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Abstract: In this paper, we introduce a method and algorithm for resolution enhancement of
low-resolution surface topography data by fusing them with corresponding high-resolution
intensity images. This fusion is achieved by linking the three-dimensional topographical map
to its intensity image via an intrinsic image-based shape-from-shading algorithm. Through
computational simulation and physical experiments, the proposed method’s effectiveness and
repeatability have been evaluated, and the computational cost has been shown to be less than
other state-of-the-art algorithms. This proposed method can be easily integrated with high-
speed in-line measurements of high-dynamic-range surfaces.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recently, products with functional surfaces have drawn wide attention in scientific research
and engineering applications, including the areas of tribology, thermal conduction,
hydrodynamic control, optics, solar energy, medical implantation, biomimetics, bioelectronics
and microelectronics. These functional surfaces comprise a series of macro-scale (up to
metres) engineering products embedded with micro-/nano-scale structures [1-5]. These high-
dynamic-range (HDR) surface geometrical characteristics (defined here for surface
topographies of interest, the ratio of the largest to the finest scale is greater than 10 000:1)
lead to a number of requirements for state-of-the-art measuring instruments [6-9] (see Fig. 1).
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Fig. 1. Requirements of HDR surface products in three dimensions.

One of these requirements, for example, is the need for high-resolution lateral measuring
capabilities. The physical lateral resolution limits of conventional mechanical tip/stylus and
three-dimensional (3D) far-field optical measuring systems are determined by their tip
geometry and optical transfer characteristics, respectively. Therefore, these systems cannot
easily measure fine structures with lateral dimensions below 1 pm [7,10]. To surpass this
lateral resolution limit to allow nanometre-scale features to be measured, techniques including
scanning-probe-microscopy (SPM) and optical super-resolution (OSR) microscopy, such as
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stochastic optical reconstruction microscopy (STORM), stimulated emission depletion
(STED) microscopy, photoactivated localisation microscopy (PALM) and structured
illumination microscopy (SIM) techniques have been developed. However, a fundamental
limitation of these super-resolution techniques is that they require additional pre-processing
of the sample, such as fluorescent staining, and in addition, their measuring ranges are
limited, usually to scales of a few or several tens of micrometres [11,12].

To increase the measuring range or field-of-view (FOV), a number of HDR measuring
techniques have been proposed based on stitching of a series of local high-resolution
measurement data. For example, Yan et al. developed an iterative six degree-of-freedom
stitching and weighted fusion algorithm for sub-aperture testing (SAT) of aspheric mirrors
[13]. Lei et al. proposed a sampling noise-resistant stitching technique for large-area surface
measurement with coherence scanning interferometry (CSI) systems [14]. Liu et al.
developed a Gaussian process modelling-based stitching and fusion method for large surface
measurement which provides higher stitching accuracy [15]. However, stitching techniques
require a number (determined by aperture size and the total measuring range) of repetitive
high-resolution measurements over each sub-aperture area. This demands repetitive setup
operations for each sub-aperture measurement and a complete stitching process can be time
consuming with potentially high data overheads.

A further requirement of HDR surface measurement is to improve measuring efficiency
[16]. For example, Preibisch et al. developed a Fourier shift theorem-based fast stitching and
fusion technique for biological volume images [17]. Yu and Peng developed a high-speed
multi-scale registration-based stitching technique for 3D biological volume data on a
gigabytes level [18]. Bria and Lannello developed a free toolbox — TeraStitcher — for high-
speed tera-voxel-sized image stitching with low memory costs (less than 8 Gb) [19].
However, high-speed stitching techniques have received limited take up in mechanical
manufacturing industry (although they are applied in optics manufacture) as they require
complex additional operations, such as repetitive specimen adjustment and surface searching
in each local measurement, compared to imaging of biological specimens.

In this paper, we propose a fast resolution-enhancement method which can produce a
high-resolution surface height map by fusing a low-resolution height map with its
corresponding high-resolution intensity image, based on recently developed shape-from-
shading techniques [20-23]. With this solution, general sub-aperture 3D surface stitching can
be replaced by fusing a global large-area low-resolution height map with several sub-aperture
intensity images at different local regions, which are separately captured using a 3D sensor
and 2D vision cameras. This new approach can be significantly faster than sub-aperture
stitching and many recently developed multi-sensor fusion techniques [24-28], which are
used with coordinate data only. For review of general coordinate data fusion techniques,
readers can refer elsewhere [29,30].

2. Intrinsic image-based shape-from-shading linkage model

Fusion of the geometrical coordinate data of a 3D surface and its 2D intensity image under a
specific illumination condition relies on determining a linkage model connecting the two sets
of data. Shape-from-shading (SFS) is one such technique [31]. Many SFS models have been
proposed, which are reviewed elsewhere [20,23]. In this paper, an intrinsic image-based
lighting model [32] is employed, which can approximate complex shading factors, including
natural or remote/near point lighting, Lambertian shading, specular reflectance, shadows,
inter-reflections and material-related albedo variations.

Lambertian diffusion is the simplest shading model and widely used in SFS. A beam of
light that is incident on a perfectly Lambertian surface is uniformly reflected in all directions.
Thus, the shading (reflectance) image observed from any viewpoint is the same, and the
reflected intensity is determined by the radiance received at each small surface facet cell and
the local albedo (shown in Fig. 2(a)), i.e.
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R, = Apcos6, = ApS - i, (1)

where A is the radiance, p is the local albedo, 6, is the angle of incidence, S and 7 are
respectively the normalised vector of the lighting direction and surface normal.
Unfortunately, recovery of the surface geometrical information 7# with three unknowns from
the single Eq. (1) is ill-posed [23].

s s

Fig. 2. Lambertian diffusion (a) and Gaussian specular reflectance (b).

Realistic shading models are usually expressed by a hybrid composition of Lambertian
diffusion, background illumination, near lighting-induced radiance variations, plus local
specular reflection, shadows and inter-reflections, i.e.

R, =>"[R, (ii)+R(i)+...], )

where S, accounts for the k-th remote light source and R is a local specular term. As
presented in Fig. 2(b), R, is usually expressed as a Gaussian (bidirectional) reflectance
distribution function [23], i.e.

R, = Ayexp{—ce—z" 3

where y is the specular reflectance coefficient, 8, is the angle of emergence, i.c. L(%,V),

where V' accounts for the viewing direction vector, and m corresponds to the local surface
roughness [33]. The challenge of an exact recovery of the surface geometry information from
such an under-determined least-squares optimization problem, i.e.

2

min"I—Rp,yw(ﬁ) , (4)

is the ambiguity problem of shape-from-shading [34], where [ is the corresponding pixel
intensity captured from a viewing sensor.

Intrinsic image decomposition [32] has recently been applied to SFS by approximating an
arbitrary realistic lighting environment using a first-order variation problem to overcome the
complexity of Eq. (4), i.e.

R(ii)= pS(ii)+ B, O]

where §(7i) is a surface normal-related Lambertian shading, p is the local surface albedo,

accounts for spatially independent local components, including shadows, inter-reflections and
specular reflections, and R is the reflectance intensity at a specific pixel position. With the
intrinsic decomposition, an intensity image of an object can be decomposed into an intrinsic
part pS and an extrinsic add-in S.



Research Article Vol. 26, No. 26 | 24 Dec 2018 | OPTICS EXPRESS 34808

Optics EXPRESS

Compared to the hybrid model in Eq. (2), the intrinsic image model of Eq. (5) is highly
simplified. To further reduce the solution ambiguity, constraining the piecewise smoothness
of a function, here the local parameters p and f, as an additional penalty term has been
demonstrated to be effective [22,35]. The resulting smooth local lighting parameters can
approximate the original intensity images of any geometry in an arbitrarily natural and
complex illumination scenario. Figure 3 presents a shading approximation example by using
the smoothed intrinsic image lighting model, from which we can see that the piecewise
smooth albedo and independent components synthetically map the global Lambertian shading
to the original locally-shadowed image /.
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Fig. 3. Intrinsic image decomposition-based lighting approximation. (a) Illustrated surface Z;
(b) locally shadowed image /; (c) Lambertian shading S; (d) local albedo p; (e) independent
add-in f; and (f) approximate intensity image R. All the gray scales are in 0~255.

3. Fusion computation
3.1 Fusion objective function

With the intrinsic image-based lighting model, a surface topography and its corresponding
intensity image can be connected. However, if the surface normal in Eq. (5) is obtained from
smoothed sample surface data, the intrinsically recomposed intensity image will not
completely correspond with the original intensity image. Figure 4(b) presents such a
recomposed result with the surface normal extracted from the smoothed (Gaussian, with the
cut-off of five pixels) surface shown in Fig. 4(a). For this case, (/-R) accounts for the high-
spatial frequency components that are not present in the input surface data but captured by the
intensity image with a high-resolution machine vision sensor.
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Fig. 4. Intrinsic image recomposition with a smoothed surface input. (a) A smooth surface
input Zy; and (b) intrinsically recomposed image R from Z, with the gray scale in 0~255.

Therefore, a minimization objective function can be designed, as shown in Eq. (6), to
recover the high-spatial frequency topography information for input smooth surface data, i.e.

@ =1=RGN[ + |2 = Z,|] + 1007 (6)

where Z is the final reconstructed high-resolution surface map, 7, is the extracted surface

normal matrix from Z, A is a Laplacian, uzand uz, are respectively the control parameters for
reconstruction fidelity and smoothness control. This objective function constrains the
recovered surface Z to be close to the input smooth surface Z;. Thus, the reconstruction
ambiguity in the general SFS problem can effectively be avoided.

Taking into account computational efficiency, we apply the method of Han et al. [21] by
simplifying the intrinsic image model to the following form, i.e.

R = aS(ii), (7

without significant information loss, where a accounts for all local lighting variations. If «
and § account for a matrix map instead of a scalar, as in Eq. (5), aS indicates an entrywise
product of a and S. To solve the non-linear problem in Eq. (6), a three-step algorithm (see
Fig. 5(a) for the flowcharts) is presented in the following section.
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Update z;., by
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Fig. 5. Flowcharts of the resolution enhancement algorithm. (a) The complete algorithm; (b)
the details of the iteration in step 3.

3.2 Fusion algorithm
3.2.1 Estimation of global lighting

With the input of a surface height map Z and its corresponding intensity image /, the global
Lambertian shading under a natural lighting condition can be approximated by low-level
spherical harmonics or quadratic functions [21,34]. Because global lighting errors can be
compensated by local parameters, we simply use a linear spherical approximation in this work
for efficiency considerations, i.e.

S()y=m" -7, (3
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- - T
where m is the harmonic coefficient column vector, n =[n,1} is the augmented normal

vector and 7 can be obtained using the gradient normalisation operator, given in Eq. (9) and

(10), i.e.
dz 0z .
=w{a, 3’ —1}wnhw=1/,/1+||vz|2, 9)

where Vz is the following differentiation calculation for each height map element z, through

the x and y directions
Vz= %, % . (10)
ox dy
By concatenating the pixilated normal vectors into an N-by-4 matrix, estimation of the

global lighting parameters 7 can be carried out by solving the following linear least-squares
problem

S

min, |7 " -7 . (11)

Given the low-resolution map in Fig. 4(a) and its high-resolution intensity image in Fig.
3(b), the global lighting estimation process leads to a global shading result S as shown in Fig.
6(a). With the global lighting only, the recomposed shading image lacks local variations, e.g.
the circular shadow shown in the bottom left of Fig. 3(b) is missing in Fig. 6(a).

1000
500 800

X (pixels)

Fig. 6. Demonstration of computational results of (a) global lighting S, (b) local lighting aS
and (c) algorithm output.

3.2.2 Estimation of local lighting variations

With the global shading S obtained, the local lighting parameters  can be estimated by
solving the least-squares problem in Eq. (12), i.e.,:

min,, | -aS| . (12)
To avoid over-fitting, we apply common assumptions used in intrinsic image
decomposition [21,22,35] and constrain the local variations to a piecewise smooth function.

Thus, an adaptively piecewise smooth penalty term is designed for general homogeneous
material measurement in the form of:

Yowla-al (13)

keQ,

where wy is the weighting function of intensity similarity and controls the smoothness of the
local lighting a with its Q, neighbours, i.e.
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0 if |1 -1, >z

= —IIP , 14
K exp [—u} otherwise (14)
20

where [ and [ respectively represent the local lighting a-corresponded image intensity and the
k-th intensity neighbour, ¢* controls the smoothness of the weighting parameters, and t
represents a threshold controlling the degree of fragmentation in piecewise local lighting
segmentation.

The following regularised least-squares minimisation problem is defined, i.e.
min,, ||I—05S(ﬁ)||2 YA A (15)
keN

where u, controls the trade-off between the estimation accuracy and smoothness. This
regularised least-squares problem can be solved using standard matrix calculus. With the
local lighting estimation, a recomposed shading result aS is shown in Fig. 6(b), which shows
good similarity to the input intensity image in Fig. 3(b), but with some local blurs.

Under controlled lighting conditions, e.g. with simple remote lighting and limited local
specularity, shadows or inter-reflections, uniform local lighting with @ = 1 can be used for
algorithm acceleration. In this case, the fusion algorithm can be simplified as a combination
of global lighting estimation and high-resolution surface map refinement. Our experiments in
section 4 show that such an acceleration provides significant computing cost reductions. Such
a simplification can be effectively used in high-speed in-line measurement, where there are
lower accuracy requirements.

3.2.3 High-resolution surface reconstruction

With the global and local lighting conditions determined, refinement of an input surface map
Zy can be conducted by minimising the fusion objective function in Eq. (6). This is a non-
linear problem because the surface normal estimation in Eqs. (9) and (10) is a non-linear
normalisation operation. To solve the minimisation in a linear manner, we rewrite the
recomposition term R in Eq. (6) as

R:a(a)mli+a)mza—z—a)m3+m4). (16)
ox dy

If the non-linear coefficient w is fixed, the intensity image prediction in Eq. (16) becomes
linear with regard to Z, and Eq. (6) becomes a linear least-squares problem. Therefore, we
iteratively calculate the non-linear term wy; and estimate the refined height map z,; with a
linear least-squares method, as applied elsewhere [22], until a specified tolerance is achieved.
A description of the iterative algorithm is presented in Fig. 5(b). Figure 6(c) demonstrates an
output refined height map, which shows slightly more details than the input map in Fig. 4(a).

4. Experiments
4.1 Measurement of structured surface with simulated lighting
4.1.1 MEMS surface

First, we simulated an ideal remote point source lighting (altitude: m/4, azimuth: w/4)
environment to validate the proposed algorithm. In this simulation, the input low-resolution
surface map was obtained from a low-pass filtered (Gaussian, with cut-off of 2.5 yum) version
of the high-resolution surface map measured by a CSI [36]. The corresponding input high-
resolution intensity image was simulated using Eq. (2) by integrating with Lambertian (
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A=p=1)and Gaussian (f =1, m* =0.05) reflectance terms. For a MEMS pressure sensor
surface, we have the input data as presented in Figs. 7(b) and 7(c).
By assigning the fusion parameters with 7=0.05,0" =0.05°, 4, =0.1,1,, = 0.004, and

M, =0.00075, (in our calculation, the input low-resolution height map and its corresponding

high-resolution image were normalised to [0,1]) and applying the fusion algorithm in section
3.2, we obtain the intrinsically recomposed intensity image R, as shown in Fig. 7(d). With the
information difference between R and input high-resolution image /, a refined surface height
map can be calculated, as shown in Fig. 7(e). By examining the cross-sectional profiles in
Fig. 8, we can see that the refined map agrees better with the ground-truth map than the low-
resolution input. A root-mean-squared (RMS) height error is defined here as [25,37]

1
gRMS :NZ(ZIM_ZZ,M)Z’ (17)

where z,, and z,, represent respectively the n-th discrete value of the two height maps to be
compared, and N is the total sample number. With respect to the ground-truth data, the RMS
height error shows that the high-resolution enhancement leads to 35% error reduction in this
simulated MEMS surface case.

Fig. 7. Resolution enhancement results of a MEMS surface with simulated oblique lighting. (a)
Ground-truth MEMS surface for test; (b) Smoothened Low-resolution height map input Z,
(RMS error: 0.20 um); (c) Corresponding high-resolution image input /; (d) Intrinsically
recomposed intensity image R = aS; (¢) Refined high-resolution surface map Z, (RMS error:
0.15 um). All the gray scales are in 0~255. All the pseudo colour height maps share the same
colour bar.
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Fig. 8. Magnified cross-section profiles of the output map at x =300 xm.
4.1.2 Star pattern

As a popular resolution artefact for surface topography measuring instrument calibration [10],
a further demonstration on a star pattern was carried out. In this test, the source surface
topography data was obtained by using a lateral distortion-corrected CSI [38] and the spatial
resolution enhancement was measured with the draft ISO standard-defined lateral period limit
(LPL) [39,40], i.e. the spatial period at which the height response of an instrument falls to
50% (see [10] for details of how to calculated the LPL using a star pattern).

Similar to the case in section 3.1, the input low-resolution star map as shown in Fig. 9(a)
was initially filtered using a low-pass Gaussian filter, with cut-off of 0.8 gm. With the fusion
parameters assigned as 7=0.05,0" =0.05", 4, =0.1,4,, =0.4 and ,, =0.00075 , our

experiment under a simulated oblique lighting (altitude: n/4, azimuth: w/4) environment
shows that the topography spatial resolution can be reduced from 23.3 um to 7.4 um (using
LPL as the evaluation metric) via fusing with a high-resolution intensity image. Intermediate
and final results of the fusion process are presented in Figs. 9 and 10. Note that the height
response curves in Fig. 10 are extracted by subtracting two radial cross-section profiles which
are respectively extracted from the lower and higher pedals of the star along X direction ( +
5° to the X-axis). It should be pointed out that our refined fusion result in Fig. 10 shows
conformance with the ground-truth data in the central area (within the range of the red
arrows). But in the area off to the centre, e.g. within 45 um to 70 um of the abscissa, the
fusion result presents less-conformant reconstruction accuracy than that of the low-resolution
input. This could be caused by the ambiguity issue of SFS, i.e. SFS leads to ambiguous
reconstruction of a step surface because the higher and lower pedals of a step surface have the
same slope, and thus they have the same intensity.
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Fig. 9. Resolution enhancement results of a star pattern with simulated oblique lighting. (a)
Input low-resolution height map Zy; (b) input high-resolution image /; (c) recomposed intensity
image R; (d) Output refined high-resolution height map Z;; (e) top-view of the input map; and
(f) top-view of the output map. All the gray scales are in 0~255. All the pseudo colour height
maps share the same colour bar.
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Fig. 10. Analysis of height response curves and LPLs along the X direction of the star map.
4.2 Coin surface measurement with a vision-assisted CMM

An experiment with a vision-assisted coordinate-measuring-machine (CMM) was conducted
to verify the performance of the proposed algorithm. In this experiment, a one-Chinese-Yuan
coin surface was measured with a 1 mm diameter touch probe and a vision camera with
partial ring lighting, as shown in Fig. 11. The touch probe provided a low-resolution height
map input, while the vision system provided a high-resolution intensity image input for the
resolution enhancement computation. The touch probe and vision sensor were initially

calibrated in terms of their relative position and orientation accuracy using a calibrated ring
gauge [29,41].
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Fig. 11. Setup of the vision-assisted CMM measurement system.

In this experiment, a high-resolution intensity image of the coin surface / with 444 X444
pixels was initially captured, as shown in Fig. 12(b). Regarding the low-resolution height
data, a 50X 50 grid sample data set was captured in the same measurement area as the high-
resolution image (see the pink points in Fig. 12(a)). To match the data resolution of the low-
resolution data to the high-resolution image, a Delaunay linear interpolation was conducted
and a low-resolution height map Z, with the same sample size as the high-resolution image
was obtained, as shown in Fig. 12(a).
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Fig. 12. Resolution enhancement experiment results for a coin surface measurement with a
vision-assisted CMM. (a) Low-resolution height map Z, (RMS error = 12.81 xm) and 50X 50
CMM sample points; (b) input high-resolution image /; (c) recomposed intensity image R; (d)
output refined high-resolution height map Z, (RMS error = 12.28 um); (e) top-view of the
input map; and (f) top-view of the output map. All the gray scales are in 0~255. All the pseudo
colour height maps share the same colour bar.

By assigning the fusion parameters with 7 =10.05,0" =0.05", 4, =0.1,42,, =0.0018 and
M,, =0.005, and following the intrinsic image decomposition-based lighting estimation as

shown in Fig. 12(c) and the fusion computation, a refined high-resolution height map can be
obtained and is presented in Fig. 12(d). The accuracy was evaluated by comparing the fusion
results with those from a contact stylus surface topography measuring instrument. By
matching the CMM data to the stylus data using a scale-invariant feature transform (SIFT)-
based coarse matching, followed by an iterative-closest-points (ICP) fine matching, i.e. the
SIFT-ICP algorithm [42,43], the height difference of corresponding points between the stylus
data (in this case assumed as the ground truth) and CMM data was calculated. Their RMS
height errors show that the fusion output result reduces the measurement error by about 4.4%.
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A further comparison of top view, cross-section view and fast Fourier transform (FFT)
analysis of the input low-resolution map and the output high-resolution map are shown in Fig.
12(e), Fig. 12(f) and Fig. 13, from which, we can clearly see that the periodical surface
discontinuity of the low-resolution height map caused by low sampling rate and linear
interpolation are removed by using the proposed resolution enhancement algorithm. The
output high-resolution map shows a uniform distribution of surface continuity and detail
refinement. The FFT analysis in Fig. 13 shows that the input low-resolution and output high-
resolution maps have coincident spatial frequency components in low-spatial frequency areas;
but in high-spatial frequency areas, the resolution enhanced height map has more information
than that of the low-resolution input map.
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Fig. 13. Coin surface cross-section profiles (top) at X = 0 and their FFTs (bottom).
4.3 Analysis of accuracy and time cost

Accuracy and computational time are important factors for algorithms for in-line
measurement [44]. In this section, we compare the fusion accuracy and computational
efficiency of our proposed algorithm with a state-of-the-art real-time algorithm proposed by
Or-El et al. [22], by using the three specimen surfaces described above. We select Or-El’s
algorithm for comparison because it has been successfully used in real-time computer vision
with a processing rate in approximately ten frames per second (for 640 X480 images), by
using the C language and GPU acceleration.

We have compared the resolution enhancement results of our method (as shown in Figs.
7-13) and Or-El’s method, and found that the difference is negligible because the same
objective function in Eq. (6) is used in both methods. Therefore, the results of Or-EI’s method
are not presented here.

The difference of our testing environments is that we use an Intel IS 2.4 GHz CPU instead
of GPU acceleration, and the coding language is MATLAB. The 444 X444-pixelated coin
surface case was analysed with a serial computation. But, for the MEMS and star cases,
which have a million sample points, a twelve workers-parallelised computation with
128 X128 block partitioning was used for acceleration (Or-El’s algorithm was also
accelerated in the same way in this test), considering the matrix inverse demands for high
complexity [45]. A statistic of the algorithm performance is summarised in Table 1, with ten
repetitive numerical runs.
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For the accuracy analysis, the RMS error (RMSE), as defined in Eq. (17) [25,27,37], and
recently highlighted universal-quality-index (UQI) [46] are used as the evaluation measures,
ie.

— 4'O-IZEIEZ 18
Cuor (0'12+0'22)(Ef+722)’ (18)

where z; accounts for the mean height of the k-th map, o1, 0, and oy, represent respectively
the variance of each height map and their co-variance. RMSE is a height value-related
parameter; while UQI is a hybrid parameter which is designed to be more sensitive to lateral
correlation and distortions. UQI is normalised within [—1, 1] and the best case, i.e. UQI = 1,
appears only when Z; and Z, are exactly equal.

Table 1. Statistics of time cost and data accuracy of different algorithms*

Algorithm LOW. Or-El’s The proposed The proposed
Specimen resolution algorithm algorithm (accelerated
P input g g with o = 1)
. . Time cost (s) NA 39.3 26.4 8.7
( 11:)/[231251’0821?;1:;:1)121) RMSE (um) 0.203 0.157 0.149 0.146
’ UQI 0.192 0.661 0.681 0.695
Siemens star, simulation Time cost (s) NA 138 49.3 12.2
(1024 1024, parallely |-RMSE (em) | 0.0179 0.0136 0.0136 0.0131
’ UQI 0.351 0.563 0.564 0.575
Coi | . Time cost (s) NA 42.8 28.7 8.3
°ﬁf§a4 ::pe“.mlem RMSE (um) 12.81 12.24 12.25 12.62
( > serial) uQI 0.704 0.748 0.750 0.738

* In the experiments, the controlling parameters of each algorithm have been adjusted for optimising
the RMSE.

In Table 1, we can see that the proposed algorithm can reduce the computational cost by
35% compared to Or-El’s algorithm [22], with a similar level of accuracy. Our accelerated
version of the algorithm with a = 1 (see last column of Table 1) shows that the computational
cost can be reduced by approximately 80% compared to Or-El’s algorithm [22]. These
statistics comply with the time complexity of each algorithm. Given an input image with N

pixels, Or-EI’s algorithm has the complexity O(M (N))+30(N*), where M accounts for the

complexity of the neighbourhood weight estimation with Eq. (14), the three O(N*) terms are

related to the two steps of the local lighting estimation and the final reconstruction,
respectively. Our algorithm and its fast version simplify the local lighting estimation and have

the complexities O(M (N ))+ 20(N*) and O(N?), respectively. This improvement indicates

that the proposed algorithm can be used for real-time resolution enhancement of surface
measurement applications with a video rate of approximately fifty frames per second, if the C
language and GPU acceleration are used.

The RMSE and UQI analysis show that for the simulation cases, the proposed algorithm
can lead to significantly resolution-enhanced results which are similar to that of Or-El’s
algorithm: RMSE is reduced by 23% from that of the original data and UQI is improved by
0.2 to 0.5 (range normalised to [-1, 1]). For these simulation cases, the accelerated algorithm
with o = 1 shows both reduced time cost and improved fusion accuracy. However, it should
be noted that this only happens in simulations or with well-controlled lighting conditions.

With the coin measurement, the results show that the accuracy level of the proposed
algorithm is similar to Or-El’s algorithm. However, both fusion methods show limited quality
enhancement: RMSE is only reduced by 4.4% and UQI is only improved by 0.046. This is
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probably due to the real lighting condition, as a 1/4 partial ring light has more complex local
lighting variations than the simulated cases (a remote point source), and these local
complexities degrade the fusion accuracy in local detail refinement. This effect can also be
verified with the accelerated algorithm test in which the uniform local lighting, a = 1,
significantly reduces the computing time cost, but also degrades the fusion accuracy.

5. Conclusion

A resolution enhancement solution and algorithm are proposed in this paper by fusing a low-
resolution height map with its corresponding high-resolution intensity image under an
arbitrary natural lighting condition (but co-axial lighting). The simulations and experiments
have successfully demonstrated the performance of the proposed method in terms of fusion
accuracy and computational time cost. Compared to state-of-the-art algorithms, the proposed
algorithm can be significantly faster (35% to 80% faster), while retaining a similar level of
accuracy. More testing, both simulation and experimental, is required to establish the
sensitivity of the algorithm to different lighting conditions. In future work, we expect to apply
this technique to in-line high-dynamic range measurement of large area micro-structured
surfaces and in case study measurement scenarios, e.g. fusion of 3D surface topography data
with scanning electron microscope images or differential interference contrast microscope
images.
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