
DOI: 10.1111/mice.12427

O R I G I N A L A R T I C L E

Plausible Petri nets as self-adaptive expert systems: A tool for
infrastructure asset monitoring

Manuel Chiachío1,2 Juan Chiachío1 Darren Prescott1 John Andrews1

1Resilience Engineering Research Group,
Faculty of Engineering, University of Notting-
ham, Nottingham, UK
2Department of Structural Mechanics
and Hydraulic Engineering, University of
Granada, Granada, Spain

Correspondence
Manuel Chiachío, Resilience Engineering
Research Group, Faculty of Engineering,
University of Nottingham, Nottingham NG7
2RD, UK.
Email: Manuel.Chiachio-
Ruano1@nottingham.ac.uk

Funding information
Lloyd's Register Foundation, Grant/Award
Number: RB4539; Engineering and Physical
Sciences Research Council, Grant/Award
Number: EP/M023028/1

Abstract
This article provides a computational framework to model self-adaptive expert sys-

tems using the Petri net (PN) formalism. Self-adaptive expert systems are understood

here as expert systems with the ability to autonomously learn from external inputs,

like monitoring data. To this end, the Bayesian learning principles are investigated

and also combined with the Plausible PNs (PPNs) methodology. PPNs are a variant

within the PN paradigm, which are efficient to jointly consider the dynamics of dis-

crete events, like maintenance actions, together with multiple sources of uncertain

information about a state variable. The manuscript shows the mathematical condi-

tions and computational procedure where the Bayesian updating becomes a particular

case of a more general basic operation within the PPN execution semantics, which

enables the uncertain knowledge being updated from monitoring data. The approach

is general, but here it is demonstrated in a novel computational model acting as expert

system for railway track inspection management taken as a case study using published

data from a laboratory simulation of train loading on ballast. The results reveal self-

adaptability and uncertainty management as key enabling aspects to optimize inspec-

tion actions in railway track, only being adaptively and autonomously triggered based

on the actual learnt state of track and other contextual issues, like resource availability,

as opposed to scheduled periodic maintenance activities.

1 INTRODUCTION

Self-adaptability is an important intrinsic property that is
displayed by many natural systems to deal with the challenges
presented by changing environments. In engineering, the
need to incorporate self-adaptation has been acknowledged
as important in allowing engineered systems to modify their
behavior in response to changing conditions with little or
no human input, hence increasing efficiency, safety, and
availability while minimizing the possibility of human errors
(Krupitzer, Roth, VanSyckel, Schiele, & Becker, 2015).
Intelligent systems like expert systems have the ability to
emulate the human capacity to make decisions within a

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.

© 2018 The Authors Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals, Inc. on behalf of Hojjat Adeli

specific application domain using execution rules and knowl-
edge (Adeli & Balasubramanyam, 1988; Kastner & Hong,
1984; Wagner, 2017), which does not necessarily include
self-adaptation. Through self-adaptation, this knowledge is
updated to dynamically accommodate environmental and
contextual changes, therefore increasing the system efficiency
and making it more resilient to the new conditions, which is
one of the key aspects of intelligent systems.

In the literature, numerous knowledge-based models are
available to represent expert systems (Adeli & Balasubra-
manyam, 1988; Paek & Adeli, 1990). Of the knowledge-based
system approaches, Petri nets (PNs) (Petri, 1962) are typically
regarded as a powerful modeling tool for expert systems,

Comput Aided Civ Inf. 2018;1–18. wileyonlinelibrary.com/journal/mice 1

http://creativecommons.org/licenses/by/4.0/

2 CHIACHÍO ET AL.

especially when system-level operational nonlinearities (e.g.,
resource availability, concurrency and synchronization of
components, etc.) need to be considered in the analysis (M.
Chiachío, J. Chiachío, Sankararaman, & Andrews, 2017).
PNs provide a graphical and mathematical language with
well-established execution semantics, which can be combined
with other computational techniques such as object-oriented
programming, fuzzy sets, neural networks, etc., all of which
greatly increase their suitability for modeling knowledge-
based engineering problems (Li & Lara-Rosano, 2000). The
basic concepts relative to the theory of PNs are summarized
in Murata (1989). One of the main challenges in incorporating
self-adaptation in expert systems is the handling of uncertain
information during runtime, and the ability to update such
information when new evidence becomes available (Bencomo
& Belaggoun, 2013). However, the existing PN formalisms
do not provide direct means to efficiently consider uncertain
information (M. Chiachío, J. Chiachío, Prescott, & Andrews,
2016; M. Chiachío, J. Chiachío, Prescott, & Andrews, 2018).
In the literature, a number of PN variants have been intro-
duced to enhance the original PN approach with improved
rules of inference and knowledge learning. Of the existing
variants, fuzzy PNs (FPNs) (Looney, 1988) have received
much attention due to their efficiency for reasoning in expert
systems using fuzzy production rules based on imprecise and
vague information (Chiang, Liu, & Lee, 2000; Flintsch &
Chen, 2004; Lee, Liu, & Chiang, 1999; Zhou & Zain, 2016).
In the past, some authors dealt with self-adaptation of FPNs
by training an FPN model using a reference one taken as
benchmark (Li & Lara-Rosano, 2000; Zhang, Wang, & Yuan,
2009). More recently, other PN variants have been introduced
to deal with some sort of self-adaptivity, see for example
(Hsieh & Lin, 2014; Vidal, Lama, & Bugarín, 2012; Vidal,
Lama, Díaz-Hermida, & Bugarín, 2013), although most of
them are domain or purpose-specific (Serral, De Smedt,
Snoeck, & Vanthienen, 2015). However, to the best of the
authors' knowledge, none of them are well suited to (a)
embedding plausible information within their formulation,
and (b) automatically reacting to that information by adaptive
learning, while dealing with the hybrid nature of real-world
dynamical systems, consisting of a combination of discrete
and continuous processes whose evolution may be uncertain.

In this article, a new methodology is proposed to enable
self-adaptation in expert systems using the Plausible Petri
nets (PPNs). PPNs are a new class of models within the PN
paradigm, originally developed by the authors in M. Chiachío
et al. (2016, 2018), whereby discrete events (e.g., go/no-go
decisions) can be jointly modeled together with continuous
processes whose evolution may be uncertain (e.g., deterio-
ration process). In PPNs, the uncertainty is modeled using
states of information (Rus, Chiachío, & Chiachío, 2016),
which provide a mapping between the possible numerical
values of a state variable and their relative plausibility, hence

giving greater versatility for representing uncertain knowl-
edge in a more principled approach. As a key contribution,
this article reveals how self-adaptation can be achieved
naturally as a by-product of the evaluation of a PPN, because
an inherent learning mechanism is implemented within the
PPN execution semantics. More specifically, an instance of
Bayesian model updating is seen to appear as a particular
case of the conjunction of states of information (Tarantola &
Valette, 1982), which is a basic operation within the PPN exe-
cution rules (Chiachío et al., 2016, 2018). Consequently, the
resulting approach has the advantages of (a) being able to deal
with uncertain information in expert systems combining dis-
crete events and continuous state variables, and (b) enabling
self-adaptation by Bayesian learning from external input data.

The proposed methodology is general, and as such, it
can be applied to different applications dealing with self-
adaptation and uncertain information in infrastructure asset
monitoring. However, in this article, it is illustrated using an
engineering case study of condition-based maintenance for
a railway track. The interest of this engineering application
resides in the need for artificial intelligence (AI) methodolo-
gies that allow automated and adaptive decisions about main-
tenance activities and inspection actions in railway networks
based on monitoring data (Lajnef, Rhimi, Chatti, Mhamdi, &
Faridazar, 2011; Wang, Liu, & Ni, 2018; Weston, Roberts,
Yeo, & Stewart, 2015). To illustrate the efficiency of the pro-
posed methodology in this application, a PPN-based compu-
tational model is developed to act as an expert system for rail-
way track monitoring and inspection, incorporating informa-
tion about a state variable along with a number of operational
rules that provides the basis for triggering a number of con-
trol operations and inspection activities. The overall system
is shown to be adaptable by sequentially updating the state
variable as (noisy) monitoring data become available.

The remainder of the article is organized as follows.
Section 2 briefly overviews basic concepts about Bayesian
model updating and PNs before introducing the PPN
methodology in Section 2.3. In Section 2.3.3, an algorithmic
description of PPNs is provided. The mathematical basis
and computational aspects of Bayesian learning of PPNs are
provided in Section 3. Section 4 illustrates and discusses our
approach in application to a case-base self-adaptive expert
system for railway track inspection. Finally, Section 5 gives
concluding remarks.

2 THEORETICAL BACKGROUND

2.1 Bayesian model updating
Let us consider a probability model described by the state
vector 𝐱 taking values in a space denoted by  ⊂ ℝ𝑑 , and
𝑝(𝐱) a prior probability density function (PDF) of 𝐱 over  ,
a Lebesgue integrable function that can be normalized such

CHIACHÍO ET AL. 3

that ∫ 𝑝(𝐱)𝑑𝐱 = 1. The focus of Bayesian model updating
is to update the prior information about 𝐱 ∈  , based on the
information given by the data 𝐲 ∈  ⊂ ℝ𝓁 , where  is
the observation space within the region ℝ𝓁 . Following the
Bayesian formulation, the solution is not a single value of 𝐱;
on the contrary, Bayes' theorem takes the initial quantification
of the plausibility of 𝐱, which is expressed by the prior PDF
𝑝(𝐱), and updates this plausibility using the information in the
data set  to obtain the posterior PDF of the state variable
𝐱, as:

𝑝(𝐱|𝐲) = 𝑝(𝐲|𝐱)𝑝(𝐱)
∫ 𝑝(𝐲|𝐱)𝑝(𝐱)𝑑𝐱 ∝ 𝑝(𝐲|𝐱)𝑝(𝐱) (1)

where 𝑝(𝐲|𝐱) is the likelihood function, which provides us
with a measure of how well the model specified by 𝐱 pre-
dicts the actual data 𝐲 (Beck, 2010). The interested reader
is referred to Beck (2010) and Rus et al. (2016) for further
information about Bayesian model updating. In this work, we
adopt a subjective interpretation of probability as a multi-
valued logic (Cox, 1946; Jaynes, 1983) whereby a PDF over
the uncertain variable 𝐱 (e.g., 𝑝(𝐱|𝐲)) represents a measure of
the relative plausibility of the values of 𝐱 ∈  conditional on
the available information (e.g., 𝐲 ∈ ). This interpretation of
probability is not well known in engineering where there is
a widespread belief that probability only applies to aleatory
uncertainty (inherent randomness in nature), and not to epis-
temic uncertainty (lack of knowledge).

2.2 Petri nets
A PN is a mathematical and graphical modeling tool first
introduced by Carl Petri in 1962 (Petri, 1962) for analyzing
the dynamic behavior of sequential asynchronous automatons.
Since then, they have expanded to many areas of science and
engineering for the modeling of complex distributed dynam-
ical systems. The reader is referred to Murata (1989) for a
comprehensive review and tutorial on PNs, but for the sake of
clarity and readability, the main concepts are reproduced here
under a unified notation.

A PN is a bipartite directed graph (digraph) consisting of
two types of nodes, places (e.g., states, represented by circles)
and transitions (e.g., actions, represented by bars or boxes),
connected by arcs either from places to transitions or vice
versa. See Figure 1 for an illustration of a simple PN con-
sisting of three places (𝑝1, 𝑝2, 𝑝3), and one transition (𝑡1). The
places contain tokens that travel through the net depending
on the firing of the transitions. The presence of tokens in the
places of the PN is interpreted as holding the truth of the con-
dition or information about the states associated with those
places, and defines the marking of the net. A transition 𝑡 can
fire only if all places leading to that transition have at least one
token. Those places define the preset of transition 𝑡, denoted
by ∙𝑡. After the transition fires, one token is added to each of

p1

p2

p3t1

F I G U R E 1 Example of a Petri net composed of three places and
one transition. Three tokens are represented in 𝑝2

its output places, which define the post set of the transition,
referred to as 𝑡∙.

From a mathematical perspective, a PN is defined as a tuple
𝔑 = ⟨𝐏,𝐓,𝐅,𝐖,𝐌0⟩, where:

1. 𝐏 ∈ ℕ𝑛𝑝 is an 𝑛𝑝-dimensional set of places.

2. 𝐓 ∈ ℕ𝑛𝑡 is an 𝑛𝑡-dimensional set of transitions.

3. 𝐅 ⊆ (𝐏 × 𝐓) ∪ (𝐓 × 𝐏) represents a set of directed arcs
connecting places to transitions and vice versa.

4. 𝐖 ∶ 𝐅 → ℕ>0 is a weight function, which assigns a value
(1 by default) to each arc within 𝐅.

5. 𝐌0 ∶ 𝐏 → ℕ is a vector containing the initial distribution
of tokens over the set of places (initial marking).

The state of the overall net is represented by the marking
𝐌 ∈ ℕ𝑛𝑝 , which, at a certain state 𝑘 ∈ ℕ, evolves dynamically
according to the following state equation (Murata, 1989):

𝐌𝑘+1 = 𝐌𝑘 + 𝐀𝑇 𝐮𝑘 (2)

where 𝐀 is an 𝑛𝑡 × 𝑛𝑝 matrix typically referred to as the inci-
dence matrix, which can be obtained as the result of subtract-
ing the backward incidence matrix (𝐀−) from the forward
incidence matrix (𝐀+), i.e., 𝐀 = 𝐀+ − 𝐀−, where 𝐀+ = [𝑎+

𝑖𝑗
],

𝐀− = [𝑎−
𝑖𝑗
], 𝑖 = 1,… , 𝑛𝑡, 𝑗 = 1,… , 𝑛𝑝. The element 𝑎+

𝑖𝑗
is the

weight of the arc from transition 𝑡𝑖 to output place 𝑝𝑗 , whereas
𝑎−
𝑖𝑗

is the weight of the arc to transition 𝑡𝑖 from input place 𝑝𝑗 .

The term 𝐮𝑘 = (𝑢1,𝑘, 𝑢2,𝑘,… , 𝑢𝑛𝑡,𝑘)
𝑇 denotes the firing vec-

tor, a vector of binary values whose 𝑖th component takes 1 if
transition 𝑡𝑖 is fired, and 0 otherwise. In PNs, any transition 𝑡𝑖
needs to be enabled as a condition to be fired, which occurs
when each input place of 𝑡𝑖 is marked with at least 𝑎−

𝑖𝑗
tokens.

Mathematically:

𝑀(𝑗) ⩾ 𝑎−𝑖𝑗 ∀𝑝𝑗 ∈ ∙𝑡𝑖 (3)

where 𝑀(𝑗) ∈ ℕ is the marking for place 𝑝𝑗 . Note that by
means of PNs and their marking, the behavior of engineer-
ing systems can be described in terms of discrete system
states and their changes over time. Also, it is worth men-
tioning that in practical applications of PNs, transitions are
typically assigned with time delays that are useful for perfor-
mance evaluation and scheduling problems of dynamical sys-
tems (Murata, 1989).

4 CHIACHÍO ET AL.

2.3 Plausible Petri nets
PPNs (M. Chiachío et al., 2018, 2016) are a hybrid variant
of PNs where the sets of nodes {𝐏,𝐓} are partitioned into
two disjoint subsets, namely, numerical and symbolic, which
are denoted using superscripts () and (), respectively. The
symbolic subnet accounts for the discrete behavior of the sys-
tem using regular tokens, as in classical PNs. In the numerical
subnet, tokens are states of information about a state variable
𝐱𝑘 ∈  (Rus et al., 2016; Tarantola & Valette, 1982), which
accounts for the numerical behavior of the system. In prac-
tical terms, these states of information can be understood as
PDFs about 𝐱𝑘 (except for a normalizing constant; Mosegaard
& Tarantola, 2002), which are referred to as 𝑓𝑝(𝐱𝑘) and 𝑓 𝑡(𝐱𝑘)
for numerical places and transitions, respectively. Hence,
the marking 𝐌𝑘 = (𝐌()

𝑘
,𝐌()

𝑘
) consists of both types of

information given by 𝐌()
𝑘

for the numerical places, and

𝐌()
𝑘

for the case of symbolic places, where 𝐌()
𝑘

and 𝐌()
𝑘

are column vectors of normalized PDFs and integer values,
respectively.

From a mathematical perspective, a PPN can be described
as a 9-tuple 𝔐 = ⟨𝐏,𝐓,𝐅,𝐖,𝐃, ,,,𝐌0⟩, where:

1. The set 𝐏 is partitioned into 𝐏() ∈ ℕ𝑛𝑝 for numerical
places, and 𝐏() ∈ ℕ𝑛

′
𝑝 for symbolic places, such that

𝐏() ∪ 𝐏() = 𝐏, and 𝐏() ∩ 𝐏() = ∅. Superscripts 𝑛𝑝
and 𝑛′𝑝 represent the number of numerical and symbolic
places, respectively.

2. Similarly, the set of transitions 𝐓 is partitioned into sub-
sets 𝐓() ∈ ℕ𝑛𝑡 and 𝐓() ∈ ℕ𝑛′𝑡 corresponding to numer-
ical and symbolic transitions, respectively, where 𝐓() ∪
𝐓() = 𝐓, 𝐓() ∩ 𝐓() ≠ ∅. Those transitions that belong
to 𝐓() ∩ 𝐓() are referred to as mixed transitions.

3. The set of arcs 𝐅 indicates the connections between transi-
tions and places from the numerical and symbolic subnets,
i.e., 𝐅 ⊆ (𝐏 × 𝐓) ∪ (𝐓 × 𝐏), where 𝐅 ⊂ ℕ𝑛𝑝+𝑛

′
𝑝 × ℕ𝑛𝑡+𝑛′𝑡 .

4. 𝐖 is a set of nonnegative weights applied to each arc
within 𝐅 (1 by default). The set is partitioned into two
subsets: 𝐖() and 𝐖(), each one corresponding to
the numerical and symbolic places, respectively, such
that 𝐖() ∪𝐖() = 𝐖, 𝐖() ∩𝐖() = ∅. Values from
𝐖() are real numbers.

5. 𝐃 is a set of switching delays for the symbolic (0 by
default).

6.  ⊂ ℝ𝑑 is the state space of a stochastic variable {𝐱𝑘}𝑘∈ℕ,
which is representative of the numerical state of the net.

7.  is a set of density functions associated with the numerical
places and transitions.

8.  is a set of equations representing the dynamics of the
state variable 𝐱𝑘 ∈  .

p
(N)
1

p
(S)
1

p
(N)
2

p
(S)
2

a−
11

a′
11

−

a+
12

a′
12

+

t1

Pre-set of t1 Post-set of t1

F I G U R E 2 Illustration of a sample PPN with two numerical
places (𝑝()

1 , 𝑝()
2), two symbolic places (𝑝()1 , 𝑝

()
2), and one transition

(𝑡1). Note that numerical nodes are drawn using double lines

9. 𝐌0 is the initial marking of the net, which is given by the

pair of vectors 𝐌()
0 and 𝐌()

0 for numerical and symbolic
places, respectively.

In PPNs, the arc weights for the numerical subnet are
denoted by 𝑎+

𝑖𝑗
, 𝑎−
𝑖𝑗
∈ 𝐖() ⊂ ℝ+. The incidence matrix for

the numerical subnet is defined from 𝐖() as 𝐀() =
[𝑎𝑖𝑗], 𝑖 = 1,… , 𝑛𝑡, 𝑗 = 1,… , 𝑛𝑝, where the (𝑖, 𝑗)th element

is obtained as 𝑎𝑖𝑗 = 𝑎+𝑖𝑗 − 𝑎
−
𝑖𝑗

. Correspondingly, 𝑎
′+
𝑖𝑗
, 𝑎

′−
𝑖𝑗

∈
𝐖() ⊂ ℕ denote the arc weights for the symbolic sub-
net, where the incidence matrix 𝐀() = [𝑎′

𝑖𝑗
] is obtained as

𝑎′𝑖𝑗 = 𝑎′
+
𝑖𝑗 − 𝑎

′−
𝑖𝑗 , 𝑖 = 1,… , 𝑛′𝑡, 𝑗 = 1,… , 𝑛′𝑝. Note that the

arc weights from the symbolic subnet, e.g., (𝑎′−11, 𝑎
′+
12), are

differentiated from the numerical ones by using an accent (′).
A PPN model is shown in Figure 2 for illustration purposes.

2.3.1 Execution semantics
As stated in the last section, the dynamics of PPNs can be
described by the join evolution of the numerical and symbolic
subnets through the marking given by 𝐌𝑘. Equation (2) is
used to model the evolution of the symbolic part of the net, as
in ordinary PNs. However, the evolution of 𝐌()

𝑘
relies on an

ad hoc information flow based on two basic operations (M.
Chiachío et al., 2016, 2018): the conjunction and disjunction
of states of information (Rus et al., 2016; Tarantola & Valette,
1982). In these operations, the first principles of Boolean
logic, in particular the logic operators AND (∧) and OR (∨),
are invoked to allow the information from the numerical
subnet to be exchanged within a PPN. More specifically,
they enable the combination and aggregation of states of
information across the numerical subnet of a PPN. To confer
the conceptual framework without repeating the literature,
the conjunction and disjunction of states of information are
briefly explained and illustrated in Figure 3. In Figure 3, the
term 𝜇(𝐱) is the homogeneous density function (Mosegaard
& Tarantola, 2002; Tarantola & Valette, 1982) that represents
the state of complete ignorance about 𝐱 ∈  , hence providing
a reference probability model for 𝐱 in the absence of any other

CHIACHÍO ET AL. 5

F I G U R E 3 Illustration of the conjunction (left) and disjunction (right) of two arbitrary states of information, namely, 𝑓𝑎(𝐱) and 𝑓𝑏(𝐱)

(a) (b)

F I G U R E 4 (a) PPN of Example 1. (b) Flowchart to illustrate rules (1) to (3) from the PPN execution semantics defined in Section 2.3.1

information. The interested reader is referred to Tarantola
and Valette (1982) for further details. From this standpoint,
the dynamics of PPNs are formulated under the adoption of
the following rules (M. Chiachío et al., 2018):

1. An input arc from place 𝑝()
𝑗

to transition 𝑡𝑖 conveys a state
of information given by 𝑎−

𝑖𝑗
(𝑓𝑝𝑗 ∧ 𝑓 𝑡𝑖)(𝐱𝑘), which remains

in 𝑝()
𝑗

after transition 𝑡𝑖 has fired.

2. An output arc from 𝑡𝑖 to 𝑝
()
𝑗

conveys a state of information

given by 𝑎+
𝑖𝑗
(𝑓 ∙𝑡𝑖 ∧ 𝑓 𝑡𝑖)(𝐱𝑘), where 𝑓

∙𝑡𝑖(𝐱𝑘) is the resulting
density from the disjunction of the states of information of
the preset of 𝑡𝑖.

3. After firing numerical transition 𝑡𝑖, the state of information

resulting in the output place 𝑝()
𝑗

is the disjunction of the
state of information 𝑓𝑝𝑗 (𝐱𝑘) (the previous state of infor-
mation), and 𝑎+

𝑖𝑗
(𝑓 𝑡𝑖 ∧ 𝑓 ∙𝑡𝑖)(𝐱𝑘) (the information produced

after firing transition 𝑡𝑖).

Example 1. Figure 4 provides an example of the execution
rules presented above, by using a PPN model of one tran-
sition, three numerical places, and two symbolic places, as
depicted in Figure 4a. In Figure 4b, a conceptual scheme is
provided to exemplify rules 1–3 and shows how to obtain
the marking at times 𝑘 and 𝑘 + 1. The numerical marking for
places 𝑝()

1 to 𝑝()
3 are depicted in rectangular gray boxes.

The red dashed line indicates the separation between the
marking at 𝑘 and 𝑘 + 1, respectively. Note that at 𝑘 + 1, the
places 𝑝()

1 and 𝑝()
2 are updated with the information com-

ing from transition 𝑡1 through a conjunction of states of infor-
mation weighted according to (𝑎−11 = 1, 𝑎−12 = 2), respectively.
Also, observe that the state of information resulting in place
𝑝
()
3 after firing transition 𝑡1 is the joint information between

the information that existed in 𝑝()
3 at 𝑘, and that produced

by transition 𝑡1 through the intersection with its preset, i.e.,
𝑎+13(𝑓

𝑡1 ∧ 𝑓 ∙𝑡1)(𝐱𝑘) = 1 ⋅ (𝑓 𝑡1 ∧ (𝑓𝑝1 ∨ 𝑓𝑝2))(𝐱𝑘).

The rules given above are enough to describe the dynamics
of the numerical subnet of PPNs. However, they can be syn-
thesized through an algebraic expression describing a dynam-
ical state equation, as follows (M. Chiachío et al., 2018):

𝐌()
𝑘+1 =[
𝐌()
𝑘

◦𝜸𝑘 +

(
𝑛𝑡∑
𝑖=1

(𝐚+
𝑖
)𝑇 ⊗ 𝐜𝑖 + (𝐀−)𝑇 ◦𝐁

)
⋅ 𝐯𝑘

]
◦𝜷𝑘 (4)

where 𝐯𝑘 = (𝑣1,𝑘, 𝑣2,𝑘,… , 𝑣𝑛𝑡,𝑘)
𝑇 is the firing vector for

the numerical subnet (numerical and mixed transitions)
at state 𝑘; 𝐀− is the backward incidence matrix; and 𝐚+

𝑖

is a column vector corresponding to the 𝑖th row of the
forward incidence matrix 𝐀+. The term 𝐁 is an (𝑛𝑝 × 𝑛𝑡)
matrix whose (𝑖, 𝑗)th element is given by the conjunction

6 CHIACHÍO ET AL.

of states of information between 𝑓𝑝𝑗 and 𝑓 𝑡𝑖 (expressed by
𝑓𝑝𝑗 ∧ 𝑓 𝑡𝑖). Next, 𝐜𝑖 is an 𝑛𝑡-dimensional row vector given by
𝐜𝑖 = (𝑓 𝑡𝑖 ∧ 𝑓 ∙𝑡𝑖) ⋅ 𝜹𝑖𝓁 , where 𝜹𝑖𝓁 is a vector whose elements
are the Kronecker delta of variables 𝑖 and 𝓁, which makes
all elements zero except for 𝑖 = 𝓁, 𝓁 = 1,… , 𝑛𝑡. The term 𝜸𝒌
is an 𝑛𝑝-dimensional column vector of binary constants, i.e.,

𝜸𝒌 = (𝛾 (1)
𝑘
,… , 𝛾

(𝑗)
𝑘
,… , 𝛾

(𝑛𝑝)
𝑘

)𝑇 , where 𝛾 (𝑗)
𝑘

is given by

𝛾
(𝑗)
𝑘

=

⎧⎪⎨⎪⎩
1, if

∑𝑛𝑡
𝑖=1 𝑎

+
𝑖𝑗
𝑣𝑖,𝑘 > 0

1, if
(∑𝑛𝑡

𝑖=1 𝑎
+
𝑖𝑗
𝑣𝑖,𝑘 = 0 &

∑𝑛𝑡
𝑖=1 𝑎

−
𝑖𝑗
𝑣𝑖,𝑘 = 0

)
0, if

(∑𝑛𝑡
𝑖=1 𝑎

+
𝑖𝑗
𝑣𝑖,𝑘 = 0 &

∑𝑛𝑡
𝑖=1 𝑎

−
𝑖𝑗
𝑣𝑖,𝑘 > 0

) (5)

Finally, 𝜷𝒌 is a vector of normalizing constants required for

𝐌()
𝑘

to be a vector of bona fide densities. In Equation (4), the
symbols ⟨⊗, ◦, ⋅⟩ are used to denote the matrix outer product,
Hadamard product, and inner product (Ando, 1995; Beezer,
2007), respectively. Also, the (𝑖, 𝑗)th element from (𝐀−)𝑇 ◦𝐁
equals 𝑎−

𝑖𝑗
(𝑓𝑝𝑗
𝑘

∧ 𝑓 𝑡𝑖
𝑘
)(𝐱𝑘) and corresponds to the state of

information that remains in place in 𝑝()
𝑗

at 𝑘 + 1 after firing

𝑡𝑖, given that 𝑝()
𝑗

∈ 𝑡𝑖∙ is isolated from output arcs. Finally,

observe that the summation of outer products
∑𝑛𝑡
𝑖=1(𝐚

+
𝑖
)𝑇 ⊗ 𝐜𝑖

in Equation (4) renders an (𝑛𝑝 × 𝑛𝑡) matrix whose (𝑖, 𝑗)th ele-
ment represents a weighted density function corresponding
to the state of information added to postset place 𝑝()

𝑗
after

transition 𝑡𝑖 has been fired. The interested reader should refer
to (M. Chiachío et al., 2018) for further details.

2.3.2 Rule of transition firing
In PPNs, any transition 𝑡𝑖 ∈ 𝐓 is fired at time 𝑘 if the delay
time has passed and

1. every symbolic place from the preset of 𝑡𝑖 has enough
tokens according to their input arc weight, as in classical
PNs.

2. each of the conjunction of states of information between
𝑓 𝑡𝑖 and 𝑓

𝑝𝑗
𝑘

is possible, where 𝑝()
𝑗

belongs to the preset
of 𝑡𝑖.

3. conditions 1 and 2 are both satisfied when 𝑡𝑖 is a mixed
transition, i.e., 𝑡𝑖 ∈ (𝐓() ∩ 𝐓()).

Note from condition 2 that a conjunction, e.g., (𝑓𝑝𝑗
𝑘

∧ 𝑓 𝑡𝑖
𝑘
)(𝐱𝑘),

is possible if (𝑓𝑝𝑗
𝑘

∧ 𝑓 𝑡𝑖
𝑘
)(𝐱𝑘) ≠ ∅ (Tarantola & Valette, 1982).

Note also that when any of the states of information involved
in a conjunction is the homogenous density (also referred to as
“noninformative density”) 𝜇(𝐱𝑘) of the state space of consid-
eration  , then the conjunction is always possible (Tarantola
& Valette, 1982), thus condition 2 is automatically fulfilled.
This argument is important in terms of using PPNs in practi-
cal applications, as will be demonstrated in the next section.

Further details about this aspect can be found in M. Chiachío
et al. (2018).

2.3.3 PPN algorithm
The recursive scheme for PPNs explained above is, in
general, difficult to evaluate analytically because the nor-
malizing constants involved in the conjunction of states
of information of Equation (4) are difficult to evaluate in
practical cases. Furthermore, there are situations where the
density functions are not completely known. To alleviate
this drawback and confer the required versatility to the PPN
methodology, particle methods (Arumlampalam, Maskell,
Gordon, & Clapp, 2002; Doucet, De Freitas, & Gordon,
2001) can be used to circumvent the evaluation of the
normalizing constants with a feasible computational cost.
In this section, a pseudocode implementation of PPNs is
provided, which combines the PPN algebra with the particle
approximation for the conjunction and disjunction of states
of information. Three main blocks comprise the pseudocode,
namely, transition firing, information exchange, and marking
evolution, which have been remarked for clarity. For better
readability, the pseudocode has been provided as Algorithm 1
in Appendix A. In addition, some mathematical insights into
the particle approximation of the conjunction and disjunction
of states of information have been provided in Appendix B.
Observe from Algorithm 1 that the normalizing constants
from Equation (4) have been omitted because the particle
approximation bypasses them through resampling.

Example 2. The suitability of the PPN algorithm to reproduce
the execution semantics rules given in Section 2.3.1 is illus-
trated here using a numerical example. To this end, let us con-
sider again the PPN given in Figure 4a; however, now the sys-
tem states are considered as two-dimensional, i.e., 𝐱𝑘 ∈  ⊂
ℝ2. The initial marking 𝐌0 = (𝑓𝑝10 , 𝑓

𝑝2
0 , 𝑓

𝑝3
0)𝑇 is described

using 2D Gaussians as follows: 𝑓𝑝10 (𝐱) ∼  ([20, 15], 𝚺1),
where 𝚺1 = 𝑑𝑖𝑎𝑔(52, 32); 𝑓

𝑝2
0 (𝐱) ∼  ([30, 30], 𝚺2), with

𝚺2 being 𝚺2 = 𝑑𝑖𝑎𝑔(42, 22); and finally 𝑓𝑝30 (𝐱) = ∅. In this
example, the transition 𝑡1 is defined using a Dirac delta
density function, i.e., 𝑓 𝑡1 ∼ 𝕀(𝐱𝑘); thus, its firing is pre-
scribed for the state variable 𝐱𝑘 on fulfilling the proposition
𝐱𝑘 ∈ , where  ⊆  is a region of the 𝐱-space defined as:
 = {𝐱 ∈  ∶ (𝑥1 − 20)2 + (𝑥2 − 20)2 ⩽ 10}. Algorithm 1
has been applied using 𝑁 = 1,000 particles to evaluate
the system state evolution, described through the marking
𝐌𝑘, 𝑘 > 0. The results for the numerical places 𝑝()

1 (left) to

𝑝
()
3 (right) are depicted in Figure 5 for 𝑘 = 0 (upper panels)

to 𝑘 = 1 (lower panels). Each subplot represents a state of
information about 𝐱𝑘 using samples (gray circles) in the state
space  . The blue circle represents the region . Observe
that initially, at 𝑘 = 0, transition 𝑡1 is enabled because 𝑝()1
is assigned one token and (𝑓𝑝𝑖0 ∧ 𝑓 𝑡10)(𝐱𝑘) ≠ ∅, for 𝑖 = 1, 2.

CHIACHÍO ET AL. 7

F I G U R E 5 Output of the PPN from Figure 4a given
for numerical places 𝑝()

1 (leftmost panel) to 𝑝()
3

(rightmost panel) at 𝑘 = 0 (upper panels) and 𝑘 = 1 (lower
panels)

Once 𝑡1 is fired, then the information coming from 𝑝
()
1 and

𝑝
()
2 is incorporated and the resulting state of information

is subsequently transferred to 𝑝()
3 (recall Figure 4b for a

conceptual illustration of the information flow in PPNs).
Note that the information coming from 𝑝

()
2 prevails in 𝑝()

3
after firing 𝑡1, precisely because the arc weight from 𝑝

()
2 to

𝑡1 (𝑎−21) equals two, while 𝑎−11 = 1. Note also that the PDFs
𝑓
𝑝1
1 and 𝑓𝑝21 are concentrated within the region  (depicted

as a blue circle in Figure 5) because of the Dirac delta PDF
in 𝑓 𝑡1 , which acts as a filter canceling any information out
of the region  once 𝑡1 is fired. Finally, observe also that
this example numerically shows how both the numerical and
symbolic tokens interact in a synchronized manner in PPNs.

3 SELF-ADAPTATION MODELING
BY BAYESIAN LEARNING OF PPNs

Lemma 1. In PNNs, any input arc from place 𝑝()
𝑗

to tran-
sition 𝑡𝑖 ∈ 𝐓() conveys a state of information given by the
posterior density function of state variable 𝐱𝑘, by adopting
the following assumptions:

1. at time k, there are available data, denoted by 𝐲𝑘 ∈ ;
2. 𝑓 𝑡𝑖(𝐱𝑘) acts as likelihood function for 𝐲𝑘, hence 𝑡𝑖 is named

as data-transition; and
3.  is a linear space.

Proof. Let us consider that the state of information 𝑓𝑝𝑗 (𝐱𝑘)
represents a prior PDF 𝑝(𝐱𝑘) for 𝐱𝑘 within the state space  .
Let us now rewrite the likelihood function 𝑓 𝑡𝑖(𝐱𝑘) as 𝑝(𝐲𝑘|𝐱𝑘).
From Equation (4), the (𝑖, 𝑗)th element of matrix 𝐁 is given by
(𝑓𝑝𝑗 ∧ 𝑓 𝑡𝑖)(𝐱𝑘), which, by definition of conjunction of states

of information, is given by Tarantola and Valette (1982):

(
𝑓𝑝𝑗 ∧ 𝑓 𝑡𝑖

)
(𝐱𝑘)

def
= 𝛼𝑖𝑗

𝑓𝑝𝑗 (𝐱𝑘)𝑓 𝑡𝑖(𝐱𝑘)
𝜇(𝐱)

(6)

∝ 𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘)
where 𝛼𝑖𝑗 is a normalizing constant, and 𝜇(𝐱) is the homoge-
neous density function, which is also a constant because 
is a linear space (Tarantola, 2005). By Bayes' theorem (recall
Equation (1)), the resulting PDF can be interpreted as the pos-
terior PDF of state vector 𝐱𝑘 given data 𝐲𝑘 ∈ , except for a
normalizing constant. □

Corollary 1. Under the assumptions given above, and by con-
sidering that:

1. 𝑝()
𝑗

∈ ∙𝑡𝑖 is isolated from output arcs and

2. firing of transitions 𝑡()
𝑖

∈ ∙𝐓𝑝𝑗 is nonconcomitant, with
∙𝐓𝑝𝑗 being the set of transitions whose input arcs come

from place 𝑝()
𝑗

;

then the marking𝑀 ()
𝑘+1 (𝑗) can be just obtained by recurrence

as a posterior Bayesian estimation from 𝑀 ()
𝑘

(𝑗) except for
a normalizing constant, as follows:

𝑀
()
𝑘+1 (𝑗) ∝ 𝑝(𝐱𝑘|𝐲𝑘) (7)

where 𝐱𝑘 ∼ 𝑓𝑝𝑗 (𝐱𝑘) =𝑀
()
𝑘

(𝑗). In such case, 𝑝()
𝑗

is denoted
as a learning-place.

The derivation of Corollary 1 can be straightforwardly
obtained from Equation (4) by just considering that
𝑎+
𝑖𝑗
= 0,∀𝑖 = 1,… , 𝑛𝑡 (from Assumption 1) and also that∑𝑛𝑡
𝑖=1 𝑎

+
𝑖𝑗
𝑣𝑖,𝑘 = 0 and

∑𝑛𝑡
𝑖=1 𝑎

−
𝑖𝑗
𝑣𝑖,𝑘 > 0 (from Assumption 2),

then 𝛾 (𝑗)
𝑘

= 0 (recall Equation (5)).

8 CHIACHÍO ET AL.

F I G U R E 6 (a) PPN of Example 3. (b)
Representation of the resulting PDF (solid line) in
place 𝑝()

1 from the evaluation of Equation (7) at
k = 1. Note that the prior 𝑓𝑝10 is represented by the
dotted gray line

Example 3. Figure 6a represents a simple PPN where 𝑓 𝑡1

acts as a likelihood function assumed as Gaussian, given by
𝑓 𝑡1 =  (25, 5), where units are dimensionless. The proba-
bility densities for initial marking 𝐌()

0 are Gaussians given
by: 𝑓𝑝10 =  (20, 5), 𝑓𝑝20 =  (10, 5), where 𝑓𝑝10 is the prior
PDF about the unidimensional variable 𝑥𝑘. The initial mark-
ing 𝐌()

0 comprises one token in 𝑝()1 . According to the graph
given by Figure 6a, the incidence matrices used for the calcu-
lations of the numerical and symbolic subnets are:

𝐀+() = (0 1)
𝐀−() = (0 1)

}
→ 𝐀() = (−1 1) (8a)

𝐀+() = (1)
𝐀−() = (1)

}
→ 𝐀() = (0) (8b)

respectively. Observe that in this example, the subnet given
by {𝑝()

1 , 𝑡1} fulfills the assumptions given in Lemma 1 and

also 𝑎+11 = 0, 𝛾 (1)
𝑘

= 0 (assuming that 𝑡1 is fired). Hence-

forth, according to Corollary 1, the marking 𝑀 ()
1 (1) can be

straightforwardly obtained by Equation (7) as a Bayesian pos-
terior from𝑀 ()

0 (1) = 𝑓𝑝10 , i.e.,

𝑀
()
1 (1) = 𝑓𝑝1 ∧ 𝑓 𝑡1 ∝  (25, 5) (20, 5) (9)

Note that the same result can be obtained using Equa-
tion (4). Indeed, observe that in this example, the matrix∑𝑛𝑡

𝑖=1(𝐚
+
𝑖
)𝑇 ⊗ 𝐜𝑖 = (𝐚+1)

𝑇 ⊗ 𝐜1 =
(
0
1

)
⊗

(
𝑓 𝑡1 ∧ 𝑓

∙𝑡1
0

)
=(

0
1 ⋅ 𝑓 𝑡1 ∧ 𝑓

∙𝑡1
0

)
, which gives 0 for the component corre-

sponding to 𝑝()
1 . Note also that 𝛾 (1)0 = 0, which is obtained

using Equation (5). Henceforth, the resulting PDF in place
𝑝
()
1 at 𝑘 = 1 is the (1,1)th element from matrix (𝐀−)𝑇 ◦𝐁,

i.e., 𝑎−11
⏟⏟⏟

=1

𝑓
𝑝1
0 ∧ 𝑓 𝑡10 ∝  (25, 5) (20, 5), which coincides

with the result from Equation (9). Figure 6b provides a
graphical representation of marking𝑀 ()

𝑘
(1) for 𝑘 = 0, 1.

Remark 1. Let us denote by 𝑡()
𝑖

a specific data-transition
within a PPN and let 𝑘 be a time instant when data 𝐲𝑘 are
available. A self-adaptive expert system can be modeled via
PPNs by setting a number of learning places. Any learning
place 𝑝()

𝑗
can be set and updated within a PPN by adopting

the following procedure:

1. Make 𝑎+
𝑖𝑗
= 0, ∀𝑖 = 1,… , 𝑛𝑡.

2. Set firing constants 𝑣𝑖,𝑘 for 𝑡()
𝑖

∈ ∙𝐓𝑝𝑗 such that 𝑣𝑖,𝑘 =
𝕀𝑖(𝑖), where 𝕀𝑖(𝑖) = 1 if 𝑖 = 𝑖, and 0 otherwise.

3. Adopt 𝛾 (𝑗)
𝑘

= 0.

4. Set𝑀 ()
𝑘+1 (𝑗) ∝ 𝑝(𝐱𝑘|𝐲𝑘).

Remark 2. The methodology presented above reveals that
PPNs are useful for modeling adaptive expert systems because
they can deal with uncertain information such as the one com-
ing from noisy condition monitoring data and expert opinion
(Chiachío et al., 2018), and automatically update it for deci-
sion making. The resulting computational framework allows
building computational models acting as self-adaptive expert
systems, as shown in the next section within the context of a
case study.

4 CASE STUDY: APPLICATION OF
METHODOLOGY TO RAILWAY
TRACK INSPECTION

In this section, the computational framework presented above
is demonstrated in a case study for railway track inspection
management. One of the main interests of this exercise is
to provide evidence about the self-adaptation of PPNs using
monitoring data. To this end, a PPN-based expert system is
provided to generate autonomous and adaptive management
decisions based on monitoring data about the state of geome-
try deterioration of a railway track, as depicted by Figure 7.

In this case study, the deterioration of the track is assumed
to occur due to traffic loading expressed in cycles, which
represent an integer amount of train axles that have passed

CHIACHÍO ET AL. 9

F I G U R E 7 Schematic diagram about a self-adaptive expert
system using PPNs applied to a railway track maintenance problem

through a particular track section during an operation period.
Also, it is assumed that track measurement trains are used
to provide measurements of the track state (in particular, the
track settlement) at a set of regularly or nonregularly sched-
uled cycles. Observe from Figure 7 that every time the track
measurement train provides new data about track settlement,
the PPN-expert system uses that data to generate information
to support decisions related to the scheduling of inspections
by track engineers, as depicted by the dashed-blue rectan-
gle. The track engineers' inspections do not provide new data
points and are undertaken to confirm the requirement for a par-
ticular type of maintenance, such as tamping or stoneblowing
(Esveld, 1989; Selig & Waters, 1994), or for speed restrictions
or line closures to be imposed. The PPN-based expert system
uses the available measurement data to ensure that an alarm is
raised about the track condition if necessary or that track engi-
neers' inspections are scheduled according to the latest knowl-
edge of the track condition. This condition-based inspection
(CBI) therefore acts to ensure that any disruption to opera-
tions caused by these inspections is minimized and that the
required resources are used efficiently.

4.1 Problem description
Railway track geometry deterioration due to traffic loading is
a critical railway operation and maintenance problem with
important implications in safety and cost. When measured
track irregularities exceed allowable limits, either traffic speed
restrictions have to be prescribed, or corrective maintenance
interventions like tamping have to be performed to restore
the track to an acceptable geometry. The modeling of the
track geometry degradation is a core element in the railway
maintenance problem (Andrews, 2012; Andrews, Prescott, &
De Rozières, 2014). In general terms, the temporal evolution

of the track degradation can be assumed to be given by a state-
space model, as

𝑥𝑘 = ℎ𝑘(𝑥𝑘−1) + 𝜈𝑘 (10a)

𝑦𝑘 = 𝑥𝑘 +𝑤𝑘 (10b)

where 𝑥𝑘 denotes the latent state of degradation at time or
cycle 𝑘 ∈ ℕ, 𝑦𝑘 is a measurement of the degradation at time
𝑘, and 𝜈𝑘 and 𝑤𝑘 are random variables that represent the pro-
cess noise and the measurement error, respectively. Supported
by the principle of maximum information entropy (Jaynes,
1983), 𝜈𝑘 and𝑤𝑘 can be conservatively modeled as zero-mean
Gaussian distributions; thus, the state-space model in Equa-
tion (10) can be rewritten probabilistically as:

𝑝(𝑥𝑘|𝑥𝑘−1) =  (ℎ𝑘(𝑥𝑘−1), 𝜎𝜈𝑘) (11a)

𝑝(𝑦𝑘|𝑥𝑘) = 
(
𝑥𝑘, 𝜎𝑤𝑘

)
(11b)

where 𝜎𝜈𝑘 and 𝜎𝑤𝑘 are the standard deviation of the model
error and the measurement error, respectively. For this case
study, a cycle-to-cycle incremental model for railway track
degradation is adopted; thus, the state transition function ℎ𝑘 in
Equation (11a) can be expressed as ℎ𝑘 = 𝑥𝑘−1 + Δ𝑥𝑘, where
Δ𝑥𝑘 is the increment of track degradation in load cycle 𝑘.
Here, the (latent) state of track degradation at loading cycle
𝑘 is assumed to be given by the permanent settlement of the
track in a particular track section. To calculate the cyclic incre-
ment of track settlement Δ𝑥𝑘, the semiempirical cyclic den-
sification model from Indraratna, Thakur, Vinod, and Salim
(2012) is adopted. This model is based on the theory of
plasticity of soils (Yu, 2007) and the postulates of critical
state soil mechanics (Schofield & Wroth, 1968), but for the
sake of simplicity, it is not reproduced here. The interested
reader is referred to J. Chiachío, M. Chiachío, Prescott, and
Andrews (2017) and Indraratna et al. (2012) for further mod-
eling details, and to Dahlberg (2001), Soleimanmeigouni and
Ahmadi (2016), and Higgins and Liu (2018) for a comprehen-
sive overview of track degradation models.

The data in this case study consist of a set of nonregu-
larly scheduled (noisy) measurements 𝑌 = (𝑦1, 𝑦2,… , 𝑦𝑘) of
track settlement taken from Aursudkij et al. (2009), which are
sequentially introduced to the system at a set of discrete load-
ing cycles. This data set corresponds to a laboratory simula-
tion of traffic loadings for a 20-tonne axle-load train over a
ballasted track section composed of 0.9 (m) (depth) subgrade
material and 0.3 (m) (depth) ballast material, carried out in
the Railway Test Facility (RTF) of the University of Notting-
ham (UK). The data set is reproduced in Table 1. The reader
is referred to Aursudkij et al. (2009) for further information
about the experimental setup whereby the data were collected,
and to Brown, Brodrick, Thom, and McDowell (2007) for a
detailed description on the Nottingham RTF.

10 CHIACHÍO ET AL.

T A B L E 1 Experimental sequence of permanent unitary settlement (strain) data used for calculations, taken from Aursudkij et al. (2009)

Loading cycles 𝑘(×103) 0 0.625 1.25 2.5 5 10 20 30 50 75

Unitary settlement (dimensionless) 0 0.0017 0.0045 0.0058 0.0075 0.0087 0.0104 0.011 0.012 0.01275

F I G U R E 8 PPN of the case study presented in Section 4. The dashed rectangle indicates the nodes that enable the Bayesian updating of the
numerical variable 𝑥𝑘

4.2 Plausible Petri net model
The PPN-based expert system for railway track maintenance
considered in this case study is depicted in Figure 8. The sys-
tem represents a number of rules that autonomously raise an
alarm (e.g., “line closure”) or trigger inspection activities of
a particular railway track section subjected to traffic loading
degradation. As shown in Figure 8, the PPN is composed of
two numerical places (𝑝()

1 , 𝑝()
2), nine symbolic places (𝑝()1

to 𝑝()9), four mixed transitions (𝑡1 to 𝑡4), and five symbolic
transitions (𝑡5 to 𝑡9). The stochastic model for track degra-
dation represented in Equation (11a) is embedded within the
numerical place 𝑝()

1 . Thus, the state of information in 𝑝()
1

is given by:

𝑓𝑝1 (𝑥𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1)
=
(
2𝜋𝜎2𝑣𝑘

)−1
2 exp

⎛⎜⎜⎝−1
2

(
ℎ𝑘(𝑥𝑘−1) − 𝑥𝑘

𝜎𝑣𝑘

)2⎞⎟⎟⎠ (12)

Numerical place 𝑝()
2 represents a buffer of information

(initially empty), which collects the posterior values of
track settlement leading to the “line closure” state, as will
be explained further below. Discrete-event states such as
“inspection needed,” “activated inspection,” etc., as specified
by the colored text labels in Figure 8, are modeled by the sym-
bolic places 𝑝()1 to 𝑝()9 , respectively. Places 𝑝()5 , 𝑝

()
6 , 𝑝

()
9

have red labels and represent irreversible discrete states, i.e.,
nonnumerical discrete states of the track degradation that per-
manently remain in the same condition once their correspond-
ing places (e.g., 𝑝()9) have been marked. The gray text labels
provide explanatory information about places. Observe also
from Figure 8 that a number of inhibitor arcs (Murata, 1989;
Schneeweiss, 2001) (those ending with a small circle) are used
to produce the opposite effect of the rule described in Equa-
tion (3), i.e., they prevent a transition from enabling once its
preset places are marked.

The system is fed during runtime using measurements com-
ing from monitoring data. A cold transition (𝜖) is used to
represent the data arrival, which are assumed to be available
at a set of nonregularly scheduled time instants, as shown in
Table 1. For this case study, the measurements 𝑦1, 𝑦2,… , 𝑦𝑘
are assumed to come with a 5% white-noise-type error; so,
they are considered as random realizations of a Gaussian PDF
centered in the latent state 𝑥𝑘 with standard deviation given
by 𝜎𝑤𝑘 = 0.05‖𝑦𝑘‖, taking it as known, i.e., 𝑦𝑘 ∼  (𝑥𝑘, 𝜎𝑤𝑘)
(recall Equation (11b)). This PDF represents the state of infor-
mation within transition 𝑡1, given by:

𝑓 𝑡1 (𝑥𝑘) = 𝑝(𝑦𝑘|𝑥𝑘)
=
(
2𝜋𝜎2𝑤𝑘

)−1
2 exp

⎛⎜⎜⎝−1
2

(
𝑦𝑘 − 𝑥𝑘
𝜎𝑤𝑘

)2⎞⎟⎟⎠ (13)

CHIACHÍO ET AL. 11

T A B L E 2 Description of the transitions shown in Figure 8. In the third column (rules), the delays are expressed in cycles. The last column
provides a description of the action taken by the PPN-expert system when the rules are met

ID Type Rule State of information Action
𝑡1 Mixed – 𝑓 𝑡1 ∼ 𝑝(𝑦𝑘|𝑥𝑘) (Likelihood) Update predictions

𝑡2 Mixed 𝐻(𝑥𝑘) ⩾ −4.8 𝑓 𝑡2 ∼ 𝕀2 (𝑥𝑘) Activates CBI

𝑡3 Mixed 𝔼𝑓𝑝1 [𝑥𝑘] ⩾ 0.014 [m] 𝑓 𝑡3 ∼ 𝕀3 (𝑥𝑘) Switches to LC

𝑡4 Mixed 𝔼𝑓𝑝1 [𝑥𝑘] ⩾ 0.012 [m] 𝑓 𝑡4 ∼ 𝕀4 (𝑥𝑘) Switches to SR

𝑡5 Symbolic 𝜏5 ∼  (20, 1) (delay) – Concludes inspections

𝑡6 Symbolic 𝜏6 = 0 (delay) – Switches to CBI

𝑡7 Symbolic 𝜏7 = 0 (delay) – Switches to PI

𝑡8 Symbolic 𝜏8 ∼  (1, 1) (delay) – Activates CBI

𝑡9 Symbolic 𝜏9 = 4.0 (delay) – Activates inspections

PI: periodic inspections, CBI: condition-based inspections, SR: speed restrictions, LC: line closure.

Note that each time a new measurement arrives, transition 𝑡1
is enabled, which, by the PPN execution rules explained in
Section 2.3.1, leads to the conjunction of the states of infor-
mation of 𝑝()

1 and 𝑡1 (Equations 12 and 13, respectively).
By Lemma 1, this conjunction leads to the posterior PDF and
therefore to the update of the degradation variable 𝑥𝑘 in place

𝑝
()
1 , except for a normalizing constant. It follows that self-

adaptation for this particular example is enabled by means of
the subnet {𝑝()1 , 𝑝

()
1 , 𝑡1}.

By evaluating the proposed PPN-based system, changes in
the numerical and discrete track states are obtained with ref-
erence to a number of automated actions that are activated
through firing transitions 𝑡1–𝑡9. An overview of the complete
set of transitions is provided in Table 2. Observe from this
table that the mixed transitions 𝑡2, 𝑡3, and 𝑡4 are defined based
on condition, and henceforth, their activation is prescribed
for the state variable 𝑥𝑘 on fulfilling the condition 𝑥𝑘 ∈ 𝑖,
where subspaces 𝑖, 𝑖 = 2, 3, 4, are specified in the third col-
umn of Table 2. These transitions are driven by states of infor-
mation that are expressed by Dirac delta density functions
(Chiachío et al., 2018), i.e., 𝑓 𝑡𝑖 = 𝕀𝑖 (𝑥𝑘), 𝑖 = 2, 3, 4. In
Table 2, function𝐻 ∶  → ℝ denotes the differential entropy
(DE) of the degradation variable 𝑥𝑘, as a measure of the
degree of belief about the values taken by 𝑥𝑘, which is given
by 1∕2 ln[(2𝜋𝑒)var(𝑥𝑘)]. Also, 𝔼𝑓𝑝1 [𝑥𝑘] denotes the expecta-
tion of 𝑥𝑘 with respect to 𝑓𝑝1 . From a computational point
of view, the conditions in the mixed transitions 𝑡2–𝑡4 specify
numerical rules used by the expert system to raise an alarm or
trigger an inspection action.

The dynamics of the PPN-based expert system are briefly
described next. Initially, at 𝑘 = 0, the system starts in the
dual discrete state “Data arrived” and “available engineers,”
represented by one token at 𝑝()1 and 𝑝()7 , respectively, thus

𝐌()
0 = (1, 0, 0, 0, 0, 0, 1, 0, 0)𝑇 . In practice, this symbolizes

an initial stage of the track where a first measurement is
taken, almost no track degradation is observed, and engineers
are available in case inspections are required. The initial

marking of the numerical places is given by 𝑓𝑝10 =  (0, 1),
𝑓
𝑝2
0 = ∅ (recall that 𝑝()

2 represents a buffer of information
that is initially empty). Subsequently, the numerical state
variable 𝑥𝑘 in 𝑝

()
1 starts evolving over time following

Equation (10a), which is updated online by means of the
subnet {𝑝()1 , 𝑝

()
1 , 𝑡1} each time new data point arrives. In

parallel, a sequence of periodic inspection (PI) activities
takes place through subnet {𝑝()2 , 𝑝

()
3 , 𝑝

()
7 , 𝑝

()
8 , 𝑡5, 𝑡7, 𝑡8, 𝑡9},

which is enabled because 𝑝()7 is initially assigned with one

token, i.e., 𝑀 ()
0 (7) = 1. Note that the system keeps running

in PI mode until place 𝑝()6 receives a token, whereupon
it switches to CBI mode. The CBI mode allows the expert
system to trigger an inspection only when the condition
𝑥𝑘 ∈ 2 is met, i.e., when the uncertainty observed in the
predicted track settlement is higher than a certain value.

Note also from Figure 8 that a concurrency takes place
through the subnet {𝑝()

1 , 𝑡2, 𝑡3}, hence once any of the
numerical rules represented by 𝑡2 and 𝑡3 are met, then the
referred transitions (not necessarily both nor simultaneously)
are enabled whereupon two possible sequences of actions are
activated, namely: (a) a set of inspection activities represented
by the transitions 𝑡5, 𝑡8, 𝑡9 (when 𝑡2 is fired) and (b) the closure
of the line by firing 𝑡3 (when the mean predicted track set-
tlement passes 0.014 m), which subsequently disables 𝑡1 and
makes the self-adaptive expert system stop. In that case, the
buffer in place 𝑝()

2 will collect and store the state of infor-

mation taking place at 𝑝()
1 when 𝑡3 is fired. Finally, note that

𝑝
()
4 collects a number of tokens equivalent to the amount of

collected measurements, and allows 𝑡6 to be fired, provided
that at least two measurements are available, whereupon 𝑝()6
is marked and the system automatically switches from PI to
CBI mode by disabling transition 𝑡7. The two tokens required
in 𝑝()4 to fire 𝑡6 are a prerequisite imposed on the system to
avoid triggering CBIs based on predictions of the track set-
tlement 𝑥𝑘 with little or no learning from the data. By this
means, at least two data points are assured to train the model

12 CHIACHÍO ET AL.

(a) (b)

(d)(c)

F I G U R E 9 Upper panels: Plot of mean values and probability bands of 𝑓𝑝1
𝑘

for 𝑘 = 0 to 𝑘 = 75,000 considering (a) the complete set of
measurement data arrived and (b) only the first four data points. Lower panels: History plot of the differential entropy of 𝑓𝑝1

𝑘
for (c) the complete and

(d) the reduced data set as mentioned before. The dashed-horizontal line represents the threshold value (−4.8) given to activate transition 𝑡2

so that the track settlement predictions are sufficiently reliable
to be used for decision making.

4.3 Results
The simulation of the PPN-based expert system shown in
Figure 8 yields predicted information about the state variable
𝑥𝑘, along with the sequence of discrete events, such as
activation of inspection, data arrival, etc. Algorithm 1 is
applied to obtain the overall system evolution described
through the marking 𝐌𝑘, 𝑘 > 0, using 𝑁 = 5,000 samples.
The results for the estimated degradation variable in place
𝑝
()
1 along with its 5% − 95% probability bands are depicted

in Figure 9 for 𝑘 = 0 → 75 × 103 cycles (see the leftmost
panels). Figure 9c illustrates the temporal evolution of
the uncertainty in the estimation of 𝑥𝑘 within place 𝑝()

1 ,
with indication of the reference level when inspections
are needed. This uncertainty is expressed and quantified
through the DE. The observed drops in the sequence of DE
values in Figure 9c correspond to the uncertainty reduction

due to Bayesian learning when new measurements become
available.

Observe from these results that there is a period required
by the PPN model to learn from the data, which corresponds
to the loading cycles in the interval (0, 5 × 103]. After this
learning period, not only does the precision of the predic-
tion of 𝑥𝑘 clearly improve with time (predicted values of 𝑥𝑘
closer to data 𝑦𝑘), but also the uncertainty of the prediction
gradually tends to diminish, which is numerical evidence of
the Bayesian learning taking place in 𝑝()

1 . Figure 10a pro-

vides a plot of the history of the tokens visiting place 𝑝()2
during the overall period of evaluation 𝑘 = 0 → 75 × 103, and
indicates the sequence of activated inspections within that
period. Note that at the beginning of the process (specifically
the first 2,500 cycles), inspections are activated even when
the uncertainty (DE) about 𝑥𝑘 in 𝑝()

1 is below the threshold
value, as can be observed in Figure 9c. According to the PPN
graph in Figure 8, these correspond to PIs that must be car-
ried out until at least two measurements are available, where-
upon 𝑝()6 is marked and the system switches from PI to CBI
mode, as explained above. Note also from Figure 10a that a

CHIACHÍO ET AL. 13

(a) (b)

(c)

F I G U R E 1 0 Plot of visiting tokens in place 𝑝()2 as a response of the PPN from Figure 8 using online data from (a) the data set (𝑌) shown in
Table 1 and (b) only the first four data points arrived to the system. Panel (c) shows the accumulated number of tokens visiting place 𝑝()2 in both
situations described before

F I G U R E 1 1 Intervals (expressed in cycles) for which the
irreversible discrete-event states of the PPN shown in Figure 8 remain
active. CBI: condition-based inspections, SR: speed restrictions, LC:
Line closure

number of tokens visit place 𝑝()2 from cycle 𝑘 = 2.5 × 103
to about 𝑘 = 2 × 104, corresponding to inspection activities
triggered because the uncertainty of the degradation variable
𝑥𝑘 in this initial period passes the threshold several times, i.e.
(DE ⩾ −4.8), activating 𝑡2. After this initial period, the sys-
tem identifies that no more inspections are needed. Observe
that these results reveal that the PPN autonomously responds
to the arrival of data through adaptation so that the sequence
of discrete states is altered in response to the most up-to-date
information from data 𝑌 . Further insight about the response
of the PPN of this case study is provided through a schematic

diagram of the sequence of irreversible discrete states acti-
vated during a period of evaluation 𝑘 = 0 → 100 × 104, as
shown in Figure 11. The results are provided after 200 inde-
pendent runs of the PPN algorithm. The circled points in Fig-
ure 11 represent the cycles when measurement data become
available. The error bars are to indicate the 25th–75th prob-
ability bands corresponding to the variation in activation of
certain discrete states due to the independent runs of the PPN
algorithm. This diagram gives the intervals of the cycles (rep-
resented using bars) for which each discrete state remains
active within the period of evaluation.

14 CHIACHÍO ET AL.

(a) (b)

F I G U R E 1 2 (a) Plot of total number of times where 𝑝()7 is empty. (b) Resulting average availability of track inspection engineers as a
function of the number of data points used to train the PPN of Figure 8

4.4 Discussion
In Section 4.3, a case study has been provided to illustrate the
dynamics of PPNs, the different types of information that can
be managed (uncertain information in confluence with infor-
mation from discrete events), and how PPNs can sequentially
learn from monitoring data. This section contains a discus-
sion about the effectiveness of the proposed computational
methodology in the context of the case study results. To this
end, the PPN from the case study is comparatively evaluated
by considering different subsets of data extracted from the
data set in Table 1.

As a first exercise, the PPN is evaluated using Algorithm
1 by considering a data set 𝑌 (1) based on the first four data
points shown in Table 1, i.e., the PPN only receives data up
to 5 × 103 cycles. The results for the estimated degradation
variable 𝑥𝑘 ∼ 𝑓

𝑝1
𝑘

and its DE are provided in Figure 9 (see
right-hand panels). Observe that, in this case, the uncertainty
increases from 𝑘 = 5 × 103 loading cycles, when new mea-
surements are no longer available, in comparison with the case
shown in Figures 9a and c, respectively, where the overall data
set is available. As a consequence, the PPN responds by con-
tinuously triggering CBIs from 𝑘 = 8 × 103, which is the load
cycle when DE exceeds the threshold −4.8 (see Figures 10b
and c). These results corroborate that the proposed model is
able to adapt to the available monitoring information in such
a way that the more uncertainty in the degradation estimation
(e.g., due to low quality of the monitoring system), the more
inspections required, and hence the higher the maintenance
costs, provided that there exists a cost associated with each
inspection.

In addition, a comparison between accumulated calls for
inspection engineers over time is carried out by considering
the reduced data set, 𝑌 (1), and 𝑌 , the complete data set. The
interest in the accumulated amount of calls of engineers is
because it is indicative of the availability of engineers for this

particular example, such that the lower the calls for inspec-
tions, the higher the availability of engineers, hence lower
inspection costs. To count the calls for engineers in each case,
place 𝑝()7 in Figure 8 has been monitored over time of execu-
tion. The results, as shown in Figure 12b, are given in terms
of total number of times that 𝑝()7 is empty. Note that during
the first cycles (say 𝑘 ⩽ 1 × 104), the response of the PPN
under both data sets is similar (if not equal) due to the PIs
that are activated for the first cycles (recall that PIs are ini-
tially triggered until two data points arrive). After this initial
period, the total number of triggered CBIs is clearly lower as a
response of the PPN when using data set 𝑌 (recall Figure 10c),
which implies lower calls for engineers, hence higher avail-
ability revealed through higher amount of tokens visiting 𝑝()7
during the runtime.

Finally, note that, from this standpoint, a natural research
question arises about the optimum amount of data the self-
adaptive expert system would require to minimize inspec-
tion costs. To answer such a question, the PPN shown in
Figure 8 has been evaluated using six sets of data that have
been named as {𝑌 (𝑗)}6

𝑗=1, such that 𝑌 (1) ⊂ 𝑌 (2) … ⊂ 𝑌 (6) =
𝑌 , where 𝑌 (1), 𝑌 (2),… , 𝑌 (6) correspond to data sets obtained
by successively considering the first four, five, and finally, all
data points from Table 1, respectively. Figure 12b shows the
results obtained from 200 independent runs of the PPN algo-
rithm for each data set considered. Observe that, in general,
the more measurement data become available, the lower num-
ber of calls for inspections, and thus the higher the availability
of engineers. This is a consequence of the Bayesian learning
of the PPN from the data, which serves to control the uncer-
tainty of the track settlement predictions so as to avoid trig-
gering unnecessary inspections. Note also that there is no sig-
nificant difference in terms of maximum availability of engi-
neers when using data sets 𝑌 (4) to 𝑌 (6). This means that, in
this particular case, taking 𝑌 (4) is optimal because the PPN

CHIACHÍO ET AL. 15

response is virtually the same in terms of triggered inspection
actions, while avoiding unnecessary future track settlement
measurements.

5 CONCLUSIONS

This article presented a novel methodology to model self-
adaptive expert systems by Bayesian learning of PPNs. The
mathematical aspects behind PPNs along with the aspects
relating to the learning procedure of PPNs have been pro-
vided using illustrative examples. As an application scenario,
an engineering case study has been presented, which uses
experimental data of railway track degradation to demonstrate
how monitoring data and model-based knowledge about track
degradation can be integrated within a self-adaptive expert
system modeled using a PPN. The following are concluding
remarks:

• Expert systems modeled using PPNs can manage uncer-
tainty and also autonomously respond to the arrival of noisy
data through adaptation.

• Bayesian model updating is shown to appear naturally as a
particular case of the conjunction of states of information,
which is one of the intrinsic operations of PPN execution
semantics.

• A PPN-based railway expert system can operate autono-
mously or as a decision support tool allowing the appro-
priate managers and railway engineers to make better deci-
sions. Future research steps in the context of this specific
application include the consideration of other subsystems
within the expert system model, such as signaling, electri-
fication, switchings and crossings, etc.

• Building on this work, one desirable future research direc-
tion to enhance PPNs as self-adaptive expert systems for
complex civil infrastructures is to explore PPN architec-
tures that allow the modelng of foreseen intervention sce-
narios. Also, an additional challenge would be how to incor-
porate massive and heterogenous data (Thaduri, Galar, &
Kumar, 2015; Thöns, 2018) from infrastructure monitoring
within the PPN methodology.

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical
Sciences Research Council (grant number EP/M023028/1),
and also by the Lloyd's Register Foundation (LRF), a char-
itable foundation in the United Kingdom helping to protect
life and property by supporting engineering-related educa-
tion, public engagement, and the application of research. John
Andrews is the LRF Director of the Resilience Engineering
Research Group and also the Network Rail Professor of Infra-

structure Asset Management at the University of Nottingham.
The authors gratefully acknowledge the support of these orga-
nizations.

R E F E R E N C E S
Adeli, H., & Balasubramanyam, K. V. (1988). Expert systems for struc-

tural design: A new generation. Englewood Cliffs, NJ: Prentice Hall.

Ando, T. (1995). Majorization relations for Hadamard products. Linear
Algebra and Its Applications, 223, 57–64.

Andrews, J. (2012). A modelling approach to railway track asset manage-
ment. Proceedings of the Institution of Mechanical Engineers, Part
F: Journal of Rail and Rapid Transit, 227, 1–8.

Andrews, J., Prescott, D., & De Rozières, F. (2014). A stochastic model
for railway track asset management. Reliability Engineering & Sys-
tem Safety, 130, 76–84.

Arumlampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002). A tuto-
rial on particle filters for on-line nonlinear/non-Gaussian Bayesian
tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.

Aursudkij, B., McDowell, G., & Collop, A. (2009). Cyclic loading of
railway ballast under triaxial conditions and in a railway test facility.
Granular Matter, 11(6), 391.

Beck, J. (2010). Bayesian system identification based on probability
logic. Structural Control and Health Monitoring, 17(7), 825–847.

Beezer, R. A. (2007). A first course in linear algebra. Gainesville, FL:
University Press of Florida.

Bencomo, N., & Belaggoun, A. (2013). Supporting decision-making
for self-adaptive systems: From goal models to dynamic decision
networks. In Proceedings of International Working Conference on
Requirements Engineering: Foundation for Software Quality, pp.
221–236. Springer.

Brown, S., Brodrick, B., Thom, N., & McDowell, G. (2007). The Not-
tingham railway test facility, UK. In Proceedings of the Institution of
Civil Engineers-Transport, Vol. 160, pp. 59–65. Thomas Telford Ltd.

Chiachío, J., Chiachío, M., Prescott, D., & Andrews, J. (2017).
A reliability-based prognostics framework for railway track
management. In Proceedings of the Annual Conference of the
Prognostics and Health Management Society (PHM, 2017), pp.
396–406. PHM.

Chiachío, M., Chiachío, J., Prescott, D., & Andrews, J. (2016). An infor-
mation theoretic approach for knowledge representation using Petri
nets. In Proceedings of the Future Technologies Conference 2016,
San Francisco, 6–7 December, pp. 165–172. IEEE.

Chiachío, M., Chiachío, J., Prescott, D., & Andrews, J. (2018). A new
paradigm for uncertain knowledge representation by Plausible Petri
nets. Information Sciences, 453, 323–345.

Chiachío, M., Chiachío, J., Sankararaman, S., & Andrews, J. (2017). Inte-
gration of prognostics at a system level: A Petri net approach. In Pro-
ceedings of the Annual Conference of the Prognostics and Health
Management Society (PHM, 2017), pp. 376–388. PHM.

Chiang, W., Liu, K. F., & Lee, J. (2000). Bridge damage assessment
through fuzzy Petri net based expert system. Journal of Computing
in Civil Engineering, 14(2), 141–149.

Cox, R. T. (1946). Probability, frequency and reasonable expectation.
American Journal of Physics, 14, 1.

16 CHIACHÍO ET AL.

Dahlberg, T. (2001). Some railroad settlement models - A critical review.
Proceedings of the Institution of Mechanical Engineers, Part F: Jour-
nal of Rail and Rapid Transit, 215(4), 289–300.

Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to
sequential Monte Carlo methods. In A. Doucet, N. De Freitas, & N.
Gordon (Eds.), Sequential Monte Carlo methods in practice (pp. 3–
14). Berlin/New York: Springer.

Esveld, C. (1989). Modern railway track. Zaltbommel: MRT-
Productions.

Flintsch, G. W., & Chen, C. (2004). Soft computing applications in
infrastructure management. Journal of Infrastructure Systems, 10(4),
157–166.

Higgins, C., & Liu, X. (2018). Modeling of track geometry degrada-
tion and decisions on safety and maintenance: A literature review and
possible future research directions. Proceedings of the Institution of
Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,
232, 0954409717721870.

Hsieh, F.-S., & Lin, J.-B. (2014). Context-aware workflow management
for virtual enterprises based on coordination of agents. Journal of
Intelligent Manufacturing, 25(3), 393–412.

Indraratna, B., Thakur, P. K., Vinod, J. S., & Salim, W. (2012). Semiem-
pirical cyclic densification model for ballast incorporating particle
breakage. International Journal of Geomechanics, 12(3), 260–271.

Jaynes, E. (1983). Papers on probability, statistics and statistical physics.
R. D. Rosenkrantz (Ed.). Dordrecht/Boston: Kluwer Academic Pub-
lishers.

Kastner, J., & Hong, S. (1984). A review of expert systems. European
Journal of Operational Research, 18(3), 285–292.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., & Becker, C.
(2015). A survey on engineering approaches for self-adaptive sys-
tems. Pervasive and Mobile Computing, 17, 184–206.

Lajnef, N., Rhimi, M., Chatti, K., Mhamdi, L., & Faridazar, F. (2011).
Toward an integrated smart sensing system and data interpretation
techniques for pavement fatigue monitoring. Computer-Aided Civil
and Infrastructure Engineering, 26(7), 513–523.

Lee, J., Liu, K. F., & Chiang, W. (1999). A fuzzy Petri net-based expert
system and its application to damage assessment of bridges. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics), 29(3), 350–370.

Li, X., & Lara-Rosano, F. (2000). Adaptive fuzzy Petri nets for dynamic
knowledge representation and inference. Expert Systems with Appli-
cations, 19(3), 235–241.

Looney, C. G. (1988). Fuzzy Petri nets for rule-based decision making.
IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 178–
183.

Mosegaard, K., & Tarantola, A. (2002). Probabilistic approach to inverse
problems. In W. Lee, P. Jennings, C. Kisslinger, & H. Kanamori
(Eds.), International handbook of earthquake and engineering seis-
mology, Part A, Volume 81 of International geophysics (pp. 237–
265). Amsterdam/Boston: Academics Press Ltd.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4), 541–580.

Paek, Y., & Adeli, H. (1990). Structural design language for coupled
knowledge-based systems. Advances in Engineering Software, 12(4),
154–166.

Petri, C. A. (1962). Kommunikation mit Automaten (PhD thesis). Institut
für Instrumentelle Mathematik an der Universität Bonn.

Rus, G., Chiachío, J., & Chiachío, M. (2016). Logical inference for
inverse problems. Inverse Problems in Science and Engineering,
24(3), 448–464.

Schneeweiss, W. G. (2001). Tutorial: Petri nets as a graphical description
medium for many reliability scenarios. IEEE Transactions on Relia-
bility, 50(2), 159–164.

Schofield, A., & Wroth, P. (1968). Critical state soil mechanics. New
York: McGraw-Hill London.

Selig, E. T., & Waters, J. M. (1994). Track geotechnology and substruc-
ture management. London, UK: Thomas Telford.

Serral, E., De Smedt, J., Snoeck, M., & Vanthienen, J. (2015).
Context-adaptive Petri nets: Supporting adaptation for the exe-
cution context. Expert Systems with Applications, 42(23), 9307–
9317.

Soleimanmeigouni, I., & Ahmadi, A. (2016). A survey on track geome-
try degradation modelling. In U. Kumar, A. Ahmadi, A. K. Verma &
P. Varde (Eds.), Current trends in reliability, availability, maintain-
ability and safety (pp. 3–12). Berlin/New York: Springer.

Tarantola, A. (2005). Inverse problem theory and methods for model
parameters estimation. Philadelphia, PA: SIAM.

Tarantola, A., & Valette, B. (1982). Inverse problems = quest for infor-
mation. Journal of Geophysics, 50(3), 159–170.

Thaduri, A., Galar, D., & Kumar, U. (2015). Railway assets: A potential
domain for big data analytics. Procedia Computer Science, 53, 457–
467.

Thöns, S. (2018). On the value of monitoring information for the struc-
tural integrity and risk management. Computer-Aided Civil and
Infrastructure Engineering, 33(1), 79–94.

Vidal, J. C., Lama, M., & Bugarín, A. (2012). Petri net-based engine for
adaptive learning. Expert Systems with Applications, 39(17), 12799–
12813.

Vidal, J. C., Lama, M., Díaz-Hermida, F., & Bugarín, A. (2013). A Petri
net model for changing units of learning in runtime. Knowledge-
Based Systems, 41, 26–42.

Wagner, W. P. (2017). Trends in expert system development: A longitudi-
nal content analysis of over thirty years of expert system case studies.
Expert Systems with Applications, 76, 85–96.

Wang, J., Liu, X.-Z., & Ni, Y.-Q. (2018). A Bayesian probabilis-
tic approach for acoustic emission-based rail condition assess-
ment. Computer-Aided Civil and Infrastructure Engineering, 33(1),
21–34.

Weston, P., Roberts, C., Yeo, G., & Stewart, E. (2015). Perspectives on
railway track geometry condition monitoring from in-service railway
vehicles. Vehicle System Dynamics, 53(7), 1063–1091.

Yu, H.-S. (2007). Plasticity and geotechnics. New York/London:
Springer Science & Business Media.

Zhang, Z., Wang, S., & Yuan, X. (2009). Advanced self-adaptation learn-
ing and inference techniques for fuzzy Petri net expert system units.
In International Conference on Artificial Intelligence and Computa-
tional Intelligence, pp. 487–496. Springer.

Zhou, K.-Q., & Zain, A. M. (2016). Fuzzy Petri nets and industrial
applications: a review. Artificial Intelligence Review, 45(4), 405–
446.

CHIACHÍO ET AL. 17

How to cite this article: Chiachío M, Chiachío J,
Prescott D, Andrews J. Plausible Petri nets as self-
adaptive expert systems: A tool for infrastructure
asset monitoring. Comput Aided Civ Inf. 2018;1–18.
https://doi.org/10.1111/mice.12427

APPENDIX A: PPN ALGORITHM
A pseudocode implementation of the PPNs is provided

below as Algorithm 1.

Algorithm 1: PPN Algorithm APPENDIX B: PARTICLE APPROXIMATION
OF CONJUNCTION AND DISJUNCTION OF
STATES OF INFORMATION

In particle methods, a set of 𝑁 samples [𝐱(𝑛)]𝑁
𝑛=1 with

associated weights [𝜔(𝑛)]𝑁
𝑛=1 is used to obtain an approxima-

tion for the required density function (e.g., (𝑓𝑎 ∧ 𝑓𝑏)(𝐱)), as
follows:

(𝑓𝑎 ∧ 𝑓𝑏)(𝐱) ≈
𝑁∑
𝑛=1
𝜔(𝑛)𝛿(𝐱 − 𝐱(𝑛)) (B1)

where 𝛿 is the Dirac delta and 𝐱(𝑛) ∼ (𝑓𝑎 ∧ 𝑓𝑏)(𝐱). The par-
ticle weight 𝜔(𝑛) represents the likelihood value of 𝐱(𝑛), and
is representative of the plausibility of 𝐱(𝑛) when it is dis-
tributed according to (𝑓𝑎 ∧ 𝑓𝑏)(𝐱). It can be evaluated for
the case of  being a linear space as follows (Chiachío
et al., 2018):

𝜔(𝑛) =
𝑓𝑎(𝐱(𝑛))𝑓𝑏(𝐱(𝑛))∑𝑁
𝑛=1 𝑓𝑎(𝐱(𝑛))𝑓𝑏(𝐱(𝑛))

(B2)

A pseudocode implementation to obtain particles from the
conjunction (𝑓𝑎 ∧ 𝑓𝑏)(𝐱) is provided as Algorithm 2.

Algorithm 2: Particle approximation of conjunction
of states of information

The particle approximation of disjunction of states of infor-
mation can be evaluated by simply joining the particles from
the component-wise density functions and affecting their par-
ticle weights using an appropriate normalizing constant so

https://doi.org/10.1111/mice.12427

18 CHIACHÍO ET AL.

as to obtain a bone fide density, as described in Algorithm
3. Note that the disjunction operation can be easily
extended to the case of multiple states of information (e.g.,
𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑚(𝐱)), as follows (Mosegaard & Tarantola,
2002):

(𝑓1 ∨⋯ ∨ 𝑓𝑚)(𝐱) =
1
𝛽

𝑚∑
𝑖=1
𝑓𝑖(𝐱) (B3)

The last expression can be approximated using parti-
cles through Algorithm 3 by aggregating samples from
𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑚(𝐱) and considering 1∕𝑚 as the modifying
constant for particle weights in steps 3 and 4.

Algorithm 3: Particle approximation of disjunction
of states of information

