Forest Vegetation in Croatia	5,057	Zvjezdana Stančić		Stančić (2012)
EU-HR-002	Croatian Vegetation Database	8,734	Željko Škvorc	Daniel Krstonošić	
EU-HU-003	CoenoDat Hungarian Phytosociological Database	8,505	János Csiky	Zoltán Botta- Dukát	Lájer et al. (2008)
EU-IT-001	Vegltaly	15,332	Roberto Venanzoni	Flavia Landucci	Landucci et al. (2012)
EU-IT-010	Italian National Vegetation Database (BVN/ISPRA)	3,562	Laura Casella	Pierangela Angelini	Casella et al. (2012)
EU-IT-011	Vegetation-Plot Database Sapienza University of Rome (VPD-Sapienza)	12,780	Emiliano Agrillo	Fabio Attorre	Agrillo et al. (2017)
EU-LT-001	Lithuanian Vegetation Database	7,821	Valerijus Rašomavičius	Domas Uogintas	
EU-LV-001	Semi-natural Grassland Vegetation Database of Latvia	5,594	Solvita Rūsiņa		Rūsiņa (2012)
EU-MK-001	Vegetation Database of the Republic of Macedonia	1,417	Renata Ćušterevska		
EU-NL-001	Dutch National Vegetation Database	102,327	Joop H.J. Schaminée	Stephan M. Hennekens	Schaminée et al. (2006)
EU-PL-001	Polish Vegetation Database	22,229	Zygmunt Kącki	Grzegorz Swacha	Kącki & Śliwiński (2012)
EU-RO-007	Romanian Forest Database	6,017	Adrian Indreica	Pavel Dan Turtureanu	Indreica et al. (2017)
EU-RO-008	Romanian Grassland Database	1,921	Eszter Ruprecht	Kiril Vassilev	Vassilev et al. (2018)
EU-RS-002	Vegetation Database Grassland Vegetation of Serbia	5,587	Svetlana Aćić	Zora Dajić Stevanović	Aćić et al. (2012)
EU-RU-002	Lower Volga Valley Phytosociological Database	14,853	Valentin Golub	Viktoria Bondareva	Golub et al. (2012)
EU-RU-003	Vegetation Database of the Volga and the Ural Rivers Basins	1,516	Tatiana Lysenko		Lysenko et al. (2012)
EU-RU-011	Vegetation Database of Tatarstan	7,471	Vadim Prokhorov	Maria Kozhevnikova	Prokhorov et al. (2017)
EU-SI-001	Vegetation Database of Slovenia	10,986	Urban Šilc	Filip Küzmič	Šilc (2012)
EU-SK-001	Slovak Vegetation Database	36,405	Milan Valachovič	Jozef Šibík	Šibík (2012)

EU-UA-001	Ukrainian Grasslands Database	4,043	Anna Kuzemko	Yulia Vashenyak	Kuzemko (2012)
EU-UA-006	Vegetation Database of Ukraine and Adjacent Parts of Russia	3,326	Viktor Onyshchenko	Vitaliy Kolomiychuk	
[Aggregator]	Tropical African Vegetation Archive (TAVA)	6,677	Marco Schmidt	Stefan Dressler	Janßen et al. (2011)
AF-00-001	West African Vegetation Database	3,129	Marco Schmidt	Georg Zizka	Schmidt et al. (2012)
AF-00-008	PANAF Vegetation Database	2,469	Hjalmar Kühl	TeneKwetche Sop	
AF-BF-001	Sahel Vegetation Database	1,079	Jonas V. Müller	Marco Schmidt	Müller (2003)
	Other databases	164,566			
00-00-001	RAINFOR data managed by ForestPlots.net	1,827	Oliver L. Phillips	Aurora Levesley	Lopez-Gonzalez et al. (2011)
00-00-003	SALVIAS	4,883	Brian Enquist	Brad Boyle	
00-00-005	Tundra Vegetation Plots (TundraPlot)	577	Anne D. Bjorkman	Sarah Elmendorf	Elmendorf et al. (2012)
00-RU-002	Database of Masaryk University`s Vegetation Research in Siberia	1,547	Milan Chytrý		Chytrý (2012)
AF-00-003	BIOTA Southern Africa Biodiversity Observatories Vegetation Database	1,666	Norbert Jürgens	Gerhard Muche	Muche et al. (2012)
AF-00-006	SWEA-Dataveg	2,704	Miguel Alvarez	Michael Curran	
AF-00-009	Vegetation Database of the Okavango Basin	590	Rasmus Revermann	Manfred Finckh	Revermann et al. (2016)
AF-CD-001	Forest Database of Central Congo Basin	292	Elizabeth Kearsley	Hans Verbeeck	Kearsley et al. (2013)
AF-ET-001	Vegetation Database of Ethiopia	74	Desalegn Wana	Anke Jentsch	Wana & Beierkuhnlein (2011)
AF-MA-001	Vegetation Database of Southern Morocco	1,337	Manfred Finckh		Finckh (2012)
AF-ZA-003*	SynBioSys Fynbos Vegetation Database	3,810	John Janssen		
AF-ZW-001*	Vegetation Database of Zimbabwe	36	Cyrus Samimi		Samimi (2003)
AS-00-001	Korean Forest Database	4,885	Tomáš Černý	Petr Petřík	Černý et al. (2015)
AS-00-003	Vegetation of Middle Asia	1,381	Arkadiusz Nowak	Marcin Nobis	Nowak et al. (2017)
AS-00-004	Rice Field Vegetation Database	179	Arkadiusz Nowak		
AS-BD-001	Tropical Forest Dataset of Bangladesh	211	Mohammed A.S. Arfin Khan	Fahmida Sultana	
AS-CN-001	China Forest-Steppe Ecotone Database	148	Hongyan Liu	Fengjun Zhao	Liu et al. (2000)
AS-CN-002	Tibet-PaDeMoS Grazing Transect	146	Karsten Wesche		Wang et al. (2017)
AS-CN-003*	Vegetation Database of the BEF China Project	27	Helge Bruelheide		Bruelheide et al. (2011)
AS-CN-004*	Vegetation Database of the Northern Mountains in China	485	Zhiyao Tang		
AS-CN-005*	Database Steppe Vegetation of Xinjiang	129	Kohei Suzuki		
AS-EG-001	Vegetation Database of Sinai in Egypt	926	Mohamed Z. Hatim		Hatim (2012)
AS-ID-001	Sulawesi Vegetation Database	24	Michael Kessler		
AS-IR-001	Vegetation Database of Iran	2,335	Jalil Noroozi	Parastoo Mahdavi	
AS-KG-001	Vegetation Database of South- Western Kyrgyzstan	452	Peter Borchardt	Udo Schickhoff	Borchardt & Schickhoff (2012)
AS-KZ-001	Database of Meadow Vegetation in the NW Tian Shan Mountains	94	Viktoria Wagner		Wagner (2009)
AS-MN-001	Southern Gobi Protected Areas	1,516	Henrik von	Karsten Wesche	von Wehrden et al.

	Database		Wehrden		(2009)
AS-RU-001	Wetland Vegetation Database of Baikal Siberia (WETBS)	2,381	Victor Chepinoga		Chepinoga (2012)
AS-RU-002	Database of Siberian Vegetation (DSV)	9,116	Andrey Korolyuk	Andrei Zverev	
AS-RU-004	Database of the University of Münster - Biodiversity and Ecosystem Research Group's Vegetation Research in Western Siberia and Kazakhstan	445	Norbert Hölzel	Wanja Mathar	
AS-SA-001*	Vegetation Database of Saudi Arabia	919	Mohamed Abd El- Rouf Mousa El- Sheikh		
AS-TJ-001	Eastern Pamirs	282	Kim André Vanselow		Vanselow (2016)
AS-TW-001	National Vegetation Database of Taiwan	930	Ching-Feng Li	Chang-Fu Hsieh	
AS-YE-001	Socotra Vegetation Database	396	Michele De Sanctis	Fabio Attorre	De Sanctis & Attorre (2012)
AU-AU-002	TERN AEKOS	21,261	Anita Smyth	Ben Sparrow	Turner et al (2017)
AU-NC-001	New Caledonian Plant Inventory and Permanent Plot Network (NC- PIPPN)	201	Jérôme Munzinger	Philippe Birnbaum	Ibanez et al. (2014)
AU-NZ-001	New Zealand National Vegetation Databank	1,895	Susan Wiser		Wiser et al. (2001)
AU-PG-001	Forest Plots from Papua New Guinea	63	Timothy Whitfeld	George Weiblen	Whitfeld et al. (2014)
NA-00-002	Tree Biodiversity Network (BIOTREE-NET)	1,757	Luis Cayuela		Cayuela et al. (2012)
NA-CA-003	Database of Timberline Vegetation in NW North America	110	Viktoria Wagner	Toby Spribille	agner et al. (2014)
NA-CA-004	Understory of Sugar Maple Dominated Stands in Quebec and Ontario (Canada)	156	Isabelle Aubin		Aubin et al. (2007)
NA-CA-005*	Boreal Forest of Canada	89	Yves Bergeron	Louis De Grandpré	
NA-GL-001	Vegetation Database of Greenland	664	Birgit Jedrzejek	Fred J.A. Daniëls	Sieg et al. (2006)
NA-US-002	VegBank	67,352	Robert K. Peet	Michael T. Lee	Peet et al. (2012a)
NA-US-006	Carolina Vegetation Survey Database	17,221	Robert K. Peet	Michael T. Lee	Peet et al. (2012b)
NA-US-014	Alaska-Arctic Vegetation Archive	1,363	Donald A. Walker	Amy Breen	Walker et al. (2016)
SA-00-002	VegPáramo	2,643	Gwendolyn Peyre	Xavier Font	Peyre et al. (2015)
SA-AR-002	Vegetation Database of Central Argentina	218	Marcelo R. Cabido	Alicia Acosta	
SA-BO-003	Bolivia Forest Plots	75	Michael Kessler	Sebastian Herzog	
SA-BR-002	Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project)	1,669	Alexander Christian Vibrans	André Luis de Gasper	Vibrans et al. (2010)
SA-BR-003	Grasslands of Rio Grande do Sul, Brazil	320	Eduardo Vélez- Martin	Valério De Patta Pillar	
SA-BR-004	Grassland Database of Campos Sulinos	161	Gerhard E. Overbeck	Valério De Patta Pillar	
SA-CL-002	SSAForests_Plots_db	261	Alvaro G. Gutierrez		
SA-CL-003*	Chilean Park Transects - Fondecyt 1040528	165	Aníbal Pauchard	Alicia Marticorena	Pauchard et al. (2003)
SA-EC-001	Ecuador Forest Plot Database	172	Jürgen Homeier		

_

1587

Bruelheide et al. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Science.

APPENDIX S1: Additional references, attributions and disclaimers for datasets included in sPlot 2.1. The datasets are listed under their GIVD ID (see Table 2)

00-00-001:

A contribution of RAINFOR data managed by ForestPlots.net.

Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker T. R. & Phillips, O. L. (2009). ForestPlots.net Database. www.forestplots.net. Date of extraction [15 November 2014].

AF-00-006:

- Alvarez, M., Möseler, B. M., Josko, M. et al. (2012a). SWEA-Dataveg vegetation of small wetlands in East Africa. *Biodiversity & Ecology*, 4, 294-295.
- Alvarez, M., Becker, M., Böhme, B. et al. (2012b). Floristic classification of the vegetation in small wetlands of Kenya and Tanzania. *Biodiversity & Ecology*, 4, 63-76.
- Alvarez, M. (2017). Classification of aquatic and semi-aquatic vegetation in two East African sites: Cocktail definitions and syntaxonomy. *Phytocoenologia*, 47, 345-364.
- Alvarez, M. & Luebert, F. (2018). The taxlist package: managing plant taxonomic lists in R. *Biodiversity Data Journal*, in press.
- Behn, K., Becker, M., Burghof, S. et al. (2018). Using vegetation attributes to rapidly assess degradation of East African wetlands. Ecological Indicators 89: 250-259.
- Scherer, L., Curran, M. & Alvarez, M. (2017a). Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity. *Conservation Biology*, 31, 302-310.
- Scherer, L., Curran, M. & Alvarez, M. (2017b). Staggering financial shortfalls to meet biodiversity targets in Kenya. *Atlas of Science*, February.

AF-00-009:

- Revermann, R., Finckh, M., Stellmes, M., Strohbach, B., Frantz, D. & Oldeland, J. (2016). Linking land surface phenology and vegetation-plot databases to model terrestrial plant alpha diversity of the Okavango Basin. *Remote Sensing* 8, Article 370.
- Revermann, R., Oldeland, J., Gonçalvess, F.M., Luther-Mosebach, J., Gomes, A.L., Jürgens, N. & Finckh, M. (2018). Dry tropical forests and woodlands of the Cubango Basin in southern Africa: A first classification and assessment of their woody species diversity. *Phytocoenologia*, 48. DOI: 10.1127/phyto/2017/0154.
- Wallenfang, J., Finckh, M., Oldeland, J. & Revermann, R., 2015. Impact of shifting cultivation on dense tropical woodlands in southeast Angola. *Tropical Conservation Science*, 8, 863-892.

AU-AU-002:

Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., ... TERN Eco-informatics (2015). A subset of ÆKOS Australian Vegetation sPlot Extraction (http://doi.org/10.4227/05/548530103BCAE). Obtained via Global Index of Vegetation-Plot Databases (http://www.givd.info/givd/faces/databases.xhtml) and TERN AEKOS Data Portal, rights owned by GIVD and The University of Adelaide.

AU-NZ-001:

Website: https://nvs.landcareresearch.co.nz/

Broadbent, H., Spencer, N. & Wiser, S. (2012). New Zealand National Vegetation Databank. *Biodiversity & Ecology*, 4, 318.

Bruelheide et al. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Science.

EU-BE-002:

Website: http://www.inbo.be/en/inboveg

EU-RS-002:

Dajic Stevanovic, Z., Petrovic, M., Šilc, U. & Acic, S. (2012). Database of Halophytic Vegetation in Serbia. *Biodiversity* & *Ecology*, 4, 417-417.

EU-RU-003:

- Golub, V.B., Sorokin, A.N., Ivakhnova, T.L., Starichkova, K.A., Nikolaychuk, L.F. & Bondareva. V.V. (2009). Geobotanicheskaya baza dannyh doliny Nizhnei Volgi [Geobotanical database of the Lower Volga valley]. *Izvestiya Samarskogo nauchnogo centra RAN*, 11, 577–582. (In Russian)
- Sorokin, A., Golub, V., Ivakhnova, T., Starichkova, K., Nikolaychuk, L. & Bondareva, V. (2010). Lower Volga Valley Phytosociological Database. In: Dengler, J., Finckh, M. & Ewald, J. (eds.) Book of Abstracts. 9th international Meeting on Vegetation Databases "Vegetation Databases and Climate Change". Hamburg, 24–26 February 2010, pp. 91–91. BEE, University of Hamburg, Hamburg.

EU-SI-001

Šilc, U. (2006). Slovenian phytosociology in a database: state of the art, basic statistics and perspectives. *Hladnikia*, 19, 27–34.

NA-00-002:

Cayuela, L., Gálvez-Bravo, L., de Albuquerque, F. S., Golicher, D. J., González-Espinosa, M., Ramírez-Marcial, N., ... Zamora, R. (2012). La Red Internacional de Inventarios Forestales (BIOTREE-NET) en Mesoamérica: avances, retos y perspectivas futuras. *Ecosistemas*, 21, 126–135.

SA-00-002:

Website: http://www.vegparamo.com/

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

APPENDIX S2. Data associated to the vegetation plot records stored in sPlot 2.1

Table S2.1. List of variables, type of data, number of records for which the variable was recorded, range (min; max) for numeric values and description of the header data of plot records in sPlot 2.1. Ranges of cover values of strata only refer to records in which the stratum was present.

Variable	Туре	No. of	Range	Description
		records		
PlotObservationID	integer	1,121,244	1; 1121244	Identificator provided by
				Turboveg 3, unique for each
				plot
Country	character	1,119,575		Original country name in
				Turboveg 3
NAME2	character			Official name of country
ISO2	character			Two-letter ISO country code
Date of recording	Date	983,267	"1885-07-01";	Date referring to the
			"2015-02-03"	observation or to the
				publication from which it comes
Syntaxon	character	387,900		As provided by the source
				database
Relevé area (m ²)	numeric	725,845	0.01; 250000	Plot size
Altitude (m)	numeric	649,240	-32; 4070	As provided by the source
				database
Aspect (°)	numeric	348,192	0;360	Standardized in degrees in
				Turboveg 3
Slope (°)	numeric	439,312	0;99	Standardized in degrees in
				Turboveg 3
Cover total (%)	numeric	278,141	1;100	As provided by the source
				database
Cover tree layer (%)	numeric	140,661	0.5;100	As provided by the source
				database
Cover shrub layer (%)	numeric	161,046	0.1;100	As provided by the source
				database
Cover herb layer (%)	numeric	413,629	0.2;100	As provided by the source
				database
Cover moss layer (%)	numeric	182,242	1;100	As provided by the source
				database
Cover lichen layer (%)	numeric	3,754	1;99	As provided by the source
				database
Cover algae layer (%)	numeric	1,683	1;100	As provided by the source
				database
Cover litter layer (%)	numeric	38,869	1;100	As provided by the source
				database
Cover bare rock (%)	numeric	14,177	1;100	As provided by the source
				database

Height (highest) trees (m)	numeric	64,227	1;99	As provided by the source
				database
Height lowest trees (m)	numeric	4,819	0.8;95	As provided by the source
				database
Height (highest) shrubs (m)	numeric	44,357	0.1;10	As provided by the source
				database
Height lowest shrubs (m)	numeric	4,241	0.1;10	As provided by the source
				database
Aver. height (high) herbs	numeric	111,189	0.1;800	As provided by the source
(cm)				database
Aver. height lowest herbs	numeric	28,215	1;353	As provided by the source
(cm)				database
Max. height herbs (cm)	numeric	29,428	1;800	As provided by the source
		,		database
Mosses identified (y/n)	logical	376831	0.1	Inferred when not provided by
	logical	570051	0,1	the source database
Lichens identified (y/p)	logical	2/13 052	0.1	Inferred when not provided by
	logical	243,032	0,1	the source database
Cover cryptogame (%)	numoric	7 250	1.100	As provided by the source
	Inumeric	7,550	1,100	As provided by the source
		28.802	0.1	
Herbs identified (y/h)	logical	38,803	0;1	the second data have
				the source database
Plants recorded	character	61,224		It shows which subset of plants
				was recorded. Possible entries
				are: "Complete vegetation
				(including non-terricolous
				taxa)"; "Complete vegetation";
				"All vascular plants and
				bryophytes"; "All vascular
				plants and dominant
				cryptogams"; "All vascular
				plants"; "Woody plants >= 10
				cm dbh"; "Woody plants >= 5
				cm dbh", "Woody plants >= 10
				cm dbh and dominant
				understory", "Only dominants"
Cover bare soil (%)	numeric	10,333	0.02;100	As provided by the source
				database
Longitude	numeric	1,120,686	-162.741;	Standardized to decimal
			179.590	degrees in Turboveg 3
Latitude	numeric	1.120.686	-64.78: 80.15	Standardized to decimal
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		degrees in Turboveg 3
Location uncertainty (m)	numeric	1.120 425	1: 5032594	Assigned either by the source
		1,120,720		databases or by management in
				Turboyeg 3 based on the
				number of decimal places of
				number of decimal places of

				the given coordinates
Dataset	character	1,121,244		Name of the source database
				(short version) in Turboveg 3
is.forest	logical	504,567	0;1	Community corresponding to
				forest formation (standardized
				in sPlot)
is.non.forest	logical	1.105.180	0:1	Community corresponding to
	108.000	_,,		non-forest formation
				(standardized in sPlot)
ΕVA	integer	950.001	61000001	Relational IDs for the plots
	Integer	550,001	112004950	provided by the European
			112004990	Vegetation Archive
FSV	character	9/9 967		FLINIS code assigned to EVA
	character	949,907		plots by Export System
Naturalnoss	Integer	052.004	0.2	0 (unknown) 1 (natural) 2
Naturalitess	integer	955,904	0,5	(comi notural) 2
				(setti-flatural), 5
		050 100	0.1	(anthropogenic)
Forest	logical	850,108	0;1	Formation type (when existing
Charachtered		704 722	0.1	In the data source)
Shrubland	logical	/94,/22	0;1	Formation type (when existing
				In the data source)
Grassland	logical	874,654	0;1	Formation type (when existing
		ľ N		in the data source)
Sparse.vegetation	logical	763,759	0;1	Formation type (when existing
				in the data source)
Wetland	logical	813,383	0;1	Formation type (when existing
				in the data source)
Biome	character	1,120,686		sPlot biomes adapted from
				Schultz (2005) and Körner et al
				(2017)
BiomeID	Integer	1,120,686	1;10	Codes for biomes from 1 to 10
REALM	character	1 120 686		Biogeographical realm from
	character	1,120,000		W/WE Ecoregions (Olson et al
				2001)
BIOME2		1120686		Biome code from W/W/E
BIOWIEZ		1120000		Ecoregions (Olson et al. 2001)
ECO ID		1120696		Ecoregions (Olson et al. 2001)
		1120080		Ecoregion code nom wwr
	character			Ecoregions (Olson et al. 2001)
				Ecoregions (Olson et al. 2001)
CONTINENT				Ecoregions (Olson et al. 2001)
CONTINENT	character			Assigned from ESRI layer
POINT_X	numeric			Longitude corrected to fit with
				coastlines and land
POINT_Y	numeric			Latitude corrected to fit with
				coastlines and land

Journal of Vegetation Science

SUPPORTING INFORMATION TO THE PAPER

Fig. S2.1. Temporal distribution of vegetation plots stored in sPlot 2.1, divided per continent. Y axis (density) reflects the frequency of plots scaled from 0 to 1.

Fig. S2.2. Histogram of plot location uncertainty.

Fig. S2.3. Histogram of species richness. The most frequent richness class was between 20 and 25 species (i.e. between 10^1.3 and 10^1.4, respectively). Note that the graph shows raw richness, which has not been corrected for plot area.

Journal of Vegetation Science

SUPPORTING INFORMATION TO THE PAPER

Fig. S2.4. Histogram of plot sizes, using breaks that either include the lower boundaries (top) or upper boundaries (bottom) in the size categories.

SUPPORTING INFORMATION TO THE PAPER Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

APPENDIX S3. Details on the workflow for setting up plot definitions in sPlot 2.1

Definition of physiognomic formations

Plots that had information on vegetation type or layer-specific cover (ca. 20% of all plots) were broadly classified into communities that were tree-dominated (forests), shrub-dominated (shrublands), or lacked tree or shrub species (grasslands), sparsely vegetated types and wetlands or combinations thereof, using a 0/1 coding. For example, if forest = 1 and grassland = 1, this would code for a savanna-like vegetation. Note that the assignment procedure is ongoing and not all plots have been yet assigned to formations.

Table S3.2. Definitions and examples of the physiognomic formations used in sPlot. They are derived by the combination of five basic categories: Forest, Shrubland, Grassland, Sparse.vegetation and Wetland, each rated with 0/1. We use the terms tree for woody species > 5 m height and shrub for woody species of 0.5–5 m height. "x" means that either 0 or 1 are possible, resulting in different types.

Forest	Shrubland	Grassland	Sparse. vegetation	Wetland	Formation	Definition
1	0	0	0	0	Forest	Total cover $>= 25\%$: tree cover $>= 25\%$
1	1	0	0	0	Shrubland with some trees	Total cover >= 25%; tree cover 10 - <25%; shrub cover > herb cover
1	0	1	0	0	Savanna	Total cover >= 25%; tree cover 10 - <25%; herb cover > shrub cover
1	0	0	1	0	Scattered trees	Total cover < 25%; tree cover >0 - < 10%
0	1	0	0	0	Shrubland	Total cover >= 25%; no trees; shrub cover > herb cover or if smaller then shrub cover > 50%
0	1	1	0	0	Grassland with some shrubs or heathland	Total cover >= 25%; no trees; herb cover > shrub cover; also for heathlands!
0	1	0	1	0	Scattered shrubs	Total cover < 25%; no trees; shrub cover > herb cover
0	0	1	0	0	Grassland or herbland	Total cover >= 25%; no trees, shrubs < 10%
0	0	1	1	0	Open grassland or desert steppe	Total cover 10 - <25%; no trees, shrubs < 10%
0	0	0	1	0	Sparsely vegetated	Total cover <10%, no trees, no shrubs (e.g. rocks, screes, open sand dunes, deserts, nival vegetation)
0	0	0	0	1	Aquatic vegetation	Permanently water-covered
x	x	х	x	1	Semi-aquatic vegetation	Very wet or temporarily water-covered (e.g. flood plains, mires, springs, temporary pools, salt marshs, mangroves)
0	0	0	0	0	Not assigned yet	

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

Definition of the degree of naturalness

We were able to assign the majority of plots to one of three levels of naturalness from 1 (natural), through 2 (semi-natural), to 3 (anthropogenic). Categories of naturalness and formations were approximately derived from information provided by the source databases to match the definitions in Table S4.3. Main pieces of information used were (a) vegetation height; (b) cover values per vegetation layer; (c) vernacular names of vegetation types; (d) phytosociological classifications in the large majority of European plots and some from other continents, and (e) land use information. Often the database as a whole already provided part of the information, e.g. when it only contained tropical forest plots or rice field plots. Note that the assignment procedure is ongoing and not all plots have been yet assigned to a degree of naturalness.

Code	Meaning	Definition	Examples
0	Not assessed	-	-
1	Natural or near-natural	Same formation as naturally occurring vegetation and species all or largely native, with low-intensity human land use, e.g. logging of timber or pasturing of steppes as long as it does not fundamentally change site conditions or structure and species composition of the vegetation.	Forests composed of native species; grasslands in regions where grasslands form the climax vegetation; various types of azonal vegetation (e.g. aquatic, bog, fen, coastal, rock, scree, alpine vegetation)
2	Semi-natural	Vegetation types that are more profoundly changed by humans, but with a species composition that still has many similarities with the natural vegetation and site conditions that are not fundamentally altered compared to natural conditions.	Forest plantations composed of non-native species; shrublands in the cultural landscape; mown or livestock-grazed secondary grasslands and heathlands in forest biomes.
3	Anthropogenic	Vegetation types that have very little in common with the natural vegetation on sites with profoundly altered site conditions and/or disturbance regimes.	Arable fields; ruderal vegetation; vegetation of anthropogenic structures; frequently mown and reseeded grasslands

Table S3.3. Definition and examples of the categories of naturalness used in sPlot.

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

APPENDIX S4. Biome classification created for sPlot 2.1

Figure S4.5. Biome classification based on the ecozones of Schultz (2005), with a further differentiation of an Alpine biome including major mountain regions according to Körner et al. (2017). The shapefile for the biomes is provided as Appendix S5.

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

References

Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K., & Spehn, E. M. (2017). A global inventory of mountains for bio-geographical applications. *Alpine Botany*, *127*, 1–15.

Schultz, J. (2005). The ecozones of the world (2nd ed.) Berlin: Springer.

For Review Only

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

APPENDIX S6. Trait information in sPlot 2.1

Table S6.4. List of traits, abbreviation of trait names, identifier in the Thesaurus Of Plant characteristics (TOP; Garnier et al., 2017) and mean values of community-weighted means (CWM) and community-weighted variances (CWV) calculated across 1,117,369 and 1,099,463 plots, respectively. All trait values refer to gap-filled trait values and were available for 26,632 out of the 54,519 taxa in sPlot (45.9%). Trait values were log-transformed prior to analysis. *Stem specific density* is stem dry mass per stem fresh volume, *specific leaf area* is leaf area per leaf dry mass, *leaf C, N* and *P* are leaf carbon, nitrogen and phosphorus content, respectively. *Leaf dry matter content* is leaf dry mass per leaf fresh mass, *leaf delta* ¹⁵N is the leaf nitrogen isotope ratio, *stem conduit density* is the number of vessels (angiosperms) or tracheids (gymnosperms) per unit area in a cross section, *conduit element length* refers to both vessel elements and tracheids.

Trait	Abbreviation in	ТОР	Unit	Mean	Mean
	sPlot dataset			Log(CWM)	Log(CWV)
Leaf area	LA	25	mm ²	6.130	1.565
Stem specific density	SSD	286	g cm ⁻³	-0.869	0.058
Specific leaf area	SLA	50	m²kg⁻¹	2.850	0.150
Leaf C	LeafC	452	mg g⁻¹	6.116	0.002
Leaf N	LeafN	462	mg g⁻¹	3.038	0.063
Leaf P	LeafP	463	mg g⁻¹	0.535	0.117
Plant height	Plant.height	68	m	-0.315	1.259
Seed mass	Seed.mass	103	mg	0.407	2.784
Seed length	Seed.length	91	mm	1.069	0.365
Leaf dry matter content	LDMC	45	g g ⁻¹	-1.294	0.130
Leaf N per area	LeafN.per.area	481	g m ⁻²	0.251	0.099
Leaf N:P ratio	Leaf.N:P.ratio	- (g g⁻¹	2.444	0.081
Leaf $\delta^{15}N$	Leaf.delta15N	-	per million	0.521	0.455
Seed number per reproductive unit	Seed.num.rep.unit	-		6.179	5.156
Leaf fresh mass	Leaf.fresh.mass	35	g	-2.125	1.520
Stem conduit density	Stem.cond.dens	-	mm ⁻²	4.407	0.975
Dispersal unit length	Disp.unit.length	90	mm	1.225	0.451
Conduit element length	Cond.elem.length	-	μm	5.946	0.367

References

Garnier, E., Stahl, U., Laporte, M.-A., Kattge, J., Mougenot, I., Kühn, I., ... Klotz, S. (2017). Towards a thesaurus of plant characteristics: an ecological contribution. *Journal of Ecology*, *105*, 298–309.

Journal of Vegetation Science

SUPPORTING INFORMATION TO THE PAPER

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

APPENDIX S7. Phylogenetic information in sPlot 2.1

Fig. S7.6. Phylogenetic tree of 53,489 species sampled in the vegetation plots stored in sPlot 2.1. The length of the spikes show log frequency of species occurring in the database, ranging from 1 to 128,942 times (*Festuca rubra*). Colors of spikes rank from low (yellow) to high (redish) frequencies.

Fig. S7.7. Histogram of number of species by frequency classes in sPlot. Coverage of species included in the phylogeny was 89%, 90%, 91%, 92%, 96%, 99% and 100% of species that occurred with a frequency of 1; 2-5; 6-10; 11-100; 101-1,000; 1,001-10,000 and >10,000 in the plots.

Bruelheide et al. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Science.

APPENDIX S8. Gap-filled trait information

Fig. S8.8. Taxonomical match between sPlot 2.1 and TRY 3.0 per biome. The graphs show the percentages of the number of the 25% most frequent and 25% most dominant species in sPlot 2.1, for which gap-filled trait information was available in TRY 3.0.

Fig. S8.9. Taxonomical match of gap-filled trait information between sPlot 2.1 and TRY 3.0 per biome and for the originally measured 18 traits selected from TRY. LA: Leaf area, SSD: Stem

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

specific density, SLA: Specific leaf area, LeafC: Leaf C concentration, LeafN: Leaf N concentration, leafP: Leaf P concentration, Height: Plant height, , SeedMass: Seed mass, SeedLength: Seed length, LDMC: Leaf dry matter content, LeafNArea: Leaf N content per area, LeafNP: Leaf N:P ratio, Leaf-d15N: Leaf δ^{15} N concentration, SeedNRepU: Seed number per reproductive unit, Lfreshmass: Leaf fresh mass, SCondDens: Stem conduit density, DispUL: Dispersal unit length, WoodVlen: Conduit element length.

to Review Only

Bruelheide et al. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science*.

APPENDIX S9. Global patterns of community-weighted variances

Fig. S9.10. (a) Community-weighted variances (CWVs) for log_e-transformed trait values of specific leaf area (SLA, m² kg⁻¹), (b) plant height (m) and (c) seed mass (mg). CWV are averaged by grid cells of 1 degree.

