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Abstract. Quay crane scheduling is critical in reducing operation costs at
container terminals. Designing a schedule to handling containers in an efficient
order can be difficult. For this problem which is proved NP-hard, heuristic
algorithms are effective to obtain preferable solutions within limited computa-
tional time. When solving discrete optimization problems, particles are very
susceptible to local optimum in Standard Particle Swarm Optimization (SPSO).
To overcome this shortage, this paper proposes an iteration-related various
learning particle swarm optimization (IVLPSO). This algorithm employs
effective mechanisms devised to obtain satisfactory quay crane operating
schedule efficiently. Superior solutions can save up to 5 h for handling a batch
of containers, thus significantly reduces costs for terminals. Numerical studies
show that the proposed algorithm outperforms state-of-the-art existing algo-
rithms. A series of experimental results demonstrate that IVLPSO performs
quite well on obtaining satisfactory Pareto set with quick convergence.

Keywords: Improved particle swarm optimization
Quay crane scheduling problem � Various learning mechanism

1 Introduction

Quay crane scheduling is a crucial operation in container terminal management. When
a vessel arrives at the container terminal, quay cranes are assigned to unload containers
from it. The quay crane scheduling problem consists of quay cranes, containers and
bays. Since a vessel contains several bays, to assign which quay crane to which bay in
an order can be a complicated problem. The quay crane scheduling problem has been
studied by scholars for years. One of the widely studied methods in quay crane
scheduling include genetic algorithm (GA) [1] or modified GA. Some researches add
random elements in crossover and mutation [2], or utilize biased mechanism [3] and
modified GA combined with simulation [4].

Particle swarm optimization (PSO) was proposed by Kennedy [5] and Eberhart [6],
and has been utilized in bunches of researches over many subjects including the quay
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crane scheduling problems. PSO is a heuristic algorithm simulating a population of birds
foraging to food source continuously. Each individual has a foraging position and updates
its flight direction based on individual experience and group experience. To overcome the
issue that PSO may be trapped into local optimal solution when addressing large-scale
problems, scholars introduced mechanisms into improved versions of PSO. These
include dynamic adaptive parameters like hierarchical swarm [7, 8]; inertia weight [9] and
learning coefficients [10], learning from leaders [8, 11] or other individuals [7, 12] in a
hierarchical system to update particles’ velocity and position. To balance the exploitation
and exploration of PSO, some scholars introduced un-certain elements to increase the
diversity of the population by learning from random individuals [8].

In this paper, to address the issue of particles stuck into the local optimum and to
accelerate convergence, an iterations-related variable learning particle swarm opti-
mization (IVLPSO) is proposed, integrating new mechanisms learning from the center
position and other near-optimal individuals. The idea of center position was proposed
by Niu [7], and showed to accelerate convergence. Dynamic inertia weight is also
introduced in IVLPSO. Some opposition solutions of high quality solutions (proposed
by Ghasemi [12]) are also taken into consideration, (i.e., the number of a dimension is
2, and its opposition solution is -2in [12], it will be adapted in the proposed algorithm).
So as to increase the diversity of IVLPSO. All mechanisms we use aim to explore
feasible and better solutions in a short time. Compared with standard particle swarm
optimization in addressing quay crane scheduling problems [13], IVLPSO shows to
perform better than PSO and GA.

This paper is organized as follows: Sect. 2 presents the mathematical formulation
of the quay crane scheduling problem, and Sect. 3 describes the process of the IVLPSO
algorithm. Experimental results are presented in Sect. 4. Section 5 concludes the paper.

2 Quay Crane Scheduling Problem Formulation

Li [13] proposed a quay crane scheduling problem with the objective of unloading
containers from vessel bays with unequal amount of containers as soon as possible,
namely, minimizing the total working time. It was assumed that the safety distance
between two quay cranes should be no less than two-vessel-bay length. The problem
model for the quay crane scheduling problem and the variables are presented in
Table 1. The objective function and constrains are presented as follows.

Minimize:
Subject to:

T
Fb � Sb � 0; 81� b�B

ð1Þ

XQ
q¼1

Pqbt � 1; 81� b�B; 81� t� T ð2Þ

XQ
q¼1

Xqbt � 1; 81� b�B; 81� t� T ð3Þ

AQ1
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XB
b¼1

Pqbt ¼ 1; 81� q�Q; 81� t� T ð4Þ

XB
b¼1

Xqbt � 1; 81� q�Q; 81� t� T ð5Þ

XB
b¼1

q0 � Pqbt �
XB
b¼1

q � Pqbt [ 2; 81� q\q0 �Q; 81� t� T ð6Þ

T¼max
b

Fb; 81� b�B ð7Þ

Fb ¼ max
t;q

tXqbt; 81� b�B ð8Þ

Xqbt ¼
1

0

(
81� q�Q; 81� b�B; 1� t� T ð9Þ

Pqbt ¼
1

0

(
81� q�Q; 81� b�B; 1� t� T ð10Þ

The objective is to minimize the total working time T. Constraints (1) set the start
working time and finish working time of a vessel bay. Constraints (2) represent that
there is no more than one quay crane staying in a bay at any time. Constraints (3)
restrict no more than one quay crane working in a bay at any time. Constraints (4)
illustrate that each quay crane must stay at one bay in any time. Constraints (5) mean
that every quay crane can work for only one bay at any time. Constraints (6) ensure
quay cranes will not cross each other and keep two bays length safety distance.

Table 1. Variables and definitions of Quay Crane Scheduling model

Varibles Definitions

Q The total amount of quay cranes
B The total amount of vessel bays of one vessel
T
b
q
t

The time when the last container is unloaded from the vessel
The index of bays, b 2 B
The index of quay cranes, q 2 Q
The index of time, t 2 T

Sb The time when the container of vessel bay b starts to be unloaded
Fb The time when all containers of vessel bay b have been unloaded
Xqbt Xqbt¼1: quay crane q is working at vessel bay b at time t

Xqbt¼0: otherwise
Pqbt Pqbt¼1: quay crane q stays on vessel bay b at time t

Pqbt¼ 0: otherwise
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Constraints (8) show the relation vessel between a decision variable and finish working
time of a vessel bay. Constraints (9) and (10) restrict the domain of the decision
variables.

3 IVLPSO for the Quay Crane Scheduling Problem

3.1 Iteration-Related Various Learning Particle Swarm Optimization

The standard PSO simulates bird swarm foraging phenomenon, where each particle
acts as a bird to update its velocity and position by its own experience and interaction
with the others with parameters called inertia weight and learning coefficients. For
more information, please refer to [5]. As one of the classical meta-heuristic algorithms,
PSO has been applied widely in optimization problems. However, it suffers from being
trapped to local Pareto fronts when tackling complex or large-scale problems. To
overcome these drawbacks, IVLPSO is proposed in this paper. It is inspired by the
diversified learning strategy used in [7] and [12]. The encoding, operations, and
algorithm procedures of the proposed IVLPSO are described as follows.

Encoding. Each particle of IVLPSO is regarded as a potential feasible solution for the
quay crane scheduling problem. The dimensions of a particle present the unique vessel
bay numbers. The dimensions in a particle are integers presenting the working order of
the quay crane, and each quay crane is available only if it has accomplished the
previous unloading task. Some constraints of the quay crane scheduling problem can be
met using this encoding; (A quay crane can only correspond to one vessel bay at any
time, and ensures that each vessel bay’s mission is completed, showing a job order).
Other constraints will be met through a series of operations based on the positions of
the quay crane and the target bay. These operations ensure that each particle is satis-
fying all constraints. An example of the encoding for a particle is illustrated in Fig. 1,
where the working sequence of the quay crane is from vessel bay 8, 4, 12 … to 15.

Three Key Operations of IVLPSO. In order to improve the standard PSO to avoid
being trapped into local optimum, additional operations are introduced in IVLPSO,
described as follows.

Dynamic Inertia Weight. Empirically, value of inertia weight w is set to be always in
the range of [0.4, 0.9]. When w is approaching the minimum, PSO has a good per-
formance in exploitation; when w is closer to the maximum, PSO does well in
exploration. According to the characteristics of PSO, which is well known on quick
convergence, w is set to decrease along with the iterations in IVLPSO. The probability
of getting a better solution decreases a lot when the number of iterations exceeds 100,
and the dynamic w is thus formulated as in Eq. (11):

Fig. 1. An example of the encoding for a particle
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w ¼ 0:2þ 0:5 � 4 � e10 � m
5Mðe10 þ 1Þ ð11Þ

where M is the maximum iteration number, m is the present iteration and the value of w
is set to between 0.2 and 0.7. The range ofM is usually between 100 and 1000, in order
to reduce the excessive influence of iterations on the gradient of inertia weight change,
ea in the denominator should be much larger than 5M. e10 can be regarded as far greater
than 5M.

Various Learning Mechanisms. Three mechanisms in Eqs. (13), (14) and (15) are
devised as learning exemplar for each particle. These mechanisms broaden the scope of
learning and increase the diversity of the updated particles. The change of particle
convergence is automatically judged at the late iteration to determine which mechanism
is used to update the particles. If the value of the fitness function remains unchanged for
dozens of consecutive times, the particle will be updated with Eq. (15), for other ways
see the following equations (Eqs. (13) and (14)). The center position of a swarm could
lead particles to towards better solutions efficiently. Particles select exemplar to update
themselves within the global best position (gbest) and center position randomly.
Exemplar of each particle is decided by generating a PCðiÞ in Eq. (12), which was
proposed by Niu et al. [7], and the velocity of particles is update using Eq. (13).

PCðiÞ ¼ 0:05þ 0:45 � e
10ði�1Þ
M�1

e10 � 1
ð12Þ

If RðiÞ\PCðiÞ :
vðiþ 1Þ ¼ w � vðiÞþ c1 � rand � ðPc � xðiÞÞþ c2 � rand � ðPg � xðiÞÞ

If RðiÞ�PCðiÞ :
vðiþ 1Þ ¼ w � vðiÞþ c1 � rand � ðPb � xðiÞÞþ c2 � rand � ðPg � xðiÞÞ

ð13Þ

where i is the index of the particle, Rði) is a random decimal in the range ½0; 1�; PCðiÞ is
the learning probability of particle i. vðiÞ and xðiÞ are the velocity and position of
particle i, respectively. Pc is the center position of the swarm and Pb is pbest, and Pg is
gbest. If RðiÞ is greater than PCðiÞ, particle i learns from gbest and its personal best
(pbest); otherwise, particle i regards the center position and gbest as its exemplar.

It is also observed that gbest convergences quite quickly in standard PSO, and the
curve of solution quality becomes smooth and steady when iteration number reaches
about one fifth of the maximum iteration number. The rest of iterations thus could
benefit from some randomness in finding better solutions. Two new strategies are
proposed in IVLPSO to increase the diversity of the swarm. First, as long as the
iteration number reaches one fifth of the maximum iteration number, exemplars
become some near-optimal particles (e.g. the half of the total individuals ranked the top
in terms of fitness). This strategy is formulated as below in (14).
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If iteration [ M=5 andRðiÞ\PCðiÞ :
vðiþ 1Þ ¼ w � vðiÞþ c1 � rand � ðPr � xðiÞÞþ c2 � rand � ðPg � xðiÞÞ

If RðiÞ�PCðiÞ :
vðiþ 1Þ ¼ w � vðiÞþ c1 � rand � ðPb � xðiÞÞþ c2 � rand � ðPg � xðiÞÞ

ð14Þ

where Pr is a random individual among near-optimal individuals of the swarm.
When the iteration number reaches one fifth of the total iterations, Rði) is less than

PCðiÞ and gbest is a constant over many iterations, then the new exemplar is opposition
solution (take the opposite value of each number in every dimension. Sometimes the
opposite value can be negative in some papers, it equals the maximum minus the
current value in this paper). The new exemplar among the newest pbest and three more
particles according to the fitness of their opposition solutions, see Eq. (15).

Pf ¼ max f ðopbestÞ; f ðop1Þ; f ðop2Þ; f ðop3Þf g

xðiÞ ¼ Pf ð15Þ

where Pf is the new exemplar, f ðxÞ is the fitness of x; opbest is the opposition solution
of pbest; op1op2op3 are the opposition solutions of the best three solutions.

Boundary Restrictions. To make sure that solutions satisfy constraints defined in
Sect. 2, and solutions on the boundary of each dimension (each dimension represents a
number of vessel bay, so the lower boundary is 1 and the upper boundary is the number
of total vessel bays. i.e., 20 vessel bays in total in [13], the upper bound is 20; 30 vessel
bays in total, the upper bound is 30…) are not ignored, every dimension should take
values within a lower bound and an upper bound after its velocity is updated. Boundary
restrictions are made using Eq. (16).

If xi [ xmax :
xi ¼ xmax

If xi\xmin :
xi ¼ xmin

ð16Þ

where xi is the position of the i th dimension. xmax is the maximum of position number,
which equals the amount of vessel bays. xmin is the minimum of vessel bay number,
which equals to 1.

Because every number in each dimension represents a number of a vessel bay, it
can only be a positive integer. But it may become a decimal number after the update.
So numbers of all dimensions are ranked and we get a new array that can restore to a
large extent its integral parts (otherwise the update doesn’t make sense); this operation
aims to avoid repetition or non-integer after updating. The original corresponding
sequencing number of the array needs to be recorded to obtain a similar solution with
no redundancy.
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3.2 The IVLPSO Algorithm for Quay Crane Scheduling Model

Based on mechanism of IVLPSO for terminal quay crane scheduling, the computa-
tional experiments are conducted in MATLAB environment. SPSO and GA are chosen
as the comparing algorithms by using the same parameters and settings as IVLPSO.
(Population size is 30 and iteration is 500). The pseudo-code of IVLPSO in solving
quay crane scheduling problem is shown in Table 2.

4 Experimental Results and Analysis

4.1 Experiment Parameter Settings

The parameter settings of the quay crane scheduling problem are the same as the PSO
in [13], and the same scale of the problem, which include the amount of cargo of each
vessel bay, the working efficiency of quay cranes and their travel time for the problem.
More information and related problem data can be referred to [13].

In the instance of [13] (denoted as task(1)), there are in total 20 bays in the arriving
vessel. The number of containers that require to be unloaded from each bay is as follows:

taskð1Þ ¼ 80; 168; 180; 66; 200; 180; 220; 60; 50; 140; 46; 210; 20; 90; 160; 110; 250; 50; 200; 160ð Þ

Table 2. The pseudo-code of IVLPSO

Begin
Initialize parameters and produce the initial population of IVLPSO

1 2 min max( 0.4, 500, 20, 30, 2, 2)= = = = = = − =c c M D N v v
For ( 1:=i N  ) // N: no. of iterations

Calculate the fitness of each particle according to model in Section 3.1;
Reserve pbest and gbest; 

End
For ( 1:=t M ) // M: population of particles

For ( 1:=j D ) //D: dimensions of the particle

Update the velocity of every dimension of particles using Eq. (13) and Eq. (14);
Update position using Eq. (13) and Eq. (15); 
Do boundary restrictions by rules in Eq. (16);

End
Update fitness and reserve gbest; 

End
Output: value of gbest (shortest working time of quay cranes) and the solution
End 
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To show the efficiency of the proposed IVLPSO algorithm, other instances (task(2)
- task(4)) have also been generated with different scale of bays and different number of
containers. The total number of bays in these four instances varies from 20 to 40, and
the average number of containers in the bays varies from 88 to 195.

taskð2Þ ¼ 275; 47; 264; 266; 282; 140; 144; 250; 197; 38; 207; 232; 192; 73; 243; 89; 282; 280; 121; 278ð Þ

taskð3Þ ¼ 89; 108; 69; 120; 79; 123; 118; 170; 183; 83; 183; 99; 109; 145;

10; 13; 81; 58; 35; 8; 49; 120; 21; 139; 48; 125; 61; 49; 44; 101

� �

taskð4Þ ¼ 265; 173; 189; 75; 139; 99; 243; 106; 88; 177; 69; 240; 24; 37; 47;

198; 39; 27; 42; 145; 62; 204; 269; 101; 260; 257; 33; 144; 8; 140

� �

taskð5Þ ¼ 6; 223; 130; 72; 199; 220; 63; 42; 294; 56; 68; 159; 26; 97; 149; 114; 171; 116; 120; 17;

255; 30; 182; 34; 108; 279; 236; 103; 8; 66; 58; 229; 33; 116; 281; 245; 158; 191; 37; 209

� �

Working efficiency (containers per hour) of three quay cranes is normally dis-
tributed with N(34.6, 2.69).

Tables show the results of the five instances with different combination of bays and
containers using PSO, GA and IVLPSO on the same computer and same parameters
(population size is 30 in three algorithms, learning factors are 0.4 and 0.4 in PSO and
IVLPSO and cross probability is 0.8 and mutation probability is 0.2 in GA), respec-
tively. Instance “20-2640” means the instance considers 20 bays and 2640 containers.
These characteristics are set considering the operating data of Shekou terminal in
Shenzhen of China in recent years. As shown in Tables 3, 4, 5, 6 and 7. For each
instance the algorithms are run for 10 times to record the computational time, Pareto set
of quay cranes total working time of each run, and also the average fitness. To make a
fair comparison, the three algorithms are run with the same number of populations (i.e.
30) and same number of iterations (i.e. 500).

As shown in Tables 3, 5 and 7, IVLPSO produces better solutions in a shorter time
than PSO and GA. Table 8 shows the solution of the best fitness 93124 for instance 1.

Table 3. The experimental results of the quay crane working time (seconds) for Instance 1.

Instance Number PSO GA IVLPSO

20-2640 1 103877 95163 94200
2 102567 97893 93498
3 98992 96427 94476
4 102512 97925 95633
5 104874 97664 97553
6 97265 97571 93421
7 103681 95163 95898
8 107802 97893 97102
9 100335 95573 94614
10 98354 98268 93265
Avg. 102025 96954 94966

Avg. running time 2394 4396 2339

8 M. Yu et al.

A
u

th
o

r 
P

ro
o

f



Figure 2 presents the convergence of the three algorithms. Conclusions can be drew as
follows:

• IVLPSO performs the best among the three algorithms compared. More than half of
the results from IVLPSO are better than the minimum of the other two algorithms.
This demonstrates the effectiveness of IVLPSO.
IVLPSO has showed superiority in quicker convergence without crossover or
mutation in GA. Moreover, its diversity is no worse than GA. The convergence of
PSO and IVLPSO are similar, except that the latter has a greater decrease in the first
50 iterations. The best solution can save about 2.7 h per vessel, which lead to
potentially huge cost saving for port operators.

• In summary, IVLPSO provides a new approach for port operators to solve the quay
crane scheduling problem in an effective and efficient way.

Table 4. The experimental results of the quay crane working time (seconds) for Instance 2.

Instance Number PSO GA IVLPSO

20-3900 1 143605 138839 141638
2 137475 138893 139439
3 139491 137139 134333
4 148816 140555 135589
5 152829 140004 148456
6 142762 144090 143680
7 148462 140499 139001
8 149269 140597 141145
9 144116 139643 146840
10 153120 141353 136568
Avg. 145994 140161 140668

Avg. running time 3816 5149 2577

Table 5. The experimental results of the quay crane working time (seconds) for Instance 3.

Instance Number PSO GA IVLPSO

30-2640 1 110064 100829 102385
2 102508 102712 95920
3 109502 102465 98089
4 108191 101685 97531
5 106970 105857 99625
6 105402 103365 99662
7 111828 103844 99449
8 103092 102272 96967
9 107597 102920 105763
10 101039 103198 100124
Avg. 106619 102914 99551

Avg. running time 3401 3800 3349

Iteration-Related Various Learning PSO for Quay Crane Scheduling Problem 9
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Table 6. The experimental results of the quay crane working time (seconds) for Instance 4.

Instance Number PSO GA IVLPSO

30-3900 1 148383 144977 142877
2 157627 142357 150699
3 152620 141767 148995
4 163540 145282 140179
5 143826 143005 149207
6 158534 144288 147549
7 154602 143572 142624
8 155703 144393 145696
9 159499 145712 149781
10 153832 144245 145907
Avg. 154816 143959 146351

Avg. running time 4906 4762 3819

Table 7. The experimental results of the quay crane working time (seconds) for Instance 5.

Instance Number PSO GA IVLPSO

40-5200 1 209790 209011 199736
2 214227 201734 210672
3 216649 208632 198676
4 216565 205376 192594
5 218036 200641 205711
6 210105 204521 204584
7 212526 212303 195200
8 205123 207575 196767
9 214251 209439 203684
10 221760 210282 206894
Avg. 213903 206951 201452

Avg. running time 4802 7281 5972

Notes: Instance “20-2640” means the task
considers 20 bays and 2640 containers.

Table 8. Working schedule of the best solutions for Instance 1.

Bay num. 17 5 10 3 7 11 14 4 20 18

Crane num. 3 1 2 1 2 3 3 1 3 2
Task 80 168 180 66 200 180 220 60 50 140
Bay Num. 1 12 6 16 19 13 9 15 2 8
Crane num. 1 2 1 3 3 2 1 2 1 2
Task 46 210 20 90 160 110 250 50 200 160

10 M. Yu et al.
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5 Conclusions

This paper proposes an improved PSO (IVLPSO) on the basis of PSO, where various
learning mechanisms are employed as the number of iterations changes. The proposed
IVLPSO showed to be able to escape from the local optimum, and has a better ability to
find better solutions for a quay crane scheduling problem in terms of minimizing the
working time. To show its advantages, the proposed new algorithm is compared against
GA and PSO over five instances. Experimental results demonstrate the superiority of
IVLPSO for the quay crane scheduling problem. IVLPSO converges fast, only
requiring one-third of the time that the other two algorithms consume to obtain sat-
isfactory solutions. In our future work, the proposed IVLPSO will be extended to solve
multi-objective problems and large-scale problems with more advanced learning
mechanisms.

Acknowledgment. This work is partially supported by The National Natural Science Founda-
tion of China (Grants Nos. 71571120, 71271140, 61472257), Natural Science Foundation of
Guangdong Province (2016A030310074).

References

1. Chung, S.H., Choy, K.L.: A modified genetic algorithm for quay crane scheduling
operations. Expert Syst. Appl. 39(4), 4213–4221 (2012)

2. Kaveshgar, N., Huynh, N., Rahimian, S.K.: An efficient genetic algorithm for solving the
quay crane scheduling problem. Expert Syst. Appl. 39(18), 13108–13117 (2012)

Fig. 2. Convergence of PSO, GA and IVLPSO for Instance 1.

Iteration-Related Various Learning PSO for Quay Crane Scheduling Problem 11

A
u

th
o

r 
P

ro
o

f



3. Correcher, J.F., Alvarez-Valdes, R.: A biased random-key genetic algorithm for the time-
invariant berth allocation and quay crane assignment problem. Expert Syst. Appl. 89, 112–
128 (2017)

4. Azevedo, A.T.D., Neto, L.L.D.S., Chaves, A.A., Moretti, A.C.: Solving the 3D stowage
planning problem integrated with the quay crane scheduling problem by representation by
rules and genetic algorithm. Appl. Soft Comput. 65, 495–516 (2018)

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, vol. 4, pp. 1942–1948 (1995)

6. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: International
Symposium on MICRO Machine and Human Science, pp. 39–43. IEEE (2002)

7. Niu, B., Huang, H., Tan, L., Duan, Q.: Symbiosis-based alternative learning multi-swarm
particle swarm optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 4–14
(2017)

8. Ge, H., Sun, L., Tan, G., Chen, Z., Chen, C.L.: Cooperative hierarchical PSO with two stage
variable interaction reconstruction for large scale optimization. IEEE Trans. Cybern. 47(9),
2809–2823 (2017)

9. Wei, L.-X., Li, X., Fan, R., Sun, H., Hu, Z.-Y.: A hybrid multi-objective particle swarm
optimization algorithm based on R2 indicator. IEEE Access 6, 14710–14721 (2018)

10. Tehsin, S., Rehman, S., Saeed, M.O.B., Riaz, F., Hassan, A., Abbas, M., et al.: Self-
organizing hierarchical particle swarm optimization of correlation filters for object
recognition. IEEE Access 5, 24495–24502 (2017)

11. Zhu, Q., Lin, Q., Chen, W., Wong, K.C., Coello Coello, C.A., Li, J., et al.: An external
archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans. Cybern.
47(9), 2794–2808 (2017)

12. Kang, Q., Xiong, C.F., Zhou, M.C., Meng, L.P.: Opposition-based hybrid strategy for
particle swarm optimization in noisy environments. IEEE Access 6, 21888–21900 (2018)

13. Li, H.: Research on simulation based optimization approaches for logistic systems in
container port, pp. 86–95 (2013)

12 M. Yu et al.

A
u

th
o

r 
P

ro
o

f



Author Query Form

Book ID : 474701_1_En

Chapter No : 19
123

the language of science

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections.

Dear Author,
During the process of typesetting your chapter, the following queries have
arisen. Please check your typeset proof carefully against the queries listed below
and mark the necessary changes either directly on the proof/online grid or in the
‘Author’s response’ area provided below

Query Refs. Details Required Author’s Response

AQ1 To maintain sequential order, Tables and citations has been renumbered. Please
check and correct if necessary.

A
u

th
o

r 
P

ro
o

f


