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Abstract 11 

Cement-bound granular mixtures (CBGMs) represent an attractive option to increase load-12 

carrying capacity and sustainability in highway construction. However, reflection cracking of 13 

overlying pavement layers due to the low tensile strength of CBGMs represents an important 14 

obstacle limiting their use. This study is undertaken to investigate how incorporation, in 15 

CBGMs, of recycled steel fibers extracted from old tires, at different cement levels may affect 16 

their tensile properties related to pavement design. A combination of three levels of cement 17 

(3%, 5% and 7% by wt. of aggregate and fiber) and two reinforcement contents (0% and 0.5 by 18 

volume of aggregate) was investigated. To comprehensively quantify the benefits of fibers in 19 

the presence of variable cement contents, time-dependent fracture and damage propagation 20 

were examined quantitatively utilizing a combination of macro-surface cracks, fractal analysis 21 

and both image monitoring and processing techniques. The results indicated better tensile 22 

strength and toughness after cement and fiber inclusion. Furthermore, increasing the amount of 23 

cement accelerates the crack propagation and damage dispersion rate while these two 24 

parameters reduced significantly in the case of fiber-reinforced cemented aggregate. All 25 

benefits gained from fiber usage are more evident at higher cement contents.  26 
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1. Background 31 

Cement stabilized aggregate mixture is a cementitious material that consists of aggregate, 32 

cement and a small amount of water. Over the years, researchers have attempted to use other 33 

stabilizers such as lime (Mohammadinia et al. 2017), flyash (Mohammadinia et al. 2017), kiln 34 

dust (Arulrajah et al. 2017) and geopolymers (Arulrajah et al. 2016). To save natural resources 35 

and to encourage sustainable solutions, many investigations have been conducted to replace the 36 

natural aggregate by recycled aggregate such as recycled concrete aggregate RAC (Li et al. 37 

2010) and recycled asphalt pavement RAP (Taha et al. 2002, Puppala et al. 2017) or including 38 

waste aggregate such as a mix of construction and demolition waste CDW (Xuan et al. 2012) 39 

and glass materials (Arulrajah et al. 2015).   40 

 41 

Cement stabilization of granular materials, intended to be used as a main structural layer within 42 

semi-rigid pavements, has been proved as an effective technique giving better protection of 43 

weak subgrades and enhanced support for the surface hot mix asphalt layer. However, the 44 

inherent crack susceptibility of this layer, either due to shrinkage or due to low tensile capacity, 45 

might forms an obstacle that reduces the benefits of the technique. The crack networks that 46 

develop normally affect these stabilized layers detrimentally since they reduce the structural 47 

integrity, contributing negatively to load-carrying capacity, and most importantly increase the 48 

possibility of reflection cracking, especially in the case of wide cracks.   49 

 50 

Many attempts have been made to overcome the disadvantages that accompany application of 51 

cement stabilization in pavement construction. Thompson (2001), Shahid (1997) and Coni and 52 

Pani (2007), for example, tried to use industrial steel fibers as a reinforcement and investigated 53 

how such reinforcement might affect the mechanical properties of cement-stabilized aggregate 54 
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mixtures. Their results indicated the better mechanical behavior of the composite. Different 55 

types of fiber have also been used in many applications to improve the properties of different 56 

types of chemically stabilized soils (Mirzababaei et al. 2012, Chen et al. 2015, Balkis 2017, 57 

Cristelo et al. 2017) . Coni and Pani (2007) claimed that the initial cost of this industrial fiber 58 

might make it an uneconomic option while Sobhan and Mashnad (2002) and Sobhan and 59 

Mashnad (2003) justified their design in the light of other benefits such as longer fatigue life 60 

and reduced layer thickness. Nevertheless, they later attempted to use the waste fibers extracted 61 

from old milk containers to reduce the initial cost of the fibers and hence reduce the pavement 62 

construction cost while ensuring better performance and a sustainable pavement structure. In 63 

their study, Zhang et al. (2013) used polypropylene fibers as a low price reinforcement in 64 

CBGMs. Improvement in fracture properties was the main outcome of their investigation.   65 

More recently, Farhan et al. (2015) and Farhan et al. (2016) used rubber particles from recycled 66 

vehicle tires as replacement for fine aggregate to modify the aggregate mixture and hence 67 

ensure better mechanical and cracking behavior. These rubber particles, as their results 68 

indicated, affect many of the mechanical properties detrimentally but achieve better cracking 69 

characteristics. 70 

, 71 

In order to improve mechanical properties while ensuring reduced cost and maintaining a 72 

sustainable pavement structure, an attempt is made in this paper to use recycled steel fibers 73 

from old tires as a reinforcement. Despite the recent use of this recycled reinforcement in 74 

different types of concrete as reported in many investigations (Aiello et al. 2009, 75 

Angelakopoulos et al. 2015, Caggiano et al. 2015), the use of recycled steel fibers has never 76 

been attempted in cement-stabilized aggregate at relatively low cement contents. 77 

 78 

Investigation of damage propagation and cracking patterns is of the utmost importance since it 79 

will help in the understanding of damage and hence failure mechanisms which will eventually 80 

lead to more optimized mixtures (Silva et al. 2009). For concrete mixtures used in different 81 
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civil engineering structures, many studies have been conducted to examine the crack 82 

propagation speed in both plain and fiber-reinforced concretes. Mindess (1995) conducted a 83 

study to show how fiber inclusion in normal concrete mixtures affects the crack propagation 84 

speed. He reported a decline in crack speed after steel fiber inclusion. Pyo et al. (2016) noted 85 

that the number of studies to characterize crack propagation in fiber-reinforced concrete is very 86 

limited compared to those performed for plain concrete and, accordingly, they studied the effect 87 

of fiber and loading rate on crack propagation speed in ultra-high strength concrete. Their 88 

findings indicated a drop in the crack propagation speed due to fiber reinforcement.  89 

 90 

To the best knowledge of the authors, all of the above-mentioned studies to investigate the 91 

impact of fibers (either industrial or recycled) have focused on the mechanical properties only 92 

and no study has so far been conducted to investigate crack propagation in either plain or fiber-93 

reinforced cement-stabilized mixtures. Furthermore, the role that cement content might play in 94 

this process is still unclear. Therefore, this study has been undertaken to investigate how fiber 95 

inclusion at various cementation levels might affect the mechanical properties and to 96 

understand the effect of fiber inclusion on the crack propagation process in cemented aggregate, 97 

as a time-dependent phenomenon. 98 

 99 

2. Experimental methodology 100 

2.1 Materials 101 

A limestone aggregate from Tunstead Quarry, Derbyshire, UK was used in this study. The  102 

gradation is shown in Figure 1 together with specification limits.  103 

 104 

To reduce the cost and increase the sustainability of highway pavement construction, recycled 105 

steel fibers (Figure 2) were incorporated to reinforced cement-stabilized aggregate mixtures. 106 

These were extracted from old vehicle tires by a shredding process. The maximum fiber 107 

volumetric content attempted in cement-bound granular materials (CBGMs) is 1% as 108 
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documented in previous literature (Shahid 1997, Thompson 2001). Trial investigations at the 109 

start of the current experimental program showed there was difficulty in achieving uniform 110 

fiber dispersion due to fibers balling at 1% volumetric content. To ensure uniformity of fiber 111 

dispersion, a 0.5% volumetric content was selected.   112 

 113 

Portland cement (CEM I 52.5 N) was used for the purpose of stabilization and binding the 114 

mixture components. To examine the effect of stabilizer content on the performance and 115 

effectiveness of fibers in CBGMs, three different stabilization levels, 3%, 5% and 7% by dry 116 

weight of aggregate and fibers were used. These cement contents, together with design water 117 

contents, were chosen based on the results of a previous investigation (Farhan et al. 2016).  118 

 119 

2.2 Mix design 120 

First, aggregate fractions were combined to produce CBGM 2-0 (BS EN 14227-1:2013 (British 121 

Standards Institution 2013)). To avoid any variability in aggregate gradation, each specimen 122 

was batched, mixed and compacted individually.  123 

 124 

In this paper, a combinations of two fiber contents (0 and 0.5% by weight of dry aggregate) and 125 

three cement contents (3%, 5% and 7% by weight of dry aggregate plus fibers) were evaluated. 126 

For these fiber-reinforced CBGMs mixtures (i.e. FCBGMs), water contents were proportioned 127 

by the weight of dry aggregate, cement and fibers. Although a volumetric basis should be 128 

logically used to determine the required amount of water, using weight proportions resulted in 129 

negligible error due to the small amount of fibers used. Table 1 shows the investigated mixture 130 

designations and proportions. 131 

 132 

2.3 Mixing, manufacturing and curing 133 

The aggregate was mixed first with cement for a minute. Then, the design water content was 134 

added and mixed for two minutes. Lastly, the steel fibers were added and mixed for another one 135 

minute with the wet cemented aggregate. The mixing process was conducted manually. 136 
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The fresh cemented aggregate-fiber mixture was compacted in lubricated steel molds using a 137 

Kango 638 vibratory hammer. All compacted specimens were kept molded for the rest of the 138 

day then demolded, wrapped, and stored in wet plastic bags for 28 days. After the curing period, 139 

specimens were trimmed to obtain 100 mm x 100 mm cylindrical samples. As can be observed 140 

in Figure 3a, even for lower cement content, specimens looked intact and no pulling out of 141 

fibers was noticed, which suggests good interaction and bonding with aggregates. 142 

 143 

2.4 Indirect tensile testing setup 144 

CBGMs are normally classified through system II of European standards BS EN 14227-1:2013 145 

based on their tensile strength. Adopting tensile strength comes from the fact that all 146 

cementitious stabilized layers within semi-rigid pavement structures are designed to resist the 147 

tensile stresses generated at lower boundary. Therefore, in this paper, tensile properties were 148 

utilized to evaluate the investigated mixtures. Indirect tensile testing was conducted on 149 

specimens at 28 days using a UTM-Instron with 200 kN capacity by applying a diametrical 150 

compression on the specimen. The application of this load was achieved through a curved steel 151 

plate. The latter step was preceded by marking of the specimen center to avoid eccentricity of 152 

loading. Indirect tensile strength (ITS) was calculated as  𝐼𝑇𝑆 =
2𝑃

πhd
 , where P= Peak load, N; 153 

h= specimen thickness, mm and D= specimen diameter, mm. Density was measured using the 154 

water-displacement method. 155 

 156 

2.4.1 Stress- strain curves, absolute toughness and ductility 157 

During vertical load application, horizontal strains were captured using non-contact equipment. 158 

This system is a video-based 2D measuring tool, called “Video Gauge”, for observing a face of 159 

a specimen under test. It consists of a lighting source and a high-resolution camera. The 160 

measurement is conducted by employing a digital image correlation (DIC) algorithm provided 161 

in the accompanying software. Figures 3b & 3c illustrate the testing setup and instrumentation 162 

system used in this investigation. Specimen faces were first speckled by application of a thin 163 
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white matt paint followed by a thin black paint as shown in Figure 3a, c.  The test was performed 164 

at a rate of 0.5 mm/min. 165 

 166 

The load-carrying capacity or material toughness was calculated as the area under the stress-167 

strain (Shahid 1997). For all investigated mixtures, this area was calculated up to strain of 2.5%. 168 

This approach evaluates the effect of both ductility and strength on material toughness due to 169 

steel fibers inclusion (Sobhan and Mashnad 2000). The formula due to Park (2011) was used 170 

to evaluate material ductility in terms of deformability index (Di) which can be calculated as, 171 

𝐷𝑖 = ∆𝑓𝑖𝑏𝑟𝑜𝑢𝑠/∆𝑛𝑜𝑛𝑓𝑖𝑏𝑟𝑜𝑢𝑠 , where ∆𝑓𝑖𝑏𝑟𝑜𝑢𝑠 and ∆𝑛𝑜𝑛𝑓𝑖𝑏𝑟𝑜𝑢𝑠 are the horizontal strains at peak 172 

stresses of fibrous and non-fibrous specimens, respectively. 173 

 174 

3. Results and explanations 175 

3.1 Combined effect of cement and fibers on indirect tensile strength and density 176 

In general, the observed trend (Figure 4) is that the ITS value increases as cement content 177 

increases for both CBGMs and FCBGMs. This is logical in the light of the improvement 178 

occurring in the bond between aggregate particles with increase of cement content which, in 179 

turn, increases hydration products after curing. This will ensure, at the same time, better bond 180 

with fibers which increases the tensile strength. This is because the fibers inside the specimen 181 

will carry part of the load and also might prevent crack propagation and hence ensure intactness 182 

of the specimen. For this reason, the improvement in ITS value after fiber incorporation seems, 183 

as shown in Figure 4, most obvious at higher cement content. The inclusion of fibers at 3% 184 

cement content does not have any effect on ITS whereas the percentage improvement in ITS 185 

value is 16% and 40% due to fiber incorporation at 5% and 7% cement content, respectively.  186 

 187 

Except for lightly cemented mixtures, densities rose after fiber reinforcement as presented in 188 

Table 1. This is because the specific gravity of the added fibers is much higher than the natural 189 

limestone aggregates.  190 
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3.2 Combined effect of cement and fiber on stress-strain curves and toughness  191 

The stress-strain relationships for the mixtures investigated are shown in Figure 5. In all 192 

CBGMs with different cement contents, strain-softening occurs following initial cracking 193 

whereas this is not the case for fiber-reinforced mixtures. FCBGMs showed a strain-hardening 194 

zone after first crack initiation enabling them to carry an additional tensile load before reaching 195 

their ultimate capacity. The presence of enough cement (≥ 5%) allows the reinforcement system 196 

to carry the applied tensile stress after yielding of the cemented aggregate. After reaching their 197 

ultimate strength, all mixtures at all cement and fiber contents showed strain-softening. 198 

However, the degree of softening differed depending on cementation and reinforcement levels.  199 

 200 

In terms of toughness improvement (Figure 6), the more the cement content the better the 201 

toughness of both reinforced and unreinforced mixtures. Furthermore, toughness improvement 202 

after reinforcement depends, to a large extent, on the cement content. In heavily cemented 203 

mixtures, fiber addition improves toughness significantly compared to lightly cemented 204 

mixtures; increases of 129%, 247% and 429% after 0.5% fiber incorporation are seen at cement 205 

contents of 3%, 5% and 7%, respectively. This might be attributable to a lower rate of crack 206 

propagation because the presence of fibers arrests the cracks and the degree to which crack 207 

propagation is inhibited is largely governed by the bond strength (i.e., the amount of cement) 208 

between the fibers and surrounding materials. 209 

 210 

3.3 Combined effect of cement and fibers on ductility 211 

Strain at peak stress generally decreases in CBGMs as the amount of cement increases as shown 212 

in Figure 7. This is because, as is well-known, the addition of more cement increases the 213 

brittleness of the mixture which may lead to failure with little deformation. In contrast, after 214 

0.5% fiber reinforcement, the strain at peak increases substantially. This improvement, as was 215 

obtained from other findings, also seems to be governed by the cement content. Consequently, 216 

the trend of deformation index, due to fiber inclusion, is for significant improvement as cement 217 
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content increases, with a deformability index increase of 16 and 11 times after fiber addition at 218 

cement contents of 5% and 7%, respectively compared with that at 3%. It seems that the 219 

presence of fibers in a highly cemented “environment” causes an increased restraint which in 220 

turn reduces the deformation of the specimens. This may explain the reduced deformability of 221 

fiber-reinforced mixtures at 7% cement content compared to 5%. Enhancement in ductility due 222 

to fiber reinforcement was also reported by Kim et al. (2010), who studied the effect of fibers 223 

on ductility of concrete. The effect of restraint was also noticed in their investigation where the 224 

largest reported ductility was at a lower fiber content, 0.25%. 225 

 226 

4 Time-dependent fracture damage propagation 227 

One of the most important problems, representing a serious challenge to the application of 228 

cement-bound granular mixtures is their sensitivity to cracking, either from bottom-up fatigue 229 

or from shrinkage. If they are wide, these cracks contribute to a reduction of the load-carrying 230 

capacity of the stabilized layer and load transfer capacity across the cracks, and most 231 

importantly cause reflection cracks (Adaska and Luhr 2004). The latter cracks occur in the 232 

surface asphaltic course and contribute to a gradual deterioration of the pavement structure. 233 

Logically, the rate of such deterioration is largely governed by the rate of which the main 234 

structural layer (CBGM layer in this case) deteriorates. Thus, studying how incorporation of 235 

fibers might affect the cracking process in the main structural layer (stabilized base course) is 236 

an important issue that needs to be clarified in order to understand the damage process and 237 

failure mechanism. In addition, this will contribute to explaining and understanding the 238 

relationship between cracking features at the meso-scale level and macro-scale properties.  239 

 240 

In concrete, which is a different cementitious material, some researchers have studied, 241 

quantitatively, the cracking patterns of fiber-reinforced mixtures and attempted to relate them 242 

to mechanical properties. For example, Stang et al. (1990) and Yan et al. (2002) studied the 243 

cracking patterns of concrete mixtures reinforced with different types of fiber. Their 244 
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conclusions indicated that a relationship existed between cracking pattern and mechanical 245 

properties. To understand the failure sequence of different types of composites, others (Curbach 246 

and Eibl 1990, Pyo et al. 2016) have attempted to monitor the formation of cracks in concrete 247 

specimens during load application as a time-dependent process by evaluating the crack 248 

propagation speed.  249 

 250 

This paper represents the first attempt to investigate the time-dependent fracture of fiber-251 

reinforced and cement-stabilized aggregate mixtures intended to be used as a base layer within 252 

a semi-rigid pavement. This was conducted in terms of crack propagation speed and crack 253 

diffusion rate. Both of these parameters were characterized, quantitatively, by monitoring the 254 

propagation of damage during load application. As is well known, the failure of a pavement 255 

structure is a time-dependent process; therefore, the idea of this part of the study was also to 256 

investigate how stabilizer (cement) affects the damage process of FCBGMs and to compare this 257 

with CBGM behavior, which will eventually lead to understanding of the feasibility of fiber 258 

reinforcement in a pavement structure. Such studies, as reported by Stang et al. (1990) and Silva 259 

et al. (2009), may also provide essential information to develop models to help simulate the 260 

cracking process of such materials. 261 

 262 

4.1 Crack propagation speed  263 

To monitor the development of the cracks during tensile loading, the non-contact DIC technique 264 

described earlier was used to capture videos at a rate of 1000 fps. These videos were used to 265 

obtain images (at selected stages of loading) which were then used to estimate the crack lengths. 266 

Figure 8 shows samples of captured images at various loading stages for some of the 267 

investigated mixtures. Crack propagation speeds were calculated by averaging the crack length-268 

time curves as adopted by Pyo et al. (2016). To estimate the crack lengths, the latter authors 269 

used the Canny edge detector algorithm to extract a map of the cracks. In this paper, however, 270 

another approach is suggested and has been implemented to calculate the crack lengths. This is 271 
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due to the nature of the speckled testing surface that makes both cracks and dots appear the 272 

same in the image after binarization. Such appearance in the testing surface makes it impossible 273 

to extract the cracking patterns using the available thresholding algorithms (Figure 9 a, b). In 274 

the suggested methodology, the captured images were inserted into a CAD system, then these 275 

images were scaled up to make a meaningful comparison. After that, these cracks were digitized 276 

(Figure 9c) using software facilities. Total crack lengths were measured through the CAD 277 

software tools. To reduce the processing time, these images were selected at equal time 278 

intervals, which depended on the testing time of the specimens. Figure 10 illustrates samples of 279 

estimated crack length-time relationships which were used to calculate the crack propagation 280 

speed of the investigated mixtures.  281 

 282 

A summary of crack propagation speeds for different mixtures is presented in Figure 11. As is 283 

clear from this figure, the addition of more cement to CBGMs accelerates the propagation speed 284 

of cracks which might indicate that the rate of deterioration is higher in the case of stiff materials 285 

and also ductility decreases because the cracks propagate rapidly before showing further 286 

deformation. Using steel fiber reinforcement, in general, reduces the crack propagation speed 287 

as shown in the previous figure. This is because the presence of fibers arrests and bridges the 288 

cracks and hence reduces their propagation speed. This finding is consistent with outcomes of 289 

the studies conducted by Mindess (1995) and Pyo et al. (2016) which confirmed a reduction in 290 

the crack speed due to fiber inclusion.  291 

 292 

Another interesting new finding is the clarification of the role that cement content plays in crack 293 

propagation speed. Figure 11 indicates that incorporation of higher cement content in the case 294 

of FCBGMs is found to decelerate the propagation of the cracks significantly compared to 295 

mixtures with low cement content. Crack speed decreased 3.6, 7.6 and 14 times due to 296 

incorporation of 0.5% steel fiber at 3%, 5% and 7% cement content, respectively. This can be 297 

attributed to the higher bond level between the fiber and the adjacent materials that 298 
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accompanied the higher cement content which enables these fibers to be more effective in crack 299 

arresting-bridging and hence reduces the speed of crack propagation.  300 

 301 

4.2 Rate of damage (diffusion of cracks) 302 

In addition to the crack propagation speed, another important parameter that affects 303 

performance of a stabilized layer is the diffusion rate (or the degree of dispersion) of the cracks 304 

inside the body of the cemented layer. The idea of this part of the study was to evaluate diffusion 305 

rate (i.e., the rate of damage) as a time-dependent process. This will be achieved through 306 

implementation of the fractal geometry concept conducted in terms of fractal dimension by 307 

monitoring the evolution of fractal dimension during the load application. Another objective is 308 

to estimate the fractal dimension at the end of the test to evaluate the amount of damage that 309 

has occurred. Higher fractal dimension indicates, generally, more  disordered cracks, which 310 

means higher damage (Carpinteri and Yang 1996). Less cracks diffusion or localization of 311 

cracks is expected to accelerate the formation of reflection cracks whereas more diffused cracks 312 

may help to reduce the potential reflectivity of cracks due to reduced stress concentrations. 313 

Logically, fractal dimension should increase with the load application process which means that 314 

the damage increases as load increases. However, an interesting question in this regard is: to 315 

what extent the fiber might affect the damage rate and the final damage of the cemented 316 

aggregate and what is the role that the amount of cement might play in this process. 317 

 318 

To answer this question, the evolution of fractal dimension was estimated during the load 319 

application stages for both FCBGMs of different cement content and these were compared with 320 

the matching unreinforced mixtures. The following methodology was suggested and 321 

implemented: as was conducted in the previous part (Section 4.1), the cracks were extracted at 322 

each stage of load application. Next, the fractal dimension was determined using the box-323 

counting method (Chiaia et al. 1998, Hassan 2012, Erdem and Blankson 2013). Then, the fractal 324 

dimension-time relationship was constructed and the slope of this curve was computed as the 325 
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damage evolution  rate of the mixture. Figure 12 shows samples of the estimated fractal 326 

dimension-time relationships. 327 

 328 

A summary of the damage rate results is illustrated in Figure 13. It can be observed from this 329 

figure that, for CBGMs, the rate of fractal dimension propagation (i.e., the rate of damage) 330 

increases for the stiffer mixtures as compared with less stiff materials. The rate of damage for 331 

FCBGMs, on the other hand, decreases as a consequence of the  fiber incorporation at all cement 332 

contents. Interestingly, there was a greater reduction in the rate of damage when the fiber-333 

reinforced mixtures were heavily cemented. The rate of damage decreased by a factor of 4, 4.4 334 

and 14.6 times upon the addition of 0.5% fiber reinforcement at 3%, 5% and 7% cement 335 

contents, respectively.  336 

 337 

These findings, in fact, also reveal the mechanism behind the toughening process of fiber-338 

reinforced mixtures. As can be seen from Figure 14, the reduction in damage correlates well 339 

with toughness improvement. In other words, the mixtures of higher toughness have normally 340 

had less damage rate (and, of course, lower crack speed) which means that these mixtures are 341 

able to carry the additional load after their peak because they are relatively intact and the fibers 342 

carry the greatest part of the tensile loads. 343 

 344 

To evaluate the possible mitigation of reflection cracking due to the reduction of crack 345 

localization in the FCBGM layer, the fractal dimensions were calculated at the end of testing 346 

as stated earlier. Figure 15 illustrates the fractal dimensions for the different mixtures. The 347 

general trend is an improvement in the fractal dimension values due to fiber reinforcement 348 

which confirms greater crack diffusion inside unreinforced CBGMs. Although this 349 

improvement is only about 9%, using higher fiber content will ensure higher dispersion of 350 

damage. Furthermore, in combination with the bridging effect this may reduce the reflectivity 351 

of the cracks significantly. In their study, Yan et al. (2002) reported that the tensile strength of 352 



14 

 

fiber reinforced concrete, measured through the flexural test, increased proportionally as fractal 353 

dimension increased. The fractal dimensions in this paper are also found to have some 354 

relationship with the indirect tensile strength as shown in Figure 16.  355 

 356 

5 Horizontal strain rate  357 

Figure 17 shows a sample of the horizontal tensile strains developed during the application of 358 

vertical diametrical compression (applied at a rate of 0.5 mm/min.). The slopes of these average 359 

straight lines are considered as the rate of applied horizontal strain. Figure 18 illustrates a 360 

summary of these horizontal strain rates. The latter figure indicates that the horizontal strain 361 

rate increases with the addition of more cement to the CBGMs while in FCBGMs, an inverse 362 

trend can be noticed. The highest reduction in developed horizontal strain occurred at high 363 

cement levels, where inclusion of 0.5% fiber-reinforcement in the highly cemented mixture 364 

reduced the strain rate 20 times compared to 3 times at low cement content. Most of the 365 

developed tensile stresses are, in fact, absorbed by the fibers at both micro and macro scale 366 

levels since all cementitious materials are weak in tension. So, when the micro-crack first 367 

develops, all tensile stresses are taken by the fibers. Therefore, in this process, the presence of 368 

cement plays an important role since it will increase the bond strength of the fiber which in turn 369 

increases the tensile resistance. 370 

 371 

Apart from the testing configuration, many researchers have found a relationship between the 372 

rate of strain and crack propagation speed. For example, a logarithmic relationship was reported 373 

in Pyo et al. (2016)’s study. John and Shah (1986) and Curbach and Eibl (1990) found that the 374 

logarithm of strain rate is related linearly with the logarithm of crack speed. In this paper, a 375 

logarithmic relationship was also found (Figure 19). This suggests that regardless of the nature 376 

of the cement-stabilized aggregate (i.e., the degree of binding and gradation of different 377 

cementitious materials), these mixtures behave in a similar way to that observed in concrete 378 
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mixtures. The rate of damage seems also to be affected by the rate of strain and a logarithmic 379 

relationship is also found, as illustrated in the Figure 19. 380 

 381 

Comparing and contrasting crack speeds (at each strain level) of both CBGMs and FCBGMs 382 

with those for plain and fiber-reinforced concrete mixtures (Zhang et al. 2015, Pyo et al. 2016) 383 

reveals that the cracking speed of the former mixtures is always less (for the same loading rates) 384 

than those of the latter concrete mixtures, as shown in Figure 20. This is, logically, attributable 385 

to the greater amount of cement that the concrete mixtures have, compared with those used in 386 

cement-stabilized aggregates. This might suggest that, from the crack propagation speed point 387 

of view, the use of cement-stabilized aggregate mixtures as reinforced layers within a pavement 388 

structure is better than that of fiber-reinforced concrete. 389 

 390 

6 Conclusions 391 

In order to optimize and exploit all recycled steel fiber properties, this paper has examined the 392 

effect of cement content on the behavior of fiber reinforced cement-bound aggregate mixtures 393 

and unreinforced mixtures as well. To understand this behavior, both macro-scale mechanical 394 

properties and time-dependent damage at a meso-scale level have been investigated 395 

interactively and in a synergistic way. Based on the findings of this study, the following main 396 

conclusions can be stated: 397 

 398 

1. Using more cement generally improves the tensile strength of both reinforced and 399 

unreinforced cement-stabilized mixtures. Significant improvement was obtained at higher 400 

cement contents when including steel reinforcement. Therefore, to ensure longer pavement 401 

life and/or less pavement thickness, it would be sensible to consider use of fiber at higher 402 

cement contents.  403 

 404 

2. Regarding the increase in toughness for the investigated mixtures (CBGMs and FCBGMs), 405 

a significant improvement occurred with highly cemented mixtures. Nevertheless, the 406 
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toughness increased after fiber inclusion at all cement contents. Also, cemented mixtures 407 

become more ductile after fiber reinforcement and this improvement is more obvious with 408 

5% or more cement inclusion. The toughness of fiber-reinforced mixtures comes from a 409 

lower damage propagation rate (i.e., lower diffusion rate of cracks inside FCBGMs) which 410 

keeps them intact for a relatively long period compared to CBGMs. 411 

 412 
 413 

3. Using of a greater cement content led to a higher crack propagation speed in the case of 414 

mixtures containing no fibers. This means there will be more pavement deterioration after 415 

reaching the peak strength of the materials which, in turn, would necessitate maintenance 416 

operations that may be expensive or unavailable. On the other hand, use of steel fibers 417 

(extracted from waste tires) in cemented mixtures reduces the crack propagation speed at 418 

all cement contents with the greatest reduction occurring at high cement contents. This 419 

would suggest only a gradual deterioration of the FCBGM until the pavement reaches its 420 

ultimate capacity and, even after this stage, would probably result in a lengthy period before 421 

maintenance application is needed. 422 

 423 

4. The rate of crack diffusion increases as cement content of the CBGMs increases which 424 

means that a highly cemented pavement layer will deteriorate more rapidly compared with 425 

mixtures containing less cement. With high cement content, if necessary, the use of fiber 426 

will contribute to delaying the rate of crack diffusion and hence ensure longer pavement 427 

life. Unlike lightly stabilized CBGMs, increasing the amount of cement in FCBGMs 428 

effectively decreases the rate of damage propagation.  429 

 430 

5. In the light of the benefits obtained from fiber incorporation at high cement content, it is 431 

recommended that this reinforcement should be used with a cement content not less than 432 

5%. 433 

 434 

 435 
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By combining these results, it can be concluded that incorporation of recycled steel fiber 436 

reinforcement at high cement content is most beneficial in CBGMs since this will result in 437 

significant improvement of indirect tensile strength. In addition, it will delay the crack 438 

propagation speed and crack diffusion rate. The implications of these findings are a reduction 439 

in the required thickness of the stabilized layer and a delay in pavement failure. In addition, this 440 

reinforcement will also reduce the decay of the pavement after reaching its service life, which 441 

will provide more time before maintenance is required – important in cases of limited funds for 442 

such pavement projects. 443 

 444 

 445 
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 499 
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 501 

                   1 by the weight of dry aggregate (and fibers for reinforced mixes). 502 

                   2 by the weight of dry aggregate. 503 

                   3 by the weight of dry aggregate, (fiber for reinforced mixes) and cement. 504 

            *the numbers in the bracket are standard error of the mean 505 

 506 

 507 

 508 

Mixture ID 

cement 

content1,% 

Fibers 

content2,% 

Water 

content3,% 

Density, kg/m3 

C3F0 3 0 4.5 2534.90 (4.4)* 

C5F0 5 0 4.6 2532.24 (2.2) 

C7F0 7 0 4.7 2528.90 (3.9) 

C3F0.5 3 0.5 4.5 2517.51 (6.6) 

C5F0.5 5 0.5 4.6 2539.70 (2.1) 

C7F0.5 7 0.5 4.7 2539.95 (7.3) 

Table 1: Mix designation, proportions and densities of different components 
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Figure 1: Gradation of aggregate. 
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Figure 2: Appearance of the steel fibres extracted from old vehicle tires. 
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Figure 3: Sample preparation (a); Testing setup (b) and close-up view (c) of indirect tensile testing  
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Figure 4: Effect of fiber reinforcement on ITS values. 
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Figure 5: Stress-strain curves for different fiber and cement levels: a. C3F0; b.C3F0.5; c. C5F0; 

d.C5F0.5; e. C7F0 and C7F0.5  
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Figure 6: Absolute toughness for different of fiber and cement contents. 
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Figure 7: Deformability properties for various investigated mixtures. 
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Figure 8: Selected crack propagation stages for some of the investigated mixtures: a. C3F0; b. 

C3F0.5; c. C7F0 and d. C7F0.5  
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Figure 9: Extracting cracking patterns: a. cracked section; b. image binarization; c. digitization 

of the cracks and d. extracted cracks   
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Figure 10: Samples of crack length propagation versus time used to estimate crack propagation 

speeds   
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Figure 11: Summary of crack propagation speeds for CBGMs and FCBGMs 
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Figure 12: Samples of fractal dimensions against time, used to estimate fractal dimension 

propagation rate  
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Figure 13: Summary of damage propagation rate expressed as fractal dimension evolution rate   
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Figure 14: Toughness- damage rate relationship.   
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Figure 15: Terminal fractal dimensions for investigated mixtures.   
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Figure 16: ITS-Fractal dimension relationship.   



36 

 

 979 

 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 

Figure 17: Samples of horizontal tensile strain development during the application of 

vertical compressive displacement at constant rate    
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Figure 18: Summary of developed horizontal tensile strains at different cement contents.   
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Figure 19: Relationship of cracking speed and damage rate with horizontal tensile strain.   
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Figure 20: Comparison with previous crack speed-strain rate relationships obtained for 

different types of concrete mixture  
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