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JVS-R-04700 Response letter

L549: Not sure this is the best reference, it is about bird occurrences in different sources and not 
about local communities nor about vegetation.

We deleted the reference. Since this sentence states something that is missing, there is no 
need of using any reference here.

L560: But some species might be dormant (belowground organs only). Truly absent from the 
aboveground vegetation?

We added the suggested specification

L563: Only if exact coordinates are known! In a way, GBIF occurrences are also spatially explicit 
and can be resurveyed.

A significant proportion of sPlot plots have precise coordinates (see Fig. S2.2). We do not claim 
that all plots would allow exact relocalisation. We however added “many plots”

L566: For plots which has exact locations only! Do you have data how precise are coordinates?
See above.

L567: This is also not unique to plots, you can sample a taxon from another trophic level from 
the very same point where a plant taxon has been recorded in gbif!

We believe that a plot of a certain size can contain multiple taxa, but a point cannot. To clarify 
this, we now say “vegetation plots represent a snapshot of the primary producers of a 
terrestrial ecosystem”

L569a: This reference is about N and P concentration in leaves and roots in response to drought, 
elevated CO2, and fertilization. This is relevant to decomposers but no other trophic levels 
included to the study! 

We agree and have changed this reference.

L569b: I doubt that this is the best reference for multi trophic level sampling.
Yes, the Bruelheide e al. (2018) reference was cited in the wrong place.

L591: If you will use only "species pool", many readers understand this as all plant species in the 
dataset, or perhaps in the whole Denmark. Use "site-specific species pool", or, since the absent 
portion of this is considered in the paper, you might consider calling this "dark diversity".

Done – thanks for the suggestion

L596: current? (i.e. not LGM precipitation)?
Actually it is current precipitation, which now has been added

L609: This depends on research question. If the aim is to find CWM for grid cell species 
composition, it is fine. If a such study aims to explain traits in local communities, there is likely a 
bias.

Our sentence describes the likely biases of the approach used so far. We deleted the last 
sentence to avoid confusion.
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Table 1a: You can also use just a single vegetation plot and get all measures what you have in 
the left column? Here listing additional information only?

We added the new line “to derive information on…” to clarify that our meaning is slightly 
different from what you understood. We hope that the table is clearer now.

Table 1b: Well, direct interaction of plant species has often demonstrated for very fine scales 
(comparable to plant size). 

Admittedly, the larger plots in sPlot are probably not suited for this purpose, but one indeed 
needs plots.

Table 1c: Also depends on sampling intensity? If all vegetation types are well sampled, this can 
form local flora better than more random inventories.

We added a qualifier, but we believe that you will not find any grid in sPlot where it is really 
possible. We added sampling intensity here.

Table 1d: of the grid cell?
Now clarified by the second head line

Table 1e: + the grid cell (if sampling is intense enough). Even for habitat-specific species pools 
sampling need to be intense enough!

Yes, in principle you are right. But the aim of our table is not to describe all rare exceptions but 
the typical things that can or cannot be done with a database like sPlot. If we would add all 
rare exceptions, the table would get very long and uniformative, we believe.

Table 1f: Remove "I"
Done

Table 1g: and also dark diversity!
You are right, but dark diversity does not fit into the line with alpha, beta and gamma diversity, 
so we prefer not to add it here.

Table 1h: + frequency in the grid cell
Added, good point.

Table 1i: And also grid cell (if sampling intensity is enough).
See response on Table 1e.

L629: Since this is a Report, I suggest to replace traditional "Materials and Methods" and 
"Results" with more descriptive headings (e.g. "Compilation of the sPlot database", "General 
description of the sPlot data" or something similar)

Done

L638: Put the full stop after "S"
Done

L645: Why not visible?
Because the authors opted not to make this information public. Still we use GIVD as our tool 
for metadata.
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L648: Use "S1"
Appendix 1 (different from Appendix S1) was a remainder from the original submission to GEB. 
GEB uses printed appendices to present references to data sources in small print in the main 
paper (which will be used by Web of Science etc.). Since JVS does not have such a separation 
into two reference lists, we included the references to the databases into the main reference 
list and dissolved Appendix 1. Please note that the sPlot Rules force us to print one reference 
per database if required by these, so there would be no way to transfer these references to an 
online-only appendix.

L658: Cite also Appendix (S2)
Done

L691: This function is using the same the Plant List web application?
Yes, the tpf function connects to the plant list website.

L795: Did not find the shape file!
We have uploaded the shapefile now as Appendix S 5 

L857: Is it possible to assign a likely plot size for the rest (or range? or with uncertainty?)
No, unfortunately no plot size means that we have no information on it. However, one can 
assume that in each region of the world the plots without plot size information do not differ 
systematically in size from those where the information has been recorded in the database.

L872: Even if a single plot is in the 1-degree cell?
There are only a very few cells consisting on a single plot (n=142/2633). We provide this 
information now in the Caption of Fig. 4. This can also be seen from the maps in Figure 3 for 
plot density.

L914: I understand these rules. However, while keeping the advantage of having co-occurrence 
data, I strongly suggest that you will make occurrence data available through GBIF. You can 
discuss with GBIF how this can be done without revealing co-occurrence in plots (perhaps using 
a certain resolution of coordinates?)

Please note that the sPlot Rules do not allow this currently. The sPlot Steering Committee is 
fully aware of the strong potential sPlot would have for GBIF, but we would have to leave this 
to future developments of the sPlot Consortium and its rules. 
We would also like to point out that since 2 years, GBIF can also handle co-occurrence data, 
using the Darwin core. For example, the vegetation plots of the Netherlands have been 
uploaded already. We believe that we should take time to discuss who will upload the data, to 
avoid multiple entries. We think that doing this should be the responsibility of the data base 
curators, as it would be also them to update these data.

L928: What about previous versions? If some data has withdrawn from a previous version, 
reproducibility is not functioning any more?

We keep all previous sPlot versions. sPlot Rules do not allow withdrawing data from already 
started projects. Our understanding is that this includes the right of sPlot to maintain the 
specific sPlot version used in a project for studies that aim at reproduction/testing this study.
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L946: This is partly overlapping with Introduction and Table 1. Can this be combined?
We would like to keep this part because it explains “what to do with the data” while the Intro 
presents “why the data is necessary”. However, we agree that is makes sense to shorten this 
part and have removed some sections.

L984: This is not plot specific feature?
We believe that it is, see comment on L567

L1001: Is it possible to add few lines at which research questions these shortcomings are most 
critical, what can be done to minimize their effects?

Actually, L996-1001 already contained some core research questions that would suffer from 
such limitations and potential remedies. We have now expanded a little bit on that, but we 
generally believe that the limitations and the remedies are very case-specific and this report is 
not the appropriate place to elaborate in detail on them. Each of the ongoing sPlot paper 
projects, of course, unavoidably will have to address them.

L1002: What about BIEN? It was designed for Americas but include some other regions as well?
While BIEN indeed contains (few) plot data, they hitherto have only used the plot data to 
enrich their species occurrence data and they were not able to export the plot data in any 
meaningful way. sPlot had signed a MoU with BIEN that they should contribute their plot data, 
but after long trials they admitted that they are not able to do so and we got the majority of 
their plot data from their contributing databases, like VegBank, directly. Moreover, the 
amount of plot data and the spatial coverage of sPlot and BIEN are not comparable. While 
sPlot has perhaps 90% of the plots that are in BIEN, BIEN has only perhaps 10% of the plots of 
sPlot.

L1003: adding "relatively" Methods still vary a lot.
Done

L1005: BIEN?
See response to L1002

L1008: Strange to have alien species topic "In summary" paragraph without any prior 
mentioning. Can this be discussed above a bit?

Indeed, this was strange. We added this topic now already under point (1) of Expected Impact.

L1235: Please list all appendices with short titles.
Done

S2.1: It would be good to have some more information how this was assigned post hoc.
We have added this information. Post-hoc assignment of plot uncertainty was based on the 
number of decimal places of the given coordinates. We have added this information now.
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501 SHORT RUNNING TITLE

502 sPlot – the global vegetation database

503

504 ABSTRACT

505 Questions: Vegetation-plot records provide information on presence and cover or abundance of 

506 plants co-occurring in the same community. Vegetation-plot data are spread across research 

507 groups, environmental agencies and biodiversity research centers, and thus, are rarely 

508 accessible at continental or global scales. Here we present the sPlot database, which collates 

509 vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional 

510 and phylogenetic diversity at the plant community level. 

511 Location: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 

512 23,586,216 records of plant species and their relative cover or abundance in plots collected 

513 between 1885 and 2015. 

514 Methods: We complemented the information for each plot by retrieving environmental conditions 

515 (i.e. climate and soil) and the biogeographic context (i.e. biomes) from external sources, and by 

516 calculating community-weighted means and variances of traits using gap-filled data from the 

517 global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 

518 54,519 species identified in the plots. 

519 Results: We present the first maps of global patterns of community richness and community-

520 weighted means of key traits.

521 Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation 

522 analysis at the global scale.

523

524 KEYWORDS
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525 Biodiversity; community ecology; ecoinformatics; functional diversity; global scale; 

526 macroecology; phylogenetic diversity; plot database; sPlot; taxonomic diversity; vascular plant; 

527 vegetation relevé.

528

529 INTRODUCTION

530 Studying global biodiversity patterns is at the core of macroecological research (Kreft & Jetz, 

531 2007; Wiens, 2011; Costello, Wilson & Houlding, 2012), since their exploration may provide 

532 insights into the ecological and evolutionary processes acting at different spatio-temporal scales 

533 (Ricklefs, 2004). The opportunities enabled by the compilation of large collections of biodiversity 

534 data into widely accessible global (GBIF, www.gbif.org) or continental databases (e.g. BIEN, 

535 www.bien.nceas.ucsb.edu/bien) have recently advanced our understanding of global biodiversity 

536 patterns, especially for vertebrates, but also for vascular plants (Swenson et al., 2012; Lamanna 

537 et al., 2014; Engemann et al., 2016; Butler et al., 2017). Although this development has led to 

538 the formulation of several macroecological theories (Currie et al., 2004; Pärtel, Bennett & Zobel, 

539 2016), a more mechanistic understanding of how assembly processes shape ecological 

540 communities and consequently global biodiversity patterns, is still missing (Lessard, Belmaker, 

541 Myers, Chase & Rahbek, 2012). 

542 Understanding the links between biodiversity patterns and assembly processes requires 

543 fine-grain data on the co-occurrence of species in ecological communities, sampled across 

544 continental or global spatial extents (Beck et al., 2012; Wisz et al., 2013). For example, such co-

545 occurrence data have been used to compare changes in vegetation composition over time 

546 spans of decades (Jandt, von Wehrden & Bruelheide 2011; Perring et al. 2018). Unfortunately, 

547 information on fine-grain vegetation data up to now has not been readily available, as most of 

548 the continental to global biodiversity datasets have been derived from occurrence data (i.e. 

549 presence-only data), and after being aggregated spatially, have a relatively coarse-grain scale 

550 (e.g. 1-degree grid cells) and no information on species co-occurrence at the meaningful scale of 
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551 local communities. In contrast, vegetation-plot data record the cover or abundance of each plant 

552 species that occurs in a plot of a given size at the date of the survey, representing the main 

553 reservoir of plant community data worldwide (Dengler et al., 2011). 

554 Vegetation-plot data differ in fundamental ways from databases of occurrence records of 

555 individual species aggregated at the level of grid cells or regions of hundreds or thousands of 

556 square kilometers (Figure 1). First, vegetation plots usually provide information on species 

557 relative cover or relative abundance, allowing for the testing of central theories of biogeography, 

558 such as the abundance-range size relationship (Gaston & Curnutt, 1998) or the relationship 

559 between local abundance and niche breadth (Gaston et al., 2000). Second, they contain 

560 information on which plant species co-occur in the same locality (Chytrý et al., 2016), which is a 

561 necessary precondition for direct biotic interactions among plant individuals. Third, unrecorded 

562 species can be considered truly absent from the aboveground vegetation at this scale because 

563 the standardized methodology of taking a vegetation record requires a systematic search for all 

564 species in a plot, or at least all species of the dominant functional group. Fourth, many plots are 

565 spatially explicit and can be resurveyed through time to assess possible consequences of land 

566 use and climate change (Steinbauer et al. 2018; Perring et al. 2018). Fifth, vegetation plots 

567 represent a snapshot of the primary producers of a terrestrial ecosystem, which can be 

568 functionally linked to organisms from different trophic groups sampled in the same plots (e.g. 

569 multiple taxa surveys) and related processes and services both below (e.g. decomposition, 

570 nutrient cycling) and above ground (e.g. herbivory, pollination) (e.g. Schuldt et al. 2018).

571 Recently several projects at the regional to continental scale have demonstrated the 

572 potential of using vegetation-plot databases for exploring biodiversity patterns and the underlying 

573 assembly processes. Using vegetation data of French grasslands, Borgy et al. (2017) 

574 demonstrated that weighting leaf traits by species abundance in local communities is pivotal to 

575 capture leaf trait–environment relationships. Analyzing United States forest assemblages 

576 surveyed at the community level, Šímová, Rueda & Hawkins (2017) were able to relate cold or 
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577 drought tolerance to leaf traits, dispersal traits and traits related to stem hydraulics. Using plot-

578 based tree inventories of the United States forest service, Zhang, Niinemets, Sheffield & 

579 Lichstein (2018) found that shifts in tree functional composition amplifies the response of forest 

580 biomass to droughts. Based on >15.000 plots from a wide number of habitat types in Denmark, 

581 Moeslund et al. (2017) showed that typical plant species that are part of the site-specific species 

582 pool, but are absent in a community tend to depend on mycorrhiza, are mostly adapted to low 

583 light and low nutrient levels, have poor dispersal abilities and are ruderals and stress intolerant. 

584 By collating >40,000 vegetation plots sampled in European beech forests, Jiménez-Alfaro et al. 

585 (2018) found that current local community diversity and species pool sizes calculated at different 

586 scales were mainly explained by proximity to glacial refugia and current precipitation. 

587 Although large collections of vegetation-plot data are now available from national to 

588 continental levels (e.g. Schaminée, Hennekens, Chytrý & Rodwell, 2012; Peet, Lee, Jennings & 

589 Faber-Langendoen, 2012; Schmidt et al., 2012; Chytrý et al., 2016; Enquist, Condit, Peet, 

590 Schildhauer & Thiers, 2016), they are rarely used in global-scale biodiversity research (Wiser, 

591 2016; Franklin, Serra-Díez, Syphard & Regan, 2017). This is unfortunate because vegetation-

592 plot data may reveal important patterns that cannot be captured by grid-based datasets (Table 

593 1). Functional composition patterns, for instance, may differ substantially when considering 

594 vegetation-plot data rather than single species occurrences aggregated at the level of coarse-

595 grain grid cells. Using plant height for illustration reveals that the trait means calculated on all the 

596 species occurring in a grid cell may differ strongly from the community-weighted means (CWMs) 

597 averaged across local communities (Figure 1). Nevertheless, only the grid-based approach has 

598 been used to date in studies of the geographic distribution of trait values (Swenson et al., 2012, 

599 2017; Wright et al., 2017). 

600 Here, we present sPlot, a global database for compiling and integrating plant community data. 

601 We describe (i) main steps in integrating vegetation-plot data in a repository that provides 

602 taxonomic, functional and phylogenetic information on co-occurring plant species and links it to 
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603 global environmental drivers; (ii) principal sources and properties of the data and the procedure 

604 for data usage; and (iii) expected impacts of the database in future ecological research. To 

605 illustrate the potential of sPlot we also show global diversity patterns that can be readily derived 

606 from the current content.

607

608 2. COMPILATION OF THE sPlot DATABASE

609 2.1 Vegetation-plot data

610 The sPlot consortium currently collates 110 vegetation-plot databases of regional, national or 

611 continental extents. Some of the databases have been previously aggregated by and contributed 

612 through two (sub-) continental database initiatives (Table 2 and Appendix S1 in Supporting 

613 Information). All data from Europe and nearby regions were contributed via the European 

614 Vegetation Archive (EVA), using the SynBioSys taxon database as a standard taxonomic 

615 backbone (Chytrý et al., 2016). Three African databases were contributed via the Tropical 

616 African Vegetation Archive (TAVA). In addition, multiple U.S. databases were contributed 

617 through the VegBank archive maintained in support of the U.S. National Vegetation 

618 Classification (Peet et al. 2012). The data from other regions (South America, Asia) were 

619 contributed as separate databases.

620 We stored the vegetation-plot data from the individual databases in the database 

621 software TURBOVEG v2 (Hennekens & Schaminée, 2001). Our general procedure was to 

622 preserve the original structure and content of the databases as much as possible in order to 

623 facilitate regular updates through automated workflows. The individual databases were then 

624 integrated into a single SQLite database using TURBOVEG v3 (S.M. Hennekens, ALTERRA, 

625 The Netherlands; www.synbiosys.alterra.nl/turboveg3/help/en/index.html). TURBOVEG v3 

626 combines the species lists from the original databases in a single repository and links the plot 

627 attributes (so-called header data) to 58 descriptors of vegetation-plots (Table S2.1 in Appendix 

628 S2). The metadata of the databases collated in sPlot were managed through the Global Index of 
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629 Vegetation-Plot Databases (GIVD; Dengler et al. 2011), using the GIVD ID as the identifier. The 

630 current sPlot version 2.1 was created in October 2016 and contains 1,121,244 vegetation plots 

631 with 23,586,216 plant species × plot observations (i.e. ords of a species in a plot). Most records 

632 (1,073,737; 95.8%) have information on cover, 29,288 on presence/absence, 5,854 on basal 

633 area, 3,265 on counts of individuals, 148 on importance value, 1,895 on per cent frequency, 

634 4,883 on number of stems, and further 2,174 have a mix of these types of these different 

635 metrics.

636

637 2.2 Taxonomic standardization

638 To combine the species lists of the different databases in sPlot, we constructed a taxonomic 

639 backbone. To link co-occurrence information in sPlot with plant traits, we expanded this 

640 backbone to integrate plant names used in the TRY database (Kattge et al., 2011). The taxon 

641 names (without nomenclatural authors) from sPlot 2.1 and TRY 3.0 were first concatenated into 

642 one list, resulting in 121,861 names, of which 61,588 (50.5%) were unique to sPlot; 35,429 

643 (29.1%) unique to TRY; and 24,844 (20.4%) shared between TRY and sPlot. Taxon names were 

644 parsed and resolved using the Taxonomic Name Resolution Service web application (TNRS 

645 version 4.0; Boyle et al., 2013; iPlant Collaborative, 2015), using the five TNRS standard 

646 sources ranked by default. We allowed for (i) partial matching to the next higher rank (genus or 

647 family) if the full taxon name could not be found and (ii) full fuzzy matching, to return names that 

648 were matched within a maximum number of four single-character edits (Levenshtein edit 

649 distance of 4), which corresponds to the minimum match accuracy of 0.05 in TNRS, with 1 

650 indicating a perfect match.

651 We accepted all names that were matched, or converted from synonyms, with an overall 

652 match score of 1. In case with no exact match (i.e. the overall match score was <1), names were 

653 inspected on an individual basis. All names that matched at taxonomic ranks lower than species 

654 (e.g. subspecies, varieties) were accepted as correct names. The name matching procedure 

Page 35 of 162 Journal of Vegetation Science



For Review Only

27

655 was repeated for the uncertain names (i.e. with match accuracy scores below the threshold 

656 value from the first matching run), with a preference on first using the source ‘Tropicos’(Missouri 

657 Botanical Garden; http://www.tropicos.org/; accessed 19 Dec 2014) because here matching 

658 scores were often higher for names of low taxonomic rank. The remaining 9,641 non-matched 

659 names were resolved using (i) the additional source ‘NCBI’ (Federhen, 2010) within TNRS, (ii) 

660 the matching tools in the Plant List web application (The Plant List 2010), (iii) the ‘tpl’-function 

661 within the R-package ‘Taxonstand’ (Cayuela, Stein & Oksanen, 2017) and (iv) manual inspection 

662 (i.e. to resolve vernacular names). All subspecies were aggregated to the species level. Names 

663 that could not be matched were classified as ‘No suitable matches found’. Because sPlot and 

664 TRY contain taxa of non-vascular plants, we tagged vascular plant names based on their family 

665 and phylum affiliation, using the ‘rgbif’ library in R (Chamberlain, 2017). Of the full list of plant 

666 names in sPlot and TRY, 79,171 (94.6%) plant names were matched at the species level, 4,343 

667 (5.2%) at the genus level, 152 (0.2%) at the family level and 13 names at higher taxonomic 

668 levels. Overall, this led to 58,066 accepted taxon names in sPlot. Family affiliation was classified 

669 according to APG III (Bremer et al., 2009). A detailed description of the workflow, including R-

670 code, is available in Purschke (2017a).

671 One potential shortcoming of our taxonomic backbone is that for most regions it was 

672 necessary to standardize taxa using standard sets of taxonomic synonyms. Thus, if a taxonomic 

673 name represents multiple taxonomic concepts, e.g. such as created by the splitting and lumping 

674 of taxa, or a name has been misapplied in a region, we must trust that this problem has been 

675 addressed in our component databases (Franz, Peet & Weakley, 2004; Jansen & Dengler, 

676 2010).

677

678 2.3 Physiognomic information

679 To achieve a classification into forests vs. non-forests that is applicable to all plots 

680 irrespective of the structural and habitat data provided by the source database, we defined as 
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681 forest all plot records that had >25% absolute cover of the tree layer, making use of the attribute 

682 data of sPlot. This threshold is similar to the classification of Ellenberg & Müller-Dombois (1967), 

683 who defined woodland formations with trees covering more than 30%. There were 16,244 tree 

684 species in the sPlot database. There were 16,244 tree species in the sPlot database. As tree 

685 layer cover was available for only 25% of all plots, we additionally used the information whether 

686 the taxa present in a plot were trees (usually defined as being taller than 5 m), using the plant 

687 growth form information from TRY (see below). Thus, plots lacking tree cover information were 

688 defined as forests if the sum of relative cover of all tree taxa was >25%. Similarly, we defined 

689 non-forests by calculating the cover of all taxa that were not defined as trees or shrubs (also 

690 taken from the TRY plant growth form information) and that were not taller than 2 m, using the 

691 TRY data on mean plant height. In total, 21,888 taxa belonged to this category. We defined all 

692 plots as non-forests if the sum of relative cover of these low-stature, non-tree and non-shrub 

693 taxa was >90%. As we did not have the growth form and height information for all taxa, a fraction 

694 of about 25% of the plots remained unassigned (i.e. was neither forest, nor non-forest. In 

695 addition, more detailed classifications of plots into physiognomic formations (Table S3.2 in 

696 Appendix S3) and naturalness (Table S3.3 in Appendix S3) were derived from various types of 

697 plot-level or database-level information provided by the sources and stored in five separate fields 

698 (see Table S2.1 in Appendix S2). 

699

700 2.4 Phylogenetic information

701 We developed a workflow to generate a phylogeny of the vascular plant species in sPlot, using 

702 the phylogeny of Zanne et al. (2014), updated by Qian & Jin (2016). Species present in sPlot but 

703 missing from this phylogeny were added next to a randomly selected congener (see also Maitner 

704 et al., 2018). This approach has been demonstrated to introduce less bias into subsequent 

705 analyses than adding missing species as polytomies to the respective genera (Davies et al., 

706 2012). We only added species based on taxonomic information on the genus level, thus not 
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707 making use of family affiliation. Because of the absence of congeners in the reference 

708 phylogeny, 7,147 species could not be added (11.7% of all resolved taxa in sPlot and TRY). This 

709 resulted in a phylogeny with 54,067 resolved taxon names from 61,214 standardized taxa in the 

710 combined list of sPlot and TRY. The tree was finally pruned to the vascular plant taxa of the 

711 current sPlot version 2.1, resulting in a phylogenetic tree for 53,489 out of the 58,066 taxa in 

712 sPlot. Of these 53,489 names, 16,026 are also found among the 31,389 taxa in the phylogenetic 

713 tree of Qian & Jin (2016), i.e. 51.1%. The full procedure and the R code is available in Purschke 

714 (2017b).

715

716 2.5 Associated environmental plot information

717 To complement the plot data, we harmonized geographical coordinates (in decimal degrees), 

718 elevation (m above sea level), aspect (degrees) and slope (degrees) as provided by the 

719 contributing databases. All other variables were too sparsely and too inconsistently sampled 

720 across databases to be combined in the global set, but were retained in the original data sources 

721 and can be retrieved for particular purposes.

722 We used the geographic coordinates to create a geodatabase in ArcGIS 14.1 (ESRI, 

723 Redlands, CA) to link sPlot 2.1 to these climate and soil data. We retrieved data for all the 19 

724 bioclimatic variables provided by CHELSA v1.1 (Karger et al., 2017) by averaging climatic data 

725 from the period 1979–2013 at 30 arc seconds (about 1 km in grid cells near to the equator). 

726 These variables are the same as the ones used in WorldClim (www.worldclim.org; Hijmans, 

727 Cameron, Parra, Jones & Jarvis, 2005), but calculated with a downscaling approach based on 

728 estimates of the ERA-Interim climatic reanalysis. While the CHELSA climatological data have a 

729 similar accuracy as other products for temperature, they are more precise for precipitation 

730 patterns (Karger, et al. 2017). We also calculated growing degree days for 1 °C (GDD1) and 5 

731 °C (GDD5), according to Synes & Osborne (2011) and based on CHELSA data, and included 

732 the index of aridity and potential evapotranspiration extracted from the CGIAR-CSI website 
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733 (www.cgiar-csi.org). In addition, we extracted seven soil variables from the SOILGRIDS project 

734 (https://soilgrids.org/; licensed by ISRIC – World Soil Information), downloaded at 250-m 

735 resolution and then converted to the same 30-arc second grid format of CHELSA. To explore the 

736 distribution of sPlot data in the global environmental space, we subjected all 30 climate and soil 

737 variables of the global terrestrial surface rasterized on a 2.5 arc-minute grid resolution to a 

738 principal component analysis (PCA) on standardized and centered data. We subsequently 

739 created a grid of 100 × 100 cells within the bi-dimensional environmental space defined by the 

740 first two PCA axes (PC1 and PC2) and counted the number of terrestrial cells per environmental 

741 grid cell of the PC1-PC2 space. Then, we counted the number of plots in sPlot in the same PCA 

742 grid (Figure 2).

743 We linked all vegetation plots to two global biome classifications. We used the World 

744 Wildlife Fund (WWF) spatial information on terrestrial ecoregions (Olson et al., 2001) to assign 

745 plots to one of the 867 ecoregions, 14 biomes and eight biogeographic realms. The WWF 

746 approach is based on a bottom-up expert system using various regional biodiversity sources to 

747 define ecoregions, which in turn are grouped into realms and biomes (Olson et al., 2001). In 

748 addition, we created a shapefile for the ecozones defined by Schultz (2005) to represent major 

749 biomes in response to global climatic variation. Since these zones are climatically 

750 heterogeneous in mountain regions, we differentiated an additional “alpine” biome for mountain 

751 areas above the lower mountain thermal belt, as defined in the classification of world mountain 

752 regions by Körner et al. (2017). This resulted in a distinction of 10 major biomes (Fig. S4.5 in 

753 Appendix S4), whose shape file is freely available (Appendix S5).

754

755 2.6 Trait information

756 To broaden the potential applications of the global vegetation database in functional contexts, 

757 we linked sPlot to TRY. We accessed plant trait data from TRY version 3.0 on August 10, 2016 

758 and included 18 traits that describe the leaf, wood and seed economics spectra (Westoby, 1998; 
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759 Reich, 2014; Table S6.4 in Appendix S6), and are known to affect different key ecosystem 

760 processes and to respond to macroclimatic drivers. These traits were represented across all 

761 species in the TRY database by at least 1,000 trait records. We excluded trait records from 

762 manipulative experiments and outliers (Kattge et al., 2011), which resulted in a matrix with 

763 632,938 individual plant records on 52,032 taxa in TRY, having data records for an average of 

764 3.08 for the 18 selected traits. On average, each trait has been measured at least once in 17.1% 

765 of all taxa. In order to attain data for these 18 traits for all species with at least one trait value in 

766 TRY, we employed hierarchical Bayesian modelling, using the R package ‘BHPMF’ (Schrodt et 

767 al., 2015; Fazayeli, Banerpee, Kattge, Schrodt & Reich, 2017), to fill a gap in the matrix of 

768 individual plant records in TRY. Gap-filling allows to obtain trait values for a species on which 

769 this trait has not been measured, but for which other traits were available. To assess gap-filling 

770 quality, we used the probability density distributions provided by BHPMF for each imputation and 

771 removed highly uncertain imputations with a coefficient of variation >1. We then loge-transformed 

772 all gap-filled trait values and averaged them by taxon. For taxa recorded at genus level only, we 

773 calculated genus means, resulting in a full trait matrix for 26,632 out of the 54,519 taxa in sPlot 

774 (45.9%), with 6, 1,510 and 25,116 taxa at the family, genus and species level, respectively. 

775 These species covered 88.7% of all species-by-plot combinations.

776 For every trait j and plot k, we calculated the community-weighted mean (CWM) and the 

777 community-weighted variance (CWV) for each of the 18 traits in a plot (Enquist et al., 2015):

778

779

780 where nk is the number of species with trait information in plot k, pi,k is the relative abundance of 

781 species i in plot k calculated as the species’ fraction in cover or abundance of total cover or 

782 abundance, and ti,j is the mean value of species i for trait j. CWMs and CWVs were calculated for 
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783 18 traits in 1,117,369 and 1,099,463 plots, respectively, the second being a smaller number as 

784 at least two taxa were needed for CWV calculation. 

785

786 3. CONTENT OF sPlot 2.1

787 3.1 Plot community data

788 sPlot 2.1 contains 1,121,244 vegetation plots from 160 countries and from all continents (Figure 

789 3). The global coverage is biased towards Europe, North America and Australia, reflecting 

790 unequal sampling effort across the globe (Table 1). At the ecoregion level, major gaps occur in 

791 the wet tropics of South America and Asia, as well as in subtropical deserts worldwide and in the 

792 North American taiga. Although the plots are highly clustered geographically, their coverage in 

793 the environmental space is much more representative: the highest concentration of plots is 

794 found in environments that are most abundant globally (Figure 2), while they are lacking in the 

795 very moist parts of the environmental space, which are also spatially rare, and in the very cold 

796 parts, which are sparsely vegetated.

797 In most cases (98.4%), plot records in sPlot include full species lists of vascular plants, 

798 while 1.6% had only wood species above a certain diameter or only the most dominant species 

799 recorded. Terricolous bryophytes and lichens were additionally identified in 14% and 7% of plots, 

800 respectively. (Table S2.1 in Appendix S2). Forest and non-forest plots comprise 330,873 

801 (29.7%) and 513,035 (46.0%) of all plots in sPlot, respectively. In most cases, species 

802 abundance was estimated using different variants of the Braun-Blanquet cover-abundance scale 

803 (66%), followed by percentage cover (15%) and 55 other numeric or ordinal scales. The 

804 temporal extent of the data spans from 1885 to 2015, but >94% of vegetation plots were 

805 recorded later than 1960 (Fig. S2.1 in Appendix S2). Almost all plots are georeferenced 

806 (1,120,686) and most plots have location uncertainty of 10 m or less (Fig. S2.2 in Appendix 

807 S2).
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808 Vascular plant richness per plot ranges from 1 to 723 species (median = 17 species). The 

809 most frequent richness class is between 20 and 25 species (Fig. S2.3 in Appendix S2). Plot 

810 size is reported in 65.4% of plots, ranging from less than 1 m2 to 25 ha, with a median of 36 m2. 

811 While forest plots have plot sizes 100 m2, and in most cases 1,000 m2, non-forest plots range 

812 between 5 and 100 m2 (Fig. S2.4 in Appendix S2). When using these size ranges, forest 

813 plots tend to be richer in species (Figure 4a). The fact that the gradient in richness found in our 

814 plots was at least one order of magnitude stronger than differences that could be expected by 

815 the differences in plot sizes, prompted us to produce the first global maps of plot-scale species 

816 richness, separately for forests and non-forests (Figure 4a). While plots with complete vascular 

817 species composition are largely lacking from the wet tropics, for the remaining biomes the plot-

818 scale richness data do not show the typical latitudinal richness gradient in either formation. 

819 Particularly species-rich forests are found in the wet subtropics (such as SE United States, 

820 Taiwan and the East coast of Australia) as well as in some mountainous regions of the nemoral 

821 and steppic biomes of Eurasia. Likewise, non-forest communities, have a particularly high mean 

822 vascular plant species in mountainous regions of the nemoral and steppic biomes of Eurasia. 

823

824

825 3.2 Phylogenetic information

826 The phylogenetic tree for sPlot was produced from 53,489 vascular plant names contained in the 

827 database, comprising 5518 genera (Appendix S7). Moderately to highly frequent species in 

828 sPlot 2.1 are equally distributed across the phylogeny (corresponding to yellowish to reddish 

829 colors for low and high peaks, respectively, in Fig. S7.6 in Appendix S7). Coverage of species 

830 included in the phylogeny ranges from 89% of species that occur only once in all plots to 100% 

831 of species with a frequency >10,000 plots (Fig. S7.7 in Appendix S7).

832

833 3.3 Functional information
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834 The proportion of species with trait information increases with the species’ frequency in 

835 plots. Gap-filled trait information is available for 77.2% and 96.2% for taxa that occurred in more 

836 than 100 and 1,000 plots, respectively. Trait coverage is similar across biomes (Fig. S8.8 in 

837 Appendix S8). Across all biomes, the proportion of species for which gap-filled trait data are 

838 available increases with the species’ frequency across plots. Compared to gap-filled data, trait 

839 coverage for the original trait data is considerably lower, being highest for height, seed mass, 

840 leaf area and specific leaf area (SLA, Fig. S8.9 in Appendix S8).

841 The high representation of the 18 traits in the gap-filled trait data and the high degree of 

842 trait coverage for frequent species across all biomes (>75%) made us confident to produce the 

843 first maps of global patterns of community-weighted means (CWMs) (Figure 4b–d). The maps 

844 show the main trait dimensions of SLA, height and seed mass, separately for forests and non-

845 forests, for those regions of the world that are already sufficiently covered by sPlot data. 

846 Accordingly, CWMs of SLA are quite similar for forest and non-forest plots, being highest in 

847 western North America and Europe and lowest in eastern North America, East and South 

848 Australia (Figure 4b). Non-forest vegetation shows lowest CWMs of SLA in the desert regions of 

849 the Namib and Sinai. Forests with highest CWMs of canopy height are found along the western 

850 and eastern coast of North America, some regions in Europe, East Asia and southern Australia 

851 (Figure 4c). These areas only partly coincide with those of highest seed masses for forests, 

852 while seed mass in non-forests is highest in the eastern Mediterranean Basin and in Central 

853 Asia (Figure 4d). The corresponding patterns for CWV are shown in Appendix Fig. S9.10 in 

854 Appendix S9.

855

856 4. DATA USAGE 

857 The sPlot database (the vegetation-plot data, including the environmental information for each 

858 plot and the species phylogeny) is released in fixed versions to allow reproducibility of results, 

859 but also due to the enormous effort needed for data integration and harmonization and for 

Page 43 of 162 Journal of Vegetation Science



For Review Only

35

860 updating the phylogeny. By delivering few fixed versions while keeping older versions available, 

861 the sPlot consortium ensures that the same data can be used in parallel projects and that the 

862 data underlying a specific study remain accessible in the future, thus allowing re-analysis. Each 

863 new version will be matched to the current TRY database.

864 Data access to sPlot is regulated by the Governance and Data Property Rules 

865 (www.idiv.de/sPlot) to ensure a fair balance between the interests of data contributors and data 

866 analysts. In brief, the sPlot Rules state that: (1) all contributing vegetation-plot databases 

867 become members of the sPlot consortium, represented by their custodian and deputy custodian; 

868 (2) vegetation-plot data contributed to sPlot remain the property of the data contributors and can 

869 be withdrawn at any time except for approved projects; (3) other scientists (e.g. data managers 

870 or participants of the sPlot workshops) with particular responsibilities may also be appointed as 

871 personal members to the sPlot consortium; (4) sPlot data can be requested for projects that 

872 involve at least one member of the sPlot consortium; (5) whenever a project has been proposed, 

873 all sPlot consortium members will be informed and can declare their interest in becoming co-

874 authors of manuscripts resulting from this project and then becoming actively involved in data 

875 evaluation and writing; and (6) if also the matched gap-filled or original trait data from TRY are 

876 requested for a project, likewise members from the TRY consortium can opt-in as co-authors. 

877 The sPlot database is, therefore, available according to a ‘give-and-receive’ system. Moreover, 

878 the data are available to any researcher by establishing a collaboration that includes and is 

879 supported by at least one sPlot consortium member.

880 The sPlot consortium is governed by a Steering Committee elected by all consortium 

881 members for two-year, renewable terms. Project proposals can be submitted to the Steering 

882 Committee, which ensures that the sPlot Rules are followed and redundant work between 

883 overlapping projects is avoided. The lists of databases, sPlot consortium members and the 

884 Steering Committee members are updated regularly on the sPlot website, as are the sPlot Rules 

885 and the list of approved projects.
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886

887 5. EXPECTED IMPACT AND LIMITATIONS

888 The main aim of the sPlot database is to catalyze a collaborative network for understanding 

889 global diversity patterns of plant communities in space and time. sPlot provides a unique, 

890 integrated global repository of data that would otherwise be fragmented in unconnected and 

891 structurally inconsistent databases at regional, national or continental levels. Together with the 

892 provision of harmonized phylogenetic, functional and environmental information, sPlot allows, for 

893 the first time, global analyses of plant community data. Compared to approaches using data 

894 aggregated from species occurrences in grid cells, sPlot will significantly advance ecological 

895 analyses and future interdisciplinary research in at least four different ways.

896 1.) Using sPlot, one can predict the species that can co-exist in a community and also the 

897 frequencies of their co-occurrence (Breitschwerdt, Jandt & Bruelheide, 2015) or niche 

898 overlap (Broennimann et al., 2012). In addition, emerging tools such as Markov networks 

899 can be used to infer strengths of interspecific interactions (Harris, 2016). When 

900 investigating community assembly rules, the same information can be used to derive 

901 species pools for specific vegetation types (de Bello et al., 2016; Lewis, Szava-Kovats & 

902 Pärtel, 2016; Karger et al., 2016). Moreover, the co-occurrence data from sPlot can be 

903 used to address fundamental patterns and drivers of plant invasions better than 

904 information on large geographic entities (e.g. van Kleunen et al., 2015) alone could.

905 2.) sPlot data can be aggregated across all types of plots, by grid cells, ecoregions, 

906 environment, or even vegetation type or formation. Furthermore, replicated plots within 

907 grid cells, ecoregions, or any other subdivision of environmental conditions or vegetation 

908 types allow users to derive measures of compositional differences between plant 

909 communities within grid cells (= beta diversity; Table 1). Thus, the community data are an 

910 important complement to regional-scale species occurrence data (e.g. Kreft & Jetz, 2007; 

911 Enquist et al., 2016).
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912 3.) sPlot data provide information on the proportion of species in communities. When 

913 combined with functional trait information, relative abundance of species allows 

914 calculation of community abundance-weighted mean trait values (Bruelheide et al. 2018). 

915 Information on the relative contribution of species to a community-aggregated trait value is 

916 particularly necessary when traits are used as proxies for vegetation functions and 

917 processes, allowing to test, among other things, the mass ratio hypothesis (Grime, 1998; 

918 Garnier et al., 2004) and to assess the role of divergent traits (Díaz et al., 2007; Kröber et 

919 al., 2015).

920 4.) Plant species within plots can be linked to traits that predict interactions with organisms 

921 from other trophic groups, both belowground (mycorrhizae, soil decomposers) and 

922 aboveground (herbivores and pollinators). This will allow to link vegetation plot information 

923 to ecosystem processes and services such as pest control, pollination and nutrient cycling 

924 (e.g. de Bello et al., 2010).

925 Despite the large amount of available data and its potential suitability for global research, 

926 a number of limitations must be considered by future users of sPlot, such as i) biases towards 

927 certain regions and communities, ii) near-complete lack of plots with complete vascular plant 

928 species composition for certain regions (e.g. the wet tropics), iii) identification or sampling errors 

929 by the surveyors and incomplete records because the detection of some species may be 

930 precluded in certain seasons by their phenology, iv) taxonomic uncertainty particularly in the 

931 tropics, v) strongly varying plot sizes employed in different studies and regions, vi) lack of trait 

932 measures at the plot level. For example, patterns of diversity components are typically affected 

933 by grain size. This means that using sPlot data for such studies either requires filtering for plots 

934 with identical or at least similar size or accounting for the plot-size effects in the statistical model. 

935 In addition, analyses of functional diversity with sPlot data is limited by the absence of trait data 

936 for a (small) portion of the species and by the lack of plot-specific trait measures. Furthermore, 

937 the non-random and geographically and ecologically very unequal distribution of the plots 

Page 46 of 162Journal of Vegetation Science



For Review Only

38

938 contained in sPlot call for stratified resampling to balance records of different environments (e.g. 

939 stratified by climate, Figure 2) or physiognomic formations (Figure 4). Users of sPlot need to be 

940 aware of these and other limitations and to correct potential biases for their specific research 

941 question.

942

943 6. CONCLUSION

944 sPlot is a unique global database of plant community records sampled with relatively similar 

945 methods widely used in vegetation ecology. The integration of co-occurrence data into a unified 

946 database that can be directly linked to environmental, functional and phylogenetic information, 

947 makes sPlot an unprecedented and essential tool for analyzing global plant diversity, the 

948 structure of plant communities and the co-occurrence of plant species. The compatibility of this 

949 consolidated database with other global databases, e.g. via a joint taxonomic backbone with 

950 TRY and the Global Naturalized Alien Flora (GloNAF; van Kleunen et al., 2015) (via taxon 

951 names), or via standardized geo-reference with databases of environmental information such as 

952 CHELSA, WorldClim or SoilGrids (Bruelheide et al. 2018), facilitates data integration and creates 

953 new research opportunities. The adaptive management of the database employed by the sPlot 

954 consortium allows regular incorporation of new data, resulting in a dynamic platform for storing 

955 and analyzing the most comprehensive compilation of plant community data worldwide.

956
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1350 Data Property Rules of the sPlot Working Group, which are available on the sPlot website 

1351 (www.idiv.de/sPlot). After acceptance, the respective data will be provided. In addition to the plot 
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1355 Additional Supporting Information may be found online in the supporting information tab for this 
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1358 2.1

1359 Appendix S2 Data associated to the vegetation plot records stored in sPlot 2.1

1360 Appendix S3 Details on the workflow for setting up plot definitions in sPlot 2.1
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1367 Appendix S8 Gap-filled trait information

1368 Appendix S9 Global patterns of community-weighted variances
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1372 Figure 1. Conceptual figure visualizing how functional composition (in this case plant height) 

1373 differs between calculations based on mean traits for grid cells and community data sampled in 

1374 vegetation plots. Occurrence data (e.g. from distribution atlases, GBIF, etc.) can be used to 

1375 calculate mean trait values in grid cells G1–G3. However, community weighted means (CWMs) 

1376 of traits differ across local plots (P1–P6), while the mean values of CWMs in the grid cells differ 

1377 from the unweighted values calculated in the grid cells. This example is simplified by showing 

1378 few species and few plots. In reality, differences are generally more pronounced.
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1380

1381
1382 Figure 2. Distribution of vegetation plots from sPlot 2.1 in the global environmental space. 

1383 Comparison of the distribution of all terrestrial 2.5 arc-minute cells (a) and plots in sPlot 2.1 (b) in 

1384 the principal component analysis (PCA) space defined on 30 environmental (climate and soil) 

1385 variables. The PCA space was divided into a 100 × 100 regular grid. For each element of this 

1386 grid, the graphs show the number of 2.5 arc-minute cells (a) and plots (b), respectively. Colors 

1387 refer to the logarithm of number of plots, with the legend showing untransformed number of 

1388 plots. The first and second PCA axis explained 48.6% and 27.3% of the total variance. 
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1390

1391 Figure 3. Global coverage of sPlot 2.1; (a) contributing databases identified by different colours 

1392 with indication of the two data aggregators (EVA, TAVA) and a few particularly large individual 

1393 databases; (b) available plot numbers per WWF Ecoregion; and (c) available plot density in grid 

1394 cells of 100 km × 100 km.
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1396
1397 Figure 4. Examples of global community-level patterns that can be derived from (a) sPlot alone 

1398 and (b–d) sPlot combined with TRY, here shown as raw data averaged by 1-degree grid cells. 

1399 There are only a very few cells (142 out of 2633) comprising only a single plot. For the maps, 

1400 only plots with full vascular species composition and spatial accuracy < 5 km were used. They 

1401 are based on 148,474 and 218,051 plots for forests and non-forests respectively. Note that 

1402 these maps are not corrected for biases caused by the facts that not all community types were 
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1403 recorded in all grid cells and that plot sizes as well as the fraction of species with available trait 

1404 data varied spatially. Maps show patterns of (a) fine-grain alpha diversity, expressed as vascular 

1405 plant species richness (only plots with plot sizes of 100–1000 m² for forests and 5–100 m² for 

1406 non-forests); (b) community-weighted means (CWMs) for loge-transformed trait values of specific 

1407 leaf area (SLA, m2 kg-1), (c) plant height (m) and (d) seed mass (mg).
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1409 Table 1. Types of information provided by single vegetation plots, vegetation plots aggregated 

1410 within grid cells (or other geographic units) and single species occurrence records aggregated 

1411 within grid cells. The three levels are illustrated in Figure 1.

Information from... Single vegetation 

plots

Set of vegetation 

plots aggregated 

within grid cells

Grid-cell data from floristic 

inventories

To derive information on the … Plot level Grid cell level Grid cell level

Type of occurrence Co-occurrence, 

occurrence by 

vegetation type

Occurrence by 

vegetation type

Occurrence

Community assembly rules Yes (co-occurrence is 

a prerequisite for 

species interactions)

No No

Absences Yes (for the target 

plant group in a study)

No (except for 

intensive sampling 

schemes)

Depending on sampling 

intensity

Floristic composition … … of the local 

community

… of the species 

pools of vegetation 

types

… of the total set of species 

Diversity  ,  

Species abundance Local cover-

abundance

Mean cover-

abundance and 

frequency by 

vegetation type

Occurrence only

Combination with traits Functional 

composition of the 

local community (traits 

unweighted or 

weighted by cover: 

CWM, CWV)

Functional 

composition of the 

species pool 

(unweighted or 

weighted)

Functional composition of 

the total set of species 

(unweighted only)

Environmental filtering … … at the local level … at the regional 

level

… at the regional level

1412
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1414 Table 2. Plot datasets included in sPlot 2.1. GIVD ID refers to the ID in the Global Index of 

1415 Vegetation-Plot Databases (http://www.givd.info), which manages the metadata for sPlot and 

1416 provides updated online descriptions of these databases; * after the GIVD ID indicates that the 

1417 respective database description is currently not visible on the GIVD website. Datasets 

1418 contributed in harmonized format from a continental data aggregator (“collective database” 

1419 according to the sPlot Rules) are listed under its name. Further references, attributions and 

1420 disclaimers for particular datasets are found Appendix S1.

GIVD ID Database name # of 
plots in 
sPlot 
2.1

Custodian Deputy 
custodian

Reference

[Aggregator] European Vegetation Archive 
(EVA)

950,001 Milan Chytrý Ilona Knollová Chytrý et al. (2016)

00-00-004 Vegetation Database of Eurasian 
Tundra

1,132 Risto Virtanen

00-RU-001 Vegetation Database Forest of 
Southern Ural

1,102 Vassiliy 
Martynenko

00-RU-003 Database Meadows and Steppes 
of Southern Ural

2,354 Sergey Yamalov Mariya Lebedeva

00-TR-001 Forest Vegetation Database of 
Turkey - FVDT

919 Ali Kavgacı

00-TR-002* Non-forest Vegetation Database of 
Turkey

3,018 Deniz Işık Didem Ambarlı

AS-TR-002 Vegetation Database of Oak 
Communities in Turkey

1,181 Emin Uğurlu

EU-00-002 Nordic-Baltic Grassland 
Vegetation Database (NBGVD)

7,675 Jürgen Dengler Łukasz Kozub Dengler & Rūsiņa (2012)

EU-00-011 Vegetation-Plot Database of the 
University of the Basque Country 
(BIOVEG)

18,441 Idoia Biurrun Itziar García-
Mijangos

Biurrun et al. (2012)

EU-00-013 Balkan Dry Grasslands Database 7,683 Kiril Vassilev Armin Macanović Vassilev et al. (2012)
EU-00-016 Mediterranean Ammophiletea 

Database
7,359 Corrado Marcenò Borja Jiménez-

Alfaro
Marcenò & Jiménez-
Alfaro (2017)

EU-00-017 European Coastal Vegetation 
Database

4,624 John Janssen

EU-00-018 The Nordic Vegetation Database 5,477 Jonathan Lenoir Jens-Christian 
Svenning

Lenoir et al. (2013)

EU-00-019 Balkan Vegetation Database 9,118 Kiril Vassilev Hristo 
Pedashenko

Vassilev et al. (2016)

EU-00-020 WetVegEurope 14,111 Flavia Landucci Landucci et al. (2015)
EU-00-022 European Mire Vegetation 

Database
10,147 Tomáš Peterka Martin Jiroušek Peterka et al. (2015)

EU-AL-001 Vegetation Database of Albania 290 Michele De 
Sanctis

Giuliano Fanelli De Sanctis et al. (2017)

EU-AT-001 Austrian Vegetation Database 34,458 Wolfgang Willner Christian Berg Willner et al. (2012)
EU-BE-002 INBOVEG 25,665 Els De Bie
EU-BG-001 Bulgarian Vegetation Database 5,254 Iva Apostolova Desislava 

Sopotlieva
Apostolova et al. (2012)

EU-CH-005 Swiss Forest Vegetation Database 14,193 Thomas 
Wohlgemuth

Wohlgemuth (2012)
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EU-CZ-001 Czech National Phytosociological 
Database

104,697 Milan Chytrý Dana Holubová Chytrý & Rafajová 
(2003)

EU-DE-001 VegMV 53,822 Florian Jansen Christian Berg Jansen et al. (2012)
EU-DE-013 VegetWeb Germany 23,078 Jörg Ewald Ewald et al. (2012)
EU-DE-014 German Vegetation Reference 

Database (GVRD)
30,840 Ute Jandt Helge Bruelheide Jandt & Bruelheide 

(2012)
EU-DK-002 National Vegetation Database of 

Denmark
24,264 Jesper Erenskjold 

Moeslund
Rasmus Ejrnæs

EU-ES-001 Iberian and Macaronesian 
Vegetation Information System 
(SIVIM)    Wetlands

6,560 Aaron Pérez-
Haase

Xavier Font

EU-FR-003 SOPHY 209,864 Henry Brisse Patrice De 
Ruffray

Brisse et al. (1995)

EU-GB-001 UK National Vegetation 
Classification Database

28,533 John S. Rodwell

EU-GR-001 KRITI 292 Erwin Bergmeier
EU-GR-005 Hellenic Natura 2000 Vegetation 

Database (HelNatVeg)
5,168 Panayotis 

Dimopoulos
Ioannis Tsiripidis Dimopoulos & Tsiripidis 

(2012)
EU-GR-006 Hellenic Woodland Database 3,199 Georgios Fotiadis Ioannis Tsiripidis Fotiadis et al.  (2012)
EU-HR-001 Phytosociological Database of 

Non-Forest Vegetation in Croatia
5,057 Zvjezdana 

Stančić
Stančić (2012)

EU-HR-002 Croatian Vegetation Database 8,734 Željko Škvorc Daniel 
Krstonošić

EU-HU-003 CoenoDat Hungarian 
Phytosociological Database

8,505 János Csiky Zoltán Botta-
Dukát

Lájer et al. (2008)

EU-IT-001 VegItaly 15,332 Roberto 
Venanzoni

Flavia Landucci Landucci et al. (2012)

EU-IT-010 Italian National Vegetation 
Database (BVN/ISPRA)

3,562 Laura Casella Pierangela 
Angelini

Casella et al. (2012)

EU-IT-011 Vegetation-Plot Database 
Sapienza University of Rome 
(VPD-Sapienza)

12,780 Emiliano Agrillo Fabio Attorre Agrillo et al. (2017)

EU-LT-001 Lithuanian Vegetation Database 7,821 Valerijus 
Rašomavičius

Domas Uogintas

EU-LV-001 Semi-natural Grassland 
Vegetation Database of Latvia

5,594 Solvita Rūsiņa Rūsiņa (2012)

EU-MK-001 Vegetation Database of the 
Republic of Macedonia

1,417 Renata 
Ćušterevska

EU-NL-001 Dutch National Vegetation 
Database

102,327 Joop H.J. 
Schaminée

Stephan M. 
Hennekens

Schaminée et al. (2006)

EU-PL-001 Polish Vegetation Database 22,229 Zygmunt Kącki Grzegorz 
Swacha

Kącki & Śliwiński (2012)

EU-RO-007 Romanian Forest Database 6,017 Adrian Indreica Pavel Dan 
Turtureanu

Indreica et al. (2017)

EU-RO-008 Romanian Grassland Database 1,921 Eszter Ruprecht Kiril Vassilev Vassilev et al. (2018)
EU-RS-002 Vegetation Database Grassland 

Vegetation of Serbia
5,587 Svetlana Aćić Zora Dajić 

Stevanović
Aćić et al. (2012)

EU-RU-002 Lower Volga Valley 
Phytosociological Database

14,853 Valentin Golub Viktoria 
Bondareva

Golub et al. (2012)

EU-RU-003 Vegetation Database of the Volga 
and the Ural Rivers Basins

1,516 Tatiana Lysenko Lysenko et al. (2012)

EU-RU-011 Vegetation Database of Tatarstan 7,471 Vadim Prokhorov Maria 
Kozhevnikova

Prokhorov et al. (2017)

EU-SI-001 Vegetation Database of Slovenia 10,986 Urban Šilc Filip Küzmič Šilc (2012)
EU-SK-001 Slovak Vegetation Database 36,405 Milan Valachovič Jozef Šibík Šibík (2012)
EU-UA-001 Ukrainian Grasslands Database 4,043 Anna Kuzemko Yulia Vashenyak Kuzemko (2012)
EU-UA-006 Vegetation Database of Ukraine 

and Adjacent Parts of Russia
3,326 Viktor 

Onyshchenko
Vitaliy 
Kolomiychuk
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[Aggregator] Tropical African Vegetation 
Archive (TAVA)

6,677 Marco Schmidt Stefan Dressler Janßen et al. (2011)

AF-00-001 West African Vegetation Database 3,129 Marco Schmidt Georg Zizka Schmidt et al. (2012)
AF-00-008 PANAF Vegetation Database 2,469 Hjalmar Kühl TeneKwetche 

Sop
AF-BF-001 Sahel Vegetation Database 1,079 Jonas V. Müller Marco Schmidt Müller (2003)

Other databases 164,566
00-00-001 RAINFOR data managed by 

ForestPlots.net
1,827 Oliver L. Phillips Aurora Levesley Lopez-Gonzalez et al. 

(2011)
00-00-003 SALVIAS 4,883 Brian Enquist Brad Boyle
00-00-005 Tundra Vegetation Plots 

(TundraPlot)
577 Anne D. Bjorkman Sarah Elmendorf Elmendorf et al. (2012)

00-RU-002 Database of Masaryk University`s 
Vegetation Research in Siberia

1,547 Milan Chytrý Chytrý (2012)

AF-00-003 BIOTA Southern Africa 
Biodiversity Observatories 
Vegetation Database

1,666 Norbert Jürgens Gerhard Muche Muche et al. (2012)

AF-00-006 SWEA-Dataveg 2,704 Miguel Alvarez Michael Curran
AF-00-009 Vegetation Database of the 

Okavango Basin
590 Rasmus 

Revermann
Manfred Finckh Revermann et al. (2016)

AF-CD-001 Forest Database of Central Congo 
Basin

292 Elizabeth 
Kearsley

Hans Verbeeck Kearsley et al. (2013)

AF-ET-001 Vegetation Database of Ethiopia 74 Desalegn Wana Anke Jentsch Wana & Beierkuhnlein 
(2011)

AF-MA-001 Vegetation Database of Southern 
Morocco

1,337 Manfred Finckh Finckh (2012)

AF-ZA-003* SynBioSys Fynbos Vegetation 
Database

3,810 John Janssen

AF-ZW-001* Vegetation Database of Zimbabwe 36 Cyrus Samimi Samimi (2003)
AS-00-001 Korean Forest Database 4,885 Tomáš Černý Petr Petřík Černý et al. (2015)
AS-00-003 Vegetation of Middle Asia 1,381 Arkadiusz Nowak Marcin Nobis Nowak et al. (2017)
AS-00-004 Rice Field Vegetation Database 179 Arkadiusz Nowak
AS-BD-001 Tropical Forest Dataset of 

Bangladesh
211 Mohammed A.S. 

Arfin Khan
Fahmida Sultana

AS-CN-001 China Forest-Steppe Ecotone 
Database

148 Hongyan Liu Fengjun Zhao Liu et al. (2000)

AS-CN-002 Tibet-PaDeMoS Grazing Transect 146 Karsten Wesche Wang et al. (2017)
AS-CN-003* Vegetation Database of the BEF 

China Project
27 Helge Bruelheide Bruelheide et al. (2011)

AS-CN-004* Vegetation Database of the 
Northern Mountains in China

485 Zhiyao Tang

AS-CN-005* Database Steppe Vegetation of 
Xinjiang

129 Kohei Suzuki

AS-EG-001 Vegetation Database of Sinai in 
Egypt

926 Mohamed Z. 
Hatim

Hatim (2012)

AS-ID-001 Sulawesi Vegetation Database 24 Michael Kessler
AS-IR-001 Vegetation Database of Iran 2,335 Jalil Noroozi Parastoo 

Mahdavi
AS-KG-001 Vegetation Database of South-

Western Kyrgyzstan
452 Peter Borchardt Udo Schickhoff Borchardt & Schickhoff 

(2012)
AS-KZ-001 Database of Meadow Vegetation 

in the NW Tian Shan Mountains
94 Viktoria Wagner Wagner (2009)

AS-MN-001 Southern Gobi Protected Areas 
Database

1,516 Henrik von 
Wehrden

Karsten Wesche von Wehrden et al. 
(2009)

AS-RU-001 Wetland Vegetation Database of 
Baikal Siberia (WETBS)

2,381 Victor Chepinoga Chepinoga (2012)
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AS-RU-002 Database of Siberian Vegetation 
(DSV)

9,116 Andrey Korolyuk Andrei Zverev

AS-RU-004 Database of the University of 
Münster - Biodiversity and 
Ecosystem Research Group's  
Vegetation Research in Western 
Siberia and Kazakhstan

445 Norbert Hölzel Wanja Mathar

AS-SA-001* Vegetation Database of Saudi 
Arabia

919 Mohamed Abd El-
Rouf Mousa El-
Sheikh

AS-TJ-001 Eastern Pamirs 282 Kim André 
Vanselow

Vanselow (2016)

AS-TW-001 National Vegetation Database of 
Taiwan

930 Ching-Feng Li Chang-Fu Hsieh

AS-YE-001 Socotra Vegetation Database 396 Michele De 
Sanctis

Fabio Attorre De Sanctis & Attorre 
(2012)

AU-AU-002 TERN AEKOS 21,261 Anita Smyth Ben Sparrow Turner et al (2017)
AU-NC-001 New Caledonian Plant Inventory 

and Permanent Plot Network (NC-
PIPPN)

201 Jérôme 
Munzinger

Philippe 
Birnbaum

Ibanez et al. (2014)

AU-NZ-001 New Zealand National Vegetation 
Databank

1,895 Susan Wiser Wiser et al. (2001)

AU-PG-001 Forest Plots from Papua New 
Guinea

63 Timothy Whitfeld George Weiblen Whitfeld et al. (2014)

NA-00-002 Tree Biodiversity Network 
(BIOTREE-NET)

1,757 Luis Cayuela Cayuela et al. (2012)

NA-CA-003 Database of Timberline Vegetation 
in NW North America

110 Viktoria Wagner Toby Spribille agner et al. (2014)

NA-CA-004 Understory of Sugar Maple 
Dominated Stands in Quebec and 
Ontario (Canada)

156 Isabelle Aubin Aubin et al. (2007)

NA-CA-005* Boreal Forest of Canada 89 Yves Bergeron Louis De 
Grandpré

NA-GL-001 Vegetation Database of Greenland 664 Birgit Jedrzejek Fred J.A. Daniëls Sieg et al. (2006)
NA-US-002 VegBank 67,352 Robert K. Peet Michael T. Lee Peet et al. (2012a)
NA-US-006 Carolina Vegetation Survey 

Database
17,221 Robert K. Peet Michael T. Lee Peet et al. (2012b)

NA-US-014 Alaska-Arctic Vegetation Archive 1,363 Donald A. Walker Amy Breen Walker et al. (2016)
SA-00-002 VegPáramo 2,643 Gwendolyn Peyre Xavier Font Peyre et al. (2015)
SA-AR-002 Vegetation Database of Central 

Argentina
218 Marcelo R. 

Cabido
Alicia Acosta

SA-BO-003 Bolivia Forest Plots 75 Michael Kessler Sebastian 
Herzog

SA-BR-002 Forest Inventory, State of Santa 
Catarina, Brazil (IFFSC Project)

1,669 Alexander 
Christian Vibrans

André Luis de 
Gasper

Vibrans et al. (2010)

SA-BR-003 Grasslands of Rio Grande do Sul, 
Brazil

320 Eduardo Vélez-
Martin

Valério De Patta 
Pillar

SA-BR-004 Grassland Database of Campos 
Sulinos

161 Gerhard E. 
Overbeck

Valério De Patta 
Pillar

SA-CL-002 SSAForests_Plots_db 261 Alvaro G. 
Gutierrez

SA-CL-003* Chilean Park Transects - Fondecyt 
1040528

165 Aníbal Pauchard Alicia 
Marticorena

Pauchard et al. (2003)

SA-EC-001 Ecuador Forest Plot Database 172 Jürgen Homeier

1421

1422

Page 76 of 162Journal of Vegetation Science



For Review Only

1

1 TITLE PAGE

2

3 REPORT PAPER

4

5 sPlot – a new tool for global vegetation analyses

6 Helge Bruelheidex,1,2, Jürgen Denglerx,3,4,2, Borja Jiménez-Alfarox,5,1,2, Oliver Purschkex,6, Stephan M. 

7 Hennekens7, Milan Chytrý8, Valério D. Pillar9, Florian Jansen10, Jens Kattge11,2, Brody Sandel12, Isabelle 

8 Aubin13, Idoia Biurrun14, Richard Field15, Sylvia Haider1, Ute Jandt1, Jonathan Lenoir16, Robert K. Peet17, 

9 Gwendolyn Peyre18, Francesco Maria Sabatini1,2, Marco Schmidt19, Franziska Schrodt15, Marten Winter2, 

10 Svetlana Aćić20, Emiliano Agrillo21, Miguel Alvarez22, Didem Ambarlı23, Pierangela Angelini24, Iva 

11 Apostolova25, Mohammed A.S. Arfin Khan26,27, Elise Arnst28, Fabio Attorre21, Christopher Baraloto29,30, 

12 Michael Beckmann31, Christian Berg32, Yves Bergeron33, Erwin Bergmeier34, Anne D. Bjorkman35, Viktoria 

13 Bondareva36, Peter Borchardt37, Zoltán Botta-Dukát38, Brad Boyle39, Amy Breen40, Henry Brisse41, Chaeho 

14 Byun42, Marcelo R. Cabido43, Laura Casella24, Luis Cayuela44, Tomáš Černý45, Victor Chepinoga46, János 

15 Csiky47, Michael Curran48, Renata Ćušterevska49, Zora Dajić Stevanović20, Els De Bie50, Patrice De 

16 Ruffray51, Michele De Sanctis21, Panayotis Dimopoulos52, Stefan Dressler53, Rasmus Ejrnæs54, Mohamed 

17 Abd El-Rouf Mousa El-Sheikh55,56, Brian Enquist39, Jörg Ewald57, Jaime Fagúndez58, Manfred Finckh59, 

18 Xavier Font60, Estelle Forey61, Georgios Fotiadis62, Itziar García-Mijangos14, André Luis de Gasper63, 

19 Valentin Golub36, Alvaro G. Gutierrez64, Mohamed Z. Hatim65, Tianhua He66, Pedro Higuchi67, Dana 

20 Holubová8, Norbert Hölzel68, Jürgen Homeier69, Adrian Indreica70, Deniz Işık Gürsoy71, Steven Jansen72, 

21 John Janssen7, Birgit Jedrzejek68, Martin Jiroušek8,73, Norbert Jürgens59, Zygmunt Kącki74, Ali Kavgacı75, 

22 Elizabeth Kearsley76, Michael Kessler77, Ilona Knollová8, Vitaliy Kolomiychuk78, Andrey Korolyuk79, Maria 

23 Kozhevnikova80, Łukasz Kozub81, Daniel Krstonošić82, Hjalmar Kühl83,2, Ingolf Kühn84,1,2, Anna Kuzemko85, 

24 Filip Küzmič86, Flavia Landucci8, Michael T. Lee87, Aurora Levesley88, Ching-Feng Li89, Hongyan Liu90, 

25 Gabriela Lopez-Gonzalez88, Tatiana Lysenko91, Armin Macanović92, Parastoo Mahdavi93, Peter Manning94, 

26 Corrado Marcenò14, Vassiliy Martynenko95, Maurizio Mencuccini96, Vanessa Minden97, Jesper Erenskjold 

27 Moeslund54, Marco Moretti98, Jonas V. Müller99, Jérôme Munzinger100, Ülo Niinemets101, Marcin Nobis102, 

28 Jalil Noroozi103, Arkadiusz Nowak104, Viktor Onyshchenko85, Gerhard E. Overbeck9, Wim A. Ozinga105, 

Page 77 of 162 Journal of Vegetation Science



For Review Only

2

29 Anibal Pauchard106, Hristo Pedashenko107, Josep Peñuelas108,109, Aaron Pérez-Haase110,111, Tomáš 

30 Peterka8, Petr Petřík112, Oliver L. Phillips88, Vadim Prokhorov80, Valerijus Rašomavičius113, Rasmus 

31 Revermann59, John Rodwell114, Eszter Ruprecht115, Solvita Rūsiņa116, Cyrus Samimi117, Joop H.J. 

32 Schaminée7, Ute Schmiedel59, Jozef Šibík118, Urban Šilc86, Željko Škvorc82, Anita Smyth119, Tenekwetche 

33 Sop83,2, Desislava Sopotlieva25, Ben Sparrow119, Zvjezdana Stančić120, Jens-Christian Svenning35, 

34 Grzegorz Swacha74, Zhiyao Tang90, Ioannis Tsiripidis121, Pavel Dan Turtureanu122, Emin Ugurlu123, Domas 

35 Uogintas113, Milan Valachovič118, Kim André Vanselow124, Yulia Vashenyak125, Kiril Vassilev25, Eduardo 

36 Vélez-Martin9, Roberto Venanzoni126, Alexander Christian Vibrans127, Cyrille Violle128, Risto 

37 Virtanen129,130,2, Henrik von Wehrden131, Viktoria Wagner132, Donald A. Walker133, Desalegn Wana134, 

38 Evan Weiher135, Karsten Wesche136,2,137, Timothy Whitfeld138, Wolfgang Willner139, Susan Wiser28, Thomas 

39 Wohlgemuth140, Sergey Yamalov141, Georg Zizka53, Andrei Zverev142

40

41 x Helge Bruelheide, Jürgen Dengler, Borja Jiménez-Alfaro and Oliver Purschke should be 

42 considered joint first authors

43

44 AFFILIATIONS

45 1Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 

46 Halle, Germany

47 2German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

48 3Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied 

49 Sciences (ZHAW), Wädenswil, Switzerland

50 4Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of 

51 Bayreuth, Bayreuth, Germany

52 5Research Unit of Biodiversity (CSUC/UO/PA), University of Oviedo, Mieres, Spain

53 6Leipzig, Germany

54 7Wageningen Environmental Research (Alterra), Wageningen University and Research, Wageningen, 

55 Netherlands

Page 78 of 162Journal of Vegetation Science



For Review Only

3

56 8Department of Botany and Zoology, Masaryk University, Brno, Czech Republic

57 9Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

58 10Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany

59 11Max Planck Institute for Biogeochemistry, Jena, Germany

60 12Department of Biology, Santa Clara University, Santa Clara, CA, United States

61 13Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste Marie 

62 (Ontario), Canada

63 14Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain

64 15School of Geography, University of Nottingham, Nottingham, United Kingdom

65 16Ecologie et Dynamiques des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS-UPJV), Université de 

66 Picardie Jules Verne, Amiens, France

67 17Department of Biology, University of North Carolina, Chapel Hill, NC, United States

68 18Department of Civil and Environmental Engineering, University of the Andes, Bogota, Colombia

69 19Data and Modelling Centre, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt 

70 am Main, Germany

71 20Department of Agrobotany, Faculty of Agriculture, Belgrade-Zemun, Serbia

72 21Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy

73 22Plant Nutrition, INRES, University of Bonn, Bonn, Germany

74 23Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Düzce 

75 University, Düzce, Turkey

76 24Biodiversity Conservation Department, ISPRA - Italian National Institute for Environmental Protection 

77 and Research, Rome, Italy

78 25Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem 

79 Research, Bulgarian Academy of Sciences, Sofia, Bulgaria

80 26Forestry & Environmental Science, Shahjalal University of Science & Technology, Sylhet, Bangladesh

Page 79 of 162 Journal of Vegetation Science



For Review Only

4

81 27Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of 

82 Bayreuth, Bayreuth, Germany

83 28Manaaki Whenua -- Landcare Research, Lincoln, New Zealand

84 29International Center for Tropical Botany (ICTB), The Kampong of the National Tropical Botanical 

85 Garden, Coconut Grove, Florida, United States

86 30Department of Biological Sciences, Florida International University, Miami, Florida, United States

87 31Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

88 32Botanical Garden, University of Graz, Graz, Austria

89 33Forest Research Institute, Université du Québec en Abitibi-Témiscamingue , Rouyn-Noranda, Canada

90 34Vegetation Ecology and Phytodiversity, University of Göttingen, Göttingen, Germany

91 35Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics & 

92 Biodiversity, Department of Bioscience, Aarhus University, Aarhus C, Denmark

93 36Laboratory of Phytocoenology, Institute of Ecology of the Volga River Basin, Toljatty , Russian 

94 Federation

95 37Institute of Geography, CEN - Center for Earth System Research and Sustainability, University of 

96 Hamburg, Hamburg, Germany

97 38Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, Hungary

98 39Ecology and Evolutionary Biology, University of Arizona, Tucson, United States

99 40International Arctic Research Center, University of Alaska, Fairbanks, United States

100 41Faculté des Sciences, MEP, Marseille cedex 20, France

101 42School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea

102 43Multidisciplinary Institute for Plant Biology (IMBIV - CONICET), University of Cordoba - CONICET, 

103 Cordoba, Argentina

104 44Department of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, 

105 Móstoles, Spain

Page 80 of 162Journal of Vegetation Science



For Review Only

5

106 45Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences 

107 Prague, Praha 6 - Suchdol, Czech Republic

108 46Laboratory of Physical Geography and Biogeography, V.B. Sochava Insitute of Geography SB RAS, 

109 Irkutsk, Russian Federation

110 47Department of Ecology, University of Pécs, Pécs, Hungary

111 48Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, 

112 Switzerland

113 49Institute of Biology, Faculty of Natural Sciences and Mathematics, Skopje, Republic of Macedonia

114 50Departement of Biodiversity and Natural Environment, Research Institute for Nature and Forest (INBO), 

115 Brussels, Belgium

116 51IBMP, Strasburg, France

117 52Institute of Botany, Division of Plant Biology, Department of Biology, University of Patras, Patras, 

118 Greece

119 53Dept. Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany

120 54Department of Bioscience, Aarhus University, Roende, Denmark

121 55Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia

122 56Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt

123 57Hochschule Weihenstephan-Triesdorf, University of Applied Sciences, Freising, Germany

124 58Faculty of Science, University of A Coruña, A Coruña, Spain

125 59Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology, University of 

126 Hamburg, Hamburg, Germany

127 60Plant Biodiversity Resource Centre, University of Barcelona, Barcelona, Spain

128 61Laboratoire Ecodiv, EA 1293 URA IRSTEA, Normandie University, Mont-Saint-Aignan, France

129 62Department of Forestry & Natural Environment Management, TEI of Sterea Ellada, Karpenissi, Greece

130 63Departament of Natural Science, Regional University of Blumenau, Blumenau, Brazil

Page 81 of 162 Journal of Vegetation Science



For Review Only

6

131 64Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias 

132 Agronomicas, Universidad de Chile, Santiago, Chile

133 65Botany, Faculty of Science, Tanta University, Tanta, Egypt

134 66School of Molecular and Life Sicences, Curtin University, Bentley, WA, Australia

135 67Forestry Department, Santa Catarina State University, Lages, Brazil

136 68Institute of Landscape Ecology, University of Münster, Münster, Germany

137 69Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany

138 70Department of Silviculture, Transilvania University of Brasov, Brasov, Romania

139 71Department of Biology, Celal Bayar University, Manisa, Turkey

140 72Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany

141 73Department of Plant Biology, Mendel University in Brno, Brno, Czech Republic

142 74Botanical Garden, University of Wrocław, Wrocław, Poland

143 75Silviculture and Forest Botany, Soutwest Anatolia Forest Research Institute, Antalya, Turkey

144 76Department of Environment, Ghent University, Gent, Belgium

145 77Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland

146 78O.V. Fomin Botanical Garden, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

147 79Geosystem Laboratory, Central Siberian Botanical Garden, Siberian Branch, Russian Academy of 

148 Sciences , Novosibirsk, Russian Federation

149 80Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation

150 81Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and 

151 Chemical Research Centre, University of Warsaw, Warsaw, Poland

152 82Faculty of Forestry, University of Zagreb, Zagreb, Croatia

153 83Primatology, Max Planck Institute for Evolutionary Anthropology (MPI-EVA, Leipzig, Germany)

154 84Dept. Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany

Page 82 of 162Journal of Vegetation Science



For Review Only

7

155 85M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine

156 86Institute of Biology, Research Centre of Slovenian Academy of Sciences and Arts (ZRC SAZU), Ljubljana, 

157 Slovenia

158 87NatureServe, Durham, United States

159 88School of Geography, University of Leeds, Leeds, United Kingdom

160 89School of Forestry and Resource Conservation, National Taiwan University, Hsinchu, Taiwan

161 90College of Urban and Environmental Sciences, Peking University, Beijing, China

162 91Dept. of the Phytodiversity Problems, Institute of Ecology of the Volga River Basin RAS, Togliatti, 

163 Russian Federation

164 92Center for Ecology and Natural Resources - Academician Sulejman Redžić, Department of Biology, 

165 University of Sarajevo, Sarajevo, Bosnia and Herzegovina

166 93Research Group Vegetation Science & Nature Conservation, Dept. of Ecology and Environmental 

167 Science, Carl von Ossietzky-University Oldenburg, Oldenburg, Germany

168 94Project Group Causes and Consequences of Climate Change, Senckenberg Research Institute, Frankfurt 

169 am Main, Germany

170 95Ufa Institute of Biology of Ufa Federal Scientific Centre of the Russian Academy of Sciences, Ufa, 

171 Russian Federation

172 96Centre Research Ecology and Forestry Applications (CREAF), ICREA, Barcelona, Spain

173 97Institute of Biology an Environmental Sciences, Carl von Ossietzky-University Oldenburg, Oldenburg, 

174 Germany

175 98Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

176 99Conservation Science, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom

177 100AMAP - Botany and Modelling of Plant Architecture and Vegetation, IRD, CIRAD, CNRS, INRA, 

178 Université Montpellier, Montpellier, France

179 101Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia

180 102Institute of Botany, Jagiellonian University, Kraków, Poland

Page 83 of 162 Journal of Vegetation Science



For Review Only

8

181 103Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria

182 104Botanical Garden - Center for Biological Diversity Conservation, Polish Academy of Sciences,  

183 Warszawa, Poland

184 105Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, Wageningen, 

185 Netherlands

186 106Laboratorio de Invasiones Biológicas (LIB), University of Concepción, Concepción, Chile

187 107Amsterdam, Netherlands

188 108Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Spain

189 109CREAF, Cerdanyola del Vallès, Spain

190 110Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 

191 Barcelona, Spain

192 111Continental Ecology, Center for Advanced Studies of Blanes, Spanish Research Council (CEAB-CSIC), 

193 Blanes, Girona, Spain

194 112Department of GIS and Remote Sensing, Institute of Botany, The Czech Academy of Sciences, 

195 Průhonice, Czech Republic

196 113Institute of Botany, Nature Research Centre, Vilnius, Lithuania

197 114Lancaster, United Kingdom

198 115Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai 

199 University, Cluj-Napoca, Romania

200 116Department of Geography, University of Latvia, Riga, Latvia

201 117Climatology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of 

202 Bayreuth, Bayreuth, Germany

203 118Institute of Botany, Plant Science and Biodiversity Centre Slovak Academy of Sciences, Bratislava, 

204 Slovakia

205 119TERN, University of Adelaide, Adelaide, Australia

206 120Faculty of Geotechnical Engineering, University of Zagreb, Varaždin, Croatia

Page 84 of 162Journal of Vegetation Science



For Review Only

9

207 121School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece

208 122A. Borza Botanical Garden, Babeș-Bolyai University, Cluj-Napoca, Romania

209 123Forest Engineering Department, Faculty of Forestry, Bursa Technical University, Yıldırım, Bursa, Turkey

210 124Department of Geography, University of Erlangen-Nuremberg, Erlangen, Germany

211 125Khmelnytskyi Institute of Interregional Academy of Personnel Management, Khmelnytskyi, Ukraine

212 126Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy

213 127Departamento de Engenharia Florestal, Universidade Regional de Blumenau, Blumenau, Brazil

214 128Centre d’Ecologie Fonctionnelle et Evolutive (UMR5175), CNRS - Université de Montpellier - Université 

215 Paul-Valéry Montpellier - EPHE, Montpellier, France

216 129Ecology and Genetics Research Unit, Biodiversity Unit, University of Oulu, Oulu, Finland

217 130Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Leipzig, 

218 Germany

219 131Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany

220 132Department of Biological Sciences, University of Alberta, Edmonton, Canada

221 133Institute of Arctic Biology, University of Alaska, Fairbanks, United States

222 134Department of Geography & Environmental Studies, Addis Ababa University, Addis Ababa, Ethiopia

223 135Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States

224 136Botany Department, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany

225 137International Institute Zittau, Technische Universität Dresden, Zittau, Germany

226 138Department of Ecology and Evolutionary Biology/Brown University Herbarium, Brown University, 

227 Providence, United States

228 139Vienna Institute for Nature Conservation & Analyses, Vienna, Austria

229 140Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 

230 Birmensdorf, Switzerland

Page 85 of 162 Journal of Vegetation Science



For Review Only

10

231 141Laboratory of Wild-Growing Flora, Botanical Garden-Institute, Ufa Scientific Centre, Russian Academy 

232 of Sciences, Ufa, Russian Federation

233 142Department of Botany, Tomsk State University, Tomsk, Russian Federation

234

235 Correspondence:

236 Helge Bruelheide, Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-

237 Wittenberg, Am Kirchtor 1, 06108 Halle, Germany

238 Email: helge.bruelheide@botanik.uni-halle.de

239

240 ORCID:

241 Helge Bruelheide  http://orcid.org/0000-0003-3135-0356

242 Jürgen Dengler  http://orcid.org/0000-0003-3221-660X

243 Borja Jiménez-Alfaro  http://orcid.org/0000-0001-6601-9597

244 Oliver Purschke  http://orcid.org/0000-0003-0444-0882

245 Milan Chytrý  http://orcid.org/0000-0002-8122-3075

246 Valério D. Pillar  http://orcid.org/0000-0001-6408-2891

247 Jens Kattge  http://orcid.org/0000-0002-1022-8469

248 Idoia Biurrun  http://orcid.org/0000-0002-1454-0433

249 Richard Field  http://orcid.org/0000-0003-2613-2688

250 Jonathan Lenoir  http://orcid.org/0000-0003-0638-9582

251 Francesco M. Sabatini  http://orcid.org/0000-0002-7202-7697

252 Marco Schmidt  http://orcid.org/0000-0001-6087-6117

253 Franziska Schrodt  http://orcid.org/0000-0001-9053-8872

254 Emiliano Agrillo  http://orcid.org/0000-0003-2346-8346

Page 86 of 162Journal of Vegetation Science



For Review Only

11

255 Miguel Alvarez  http://orcid.org/0000-0003-1500-1834

256 Pierangela Angelini  http://orcid.org/0000-0002-5321-9757

257 Mohammed A.S. Arfin Khan  http://orcid.org/0000-0001-6275-7023

258 Fabio Attorre  http://orcid.org/0000-0002-7744-2195

259 Michael Beckmann  http://orcid.org/0000-0002-5678-265X

260 Yves Bergeron  http://orcid.org/0000-0003-3707-3687

261 Erwin Bergmeier  http://orcid.org/0000-0002-6118-4611

262 Zoltán Botta-Dukát  http://orcid.org/0000-0002-9544-3474

263 Chaeho Byun  http://orcid.org/0000-0003-3209-3275

264 Laura Casella  http://orcid.org/0000-0003-2550-3010

265 Luis Cayuela  http://orcid.org/0000-0003-3562-2662

266 Victor Chepinoga  http://orcid.org/0000-0003-3809-7453

267 Michele De Sanctis  http://orcid.org/0000-0002-7280-6199

268 Jaime Fagúndez  http://orcid.org/0000-0001-6605-7278

269 Xavier Font  http://orcid.org/0000-0002-7253-8905

270 Estelle Forey  http://orcid.org/0000-0001-6082-3023

271 André Luis de Gasper  http://orcid.org/0000-0002-1940-9581

272 Alvaro G. Gutierrez  http://orcid.org/0000-0001-8928-3198

273 Tianhua He  http://orcid.org/0000-0002-0924-3637

274 Pedro Higuchi  http://orcid.org/0000-0002-3855-555X

275 Norbert Hölzel  http://orcid.org/0000-0002-6367-3400

276 Steven Jansen  http://orcid.org/0000-0002-4476-5334

277 Martin Jiroušek  http://orcid.org/0000-0002-4293-478X

278 Norbert Jürgens  http://orcid.org/0000-0003-3211-0549

Page 87 of 162 Journal of Vegetation Science



For Review Only

12

279 Ali Kavgacı  http://orcid.org/0000-0002-4549-3668

280 Elizabeth Kearsley  http://orcid.org/0000-0003-0046-3606

281 Michael Kessler  http://orcid.org/0000-0003-4612-9937

282 Ingolf Kühn  http://orcid.org/0000-0003-1691-8249

283 Flavia Landucci  http://orcid.org/0000-0002-6848-0384

284 Ching-Feng Li  http://orcid.org/0000-0003-0744-490X

285 Peter Manning  http://orcid.org/0000-0002-7940-2023

286 Corrado Marcenò  http://orcid.org/0000-0003-4361-5200

287 Maurizio Mencuccini  http://orcid.org/0000-0003-0840-1477

288 Vanessa Minden  http://orcid.org/0000-0002-4933-5931

289 Jesper Erenskjold Moeslund  http://orcid.org/0000-0001-8591-7149

290 Marco Moretti  http://orcid.org/0000-0002-5845-3198

291 Jérôme Munzinger  http://orcid.org/0000-0001-5300-2702 

292 Ülo Niinemets  http://orcid.org/0000-0002-3078-2192

293 Arkadiusz Nowak  http://orcid.org/0000-0001-8638-0208

294 Gerhard E. Overbeck  http://orcid.org/0000-0002-8716-5136

295 Wim A. Ozinga  http://orcid.org/0000-0002-6369-7859

296 Hristo Pedashenko  http://orcid.org/0000-0002-6743-0625

297 Josep Penuelas  http://orcid.org/0000-0002-7215-0150

298 Aaron Pérez-Haase  http://orcid.org/0000-0002-5974-7374

299 Petr Petřík  http://orcid.org/0000-0001-8518-6737

300 Oliver L. Phillips  http://orcid.org/0000-0002-8993-6168

301 Jozef Šibík  http://orcid.org/0000-0002-5949-862X 

302 Urban Šilc  http://orcid.org/0000-0002-3052-699X

Page 88 of 162Journal of Vegetation Science



For Review Only

13

303 Jens-Christian Svenning  http://orcid.org/0000-0002-3415-0862

304 Emin Ugurlu  http://orcid.org/0000-0003-0824-1426

305 Eduardo Vélez-Martin  http://orcid.org/0000-0001-8028-8953

306 Roberto Venanzoni  http://orcid.org/0000-0002-7768-0468

307 Risto Virtanen  http://orcid.org/0000-0002-8295-8217

308 Evan Weiher  http://orcid.org/0000-0002-5375-9964

309 Susan Wiser  http://orcid.org/0000-0002-8938-8181

310

311 email: 

312 Helge Bruelheide: helge.bruelheide@botanik.uni-halle.de

313 Jürgen Dengler: juergen.dengler@uni-bayreuth.de

314 Borja Jiménez-Alfaro: jimenezalfaro.borja@gmail.com

315 Oliver Purschke: oliverpurschke@web.de

316 Stephan M. Hennekens: stephan.hennekens@wur.nl 

317 Milan Chytrý: chytry@sci.muni.cz

318 Valério De Patta Pillar: vpillar@ufrgs.br

319 Florian Jansen: florian.jansen@uni-rostock.de

320 Jens Kattge: jkattge@bgc-jena.mpg.de

321 Brody Sandel: bsandel@scu.edu

322 Marten Winter: marten.winter@idiv.de

323 Isabelle Aubin: isabelle.aubin@canada.ca

324 Idoia Biurrun: idoia.biurrun@ehu.es 

325 Richard Field: Richard.Field@nottingham.ac.uk

326 Sylvia Haider: sylvia.haider@botanik.uni-halle.de

327 Ute Jandt: ute.jandt@botanik.uni-halle.de

Page 89 of 162 Journal of Vegetation Science



For Review Only

14

328 Jonathan Lenoir: jonathan.lenoir@u-picardie.fr

329 Robert K. Peet: peet@unc.edu

330 Gwendolyn Peyre: gf.peyre@uniandes.edu.co

331 Francesco M. Sabatini: francesco.maria.sabatini@botanik.uni-halle.de

332 Marco Schmidt: marco.schmidt@stadt-frankfurt.de

333 Franziska Schrodt: f.i.schrodt@gmail.com

334 Svetlana Aćić: acic@agrif.bg.ac.rs

335 Emiliano Agrillo: emiliano.agrillo@uniroma1.it

336 Miguel Alvarez: malvarez@uni-bonn.de

337 Didem  Ambarlı: didemambarli@duzce.edu.tr

338 Pierangela Angelini: pierangela.angelini@isprambiente.it

339 Iva  Apostolova: iva.apostolova@gmail.com

340 Mohammed A.S. Arfin Khan: nobelarfin@yahoo.com

341 Elise Arnst: arnste@landcareresearch.co.nz

342 Fabio Attorre: fabio.attorre@uniroma1.it

343 Christian Berg: christian.berg@uni-graz.at

344 Yves Bergeron: yves.bergeron@uqat.ca

345 Erwin Bergmeier: erwin.bergmeier@bio.uni-goettingen.de 

346 Anne D. Bjorkman: annebj@gmail.com

347 Viktoria Bondareva: bondarevavictoria@yandex.ru

348 Peter Borchardt: pbo1@gmx.de

349 Zoltán Botta-Dukát: botta-dukat.zoltan@okologia.mta.hu

350 Brad Boyle: bboyle@email.arizona.edu

351 Amy Breen: albreen@alaska.edu

352 Henry Brisse: brisse.henry@orange.fr

353 Marcelo R. Cabido: mcabido@imbiv.unc.edu.ar

Page 90 of 162Journal of Vegetation Science



For Review Only

15

354 Laura Casella: laura.casella@isprambiente.it

355 Luis Cayuela: luis.cayuela@urjc.es

356 Tomáš Černý: cernyt@fld.czu.cz

357 Victor Chepinoga: victor.chepinoga@gmail.com

358 János Csiky: moon@ttk.pte.hu

359 Michael Curran: currmi01@gmail.com 

360 Renata  Ćušterevska: renatapmf@yahoo.com

361 Zora Dajić Stevanović: dajic@agrif.bg.ac.rs

362 Els De Bie: els.debie@inbo.be

363 Patrice De Ruffray: patrice.de-ruffray@wanadoo.fr

364 Michele De Sanctis: michedes@gmail.com

365 Panayotis Dimopoulos: pdimopoulos@upatras.gr

366 Stefan Dressler: stefan.dressler@senckenberg.de

367 Rasmus Ejrnæs: rasmus@bios.au.dk

368 Mohamed Abd El-Rouf Mousa El-Sheikh: el_sheikh_eg@yahoo.co.uk

369 Brian  Enquist: benquist@email.arizona.edu

370 Jörg  Ewald: joerg.ewald@hswt.de 

371 Manfred  Finckh: manfred.finckh@uni-hamburg.de

372 Xavier Font: xfont@ub.edu

373 Georgios Fotiadis: gfotiad95@gmail.com

374 Itziar  García-Mijangos: itziar.garcia@ehu.es 

375 André Luis de Gasper: algasper@furb.br

376 Valentin  Golub: vbgolub2000@mail.ru

377 Alvaro G. Gutierrez: bosqueciencia@gmail.com

378 Mohamed Z. Hatim: mohamed.zakaria@science.tanta.edu.eg

379 Norbert Hölzel: nhoelzel@uni-muenster.de

Page 91 of 162 Journal of Vegetation Science



For Review Only

16

380 Dana Holubová: danmich@sci.muni.cz 

381 Jürgen Homeier: jhomeie@gwdg.de 

382 Adrian Indreica: adrianindreica@unitbv.ro

383 Deniz Işık Gürsoy: biodeniz-04@hotmail.com 

384 John Janssen: john.janssen@wur.nl 

385 Birgit  Jedrzejek: siegb@uni-muenster.de

386 Martin Jiroušek: machozrut@mail.muni.cz

387 Norbert Jürgens: norbert.juergens@uni-hamburg.de

388 Zygmunt Kącki: zygmunt.kacki@uwr.edu.pl

389 Ali Kavgacı: alikavgaci1977@yahoo.com 

390 Elizabeth Kearsley: elizabeth.kearsley@ugent.be

391 Michael Kessler: michael.kessler@systbot.uzh.ch

392 Ilona  Knollová: ikuzel@sci.muni.cz 

393 Vitaliy Kolomiychuk: vkolomiychuk@ukr.net

394 Andrey Korolyuk: akorolyuk@rambler.ru

395 Maria Kozhevnikova: mania_kazan@mail.ru

396 Łukasz Kozub: kozub.lukasz@gmail.com

397 Daniel  Krstonošić: dkrstonosic@sumfak.hr 

398 Hjalmar Kühl: kuehl@eva.mpg.de

399 Anna Kuzemko: anyameadow.ak@gmail.com

400 Filip Küzmič: filip.kuzmic@zrc-sazu.si

401 Flavia Landucci: flavia.landucci@gmail.com 

402 Michael T. Lee: michael_lee@natureserve.org

403 Aurora Levesley: a.levesley@leeds.ac.uk

404 Ching-Feng Li: chingfeng.li@gmail.com

405 Hongyan Liu: lhy@urban.pku.edu.cn

Page 92 of 162Journal of Vegetation Science



For Review Only

17

406 Gabriela  Lopez-Gonzalez: g.lopez-gonzalez@leeds.ac.uk

407 Tatiana Lysenko: ltm2000@mail.ru

408 Parastoo Mahdavi: parastoo.mahdavi@uni-oldenburg.de

409 Armin Macanović: arminecology@gmail.com 

410 Corrado Marcenò: marceno.corrado@ehu.eus

411 Vassiliy Martynenko: vasmar@anrb.ru 

412 Jesper Erenskjold Moeslund: jesper.moeslund@bios.au.dk

413 Jonas V. Müller: j.mueller@kew.org

414 Jérôme Munzinger: jerome.munzinger@ird.fr

415 Marcin Nobis: m.nobis@uj.edu.pl

416 Jalil Noroozi: noroozi.jalil@gmail.com

417 Arkadiusz Nowak: anowak@uni.opole.pl 

418 Viktor Onyshchenko: labzap@ukr.net

419 Gerhard E. Overbeck: gerhard.overbeck@ufrgs.br

420 Anibal Pauchard: pauchard@udec.cl

421 Hristo Pedashenko: hristo_pedashenko@yahoo.com 

422 Aaron Pérez-Haase: aaronperez@ub.edu

423 Tomáš Peterka: peterkatomasek@seznam.cz

424 Petr Petřík: petr.petrik@ibot.cas.cz

425 Oliver L. Phillips: o.phillips@leeds.ac.uk

426 Vadim Prokhorov: vadim.prokhorov@gmail.com

427 Valerijus Rašomavičius: valerijus.rasomavicius@botanika.lt

428 Rasmus Revermann: rasmus.revermann@gmail.com

429 John Rodwell: johnrodwell@tiscali.co.uk

430 Eszter  Ruprecht: eszter.ruprecht@ubbcluj.ro 

431 Solvita Rūsiņa: rusina@lu.lv 

Page 93 of 162 Journal of Vegetation Science



For Review Only

18

432 Cyrus Samimi: cyrus.samimi@uni-bayreuth.de

433 Joop H.J. Schaminée: joop.schaminee@wur.nl 

434 Ute Schmiedel: ute.schmiedel@uni-hamburg.de

435 Jozef  Šibík: jozef.sibik@savba.sk 

436 Urban Šilc: urban@zrc-sazu.si 

437 Željko Škvorc: skvorc@sumfak.hr

438 Anita Smyth: anita.smyth@adelaide.edu.au 

439 Tenekwetche Sop : tenekwetche_sop@eva.mpg.de

440 Desislava  Sopotlieva: desislava.sopotlieva@iber.bas.bg 

441 Ben Sparrow: ben.sparrow@adelaide.edu.au

442 Zvjezdana Stančić: zvjezdana.stancic@gfv.hr 

443 Jens-Christian  Svenning: svenning@bios.au.dk

444 Grzegorz  Swacha: gswacha@gmail.com 

445 Zhiyao Tang: zytang@urban.pku.edu.cn

446 Ioannis  Tsiripidis: tsiripid@bio.auth.gr

447 Pavel Dan Turtureanu: turtureanudan@gmail.com

448 Emin Ugurlu: emin.ugurlu@btu.edu.tr

449 Domas Uogintas: domas.uogintas@botanika.lt 

450 Milan Valachovič: milan.valachovic@savba.sk 

451 Kim André Vanselow: kim.vanselow@fau.de 

452 Yulia Vashenyak: vasheniyak@mail.ru 

453 Kiril  Vassilev : kiril5914@abv.bg

454 Eduardo Vélez-Martin: velezedu@portoweb.com.br

455 Roberto Venanzoni: roberto.venanzoni@unipg.it 

456 Alexander Christian Vibrans: acv@furb.br

457 Cyrille Violle: cyrille.violle@cefe.cnrs.fr

Page 94 of 162Journal of Vegetation Science



For Review Only

19

458 Risto Virtanen: risto.virtanen@oulu.fi

459 Henrik von Wehrden: henrik.von_wehrden@leuphana.de

460 Viktoria Wagner: viktoria.wagner@ualberta.ca

461 Donald A. Walker: dawalker@alaska.edu

462 Desalegn Wana: deswana2002@yahoo.com

463 Karsten Wesche: karsten.wesche@senckenberg.de 

464 Timothy Whitfeld: timothy_whitfeld@brown.edu

465 Wolfgang Willner: wolfgang.willner@vinca.at

466 Susan Wiser: wisers@landcareresearch.co.nz

467 Thomas Wohlgemuth: thomas.wohlgemuth@wsl.ch

468 Sergey Yamalov: yamalovsm@mail.ru 

469 Georg Zizka: georg.zizka@senckenberg.de

470 Andrei Zverev: ibiss@rambler.ru

471

472 ACKNOWLEDGMENTS

473 We are grateful to thousands of vegetation scientists who sampled vegetation plots in the field or 

474 digitized them into regional, national or international databases. We also appreciate the support 

475 of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118) 

476 research platforms, and the organization of three workshops through the sDiv calls. We 

477 acknowledge this support with naming the database “sPlot”, where the "s" refers to the sDiv 

478 synthesis workshops. The study was supported by the TRY initiative on plant traits 

479 (http://www.try-db.org). We thank Meelis Pärtel for the very fast and constructive feedback on an 

480 earlier version of this manuscript.

481

482 AUTHOR CONTRIBUTIONS

Page 95 of 162 Journal of Vegetation Science



For Review Only

20

483 H.Bru. had the original idea and led the consortium from the start, while O.Pu. and J.D. 

484 coordinated the sPlot workshops. J.D., S.M.H. and U.J. compiled the databases to be included 

485 in sPlot. J.D. and later B.J.-A. and F.M.S. coordinated the network and the database. O.P. 

486 prepared the taxonomic and phylogenetic data. S.M.H programmed the Turboveg software. 

487 B.Sa., F.J., H.Bru., J.D., J.K., M.Ch., and V.D.P. organized the network in the Steering 

488 Committee. B.J.-A. and H.Bru. led the writing together with J.D. and input from S.M.H., O.Pu., 

489 M.Ch., F.J., J.K., V.D.P., B.Sa., I.Au., I.B., R.K.P., R.F., S.H., U.J., J.L., G.P., F.M.S., M.S., F.S. 

490 and M.W. The rest of authors (ordered alphabetically) contributed the plot and trait data. All 

491 authors agreed with the final manuscript.  

492

493 BIOSKETCH

494 sPlot is a consortium established during three workshops held at the German Centre of 

495 Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The consortium currently comprises 

496 110 member databases, two data aggregators and 43 personal members, including plant 

497 ecologists, biogeographers, field botanists and data analysts. More information about the 

498 consortium and its projects can be accessed at www.idiv.de/splot.

499

Page 96 of 162Journal of Vegetation Science

http://www.idiv.de/splot


For Review Only

21

501 SHORT RUNNING TITLE

502 sPlot – the global vegetation database

503

504 ABSTRACT

505 Questions: Vegetation-plot records provide information on presence and cover or abundance of 

506 plants co-occurring in the same community. Vegetation-plot data are spread across research 

507 groups, environmental agencies and biodiversity research centers, and thus, are rarely 

508 accessible at continental or global scales. Here we present the sPlot database, which collates 

509 vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional 

510 and phylogenetic diversity at the plant community level. 

511 Location: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 

512 23,586,216 records of plant species and their relative cover or abundance in plots collected 

513 between 1885 and 2015. 

514 Methods: We complemented the information for each plot by retrieving environmental conditions 

515 (i.e. climate and soil) and the biogeographic context (i.e. biomes) from external sources, and by 

516 calculating community-weighted means and variances of traits using gap-filled data from the 

517 global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 

518 54,519 species identified in the plots. 

519 Results: We present the first maps of global patterns of community richness and community-

520 weighted means of key traits.

521 Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation 

522 analysis at the global scale.

523

524 KEYWORDS
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525 Biodiversity; community ecology; ecoinformatics; functional diversity; global scale; 

526 macroecology; phylogenetic diversity; plot database; sPlot; taxonomic diversity; vascular plant; 

527 vegetation relevé.

528

529 INTRODUCTION

530 Studying global biodiversity patterns is at the core of macroecological research (Kreft & Jetz, 

531 2007; Wiens, 2011; Costello, Wilson & Houlding, 2012), since their exploration may provide 

532 insights into the ecological and evolutionary processes acting at different spatio-temporal scales 

533 (Ricklefs, 2004). The opportunities enabled by the compilation of large collections of biodiversity 

534 data into widely accessible global (GBIF, www.gbif.org) or continental databases (e.g. BIEN, 

535 www.bien.nceas.ucsb.edu/bien)  have recently advanced our understanding of global 

536 biodiversity patterns, especially for vertebrates, but also for vascular plants (Swenson et al., 

537 2012; Lamanna et al., 2014; Engemann et al., 2016; Butler et al., 2017). Although this 

538 development has led to the formulation of several macroecological theories (Currie et al., 2004; 

539 Pärtel, Bennett & Zobel, 2016), a more mechanistic understanding of how assembly processes 

540 shape ecological communities and consequently global biodiversity patterns, is still missing 

541 (Lessard, Belmaker, Myers, Chase & Rahbek, 2012). 

542 Understanding the links between biodiversity patterns and assembly processes requires 

543 fine-grain data on the co-occurrence of species in ecological communities, sampled across 

544 continental or global spatial extents (Beck et al., 2012; Wisz et al., 2013). For example, such co-

545 occurrence data have been used to compare changes in vegetation composition over time 

546 spans of decades (Jandt, von Wehrden & Bruelheide 2011; Perring et al. 2018). Unfortunately, 

547 information on fine-grain vegetation data up to now has not been readily available, as most of 

548 the continental to global biodiversity datasets have been derived from occurrence data (i.e. 

549 presence-only data), and after being aggregated spatially, have a relatively coarse-grain scale 
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550 (e.g. 1-degree grid cells) and no information on species co-occurrence at the meaningful scale of 

551 local communities. In contrast,  (Boakes et al., 2010).v

552 Vegetation-plot data are records of the cover or abundance of each plant species that 

553 occurs in a plot of a given size at the date of the survey, representing . They represent the main 

554 reservoir of plant community data worldwide (Dengler et al., 2011). 

555 These Vegetation-plot data differ in fundamental ways from databases of occurrence 

556 records of individual species aggregated at the level of grid cells or regions of hundreds or 

557 thousands of square kilometers (Figure 1). First, vegetation plots usually provide information on 

558 species relative cover or relative abundance, allowing for the testing of central theories of 

559 biogeography, such as the abundance-range size relationship (Gaston & Curnutt, 1998) or the 

560 relationship between local abundance and niche breadth (Gaston et al., 2000). Second, they 

561 contain information on which plant species co-occur in the same locality (Chytrý et al., 2016), 

562 which is a necessary precondition for direct biotic interactions among plant individuals. Third, 

563 unrecorded species can be considered truly absent from the aboveground vegetation at this 

564 scale because the standardized methodology of taking a vegetation record requires a systematic 

565 search for all species in a plot, or at least all species of the dominant functional group. Fourth, 

566 they many plots are spatially explicit and can be resurveyed through time to assess possible 

567 consequences of land use and climate change (Steinbauer et al. 2018; Perring et al. 2018). 

568 While, so far, sPlot only contains plots that have been surveyed only once, it presents a global 

569 baseline for future resurveys. Fifth, they vegetation plots represent important a snapshot of 

570 anthe primary producers of a terrestrial ecosystem, which patch sources of information that can 

571 be functionally linked to organisms from different trophic groups sampled in the same plots (e.g. 

572 multiple taxa surveys) and related processes and services both below (e.g. decomposition, 

573 nutrient cycling) and above ground (e.g. herbivory, pollination) (Sardans et al. 2017,e.g. 

574 Bruelheide Schuldt et al. 2018).
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575 Recently several projects at the regional to continental scale have demonstrated the 

576 potential of using vegetation-plot databases for exploring biodiversity patterns and the underlying 

577 assembly processes. Using vegetation data of French grasslands, Borgy et al. (2017) 

578 demonstrated that weighting leaf traits by species abundance in local communities is pivotal to 

579 capture leaf trait–environment relationships. Analyzing United States forest assemblages 

580 surveyed at the community level, Šímová, Rueda & Hawkins (2017) were able to relate cold or 

581 drought tolerance to leaf traits, dispersal traits and traits related to stem hydraulics. Using plot-

582 based tree inventories of the United States forest service, Zhang, Niinemets, Sheffield & 

583 Lichstein (2018) found that shifts in tree functional composition amplifies the response of forest 

584 biomass to droughts. Based on >15.000 plots from a wide number of habitat types in Denmark, 

585 Moeslund et al. (2017) showed that typical plant species that are part of the site-specific species 

586 pool, but are absent in a community tend to depend on mycorrhiza, be are mostly adapted to low 

587 light and low nutrient levels, have poor dispersal abilities and be are ruderals and stress 

588 intolerant. By collating >40,000 vegetation plots sampled in European beech forests, Jiménez-

589 Alfaro et al. (2018) found that current local community diversity and species pool sizes 

590 calculated at different scales were mainly explained by proximity to glacial refugia and current 

591 precipitation. 

592 Although large collections of vegetation-plot data are now available from national to 

593 continental levels (e.g. Schaminée, Hennekens, Chytrý & Rodwell, 2012; Peet, Lee, Jennings & 

594 Faber-Langendoen, 2012; Schmidt et al., 2012; Chytrý et al., 2016; Enquist, Condit, Peet, 

595 Schildhauer & Thiers, 2016), they are rarely used in global-scale biodiversity research (Wiser, 

596 2016; Franklin, Serra-Díez, Syphard & Regan, 2017). This is unfortunate, because vegetation-

597 plot data may reveal important patterns that cannot be captured by grid-based datasets (Table 

598 1). Functional composition patterns, for instance, may differ substantially when considering 

599 vegetation-plot data rather than single species occurrences aggregated at the level of coarse-

600 grain grid cells. Using plant height for illustration reveals that the trait means calculated on all the 
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601 species occurring in a grid cell may differ strongly from the community-weighted means (CWMs) 

602 averaged across local communities (Figure 1). Nevertheless, only the grid-based approach has 

603 been used to date in studies of the geographic distribution of trait values (Swenson et al., 2012, 

604 2017; Wright et al., 2017), even though it disregards varying species abundances in local 

605 communities and the relative spatial extent of different communities. 

606 Compiling a global database of vegetation plots is technically and conceptually challenging as it 

607 requires the integration of data from heterogeneous sources, collected and stored according to 

608 different standards, and often based on inconsistent taxonomic nomenclatures. Here, we 

609 present an attempt to overcome these challenges with sPlot, a global database of plant co-

610 occurrence data,for compiling and integrating plant community data. We describe (i) main steps 

611 in integrating vegetation-plot data in a repository that provides taxonomic, functional and 

612 phylogenetic information on co-occurring plant species and links it to global environmental 

613 drivers; (ii) principal sources and properties of the data and the procedure for data usage; and 

614 (iii) expected impacts of the database in future ecological research. To illustrate the potential of 

615 sPlot we also show global diversity patterns that can be readily derived from the current content.

616

617 2. MATERIAL AND METHODS COMPILATION OF THE sPlot DATABASE

618 2.1 Vegetation-plot data

619 The sPlot consortium currently collates 110 vegetation-plot databases of regional, national or 

620 continental extents. Some of the databases have been previously aggregated by and contributed 

621 through two (sub-) continental database initiatives (Table 2 and Appendix S1 in Supporting 

622 Information). All data from Europe and nearby regions were contributed via the European 

623 Vegetation Archive (EVA), using the SynBioSys taxon database as a standard taxonomic 

624 backbone (Chytrý et al., 2016). Three African databases were contributed via the Tropical 

625 African Vegetation Archive (TAVA). In addition, multiple U.S. databases were contributed 

626 through the VegBank archive maintained in support of the U.S .. National Vegetation 
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627 Classification (Peet et al. 2012). The data from other regions (South America, Asia) were 

628 contributed as separate databases.

629 We stored the vegetation-plot data from the individual databases in the database 

630 software TURBOVEG v2 (Hennekens & Schaminée, 2001). Our general procedure was to 

631 preserve the original structure and content of the databases as much as possible in order to 

632 facilitate regular updates through automated workflows. The individual databases were then 

633 integrated into a single SQLite database using TURBOVEG v3 (S.M. Hennekens, ALTERRA, 

634 The Netherlands; www.synbiosys.alterra.nl/turboveg3/help/en/index.html). TURBOVEG v3 

635 combines the species lists from the original databases in a single repository and links the plot 

636 attributes (so-called header data) to 58 descriptors of vegetation-plots (Table S2.1 in Appendix 

637 S2). The metadata of the databases collated in sPlot were managed through the Global Index of 

638 Vegetation-Plot Databases (GIVD; Dengler et al. 2011), using the GIVD ID as the identifier. The 

639 current sPlot version 2.1 was created in October 2016 and contains 1,121,244 vegetation plots 

640 with 23,586,216 plant species × plot observations (i.e. ords of a species in a plot). Most records 

641 (1,073,737; 95.8%) have information on cover, 29,288 on presence/absence, 5,854 on basal 

642 area, 3,265 on counts of individuals, 148 on importance value, 1,895 on per cent frequency, 

643 4,883 on number of stems, and further 2,174 have a mix of these types of these different 

644 metrics.

645

646 2.2 Taxonomic standardization

647 To combine the species lists of the different databases in sPlot, we constructed a taxonomic 

648 backbone. To link co-occurrence information in sPlot with plant traits, we expanded this 

649 backbone to integrate plant names used in the TRY database (Kattge et al., 2011). The taxon 

650 names (without nomenclatural authors) from sPlot 2.1 and TRY 3.0 were first concatenated into 

651 one list, resulting in 121,861 names, of which 61,588 (50.5%) were unique to sPlot; 35,429 

652 (29.1%) unique to TRY; and 24,844 (20.4%) shared between TRY and sPlot. Taxon names were 
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653 parsed and resolved using the Taxonomic Name Resolution Service web application (TNRS 

654 version 4.0; Boyle et al., 2013; iPlant Collaborative, 2015), using the five TNRS standard 

655 sources ranked by default. We allowed for (i) partial matching to the next higher rank (genus or 

656 family) if the full taxon name could not be found and (ii) full fuzzy matching, to return names that 

657 were matched within a maximum number of four single-character edits (Levenshtein edit 

658 distance of 4), which corresponds to the minimum match accuracy of 0.05 in TNRS, with 1 

659 indicating a perfect match.

660 We accepted all names that were matched, or converted from synonyms, with an overall 

661 match score of 1. In case with no exact match (i.e. the overall match score was <1), names were 

662 inspected on an individual basis. All names that matched at taxonomic ranks lower than species 

663 (e.g. subspecies, varieties) were accepted as correct names. The name matching procedure 

664 was repeated for the uncertain names (i.e. with match accuracy scores below the threshold 

665 value from the first matching run), with a preference on first using the source ‘Tropicos’(Missouri 

666 Botanical Garden; http://www.tropicos.org/; accessed 19 Dec 2014) because here matching 

667 scores were often higher for names of low taxonomic rank. The remaining 9,641 non-matched 

668 names were resolved using (i) the additional source ‘NCBI’ (Federhen, 2010) within TNRS, (ii) 

669 the matching tools in the Plant List web application (The Plant List 2010), (iii) the ‘tpl’-function 

670 within the R-package ‘Taxonstand’ (Cayuela, Stein & Oksanen, 2017) and (iv) manual inspection 

671 (i.e. to resolve vernacular names). All subspecies were aggregated to the species level. Names 

672 that could not be matched were classified as ‘No suitable matches found’. Because sPlot and 

673 TRY contain taxa of non-vascular plants, we tagged vascular plant names based on their family 

674 and phylum affiliation, using the ‘rgbif’ library in R (Chamberlain, 2017). Of the full list of plant 

675 names in sPlot and TRY, 79,171 (94.6%) plant names were matched at the species level, 4,343 

676 (5.2%) at the genus level, 152 (0.2%) at the family level and 13 names at higher taxonomic 

677 levels. Overall, this led to 58,066 accepted taxon names in sPlot. Family affiliation was classified 
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678 according to APG III (Bremer et al., 2009). A detailed description of the workflow, including R-

679 code, is available in Purschke (2017a).

680 One potential shortcoming of our taxonomic backbone is that for most regions it was 

681 necessary to standardize taxa using standard sets of taxonomic synonyms. Thus, if a taxonomic 

682 name represents multiple taxonomic concepts, e.g. such as created by the splitting and lumping 

683 of taxa, or a name has been misapplied in a region, we must trust that this problem has been 

684 addressed in our component databases (Franz, Peet & Weakley, 2004; Jansen & Dengler, 

685 2010).

686

687 2.3 Physiognomic information

688 To achieve a classification into forests vs. non-forests that is applicable to all plots 

689 irrespective of the structural and habitat data provided by the source database, we defined as 

690 forest all plot records that had >25% absolute cover of the tree layer, making use of the attribute 

691 data of sPlot. This threshold is similar to the classification of Ellenberg & Müller-Dombois (1967), 

692 who defined woodland formations with trees covering more than 30%. There were 16,244 tree 

693 species in the sPlot database. There were 16,244 tree species in the sPlot database. As tree 

694 layer cover was available for only 25% of all plots, we additionally used the information whether 

695 the taxa present in a plot were trees (usually defined as being taller than 5 m), using the plant 

696 growth form information from TRY (see below). Thus, plots lacking tree cover information were 

697 defined as forests if the sum of relative cover of all tree taxa was >25%. Similarly, we defined 

698 non-forests by calculating the cover of all taxa that were not defined as trees or shrubs (also 

699 taken from the TRY plant growth form information) and that were not taller than 2 m, using the 

700 TRY data on mean plant height. In total, 21,888 taxa belonged to this category. We defined all 

701 plots as non-forests if the sum of relative cover of these low-stature, non-tree and non-shrub 

702 taxa was >90%. As we did not have the growth form and height information for all taxa, a fraction 

703 of about 25% of the plots remained unassigned (i.e. was neither forest, nor non-forest. In 
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704 addition, more detailed classifications of plots into physiognomic formations (Table S3.2 in 

705 Appendix S3) and naturalness (Table S3.3 in Appendix S3) were derived from various types of 

706 plot-level or database-level information provided by the sources and stored in five separate fields 

707 (see Table S2.1 in Appendix S2). 

708

709 2.4 Phylogenetic information

710 We developed a workflow to generate a phylogeny of the vascular plant species in sPlot, using 

711 the phylogeny of Zanne et al. (2014), updated by Qian & Jin (2016). Species present in sPlot but 

712 missing from this phylogeny were added next to a randomly selected congener (see also Maitner 

713 et al., 2018). This approach has been demonstrated to introduce less bias into subsequent 

714 analyses than adding missing species as polytomies to the respective genera (Davies et al., 

715 2012). We only added species based on taxonomic information on the genus level, thus not 

716 making use of family affiliation. Because of the absence of congeners in the reference 

717 phylogeny, 7,147 species could not be added (11.7% of all resolved taxa in sPlot and TRY). This 

718 resulted in a phylogeny with 54,067 resolved taxon names from 61,214 standardized taxa in the 

719 combined list of sPlot and TRY. The tree was finally pruned to the vascular plant taxa of the 

720 current sPlot version 2.1, resulting in a phylogenetic tree for 53,489 out of the 58,066 taxa in 

721 sPlot. Of these 53,489 names, 16,026 are also found among the 31,389 taxa in the phylogenetic 

722 tree of Qian & Jin (2016), i.e. 51.1%. The full procedure and the R code is available in Purschke 

723 (2017b).

724

725 2.5 Associated environmental plot information

726 To complement the plot data, we harmonized geographical coordinates (in decimal degrees), 

727 elevation (m above sea level), aspect (degrees) and slope (degrees) as provided by the 

728 contributing databases. All other variables were too sparsely and too inconsistently sampled 
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729 across databases to be combined in the global set, but were retained in the original data sources 

730 and can be retrieved for particular purposes.

731 We used the geographic coordinates to create a geodatabase in ArcGIS 14.1 (ESRI, 

732 Redlands, CA) to link sPlot 2.1 to these climate and soil data. We retrieved data for all the 19 

733 bioclimatic variables provided by CHELSA v1.1 (Karger et al., 2017) by averaging climatic data 

734 from the period 1979–2013 at 30 arc seconds (about 1 km in grid cells near to the equator). 

735 These variables are the same as the ones used in WorldClim (www.worldclim.org; Hijmans, 

736 Cameron, Parra, Jones & Jarvis, 2005), but calculated with a downscaling approach based on 

737 estimates of the ERA-Interim climatic reanalysis. While the CHELSA climatological data have a 

738 similar accuracy as other products for temperature, they are more precise for precipitation 

739 patterns (Karger, et al. 2017). We also calculated growing degree days for 1 °C (GDD1) and 5 

740 °C (GDD5), according to Synes & Osborne (2011) and based on CHELSA data, and included 

741 the index of aridity and potential evapotranspiration extracted from the CGIAR-CSI website 

742 (www.cgiar-csi.org). In addition, we extracted seven soil variables from the SOILGRIDS project 

743 (https://soilgrids.org/; licensed by ISRIC – World Soil Information), downloaded at 250-m 

744 resolution and then converted to the same 30-arc second grid format of CHELSA. To explore the 

745 distribution of sPlot data in the global environmental space, we subjected all 30 climate and soil 

746 variables of the global terrestrial surface rasterized on a 2.5 arc-minute grid resolution to a 

747 principal component analysis (PCA) on standardized and centered data. We subsequently 

748 created a grid of 100 × 100 cells within the bi-dimensional environmental space defined by the 

749 first two PCA axes (PC1 and PC2) and counted the number of terrestrial cells per environmental 

750 grid cell of the PC1-PC2 space. Then, we counted the number of plots in sPlot in the same PCA 

751 grid (Figure 2).

752 We linked all vegetation plots to two global biome classifications. We used the World 

753 Wildlife Fund (WWF) spatial information on terrestrial ecoregions (Olson et al., 2001) to assign 

754 plots to one of the 867 ecoregions, 14 biomes and eight biogeographic realms. The WWF 

Page 106 of 162Journal of Vegetation Science

http://www.worldclim.org
http://www.cgiar-csi.org
https://soilgrids.org/


For Review Only

31

755 approach is based on a bottom-up expert system using various regional biodiversity sources to 

756 define ecoregions, which in turn are grouped into realms and biomes (Olson et al., 2001). In 

757 addition, we created a shapefile for the ecozones defined by Schultz (2005) to represent major 

758 biomes in response to global climatic variation. Since these zones are climatically 

759 heterogeneous in mountain regions, we differentiated an additional “alpine” biome for mountain 

760 areas above the lower mountain thermal belt, as defined in the classification of world mountain 

761 regions by Körner et al. (2017). This resulted in a distinction of 10 major biomes (Fig. S4.5 in 

762 Appendix S4), whose shape file is freely available (from 

763 https://www.idiv.de/en/sdiv/working_groups/wg_pool/splot/materials.html)Appendix S5).

764

765 2.6 Trait information

766 To broaden the potential applications of the global vegetation database in functional contexts, 

767 we linked sPlot to TRY. We accessed plant trait data from TRY version 3.0 on August 10, 2016 

768 and included 18 traits that describe the leaf, wood and seed economics spectra (Westoby, 1998; 

769 Reich, 2014; Table S65.4 in Appendix S65), and are known to affect different key ecosystem 

770 processes and to respond to macroclimatic drivers. These traits were represented across all 

771 species in the TRY database by at least 1,000 trait records. We excluded trait records from 

772 manipulative experiments and outliers (Kattge et al., 2011), which resulted in a matrix with 

773 632,938 individual plant records on 52,032 taxa in TRY, having data records for an average of 

774 3.08 for the 18 selected traits. On average, each trait has been measured at least once in 17.1% 

775 of all taxa. In order to attain data for these 18 traits for all species with at least one trait value in 

776 TRY, we employed hierarchical Bayesian modelling, using the R package ‘BHPMF’ (Schrodt et 

777 al., 2015; Fazayeli, Banerpee, Kattge, Schrodt & Reich, 2017), to fill a gap in the matrix of 

778 individual plant records in TRY. Gap-filling allows to obtain trait values for a species on which 

779 this trait has not been measured, but for which other traits were available. To assess gap-filling 

780 quality, we used the probability density distributions provided by BHPMF for each imputation and 
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781 removed highly uncertain imputations with a coefficient of variation >1. We then loge-transformed 

782 all gap-filled trait values and averaged them by taxon. For taxa recorded at genus level only, we 

783 calculated genus means, resulting in a full trait matrix for 26,632 out of the 54,519 taxa in sPlot 

784 (45.9%), with 6, 1,510 and 25,116 taxa at the family, genus and species level, respectively. 

785 These species covered 88.7% of all species-by-plot combinations.

786 For every trait j and plot k, we calculated the community-weighted mean (CWM) and the 

787 community-weighted variance (CWV) for each of the 18 traits in a plot (Enquist et al., 2015):

788

789

790 where nk is the number of species with trait information in plot k, pi,k is the relative abundance of 

791 species i in plot k calculated as the species’ fraction in cover or abundance of total cover or 

792 abundance, and ti,j is the mean value of species i for trait j. CWMs and CWVs were calculated for 

793 18 traits in 1,117,369 and 1,099,463 plots, respectively, the second being a smaller number as 

794 at least two taxa were needed for CWV calculation. 

795

796 3. RESULTSCONTENT OF sPlot 2.1

797 3.1 Plot community data

798 sPlot 2.1 contains 1,121,244 vegetation plots from 160 countries and from all continents (Figure 

799 3). The global coverage is biased towards Europe, North America and Australia, reflecting 

800 unequal sampling effort across the globe (Table 1). At the ecoregion level, major gaps occur in 

801 the wet tropics of South America and Asia, as well as in subtropical deserts worldwide and in the 

802 North American taiga. Although the plots are highly clustered geographically, their coverage in 

803 the environmental space is much more representative: the highest concentration of plots is 

804 found in environments that are most abundant globally (Figure 2), while they are lacking in the 
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805 very moist parts of the environmental space, which are also spatially rare, and in the very cold 

806 parts, which are sparsely vegetated.

807 In most cases (98.4%), plot records in sPlot include full species lists of vascular plants, 

808 while 1.6% had only wood species above a certain diameter or only the most dominant species 

809 recorded. Terricolous bryophytes and lichens were additionally identified in 14% and 7% of plots, 

810 respectively. (Table S2.1 in Appendix S2). Forest and non-forest plots comprise 330,873 

811 (29.7%) and 513,035 (46.0%) of all plots in sPlot, respectively. In most cases, species 

812 abundance was estimated using different variants of the Braun-Blanquet cover-abundance scale 

813 (66%), followed by percentage cover (15%) and 55 other numeric or ordinal scales. The 

814 temporal extent of the data spans from 1885 to 2015, but >94% of vegetation plots were 

815 recorded later than 1960 (Fig. S2.1 in Appendix S2). Almost all plots are georeferenced 

816 (1,120,686) and most plots have location uncertainty of 10 m or less (Fig. S2.2 in Appendix 

817 S2).

818 Vascular plant richness per plot ranges from 1 to 723 species (median = 17 species). The 

819 most frequent richness class is between 20 and 25 species (Fig. S2.3 in Appendix S2). Plot 

820 size is reported in 65.4% of plots, ranging from less than 1 m2 to 25 ha, with a median of 36 m2. 

821 While forest plots have plot sizes 100 m2, and in most cases 1,000 m2, non-forest plots range 

822 between 5 and 100 m2 (Fig. S2.4 in Appendix S2). When using these size ranges, forest 

823 plots tend to be richer in species (Figure 4a). The fact that the gradient in richness found in our 

824 plots was at least one order of magnitude stronger than differences that could be expected by 

825 the differences in plot sizes, prompted us to produce the first global maps of plot-scale species 

826 richness, separately for forests and non-forests (Figure 4a). While plots with complete vascular 

827 species composition are largely lacking from the wet tropics, for the remaining biomes the plot-

828 scale richness data do not show the typical latitudinal richness gradient in either formation. 

829 Particularly species-rich forests are found in the wet subtropics (such as SE United States, 

830 Taiwan and the East coast of Australia) as well as in some mountainous regions of the nemoral 
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831 and steppic biomes of Eurasia. Likewise, non-forest communities, have a particularly high mean 

832 vascular plant species in mountainous regions of the nemoral and steppic biomes of Eurasia. 

833

834

835 3.2 Phylogenetic information

836 The phylogenetic tree for sPlot was produced from 53,489 vascular plant names contained in the 

837 database, comprising 5518 genera (Appendix S76). Moderately to highly frequent species in 

838 sPlot 2.1 are equally distributed across the phylogeny (corresponding to yellowish to reddish 

839 colors for low and high peaks, respectively, in Fig. S76.6 in Appendix S67). Coverage of 

840 species included in the phylogeny ranges from 89% of species that occur only once in all plots to 

841 100% of species with a frequency >10,000 plots (Fig. S76.7 in Appendix S67).

842

843 3.3 Functional information

844 The proportion of species with trait information increases with the species’ frequency in 

845 plots. Gap-filled trait information is available for 77.2% and 96.2% for taxa that occurred in more 

846 than 100 and 1,000 plots, respectively. Trait coverage is similar across biomes (Fig. S87.8 in 

847 Appendix S78). Across all biomes, the proportion of species for which gap-filled trait data are 

848 available increases with the species’ frequency across plots. Compared to gap-filled data, trait 

849 coverage for the original trait data is considerably lower, being highest for height, seed mass, 

850 leaf area and specific leaf area (SLA, Fig. S87.9 in Appendix S78).

851 The high representation of the 18 traits in the gap-filled trait data and the high degree of 

852 trait coverage for frequent species across all biomes (>75%) made us confident to produce the 

853 first maps of global patterns of community-weighted means (CWMs) (Figure 4b–d). The maps 

854 show the main trait dimensions of SLA, height and seed mass, separately for forests and non-

855 forests, for those regions of the world that are already sufficiently covered by sPlot data. 

856 Accordingly, CWMs of SLA are quite similar for forest and non-forest plots, being highest in 
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857 western North America and Europe and lowest in eastern North America, East and South 

858 Australia (Figure 4b). Non-forest vegetation shows lowest CWMs of SLA in the desert regions of 

859 the Namib and Sinai. Forests with highest CWMs of canopy height are found along the western 

860 and eastern coast of North America, some regions in Europe, East Asia and southern Australia 

861 (Figure 4c). These areas only partly coincide with those of highest seed masses for forests, 

862 while seed mass in non-forests is highest in the eastern Mediterranean Basin and in Central 

863 Asia (Figure 4d). The corresponding patterns for CWV are shown in Appendix Fig. S98.10 in 

864 Appendix S98.

865

866 4. DATA USAGE 

867 The sPlot database (the vegetation-plot data, including the environmental information for each 

868 plot and the species phylogeny) is released in fixed versions to allow reproducibility of results, 

869 but also due to the enormous effort needed for data integration and harmonization and for 

870 updating the phylogeny. By delivering few fixed versions while keeping older versions available, 

871 the sPlot consortium ensures that the same data can be used in numerous parallel projects and 

872 that the data underlying a specific study remain accessible in the future, thus allowing re-

873 analysis. Each new version will be matched to the current TRY database, thus providing CWMs 

874 and CWVs for all plots.

875 Data access to sPlot is regulated by the Governance and Data Property Rules 

876 (www.idiv.de/sPlot) to ensure a fair balance between the interests of data contributors and data 

877 analysts. In brief, the sPlot Rules state that: (1) all contributing vegetation-plot databases 

878 become members of the sPlot consortium, represented by their custodian and deputy custodian; 

879 (2) vegetation-plot data contributed to sPlot remain the property of the data contributors and can 

880 be withdrawn at any time except for approved projects; (3) other scientists (e.g. data managers 

881 or participants of the sPlot workshops) with particular responsibilities may also be appointed as 

882 personal members to the sPlot consortium; (4) sPlot data can be requested for projects that 
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883 involve at least one member of the sPlot consortium; (5) whenever a project has been proposed, 

884 all sPlot consortium members will be informed and can declare their interest in becoming co-

885 authors of manuscripts resulting from this project and then becoming actively involved in data 

886 evaluation and writing; and (6) if also the matched gap-filled or original trait data from TRY are 

887 requested for a project, likewise members from the TRY consortium can opt-in as co-authors. 

888 The sPlot database is, therefore, available according to a ‘give-and-receive’ system. Moreover, 

889 the data are available to any researcher by establishing a collaboration that includes and is 

890 supported by at least one sPlot consortium member.

891 The sPlot consortium is governed by a Steering Committee elected by all consortium 

892 members for two-year, renewable terms. Project proposals can be submitted to the Steering 

893 Committee, which ensures that the sPlot Rules are followed and redundant work between 

894 overlapping projects is avoided. The lists of databases, sPlot consortium members and the 

895 Steering Committee members are updated regularly on the sPlot website, as are the sPlot Rules 

896 and the list of approved projects.

897

898 5. EXPECTED IMPACT AND LIMITATIONS

899 The main aim of the sPlot database is to catalyze a collaborative network for understanding 

900 global diversity patterns of plant communities in space and time. sPlot provides a unique, 

901 integrated global repository of data that would otherwise be fragmented in unconnected and 

902 structurally inconsistent databases of institutions at regional, national or continental levels. 

903 Together with the provision of harmonized phylogenetic, functional and environmental 

904 information, sPlot allows, for the first time, global analyses of plant community data. Compared 

905 to approaches using data aggregated from species occurrences in grid cells, sPlot will 

906 significantly advance ecological analyses and future interdisciplinary research in at least four 

907 different ways.
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908 1.) Co-occurrence information in every plot allows for the identification of species that 

909 potentially interact with each other (Table 1). Using this informationsPlot, one can predict 

910 the species that can co-exist in a community and also the frequencies of their co-

911 occurrence (Breitschwerdt, Jandt & Bruelheide, 2015) or niche overlap (Broennimann et 

912 al., 2012). In addition, emerging tools such as Markov networks can be used to infer 

913 strengths of interspecific interactions (Harris, 2016). When investigating community 

914 assembly rules, the same information can be used to derive species pools for specific 

915 vegetation types (de Bello et al., 2016; Lewis, Szava-Kovats & Pärtel, 2016; Karger et al., 

916 2016). Moreover, the co-occurrence data from sPlot can be used to address fundamental 

917 patterns and drivers of plant invasions better than information on large geographic entities 

918 (e.g. van Kleunen et al., 2015) alone could.

919 2.) sPlot provides diversity information at a very fine grain, i.e. within plant communities 

920 (alpha diversity). These data can be aggregated at broader scales for complementing 

921 grid-cell inventory data (Figure 1). Aggregation is also possible across all types of plots, 

922 by grid cells, ecoregions, environment, or even vegetation type or formation. Furthermore, 

923 replicated plots within grid cells, ecoregions, or any other subdivision of environmental 

924 conditions or vegetation types allow users to derive measures of compositional 

925 differences between plant communities within grid cells (= beta diversity; Table 1). Thus, 

926 the community data are an important complement to regional-scale species occurrence 

927 data (e.g. Kreft & Jetz, 2007; Enquist et al., 2016). 

928 3.) sPlot data provide information on the proportion of species in communities. When 

929 combined with functional trait information, relative abundance of species allows 

930 calculation of community abundance-weighted mean trait values (Bruelheide et al. 

931 2018Table 1). These values may differ considerably from non-weighted means calculated 

932 at the grid cell level, depending on the degree to which trait values of abundant species 

933 deviate from those of less abundant species and how strongly different communities in a 
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934 grid cell differ in their community mean values (Figure 1). Information on the relative 

935 contribution of species to a community-aggregated trait value is particularly necessary 

936 when traits are used as proxies for vegetation functions and processes, allowing to test, 

937 among other things, the mass ratio hypothesis (Grime, 1998; Garnier et al., 2004) and to 

938 assess the role of divergent traits (Díaz et al., 2007; Kröber et al., 2015).

939 4.) Plant species within plots can be linked to traits that predict interactions with organisms 

940 from other trophic groups, both belowground (mycorrhizae, soil decomposers) and 

941 aboveground (herbivores and pollinators). This will allow to link vegetation plot information 

942 to ecosystem processes and services such as pest control, pollination and nutrient cycling 

943 (e.g. de Bello et al., 2010).

944 Despite the large amount of available data and its potential suitability for global research, 

945 a number of limitations must be considered by future users of sPlot, such as i) biases towards 

946 certain regions and communities, ii) near-complete lack of plots with complete vascular plant 

947 species composition for certain regions (e.g. the wet tropics), iii) identification or sampling errors 

948 by the surveyors and incomplete records because the detection of some species may be 

949 precluded in certain seasons by their phenology, iv) taxonomic uncertainty particularly in the 

950 tropics, v) strongly varying plot sizes employed in different studies and regions, vi) lack of trait 

951 measures at the plot level. For example, trends patterns of diversity components are typically 

952 affected by grain size. This means that using sPlot data for such studies with sPlot data either 

953 requires filtering for plots with identical or at least similar size or accounting for the plot-size 

954 effects in the statistical model can only be explored by adjusting plot area, as different plots size 

955 may affect the results. In addition, links to phylogenetic oranalyses of functional diversity with 

956 sPlot data is limited by the absence oft trait data for a (smaller) portion of the species and by the 

957 lthrough databases is limited by the lack of plot-specific trait measures. Therefore, corrections for 

958 bias must be undertaken in studies using sPlot andFurthermore, the non-random and 

959 geographically and ecologically very unequal distribution of the plots contained in sPlot call for 
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960 stratified resampling of plots has to be applied to balance records of different environments (e.g. 

961 stratified by climate, Figure 2) or physiognomic formations (Figure 4). Users of sPlot need to be 

962 aware of these and other limitations by careful study of the sPlot documentations and to find 

963 correct ion of potential biases for their specific research question.

964

965 6. CONCLUSION

966 In summary, sPlot is a unique global database of plant community records sampled with 

967 comparable relatively similar methods widely used in vegetation ecology. The integration of co-

968 occurrence data into a unified database that can be directly linked to environmental, functional 

969 and phylogenetic information, makes sPlot an unprecedented and essential tool for analyzing 

970 global plant diversity, the structure of plant communities and the co-occurrence of plant species. 

971 The compatibility of this consolidated database with other global databases, e.g. via a joint 

972 taxonomic backbone with TRY and the Global Naturalized Alien Flora (GloNAF; van Kleunen et 

973 al., 2015) (via taxon names), or via standardized geo-reference with databases of environmental 

974 information such as CHELSA, WorldClim or SoilGrids (Bruelheide et al. 2018), facilitates data 

975 integration and creates new research opportunities. The adaptive management of the database 

976 employed by the sPlot consortium allows regular incorporation of new data, resulting in a 

977 dynamic platform for storing and analyzing the most comprehensive compilation of plant 

978 community data worldwide.

979
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1403
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1404 Figure 1. Conceptual figure visualizing how functional composition (in this case plant height) 

1405 differs between calculations based on mean traits for grid cells and community data sampled in 

1406 vegetation plots. Occurrence data (e.g. from distribution atlases, GBIF, etc.) can be used to 

1407 calculate mean trait values in grid cells G1–G3. However, community weighted means (CWMs) 

1408 of traits differ across local plots (P1–P6), while the mean values of CWMs in the grid cells differ 

1409 from the unweighted values calculated in the grid cells. This example is simplified by showing 

1410 few species and few plots. In reality, differences are generally more pronounced.
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1412

1413
1414 Figure 2. Distribution of vegetation plots from sPlot 2.1 in the global environmental space. 

1415 Comparison of the distribution of all terrestrial 2.5 arc-minute cells (a) and plots in sPlot 2.1 (b) in 

1416 the principal component analysis (PCA) space defined on 30 environmental (climate and soil) 

1417 variables. The PCA space was divided into a 100 × 100 regular grid. For each element of this 

1418 grid, the graphs show the number of 2.5 arc-minute cells (a) and plots (b), respectively. Colors 

1419 refer to the logarithm of number of plots, with the legend showing untransformed number of 

1420 plots. The first and second PCA axis explained 48.6% and 27.3% of the total variance. 
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1422

1423 Figure 3. Global coverage of sPlot 2.1; (a) contributing databases identified by different colours 

1424 with indication of the two data aggregators (EVA, TAVA) and a few particularly large individual 

1425 databases; (b) available plot numbers per WWF Ecoregion; and (c) available plot density in grid 

1426 cells of 100 km × 100 km.
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1428
1429 Figure 4. Examples of global community-level patterns that can be derived from (a) sPlot alone 

1430 and (b–d) sPlot combined with TRY, here shown as raw data averaged by 1-degree grid cells. 

1431 There are only a very few cells (142 out of 2633) comprising only a single plot. For the maps, 

1432 only plots with full vascular species composition and spatial accuracy < 5 km were used. They 

1433 are based on 148,474 and 218,051 plots for forests and non-forests respectively. Note that 

1434 these maps are not corrected for biases caused by the facts that not all community types were 
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1435 recorded in all grid cells and that plot sizes as well as the fraction of species with available trait 

1436 data varied spatially. Maps show patterns of (a) fine-grain alpha diversity, expressed as vascular 

1437 plant species richness (only plots with plot sizes of 100–1000 m² for forests and 5–100 m² for 

1438 non-forests); (b) community-weighted means (CWMs) for loge-transformed trait values of specific 

1439 leaf area (SLA, m2 kg-1), (c) plant height (m) and (d) seed mass (mg).
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1573 Table 1. Types of information provided by single vegetation plots, vegetation plots aggregated 

1574 within grid cells (or other geographic units) and single species occurrence records aggregated 

1575 within grid cells. The three levels are illustrated in Figure 1.

Information onfrom... Single vegetation 

plots

Set of vegetation 

plots aggregated 

within grid cells

Grid-cell data from floristic 

inventories

Tto derive information on the … Plot level Grid cell level Grid cell level

Type of occurrence Co-occurrence, 

occurrence by 

vegetation type

Occurrence by 

vegetation type

Occurrence

Community assembly rules Yes (co-occurrence is 

a prerequisite for 

species interactions)

No No

Absences Yes (for the target 

plant group in a study)

No (except for 

extraordinarily 

intensive sampling 

schemes)

Depending on sampling 

intensity

Floristic composition … … of the local 

community

… of the species 

pools of vegetation 

types

… of the total set of species 

Diversity  ,  

ISpecies abundance Local cover-

abundance

Mean cover-

abundance and 

frequency by 

vegetation type

Occurrence only

Combination with traits Functional 

composition of the 

local community (traits 

unweighted or 

weighted by cover: 

CWM, CWV)

Functional 

composition of the 

species pool 

(unweighted or 

weighted)

Functional composition of 

the total set of species 

(unweighted only)

Environmental filtering … … at the local level … at the regional 

level

… at the regional level

1576
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1578 Table 2. Plot datasets included in sPlot 2.1. GIVD ID refers to the ID in the Global Index of 

1579 Vegetation-Plot Databases (http://www.givd.info), which manages the metadata for sPlot and 

1580 provides updated online descriptions of these databases; * after the GIVD ID indicates that the 

1581 respective database description is currently not visible on the GIVD website. Datasets 

1582 contributed in harmonized format from a continental data aggregator (“collective database” 

1583 according to the sPlot Rules) are listed under its name. The references are included in Appendix 

1584 1, while fFurther references, attributions and disclaimers for particular datasets are found 

1585 Appendix S1.

GIVD ID Database name # of 
plots in 
sPlot 
2.1

Custodian Deputy 
custodian

Reference

[Aggregator] European Vegetation Archive 
(EVA)

950,001 Milan Chytrý Ilona Knollová Chytrý et al. (2016)

00-00-004 Vegetation Database of Eurasian 
Tundra

1,132 Risto Virtanen

00-RU-001 Vegetation Database Forest of 
Southern Ural

1,102 Vassiliy 
Martynenko

00-RU-003 Database Meadows and Steppes 
of Southern Ural

2,354 Sergey Yamalov Mariya Lebedeva

00-TR-001 Forest Vegetation Database of 
Turkey - FVDT

919 Ali Kavgacı

00-TR-002* Non-forest Vegetation Database of 
Turkey

3,018 Deniz Işık Didem Ambarlı

AS-TR-002 Vegetation Database of Oak 
Communities in Turkey

1,181 Emin Uğurlu

EU-00-002 Nordic-Baltic Grassland 
Vegetation Database (NBGVD)

7,675 Jürgen Dengler Łukasz Kozub Dengler & Rūsiņa (2012)

EU-00-011 Vegetation-Plot Database of the 
University of the Basque Country 
(BIOVEG)

18,441 Idoia Biurrun Itziar García-
Mijangos

Biurrun et al. (2012)

EU-00-013 Balkan Dry Grasslands Database 7,683 Kiril Vassilev Armin Macanović Vassilev et al. (2012)
EU-00-016 Mediterranean Ammophiletea 

Database
7,359 Corrado Marcenò Borja Jiménez-

Alfaro
Marcenò & Jiménez-
Alfaro (2017)

EU-00-017 European Coastal Vegetation 
Database

4,624 John Janssen

EU-00-018 The Nordic Vegetation Database 5,477 Jonathan Lenoir Jens-Christian 
Svenning

Lenoir et al. (2013)

EU-00-019 Balkan Vegetation Database 9,118 Kiril Vassilev Hristo 
Pedashenko

Vassilev et al. (2016)

EU-00-020 WetVegEurope 14,111 Flavia Landucci Landucci et al. (2015)
EU-00-022 European Mire Vegetation 

Database
10,147 Tomáš Peterka Martin Jiroušek Peterka et al. (2015)

EU-AL-001 Vegetation Database of Albania 290 Michele De 
Sanctis

Giuliano Fanelli De Sanctis et al. (2017)

EU-AT-001 Austrian Vegetation Database 34,458 Wolfgang Willner Christian Berg Willner et al. (2012)
EU-BE-002 INBOVEG 25,665 Els De Bie
EU-BG-001 Bulgarian Vegetation Database 5,254 Iva Apostolova Desislava Apostolova et al. (2012)
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Sopotlieva
EU-CH-005 Swiss Forest Vegetation Database 14,193 Thomas 

Wohlgemuth
Wohlgemuth (2012)

EU-CZ-001 Czech National Phytosociological 
Database

104,697 Milan Chytrý Dana Holubová Chytrý & Rafajová 
(2003)

EU-DE-001 VegMV 53,822 Florian Jansen Christian Berg Jansen et al. (2012)
EU-DE-013 VegetWeb Germany 23,078 Jörg Ewald Ewald et al. (2012)
EU-DE-014 German Vegetation Reference 

Database (GVRD)
30,840 Ute Jandt Helge Bruelheide Jandt & Bruelheide 

(2012)
EU-DK-002 National Vegetation Database of 

Denmark
24,264 Jesper Erenskjold 

Moeslund
Rasmus Ejrnæs

EU-ES-001 Iberian and Macaronesian 
Vegetation Information System 
(SIVIM)    Wetlands

6,560 Aaron Pérez-
Haase

Xavier Font

EU-FR-003 SOPHY 209,864 Henry Brisse Patrice De 
Ruffray

Brisse et al. (1995)

EU-GB-001 UK National Vegetation 
Classification Database

28,533 John S. Rodwell

EU-GR-001 KRITI 292 Erwin Bergmeier
EU-GR-005 Hellenic Natura 2000 Vegetation 

Database (HelNatVeg)
5,168 Panayotis 

Dimopoulos
Ioannis Tsiripidis Dimopoulos & Tsiripidis 

(2012)
EU-GR-006 Hellenic Woodland Database 3,199 Georgios Fotiadis Ioannis Tsiripidis Fotiadis et al.  (2012)
EU-HR-001 Phytosociological Database of 

Non-Forest Vegetation in Croatia
5,057 Zvjezdana 

Stančić
Stančić (2012)

EU-HR-002 Croatian Vegetation Database 8,734 Željko Škvorc Daniel 
Krstonošić

EU-HU-003 CoenoDat Hungarian 
Phytosociological Database

8,505 János Csiky Zoltán Botta-
Dukát

Lájer et al. (2008)

EU-IT-001 VegItaly 15,332 Roberto 
Venanzoni

Flavia Landucci Landucci et al. (2012)

EU-IT-010 Italian National Vegetation 
Database (BVN/ISPRA)

3,562 Laura Casella Pierangela 
Angelini

Casella et al. (2012)

EU-IT-011 Vegetation-Plot Database 
Sapienza University of Rome 
(VPD-Sapienza)

12,780 Emiliano Agrillo Fabio Attorre Agrillo et al. (2017)

EU-LT-001 Lithuanian Vegetation Database 7,821 Valerijus 
Rašomavičius

Domas Uogintas

EU-LV-001 Semi-natural Grassland 
Vegetation Database of Latvia

5,594 Solvita Rūsiņa Rūsiņa (2012)

EU-MK-001 Vegetation Database of the 
Republic of Macedonia

1,417 Renata 
Ćušterevska

EU-NL-001 Dutch National Vegetation 
Database

102,327 Joop H.J. 
Schaminée

Stephan M. 
Hennekens

Schaminée et al. (2006)

EU-PL-001 Polish Vegetation Database 22,229 Zygmunt Kącki Grzegorz 
Swacha

Kącki & Śliwiński (2012)

EU-RO-007 Romanian Forest Database 6,017 Adrian Indreica Pavel Dan 
Turtureanu

Indreica et al. (2017)

EU-RO-008 Romanian Grassland Database 1,921 Eszter Ruprecht Kiril Vassilev Vassilev et al. (2018)
EU-RS-002 Vegetation Database Grassland 

Vegetation of Serbia
5,587 Svetlana Aćić Zora Dajić 

Stevanović
Aćić et al. (2012)

EU-RU-002 Lower Volga Valley 
Phytosociological Database

14,853 Valentin Golub Viktoria 
Bondareva

Golub et al. (2012)

EU-RU-003 Vegetation Database of the Volga 
and the Ural Rivers Basins

1,516 Tatiana Lysenko Lysenko et al. (2012)

EU-RU-011 Vegetation Database of Tatarstan 7,471 Vadim Prokhorov Maria 
Kozhevnikova

Prokhorov et al. (2017)

EU-SI-001 Vegetation Database of Slovenia 10,986 Urban Šilc Filip Küzmič Šilc (2012)
EU-SK-001 Slovak Vegetation Database 36,405 Milan Valachovič Jozef Šibík Šibík (2012)
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EU-UA-001 Ukrainian Grasslands Database 4,043 Anna Kuzemko Yulia Vashenyak Kuzemko (2012)
EU-UA-006 Vegetation Database of Ukraine 

and Adjacent Parts of Russia
3,326 Viktor 

Onyshchenko
Vitaliy 
Kolomiychuk

[Aggregator] Tropical African Vegetation 
Archive (TAVA)

6,677 Marco Schmidt Stefan Dressler Janßen et al. (2011)

AF-00-001 West African Vegetation Database 3,129 Marco Schmidt Georg Zizka Schmidt et al. (2012)
AF-00-008 PANAF Vegetation Database 2,469 Hjalmar Kühl TeneKwetche 

Sop
AF-BF-001 Sahel Vegetation Database 1,079 Jonas V. Müller Marco Schmidt Müller (2003)

Other databases 164,566
00-00-001 RAINFOR data managed by 

ForestPlots.net
1,827 Oliver L. Phillips Aurora Levesley Lopez-Gonzalez et al. 

(2011)
00-00-003 SALVIAS 4,883 Brian Enquist Brad Boyle
00-00-005 Tundra Vegetation Plots 

(TundraPlot)
577 Anne D. Bjorkman Sarah Elmendorf Elmendorf et al. (2012)

00-RU-002 Database of Masaryk University`s 
Vegetation Research in Siberia

1,547 Milan Chytrý Chytrý (2012)

AF-00-003 BIOTA Southern Africa 
Biodiversity Observatories 
Vegetation Database

1,666 Norbert Jürgens Gerhard Muche Muche et al. (2012)

AF-00-006 SWEA-Dataveg 2,704 Miguel Alvarez Michael Curran
AF-00-009 Vegetation Database of the 

Okavango Basin
590 Rasmus 

Revermann
Manfred Finckh Revermann et al. (2016)

AF-CD-001 Forest Database of Central Congo 
Basin

292 Elizabeth 
Kearsley

Hans Verbeeck Kearsley et al. (2013)

AF-ET-001 Vegetation Database of Ethiopia 74 Desalegn Wana Anke Jentsch Wana & Beierkuhnlein 
(2011)

AF-MA-001 Vegetation Database of Southern 
Morocco

1,337 Manfred Finckh Finckh (2012)

AF-ZA-003* SynBioSys Fynbos Vegetation 
Database

3,810 John Janssen

AF-ZW-001* Vegetation Database of Zimbabwe 36 Cyrus Samimi Samimi (2003)
AS-00-001 Korean Forest Database 4,885 Tomáš Černý Petr Petřík Černý et al. (2015)
AS-00-003 Vegetation of Middle Asia 1,381 Arkadiusz Nowak Marcin Nobis Nowak et al. (2017)
AS-00-004 Rice Field Vegetation Database 179 Arkadiusz Nowak
AS-BD-001 Tropical Forest Dataset of 

Bangladesh
211 Mohammed A.S. 

Arfin Khan
Fahmida Sultana

AS-CN-001 China Forest-Steppe Ecotone 
Database

148 Hongyan Liu Fengjun Zhao Liu et al. (2000)

AS-CN-002 Tibet-PaDeMoS Grazing Transect 146 Karsten Wesche Wang et al. (2017)
AS-CN-003* Vegetation Database of the BEF 

China Project
27 Helge Bruelheide Bruelheide et al. (2011)

AS-CN-004* Vegetation Database of the 
Northern Mountains in China

485 Zhiyao Tang

AS-CN-005* Database Steppe Vegetation of 
Xinjiang

129 Kohei Suzuki

AS-EG-001 Vegetation Database of Sinai in 
Egypt

926 Mohamed Z. 
Hatim

Hatim (2012)

AS-ID-001 Sulawesi Vegetation Database 24 Michael Kessler
AS-IR-001 Vegetation Database of Iran 2,335 Jalil Noroozi Parastoo 

Mahdavi
AS-KG-001 Vegetation Database of South-

Western Kyrgyzstan
452 Peter Borchardt Udo Schickhoff Borchardt & Schickhoff 

(2012)
AS-KZ-001 Database of Meadow Vegetation 

in the NW Tian Shan Mountains
94 Viktoria Wagner Wagner (2009)

AS-MN-001 Southern Gobi Protected Areas 1,516 Henrik von Karsten Wesche von Wehrden et al. 
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Database Wehrden (2009)
AS-RU-001 Wetland Vegetation Database of 

Baikal Siberia (WETBS)
2,381 Victor Chepinoga Chepinoga (2012)

AS-RU-002 Database of Siberian Vegetation 
(DSV)

9,116 Andrey Korolyuk Andrei Zverev

AS-RU-004 Database of the University of 
Münster - Biodiversity and 
Ecosystem Research Group's  
Vegetation Research in Western 
Siberia and Kazakhstan

445 Norbert Hölzel Wanja Mathar

AS-SA-001* Vegetation Database of Saudi 
Arabia

919 Mohamed Abd El-
Rouf Mousa El-
Sheikh

AS-TJ-001 Eastern Pamirs 282 Kim André 
Vanselow

Vanselow (2016)

AS-TW-001 National Vegetation Database of 
Taiwan

930 Ching-Feng Li Chang-Fu Hsieh

AS-YE-001 Socotra Vegetation Database 396 Michele De 
Sanctis

Fabio Attorre De Sanctis & Attorre 
(2012)

AU-AU-002 TERN AEKOS 21,261 Anita Smyth Ben Sparrow Turner et al (2017)
AU-NC-001 New Caledonian Plant Inventory 

and Permanent Plot Network (NC-
PIPPN)

201 Jérôme 
Munzinger

Philippe 
Birnbaum

Ibanez et al. (2014)

AU-NZ-001 New Zealand National Vegetation 
Databank

1,895 Susan Wiser Wiser et al. (2001)

AU-PG-001 Forest Plots from Papua New 
Guinea

63 Timothy Whitfeld George Weiblen Whitfeld et al. (2014)

NA-00-002 Tree Biodiversity Network 
(BIOTREE-NET)

1,757 Luis Cayuela Cayuela et al. (2012)

NA-CA-003 Database of Timberline Vegetation 
in NW North America

110 Viktoria Wagner Toby Spribille agner et al. (2014)

NA-CA-004 Understory of Sugar Maple 
Dominated Stands in Quebec and 
Ontario (Canada)

156 Isabelle Aubin Aubin et al. (2007)

NA-CA-005* Boreal Forest of Canada 89 Yves Bergeron Louis De 
Grandpré

NA-GL-001 Vegetation Database of Greenland 664 Birgit Jedrzejek Fred J.A. Daniëls Sieg et al. (2006)
NA-US-002 VegBank 67,352 Robert K. Peet Michael T. Lee Peet et al. (2012a)
NA-US-006 Carolina Vegetation Survey 

Database
17,221 Robert K. Peet Michael T. Lee Peet et al. (2012b)

NA-US-014 Alaska-Arctic Vegetation Archive 1,363 Donald A. Walker Amy Breen Walker et al. (2016)
SA-00-002 VegPáramo 2,643 Gwendolyn Peyre Xavier Font Peyre et al. (2015)
SA-AR-002 Vegetation Database of Central 

Argentina
218 Marcelo R. 

Cabido
Alicia Acosta

SA-BO-003 Bolivia Forest Plots 75 Michael Kessler Sebastian 
Herzog

SA-BR-002 Forest Inventory, State of Santa 
Catarina, Brazil (IFFSC Project)

1,669 Alexander 
Christian Vibrans

André Luis de 
Gasper

Vibrans et al. (2010)

SA-BR-003 Grasslands of Rio Grande do Sul, 
Brazil

320 Eduardo Vélez-
Martin

Valério De Patta 
Pillar

SA-BR-004 Grassland Database of Campos 
Sulinos

161 Gerhard E. 
Overbeck

Valério De Patta 
Pillar

SA-CL-002 SSAForests_Plots_db 261 Alvaro G. 
Gutierrez

SA-CL-003* Chilean Park Transects - Fondecyt 
1040528

165 Aníbal Pauchard Alicia 
Marticorena

Pauchard et al. (2003)

SA-EC-001 Ecuador Forest Plot Database 172 Jürgen Homeier

1586
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APPENDIX S1: Additional references, attributions and disclaimers for datasets included in sPlot 2.1. 
The datasets are listed under their GIVD ID (see Table 2)

00-00-001:

A contribution of RAINFOR data managed by ForestPlots.net.
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker T. R. & Phillips, O. L. (2009). ForestPlots.net Database. 

www.forestplots.net. Date of extraction [15 November 2014].

AF-00-006:

Alvarez, M., Möseler, B. M., Josko, M. et al. (2012a). SWEA-Dataveg – vegetation of small wetlands in East Africa. 
Biodiversity & Ecology, 4, 294-295.

Alvarez, M., Becker, M., Böhme, B. et al. (2012b). Floristic classification of the vegetation in small wetlands of Kenya 
and Tanzania. Biodiversity & Ecology, 4, 63-76.

Alvarez, M. (2017). Classification of aquatic and semi-aquatic vegetation in two East African sites: Cocktail 
definitions and syntaxonomy. Phytocoenologia, 47, 345-364.

Alvarez, M. & Luebert, F. (2018). The taxlist package: managing plant taxonomic lists in R. Biodiversity Data Journal, 
in press.

Behn, K., Becker, M., Burghof, S. et al. (2018). Using vegetation attributes to rapidly assess degradation of East 
African wetlands. Ecological Indicators 89: 250-259.

Scherer, L., Curran, M. & Alvarez, M. (2017a). Expanding Kenya’s protected areas under the Convention on 
Biological Diversity to maximize coverage of plant diversity. Conservation Biology, 31, 302-310.

Scherer, L., Curran, M. & Alvarez, M. (2017b). Staggering financial shortfalls to meet biodiversity targets in Kenya. 
Atlas of Science, February.

AF-00-009:

Revermann, R., Finckh, M., Stellmes, M., Strohbach, B., Frantz, D. & Oldeland, J. (2016). Linking land surface 
phenology and vegetation-plot databases to model terrestrial plant alpha diversity of the Okavango Basin. 
Remote Sensing 8, Article 370.

Revermann, R., Oldeland, J., Gonçalvess, F.M., Luther-Mosebach, J., Gomes, A.L., Jürgens, N. & Finckh, M. (2018). 
Dry tropical forests and woodlands of the Cubango Basin in southern Africa: A first classification and assessment 
of their woody species diversity. Phytocoenologia, 48. DOI: 10.1127/phyto/2017/0154.

Wallenfang, J., Finckh, M., Oldeland, J. & Revermann, R., 2015. Impact of shifting cultivation on dense tropical 
woodlands in southeast Angola. Tropical Conservation Science, 8, 863-892.

AU-AU-002:

Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., … TERN Eco-informatics (2015). A subset 
of ÆKOS Australian Vegetation sPlot Extraction (http://doi.org/10.4227/05/548530103BCAE). Obtained via 
Global Index of Vegetation-Plot Databases (http://www.givd.info/givd/faces/databases.xhtml) and TERN AEKOS 
Data Portal, rights owned by GIVD and The University of Adelaide. 

AU-NZ-001:

Website: https://nvs.landcareresearch.co.nz/  
 
Broadbent, H., Spencer, N. & Wiser, S. (2012). New Zealand National Vegetation Databank. Biodiversity & Ecology, 

4, 318.

Page 149 of 162 Journal of Vegetation Science

https://nvs.landcareresearch.co.nz/


For Review Only

SUPPORTING INFORMATION TO THE PAPER
Bruelheide et al. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Science.

2

EU-BE-002:

Website: http://www.inbo.be/en/inboveg 

EU-RS-002:

Dajic Stevanovic, Z., Petrovic, M., Šilc, U. & Acic, S. (2012). Database of Halophytic Vegetation in Serbia. Biodiversity 
& Ecology, 4, 417-417.

EU-RU-003:

Golub, V.B., Sorokin, A.N., Ivakhnova, T.L., Starichkova, K.А., Nikolaychuk, L.F. & Bondareva. V.V. (2009). 
Geobotanicheskaya baza dannyh doliny Nizhnei Volgi [Geobotanical database of the Lower Volga valley]. 
Izvestiya Samarskogo nauchnogo centra RAN, 11, 577–582. (In Russian)

Sorokin, A., Golub, V., Ivakhnova, T., Starichkova, K., Nikolaychuk, L. & Bondareva, V. (2010). Lower Volga Valley 
Phytosociological Database. In: Dengler, J., Finckh, M. & Ewald, J. (eds.) Book of Abstracts. 9th international 
Meeting on Vegetation Databases “Vegetation Databases and Climate Change”. Hamburg, 24–26 February 
2010, pp. 91–91. BEE, University of Hamburg, Hamburg.

EU-SI-001

Šilc, U. (2006). Slovenian phytosociology in a database: state of the art, basic statistics and perspectives. Hladnikia, 
19, 27–34.

NA-00-002:

Cayuela, L., Gálvez-Bravo, L., de Albuquerque, F. S., Golicher, D. J., González-Espinosa, M., Ramírez-Marcial, N., … 
Zamora, R. (2012). La Red Internacional de Inventarios Forestales (BIOTREE-NET) en Mesoamérica: avances, 
retos y perspectivas futuras. Ecosistemas, 21, 126–135.

SA-00-002:

Website: http://www.vegparamo.com/
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APPENDIX S2. Data associated to the vegetation plot records stored in sPlot 2.1

Table S2.1. List of variables, type of data, number of records for which the variable was recorded, range 
(min; max) for numeric values and description of the header data of plot records in sPlot 2.1. Ranges of 
cover values of strata only refer to records in which the stratum was present.

Variable Type No. of 
records

Range Description

PlotObservationID integer 1,121,244 1; 1121244 Identificator provided by 
Turboveg 3, unique for each 
plot

Country character 1,119,575 Original country name in 
Turboveg 3

NAME2 character Official name of country
ISO2 character Two-letter ISO country code
Date of recording Date 983,267 "1885-07-01"; 

"2015-02-03"
Date referring to the 
observation or to the 
publication from which it comes

Syntaxon character 387,900 As provided by the source 
database

Relevé area (m2) numeric 725,845 0.01; 250000 Plot size

Altitude (m) numeric 649,240 -32; 4070 As provided by the source 
database

Aspect (°) numeric 348,192 0;360 Standardized in degrees in 
Turboveg 3

Slope (°) numeric 439,312 0;99 Standardized in degrees in 
Turboveg 3

Cover total (%) numeric 278,141 1;100 As provided by the source 
database

Cover tree layer (%) numeric 140,661 0.5;100 As provided by the source 
database

Cover shrub layer (%) numeric 161,046 0.1;100 As provided by the source 
database

Cover herb layer (%) numeric 413,629 0.2;100 As provided by the source 
database

Cover moss layer (%) numeric 182,242 1;100 As provided by the source 
database

Cover lichen layer (%) numeric 3,754 1;99 As provided by the source 
database

Cover algae layer (%) numeric 1,683 1;100 As provided by the source 
database

Cover litter layer (%) numeric 38,869 1;100 As provided by the source 
database

Cover bare rock (%) numeric 14,177 1;100 As provided by the source 
database
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Height (highest) trees (m) numeric 64,227 1;99 As provided by the source 
database

Height lowest trees (m) numeric 4,819 0.8;95 As provided by the source 
database

Height (highest) shrubs (m) numeric 44,357 0.1;10 As provided by the source 
database

Height lowest shrubs (m) numeric 4,241 0.1;10 As provided by the source 
database

Aver. height (high) herbs 
(cm)

numeric 111,189 0.1;800 As provided by the source 
database

Aver. height lowest herbs 
(cm)

numeric 28,215 1;353 As provided by the source 
database

Max. height herbs (cm) numeric 29,428 1;800 As provided by the source 
database

Mosses identified (y/n) logical 376831 0;1 Inferred when not provided by 
the source database

Lichens identified (y/n) logical 243,052 0;1 Inferred when not provided by 
the source database

Cover cryptogams (%) numeric 7,350 1;100 As provided by the source 
database

Herbs identified (y/n) logical 38,803 0;1 Inferred when not provided by 
the source database

Plants recorded character 61,224 It shows which subset of plants 
was recorded. Possible entries 
are:  "Complete vegetation 
(including non-terricolous 
taxa)"; "Complete vegetation"; 
"All vascular plants and 
bryophytes"; "All vascular 
plants and dominant 
cryptogams"; "All vascular 
plants"; "Woody plants >= 10 
cm dbh"; "Woody plants >= 5 
cm dbh", "Woody plants >= 10 
cm dbh and dominant 
understory", "Only dominants"

Cover bare soil (%) numeric 10,333 0.02;100 As provided by the source 
database

Longitude numeric 1,120,686 -162.741; 
179.590

Standardized to decimal 
degrees in Turboveg 3

Latitude numeric 1,120,686 -64.78; 80.15 Standardized to decimal 
degrees in Turboveg 3

Location uncertainty (m) numeric 1,120,425 1; 5032594 Assigned either by the source 
databases or by management in 
Turboveg 3, based on the 
number of decimal places of 
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the given coordinates
Dataset character 1,121,244 Name of the source database 

(short version) in Turboveg 3 
is.forest logical 504,567 0;1 Community corresponding to 

forest formation (standardized 
in sPlot)

is.non.forest logical 1,105,180 0;1 Community corresponding to 
non-forest formation 
(standardized in sPlot)

EVA integer 950,001 61000001; 
112004950

Relational IDs for the plots 
provided by the European 
Vegetation Archive

ESY character 949,967 EUNIS code assigned to EVA 
plots by Expert System

Naturalness Integer 953,904 0;3 0 (unknown), 1 (natural), 2 
(semi-natural), 3 
(anthropogenic)

Forest logical 850,108 0;1 Formation type (when existing 
in the data source)

Shrubland logical 794,722 0;1 Formation type (when existing 
in the data source)

Grassland logical 874,654 0;1 Formation type (when existing 
in the data source) 

Sparse.vegetation logical 763,759 0;1 Formation type (when existing 
in the data source)

Wetland logical 813,383 0;1 Formation type (when existing 
in the data source)

Biome character 1,120,686 sPlot biomes adapted from 
Schultz (2005) and Körner et al 
(2017)

BiomeID Integer 1,120,686 1;10 Codes for biomes from 1 to 10

REALM character 1,120,686 Biogeographical realm from 
WWF Ecoregions (Olson et al. 
2001)

BIOME2 1120686 Biome code from WWF 
Ecoregions (Olson et al. 2001)

ECO_ID 1120686 Ecoregion code from WWF 
Ecoregions (Olson et al. 2001)

ECO_NAME character Ecoregion name from WWF 
Ecoregions (Olson et al. 2001)

CONTINENT character Assigned from ESRI layer

POINT_X numeric Longitude corrected to fit with 
coastlines and land

POINT_Y numeric Latitude corrected to fit with 
coastlines and land
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Fig. S2.1. Temporal distribution of vegetation plots stored in sPlot 2.1, divided per continent. Y axis 
(density) reflects the frequency of plots scaled from 0 to 1.
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Fig. S2.2. Histogram of plot location uncertainty.

Fig. S2.3. Histogram of species richness. The most frequent richness class was between 20 and 25 species 
(i.e. between 10^1.3 and 10^1.4, respectively). Note that the graph shows raw richness, which has not 
been corrected for plot area.
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Fig. S2.4. Histogram of plot sizes, using breaks that either include the lower boundaries (top) or upper 

boundaries (bottom) in the size categories. 
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APPENDIX S3. Details on the workflow for setting up plot definitions in sPlot 2.1

Definition of physiognomic formations

Plots that had information on vegetation type or layer-specific cover (ca. 20% of all plots) were broadly 
classified into communities that were tree-dominated (forests), shrub-dominated (shrublands), or lacked 
tree or shrub species (grasslands), sparsely vegetated types and wetlands or combinations thereof, using 
a 0/1 coding. For example, if forest = 1 and grassland = 1, this would code for a savanna-like vegetation. 
Note that the assignment procedure is ongoing and not all plots have been yet assigned to formations.

Table S3.2. Definitions and examples of the physiognomic formations used in sPlot. They are derived by 
the combination of five basic categories: Forest, Shrubland, Grassland, Sparse.vegetation and Wetland, 
each rated with 0/1. We use the terms tree for woody species > 5 m height and shrub for woody species 
of 0.5–5 m height. “x” means that either 0 or 1 are possible, resulting in different types.

Fo
re

st

Sh
ru

bl
an

d

G
ra

ss
la

nd
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ar

se
. 

ve
ge

ta
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n

W
et

la
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Formation Definition
1 0 0 0 0 Forest Total cover >= 25%; tree cover >=  25%
1 1 0 0 0 Shrubland with 

some trees
Total cover >= 25%; tree cover 10 - <25%; shrub 
cover > herb cover

1 0 1 0 0 Savanna Total cover >= 25%; tree cover 10 - <25%; herb 
cover > shrub cover

1 0 0 1 0 Scattered trees Total cover < 25%; tree cover >0 - < 10%
0 1 0 0 0 Shrubland Total cover >= 25%; no trees; shrub cover > herb 

cover or if smaller then shrub cover > 50%
0 1 1 0 0 Grassland with 

some shrubs or 
heathland

Total cover >= 25%; no trees; herb cover > shrub 
cover; also for heathlands!

0 1 0 1 0 Scattered shrubs Total cover < 25%; no trees; shrub cover > herb 
cover

0 0 1 0 0 Grassland or 
herbland

Total cover >= 25%; no trees, shrubs < 10%

0 0 1 1 0 Open grassland or 
desert steppe

Total cover 10 - <25%; no trees, shrubs < 10%

0 0 0 1 0 Sparsely 
vegetated

Total cover <10%, no trees, no shrubs (e.g. rocks, 
screes, open sand dunes, deserts, nival vegetation)

0 0 0 0 1 Aquatic 
vegetation

Permanently water-covered

x x x x 1 Semi-aquatic 
vegetation

Very wet or temporarily water-covered (e.g. flood 
plains, mires, springs, temporary pools, salt marshs, 
mangroves)

0 0 0 0 0 Not assigned yet  
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Definition of the degree of naturalness

We were able to assign the majority of plots to one of three levels of naturalness from 1 (natural), 
through 2 (semi-natural), to 3 (anthropogenic). Categories of naturalness and formations were 
approximately derived from information provided by the source databases to match the definitions in 
Table S4.3. Main pieces of information used were (a) vegetation height; (b) cover values per vegetation 
layer; (c) vernacular names of vegetation types; (d) phytosociological classifications in the large majority 
of European plots and some from other continents, and (e) land use information. Often the database as a 
whole already provided part of the information, e.g. when it only contained tropical forest plots or rice 
field plots. Note that the assignment procedure is ongoing and not all plots have been yet assigned to a 
degree of naturalness.

Table S3.3. Definition and examples of the categories of naturalness used in sPlot.

Code Meaning Definition Examples

0 Not assessed - -

1 Natural or 
near-natural

Same formation as naturally occurring 
vegetation and species all or largely 
native, with low-intensity human land use, 
e.g. logging of timber or pasturing of 
steppes as long as it does not 
fundamentally change site conditions or 
structure and species composition of the 
vegetation.

Forests composed of native 
species; grasslands in regions 
where grasslands form the climax 
vegetation; various types of 
azonal vegetation (e.g. aquatic, 
bog, fen, coastal, rock, scree, 
alpine vegetation)

2 Semi-natural Vegetation types that are more 
profoundly changed by humans, but with 
a species composition that still has many 
similarities with the natural vegetation 
and site conditions that are not 
fundamentally altered compared to 
natural conditions.

Forest plantations composed of 
non-native species; shrublands in 
the cultural landscape; mown or 
livestock-grazed secondary 
grasslands and heathlands in 
forest biomes.

3 Anthropogenic Vegetation types that have very little in 
common with the natural vegetation on 
sites with profoundly altered site 
conditions and/or disturbance regimes.

Arable fields; ruderal vegetation; 
vegetation of anthropogenic 
structures; frequently mown and 
reseeded grasslands
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APPENDIX S4. Biome classification created for sPlot 2.1

Figure S4.5. Biome classification based on the ecozones of Schultz (2005), with a further differentiation of an Alpine biome including major 
mountain regions according to Körner et al. (2017). The shapefile for the biomes is provided as Appendix S5.
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APPENDIX S6. Trait information in sPlot 2.1

Table S6.4. List of traits, abbreviation of trait names, identifier in the Thesaurus Of Plant characteristics 
(TOP; Garnier et al., 2017) and mean values of community-weighted means (CWM) and community-
weighted variances (CWV) calculated across 1,117,369 and 1,099,463 plots, respectively. All trait values 
refer to gap-filled trait values and were available for 26,632 out of the 54,519 taxa in sPlot (45.9%). Trait 
values were log-transformed prior to analysis. Stem specific density is stem dry mass per stem fresh 
volume, specific leaf area is leaf area per leaf dry mass, leaf C, N and P are leaf carbon, nitrogen and 
phosphorus content, respectively. Leaf dry matter content is leaf dry mass per leaf fresh mass, leaf delta 
15N is the leaf nitrogen isotope ratio, stem conduit density is the number of vessels (angiosperms) or 
tracheids (gymnosperms) per unit area in a cross section, conduit element length refers to both vessel 
elements and tracheids.

Trait Abbreviation in 
sPlot dataset

TOP Unit Mean 
Log(CWM)

Mean 
Log(CWV)

Leaf area LA 25 mm2 6.130 1.565
Stem specific density SSD 286 g cm-3 -0.869 0.058
Specific leaf area SLA 50 m2kg-1 2.850 0.150
Leaf C LeafC 452 mg g-1 6.116 0.002
Leaf N LeafN 462 mg g-1 3.038 0.063
Leaf P LeafP 463 mg g-1 0.535 0.117
Plant height Plant.height 68 m -0.315 1.259
Seed mass Seed.mass 103 mg 0.407 2.784
Seed length Seed.length 91 mm 1.069 0.365
Leaf dry matter content LDMC 45 g g-1 -1.294 0.130
Leaf N per area LeafN.per.area 481 g m-2 0.251 0.099
Leaf N:P ratio Leaf.N:P.ratio - g g-1 2.444 0.081
Leaf 15N Leaf.delta15N - per million 0.521 0.455
Seed number per reproductive unit Seed.num.rep.unit - 6.179 5.156
Leaf fresh mass Leaf.fresh.mass 35 g -2.125 1.520
Stem conduit density Stem.cond.dens - mm-2 4.407 0.975
Dispersal unit length Disp.unit.length 90 mm 1.225 0.451
Conduit element length Cond.elem.length - µm 5.946 0.367

References

Garnier, E., Stahl, U., Laporte, M.-A., Kattge, J., Mougenot, I., Kühn, I., … Klotz, S. (2017). Towards a 
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APPENDIX S7. Phylogenetic information in sPlot 2.1

Fig. S7.6. Phylogenetic tree of 53,489 species sampled in the vegetation plots stored in sPlot 2.1. The 
length of the spikes show log frequency of species occurring in the database, ranging from 1 to 128,942 
times (Festuca rubra). Colors of spikes rank from low (yellow) to high (redish) frequencies.
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Fig. S7.7. Histogram of number of species by frequency classes in sPlot. Coverage of species included in 
the phylogeny was 89%, 90%, 91%, 92%, 96%, 99% and 100% of species that occurred with a frequency 
of 1; 2-5; 6-10; 11-100; 101-1,000; 1,001-10,000 and >10,000 in the plots.
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APPENDIX S8. Gap-filled trait information

Fig. S8.8. Taxonomical match between sPlot 2.1 and TRY 3.0 per biome. The graphs show the 
percentages of the number of the 25% most frequent and 25% most dominant species in sPlot 
2.1, for which gap-filled trait information was available in TRY 3.0.

Fig. S8.9. Taxonomical match of gap-filled trait information between sPlot 2.1 and TRY 3.0 per 
biome and for the originally measured 18 traits selected from TRY. LA: Leaf area, SSD: Stem 
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specific density, SLA: Specific leaf area, LeafC: Leaf C concentration, LeafN: Leaf N concentration, 
leafP: Leaf P concentration, Height: Plant height, , SeedMass: Seed mass, SeedLength: Seed 
length, LDMC: Leaf dry matter content, LeafNArea: Leaf N content per area, LeafNP: Leaf N:P 
ratio, Leaf-d15N: Leaf 15N concentration, SeedNRepU: Seed number per reproductive unit, 
Lfreshmass: Leaf fresh mass, SCondDens: Stem conduit density, DispUL: Dispersal unit length, 
WoodVlen: Conduit element length.
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APPENDIX S9. Global patterns of community-weighted variances

Fig. S9.10. (a) Community-weighted variances (CWVs) for loge-transformed trait values of specific 
leaf area (SLA, m2 kg-1), (b) plant height (m) and (c) seed mass (mg). CWV are averaged by grid 
cells of 1 degree.
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