
 

Higher order clockwork gravity
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We present a higher order generalization of the clockwork mechanism starting from an underlying
nonlinear multigravity theory with a single scale and nearest neighbor ghost-free interactions. Without
introducing any hierarchies in the underlying potential, this admits a family of Minkowski vacua around
which massless graviton fluctuations couple to matter exponentially more weakly than the heavy modes.
Although multidiffeomorphisms are broken to the diagonal subgroup in our theory, an asymmetric
distribution of conformal factors in the background vacua translates this diagonal symmetry into an
asymmetric shift of the graviton gears. In particular we present a TeV scale multigravity model withOð10Þ
sites that contains a massless mode whose coupling to matter is Planckian, and a tower of massive modes
starting at a TeV mass range and with TeV strength couplings. This suggests a possible application to the
hierarchy problem as well as a candidate for dark matter.
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The exponentially large hierarchy between the electro-
weak scale and the Planck scale suggests that new physics
could be very close to the scale of current collider experi-
ments (see e.g., [1]). Generically, the Higgs mass is
quadratically unstable against radiative corrections coming
from any physics in this large ultraviolet window. If we are
to retain the notion of naturalness [2], any new theory must
incorporate a mechanism to ensure cancellation between
loops, as in supersymmetry [3]. Alternatively, the expo-
nential hierarchy could merely be an illusion, with the
fundamental scale lying much closer to the electroweak
scale, thanks, say, to large [4] or warped extra dimensions
[5], or the weakness of the string coupling [6]. Yet another
possibility is that the observed vacuum expectation value of
the Higgs is just one of a much larger landscape: when
these values can be scanned by the theory in some way, we
can invoke anthropic considerations [7,8], or employ some
sort of cosmological relaxation procedure [9] to pick out
the observed value. This list of proposals for addressing or
rephrasing the hierarchy problem is far from exhaustive and
as yet no experimental evidence in favor of any particular
model has been forthcoming (see e.g., [10,11]).
With this in mind it is important to continue to explore

new ideas. Recently, the clockwork mechanism [12,13] was

proposed in order to generate a hierarchy between the
fundamental scale in the theory and the effective coupling
of the zero mode to external sources at low energies. It was
originally applied to axions with a view to explaining the
super-Planckian decay constants required by cosmological
relaxation models [9]. The idea is to have a modest number
of fields, or gears, πi, whose masses mix with some
characteristic strength q > 1. The structure of the mass
terms are governed by an asymmetrically distributed
unbroken subgroup of Uð1ÞN in the fundamental theory.
This is nonlinearly realized by the “pion” fields as gear
shifts, πi → πi þ c=qi, that are equal up to a rescaling with
increasing powers of 1=q. The result is a zero mode whose
overlap with each of the gears also scales asymmetrically,
a0 ∝ π0 þ π1=qþ � � � πN=qN−1. By coupling external
sources to one end of the clockwork we are able to engineer
very little overlap with the zero mode thanks to the high
power of 1=q. At low energies, this leads to an exponen-
tially large hierarchy of scales from a theory with a single
mass scale, and order one parameters. See also [14] for
similar ideas applied to dark energy.
The clockwork mechanism was later generalized to a

much wider class of fields in [15], in particular to linearized
gravity, where it was used to explain the hierarchy between
the electroweak scale and the Planck scale. These gener-
alizations were criticized in [16] who argued, amongst
other things, that one could not apply the clockwork
mechanism to non-Abelian theories, including gravity.
The claim rested on the assumption that there is no site
(i.e., gear number) dependence in the couplings, as one
might expect from a fundamental theory free of large
parameters, and made use of elegant group theoretic
arguments that forbid an asymmetric distribution in the
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structure of the unbroken subgroup. At the level of the low
energy effective field theory, such site independence might
be viewed as a model dependent statement, making a
concrete assumption about the underlying UV theory [17].
If we allow site dependence in the couplings, we can again
obtain interesting phenomenology but one might worry
about the origin of this hierarchy at a fundamental level
even though we only ever couple to one external site. The
clockwork idea has seen a number of interesting applica-
tions, especially in the context of dimensionally decon-
structed setups (see e.g., [18–22]).
This is something of a linguistic debate about what is and

is not a meaningful clockwork but one that teaches us some
valuable lessons [16,17]. It is certainly true that the standard
clockwork cannot be obtained from a discrete theory with a
single scale [16]. Indeed, as we will see by investigating the
corresponding nonlinear ghost-free multigravity setup [23],
to obtain the classic clockwork mass matrix of [13,15] in the
linearized theory one must introduce hierarchies at the level
of the underlying nonlinear theory. As in [17], we could
simply introduce a dilaton to account for these underlying
hierarchies. Here we take a very different approach, general-
izing the clockwork philosophy to the four dimensional
arrays that govern the metric interactions in the discrete
multigravity framework. By focusing on a sparsely popu-
lated array with nearest neighbor interactions only, we show
how the desired asymmetric decomposition of the zero mode
can be obtained from an underlying theory with a single
scale and no large parameters. This yields a low energy
effective theory of a massless graviton with exponentially
suppressed couplings. More specifically, if we were to take
M ∼ TeV to be unique across all sites, we can generate a low
energy effective theory of gravity with Planckian coupling
with Oð10Þ sites and no exponentially large parameters.
It remains the case (as it must) that the interactions break

the symmetry down to the symmetric diagonal subgroup
of diffeomorphisms [16,23,24]. Nevertheless, as we will
explain below, we can still obtain an asymmetric distribu-
tion in how this acts on the canonically normalized metric
perturbations if that distribution is also present in the
background value. It turns out that the form of the zero
mode, the massless graviton, is completely fixed by the
structure of the underlying vacua, and that this can be
rendered asymmetric with only very mild assumptions on
the underlying nonlinear theory.
Our starting point is the general action for a ghost-free

multigravity theory described by [23,25]

S ¼ SK þ SV; ð1Þ

where the “kinetic” part for the N metric fields ðgiÞμν is

SK ¼
XN−1

i¼0

M2
i

2

Z
d4x

ffiffiffiffiffiffiffi
−gi

p
R½gi�: ð2Þ

Here we include possible site dependence in the spectrum
of Planck scales, although we emphasize that we have in
mind that eachMi is of order a unique underlying scale,M.
It is convenient to express the potential in terms of
vielbeins, ðEiÞaμ, such that [23]

SV ¼ −
X
i;j;k;l

Z
TijklϵabcdðEiÞa ∧ ðEjÞb ∧ ðEkÞc ∧ ðElÞd;

ð3Þ

where ðEiÞa ¼ ðEiÞaμdxμ and ðgiÞμν ¼ ηabðEiÞaμðEiÞbν . Here
and in the following, the sums run from 0 to N − 1 (unless
otherwise stated). The interaction matrix Tijkl is required to
be totally symmetric and is assumed to depend on the unique
underlying scale Tijkl ∼M4. The potential part breaks N
copies of the diffeomorphism group acting at each site, down
to the diagonal subgroup.Working in the vielbein formalism,
N copies of local Lorentz invariance are also broken down to
their diagonal subgroup by the potential.
The equivalence between the vielbein and an explicit

metric formulation is not automatic. Indeed, if we go
beyond pairwise interactions and/or allow “cycles” of
interactions between sites, e.g., 1 → 2 → 3 → 1, the equiv-
alence is broken because the field equations no longer
imply a symmetric vielbein condition [23]. Such structures,
in either vielbein or explicit metric formulations, generi-
cally lead to ghosts [26–28] (see [29,30] for recent
constructions that evade this rule). For nearest neighbor
interactions only, as we consider here, we have a chain
of pairwise interactions linking each of the sites
0 → 1 → � � �N − 2 → N − 1, rather than a cycle, and this
means the vielbein formulation is equivalent to a metric one
and the theory is ghost free.
The theory admits N Minkowski vacua, ðḡiÞμν ¼ c2i ημν,

provided the constants ci fulfill

X
j;k;l

cjckclTijkl ¼ 0: ð4Þ

Note that the ci cannot all be gauged to unity because there
is only one diagonal copy of diffeomorphisms left intact
by the potential. In this sense their values are physical up to
an overall normalization. There does exist a pseudosym-
metry that allows us to conformally rescale each metric
ðgiÞμν → λ−2i ðgiÞμν at the expense of rescaling the couplings
Mi → λiMi, Tijkl → λjλjλkλlTijkl. Since we want to work
in a frame in which all scales in the action correspond to the
unique underlying scale M, without any large parameters,
this pseudosymmetry is essentially fixed and cannot be
used to remove the ci in our background solution.
The overall normalization of the ci is fixed by the matter

Lagrangian. As we will explain below, matter is only
allowed to couple to one particular site and we normalize
all of the conformal factors relative to this site. This ensures
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that any mass scales appearing in the matter Lagrangian
correspond to the physical masses for the canonically
normalized matter fields propagating on the background
geometry.
We now consider fluctuations about our vacua

ðgiÞμν ¼ c2i ημν þ
ci
Mi

ðhiÞμν; ð5Þ

where the normalization ensures a canonical form of the
Fierz-Pauli kinetic term [31]. Thanks to the symmetric
vielbein condition,1 ηabðEiÞa½μðEjÞbν� ¼ 0, we can use the

one diagonal copy of local Lorentz invariance so that the
vielbein fluctuations are symmetric and correspond to

δμaðδEiÞaν ¼
1

2Mi
ðhiÞμν ; ð6Þ

where Lorentz indices are raised and lowered with ημν. The
second variation of the potential then becomes

δ2SV ¼
Z

d4x
X
i;j

Mij½ðhiÞμμðhjÞνν − ðhiÞμνðhjÞνμ�; ð7Þ

where the mass matrix is given by

Mij ¼
3

MiMj

X
k;l

ckclTijkl: ð8Þ

Let us now choose a frame for which Mi ¼ M for all i.
We immediately see the presence of the zero mode
ða0Þμν ∝

P
j cjðhjÞμν from Eq. (4). To obtain the desired

asymmetric distribution, we only really require that
cj=cjþ1 ¼ Oð1Þ > 1. However, for simplicity let us sup-
pose that the Tijkl are such that the cj ¼ cq−j exactly, for
some overall normalization constant, c, as an example of
the desired asymmetric distribution in the overlap between
the zero mode and the graviton gears. This is a consequence
of the diagonal subgroup of diffeomorphisms applied to
fluctuations on an asymmetric distribution of background
vacua. To see this we note that the diagonal diffs act on the
metric fluctuations as δðgiÞμν → δðgiÞμν þ 2c2i ∂ðμξνÞ, where
ξμ ¼ ημνξ

ν is site independent. In terms of the graviton
gears this reads as ðhiÞμν → ðhiÞμν þ 2Mci∂ðμξνÞ, which is
analogous to the asymmetric gear shifts familiar to the
original clockwork proposal [13]. It follows that the form
of the zero mode is entirely dictated by the conformal
factors in the background vacua and the unbroken diagonal
subgroup of diffeomorphisms. If those conformal factors

exhibit the desired asymmetry then the zero mode has a
classic clockwork distribution. In [16] this possibility was
not considered as it was assumed that ci ¼ 1 for all i. Of
course, one might expect that an asymmetric and hierar-
chical distribution in the ci is not possible without
introducing dangerously large hierarchies in the Tijkl

although, as we will now show, this is not the case.
To proceed, we recall that we are assuming nearest

neighbor interactions only, consistent with the ghost-
free assumption. This implies that the interaction matrix
Tijkl ¼ τðijklÞ where

τijkl ¼ Aijδjkδkl þ Bikδijδkl: ð9Þ

The first term above forces three identical indices while the
second forces two pairs of identical indices. Both matrices
Aij and Bij are of tridiagonal form and can be expressed as

Aij ¼ λAi δij þ μAi δi;j−1θi;N−1θj;0 þ νAj δi−1;jθi;0θj;N−1; ð10Þ

where θij ¼ 1 − δij ¼
n
0 i ¼ j
1 i ≠ j

and a similar expres-

sion given for Bij in terms of λBi , μ
B
i , ν

B
i . Basically, the

diagonal components are given by λA;Bi , the upper diagonal
by μA;Bi and the lower diagonal by νA;Bi . In terms of Aij and
Bij, we have a mass matrix (8) proportional to

X
k;l

ckclTijkl ¼
1

4
ðAijc2j þ Ajic2i Þ þ

1

2
δijci

X
k

Akick

þ 2

3
BðijÞcicj þ

1

3
δij

X
k

BðikÞc2k ð11Þ

and a vanishing vacuum condition (4) given by

X
j;k;l

cjckclTijkl ¼
1

4

X
j

ðAijc3j þ 3Ajicjc2i Þ þ
X
j

BðijÞcic2j :

ð12Þ

Note that the antisymmetric part of Bij drops out which
means we could identify μBi with ν

B
i . In any event, assuming

vacua with ci ¼ cq−i, the vanishing of (11) yields a very
weak condition of the form

λAi þ λBi ¼ −
1

4

�
μAi

θi;N−1

q3
þ 3μAi−1qθi;0

�

−
1

4

�
νAi−1θi;0q

3 þ 3νAi
θi;N−1

q

�

−
1

2
ðμBi þ νBi Þ

θi;N−1

q2
−
1

2
ðμBi−1 þ νBi−1Þθi;0q2:

ð13Þ
1The symmetric vielbein condition follows from the field

equations whenever there are pairwise interactions only and no
cycles, as is the case here [23].
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This implies2 that in order to obtain the desired asymmetric
distribution in background conformal factors, we only need
to tolerate hierarchies in Tijkl at order q2. Furthermore, we
note that we have focused on a special case for which
cj ¼ cq−j. Detuning this choice of the λ, μ, ν by order 1 (in
units of M) would simply induce a relative correction of
order 1 to the cj, which will generically preserve the
desired hierarchy in the conformal factors. Perturbing the
theory to include couplings that lie off the tridiagonal
will weaken the efficiency of the resulting “clockwork.”
However, recall that such a deformation would generically
introduce new, ghostlike degrees of freedom that are not
expected to be radiatively generated below the cutoff. We
shall elaborate on this later. In any event, the mass matrix
for our chosen parametrization is given by

Mij ¼
3c2q−2i

M2

�
−δij

�
θi;N−1

q
Zþ
i þ qθi;0Z−

i

�

þ δi;j−1θi;N−1Z
þ
i þ δi−1;jθi;0Z−

i

�
; ð14Þ

where

Zþ
i ¼ 1

4

�
μAi
q2

þ νAi

�
þ 1

3q
ðμBi þ νBi Þ ð15Þ

and Z−
i ¼ q2Zþ

i−1. We now see the difficulty in generating
the classic clockwork mass matrix of [13,15] in the absence
of exponentially large hierarchies in the underlying theory.
In [13,15], the mass matrix for the field fluctuations
depends on a single overall scale. This is not the case in
(14) unless the μi, νi are chosen to absorb the exponential
prefactor of q−2i. Such a choice would amount to choosing
a hierarchy of scales in Tijkl. This result could have been
anticipated from the no-go claims of [16]. Of course, the
presence/absence of hierarchies in Tijkl is only a mean-
ingful statement up to possible conformal rescalings of the
metric. However, we recall that we have chosen to work in a
conformal frame in which all the Planck scalesMi ¼ M, so
there is no ambiguity in what we are saying here.
Given that the mass matrix for gravitons is an emergent

object, not independent of the background, we would argue
that there is actually no compelling reason for us to require
it to depend on a single scale, as in [13]. Instead we choose
to impose the single scale requirement at the level of the
fundamental theory, the Tijkl, and ask whether or not the
spectrum of fluctuations about consistent vacua gives rise
to an emergent hierarchy, with a zero mode that is
exponentially more weakly coupled to external states than
the heavy modes. This is certainly possible with the setup
described in this paper. Our clockwork is really a higher

order one governed by the four-point vielbein interactions.
Although there are no large parameters in the potential, it
admits an exponential distribution of conformal factors in
the corresponding vacua. This in turn yields a graviton zero
mode with a classic asymmetric clockwork decomposition
in graviton gears.
Let us now study the phenomenology of the mass

eigenstates for the graviton fluctuations that emerge from
our single scale theory. To simplify the analysis, let us
assume that the μi, νi are site independent, in other words,
μAi ¼ μA etc. The mass matrix now takes the simple form

Mij ¼
FðqÞ
M2

c2q−2i
�
δij

�
θi;N−1

q2
þ q2θi;0

�

− δi;j−1
θi;N−1

q
− δi−1;jqθi;0

�
; ð16Þ

where

FðqÞ ¼ −
3

4

�
μA

q
þ νAq

�
− μB − νB: ð17Þ

As anticipated earlier, we also assume that matter is
minimally coupled to a single site, given by i ¼ i�:

Sm ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi−gi�

p
Lm½gi� �: ð18Þ

Note that coupling the same matter to multiple sites will
generically yield a ghost [32–34], although in some special
cases its mass may exceed the scale of strong coupling
[28,33,35–37] (see, also, [29] for novel constructions
that remain ghost free at higher energies). In any event,
our conservative choice is a consistent one and yields an
effective interaction between the canonically normalized
i�th graviton gear and the energy momentum tensor of
the form

δSm ¼
Z

d4x
1

2M
ðhi� ÞμνTμν; ð19Þ

where we have used the fact that ci� ¼ 1 andMi ¼ M. The
condition on ci� follows from the fact that we have fixed the
overall normalization of the ci’s relative to the site to which
matter couples. Since ci ¼ cq−i, this fixes the overall
conformal normalization factor to be c ¼ qi� .
The mass matrix (18) can be diagonalized by a rotation

in field space (suppressing indices), hi ¼
P

jOijaj. The
orthogonal matrix, Oij, has its columns given by the unit
mass eigenstates. In particular, the zeroth column is given
by the unit zero mode so that Oi0 ¼ N q−i, where N ¼
ðPN−1

k¼0 q
−2kÞ−1=2 ¼ ð1−q−2N

1−q−2 Þ−1=2. Numerical investigations

suggest that the jth massive eigenstate generically has
2This is obvious in the B sector. In the A sector we can see it by

assuming μAi ∼ q; νAi ∼ 1=q.
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Oi;j>0 ≈ 1, for some i. The corresponding massive eigen-
values are given by

m2
j>0 ∼

FðqÞq2ð1þi�−jÞ

M2
; ð20Þ

where we have again used the fact that c ¼ qi� .
These results can be obtained analytically in the large q
limit, when the mass matrix approximates as Mij ≈
FðqÞ
M2 q2ð1þi�−iÞδijθi;0.
In terms of the mass eigenstates, the coupling to matter

reads

δSm ¼
Z

d4x

�
g0ða0Þμν þ

XN−1

j¼1

gjðajÞμν
�
Tμν; ð21Þ

where the zero mode coupling is

g0 ¼
N

2Mqi�
¼

ð1−q−2N
1−q−2 Þ

−1=2

2Mqi�
: ð22Þ

If we couple matter to the end of the clockwork, at site
i� ¼ N − 1, then for q > 1 the zero mode coupling is at
an exponentially higher scale than the fundamental scale,
Meff

0 ∼MqðN−1Þ. Taking M ∼ TeV and q ¼ 4, we can
achieve a Planck scale effective coupling Meff

0 ∼MPl with
N ¼ 26 sites. Recall that the level of hierarchy in Tijkl need
not exceed q2 ∼ 16 in this case.
Turning to the heavy modes, these couple to matter with

strength gj ¼ Oi� ;j
2M , which is given by the fundamental scale,

M. Taking μA;B, νA;B ∼M4, consistent with our single scale
theory, there is a mass gap of orderM2q2 to the spectrum of
heavy modes. These are then distributed exponentially, with
the heaviest mode having a mass, M2q2ðN−1Þ. Choosing our
parameters as in the previous paragraph, this yields lightest
and next to lightest heavy modes whose masses lie beyond
the TeV scale, with TeV strength and weaker coupling to the
energy-momentum tensor. In principle, this spectrum could
include an interesting dark matter candidate (see [38–41] for
some work on spin two dark matter).
Before presenting this as a robust solution to the

hierarchy problem, we need to ask whether or not the
structure of the potential is radiatively stable. For example,
do loop corrections generate large next-to-nearest neighbor
interactions that could weaken the efficiency of our higher
order clockwork? For the case of matter loops the answer is
obviously negative since we took matter to only couple to a
single site. For graviton loops, the question is more subtle
and the only possible statement we can make is to ask what
happens far below the cutoff (TeV) when we treat this as an
effective field theory (if indeed that is a reasonable thing to
do). We anticipate that gauge invariance will prevent zero
mode loops from generating any new potential interactions.
Heavy mode loops could be more dangerous although one
might just assume that they decouple at low energies since
the masses start at a TeV scale. Of course, it is possible that

decoupling is subtle, at least if the interactions between the
light and heavy modes also diverge as we send the masses to
infinity. A thorough investigation of this is obviously going
to be very involved, as with any calculation involving
graviton loops. Indeed, its scope extends beyond the context
of this paper to a more general question regarding the
radiative stability of ghost-free multigravity theories. This is
because additional beyond nearest neighbor interactions
introduce a trivertex and/or a cycle in our potential, which
would resurrect the Boulware-Deser ghost [28,35]. This
represents new degrees of freedom and in analogy with
higher order curvature corrections generated in a perturbative
approach to quantum general relativity, we might expect
them to have mass scales at or above the cutoff of the theory
(see [42,43] for a similar statement in a massive gravity and
bigravity context). A more detailed analysis will be very
involved but is clearly a priority for future work.
Another important feature of our model is the absence of

an underlying dilaton, in contrast to the original proposals
presented in [15,17]. From a four-dimensional perspective,
this allows us to have a fully nonlinear multigravity
clockwork governed by a single (TeV) scale, representing
a completely new approach to the electroweak hierarchy
problem. The flip side of this particular structure is that it
could prove to be an obstacle in obtaining it from a
dimensional deconstruction of a five dimensional model.
Of course, the ultimate goal would be to realize this setup as
a string theory compactification.
To summarize, we have shown that a consistent single

scale multigravity model can yield a clockwork graviton
spectrum where the massless graviton couples to matter
exponentially more weakly than the heavy modes. This is
achieved through a higher order generalization of the
standard clockwork mechanism involving nearest neighbor
interactions in the ghost-free nonlinear theory. Although
multidiffeomorphisms are broken to the diagonal subgroup
by these interactions, this translates into an asymmetric shift
of the graviton gears thanks to an asymmetric distribution of
conformal factors in the background vacua. This has led us
to a TeV scale multigravity model with Oð10Þ sites that
contains a massless mode whose coupling to matter is
Planckian, and a tower of massive modes starting at a
TeV mass range and with TeV strength matter couplings.
However, before presenting this as a complete resolution of
the naturalness question, we emphasize the need to compute
radiative corrections including those mediated by graviton
loops in an effective description below the cutoff. This will
be a priority in future investigations.
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