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Abstract

We present a systematic analysis of the bubble and liquid film dynamics corresponding to the propagation of long,
isolated gas bubbles, within rectangular capillary channels of cross-sectional aspect-ratio ranging from 1 to 8. Direct
numerical simulations of the flow are performed using ESI-OpenFOAM v.1812 and its geometric Volume-Of-Fluid
solver isoAdvector. The interface curvature, which enters the calculation of the surface tension force in the momentum
equation, is calculated with a parabolic reconstruction method. This study covers a range of capillary and Reynolds
numbers of, respectively, 0.005 ≤ Ca ≤ 1 and 1 ≤ Re . 1000. The lubrication film surrounding the bubble is
always resolved by the computational mesh, and thus the present results are representative of a perfectly wetting fluid.
This study shows that rectangular cross-sections promote the formation of an extended liquid film covering the longer
wall of the channel. This liquid film exhibits a saddle-like shape and its streamwise evolution varies depending on
the channel shape and flow conditions. Although cross-sectional liquid film profiles and corresponding thicknesses
are not constant along the bubble, in general the film deposited upon the shorter wall becomes thicker for increasing
values of the aspect-ratio, while the thickness of the film deposited upon the longer wall obeys a Ca2/3/(1 + Ca2/3) law
which, provided that the channel hydraulic radius is the same, is independent of the aspect-ratio at sufficiently small
Ca. An empirical correlation is proposed to predict the cross-sectional gas fraction and bubble speed as a function of
a modified capillary number, embedding dependencies on both Ca and aspect-ratio, and converging to the asymptotic
limit for a quasi-static flow when Ca→ 0.
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1. Introduction

When a long gas bubble advances within a capillary tube filled with a wetting liquid, a thin film of liquid is
deposited at the channel walls. The liquid film thickness and morphology depend on the shape of the channel cross-
section and on the effect of viscous, capillary and inertial forces, under the assumption that the size of the channel is
sufficiently small for gravitational forces to be negligible. Within circular channels, the bubble exhibits a cylindrical
body with a liquid film of uniform thickness far from the front and rear menisci, and both correlations and theoretical
models based on lubrication theory are available to estimate the liquid film thickness [1, 2, 3], or predict the entire
bubble profile [4] as a function of the governing nondimensional groups, i.e. capillary (Ca = µlU/σ, with µl being
the liquid dynamic viscosity, σ the surface tension and U the bubble or liquid speed) and Reynolds (Re = 2ρlURh/µl,
with ρl being the liquid density and Rh the channel hydraulic radius) numbers.

The bubble and liquid film dynamics appear significantly different in a square channel, where a cylindrical bubble
body is achieved only when Ca > 0.04 [5, 6, 7, 8, 9]. For smaller capillary numbers, the liquid film becomes non-
axisymmetric and the transversal interface curvature gradients induce draining flows that drive liquid from the thin
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film towards the channel corners. As a consequence, the liquid film thins indefinitely towards the bubble rear and
a region of constant film thickness along the bubble body is never established [9]. Empirical correlations to predict
the film thickness in square channels exist [3, 10], although these exhibit some discrepancy with data from direct
numerical simulations [9, 8], which can be ascribed to small, but not negligible, effects of gravitational forces on the
film thicknesses measured in experiments. Moran et al. [11] and Yu et al. [12] have demonstrated that very small
Bond numbers, much smaller than unity, are sufficient for the film dynamics to deviate from the gravity-free case.

The situation complicates even further when rectangular channels are considered, because the liquid film dis-
tributes unevenly upon the two channel sides [13]. Wong et al. [14] applied lubrication theory to study the liquid film
deposited on the walls of polygonal capillaries in the asymptotic limit Ca→ 0. They found that surface tension forces
rearrange the liquid film into static menisci of circular shape at the channel corners, connected by thin saddle-shaped
liquid films covering the channel walls. The film thicknesses obey different scaling laws depending on the distance
from the bubble nose, with the centreline thickness being of order Ca2/3 as long as z ≤ Ca−5/3 (with z being the
streamwise distance from the bubble nose) and then decreasing as Ca1/4z−1/4 when z � Ca−5/3. An interface dimple
forms at the point of connection between the static meniscus at the channel corner and the saddle-shaped film at the
centre, and the local film thickness scales as Ca1 for 1 < z < Ca−1, while it thins to order Ca4/3 at longer distance
from the bubble nose. Hazel and Heil [8] performed numerical simulations of the propagation of air fingers within
rectangular channels of aspect-ratio 1 ≤ ε . 2, for Ca up to about 10. They observed that the bubble cross-section
can still recover axisymmetric profiles as long as ε < 2.04, but this happens at increasing distances from the bubble
tip as Ca increases. de Lózar et al. [15] measured cross-sectional liquid area fractions and finger widths when air
fingers penetrate in rectangular channels, for 1 ≤ ε ≤ 15 and a range of capillary numbers 10−4 < Ca < 3. They
observed that, for ε ≥ 8, the relative width of the air finger becomes independent of ε and the results approach the
Hele-Shaw cell limit. In a subsequent publication [16], the same authors performed systematic numerical simulations
to investigate the impact of channel aspect-ratio (1 ≤ ε ≤ 8) and capillary number (10−3 < Ca < 10) on finger width
and cross-sectional liquid area fraction, also including gravitational effects. For Ca > 10−2, their results showed that
the relative finger width decreases and the liquid area fraction increases with increasing the channel aspect-ratio, while
there exists a modified capillary number which, incorporating a dependence on the channel aspect-ratio, is effective
in collapsing all liquid fraction data onto a single curve for all aspect-ratios.

In summary, although the literature about the liquid film thickness and perimetral distribution in circular and
square channel cross-sections is relatively vast, bubble propagation in rectangular capillaries has received far less
attention. While systematic studies reporting liquid or gas cross-sectional fractions and bubble/finger widths for a
range of aspect-ratios and capillary numbers exist [15, 16], little information is available on the detailed perimetral
distribution of the liquid film on the channel cross-section, its streamwise evolution along the bubble and the corre-
sponding liquid film thickness values. Also, the aforementioned studies for rectangular channels considered only the
visco-capillary regime and the impact of inertial forces has been overlooked. There are many recent microfluidics
applications that would benefit from an accurate knowledge of the liquid film distribution around the perimeter of
noncircular capillaries. This represents an impactful parameter on the heat transfer performance of boiling flows in
microchannels [9], and determines the efficiency of the capillary-driven detachment of colloids in unsaturated porous
media [17].

This work presents a systematic study of the bubble and liquid film dynamics corresponding to the flow of isolated
long bubbles in rectangular channels, covering channel cross-section aspect-ratios in the range 1 ≤ ε ≤ 8, capillary
numbers 0.005 ≤ Ca ≤ 1 and Reynolds numbers spanning from the visco-capillary (Re = 1) to the visco-inertial
regime (Re ≈ 1000). The two-phase flow is simulated using a Volume-Of-Fluid (VOF) method [18], as implemented
in the TwoPhaseFlow library for ESI-OpenFOAM v.1812 recently released by Scheufler and Roenby [19], which is
built upon OpenFOAM’s geometric VOF solver isoAdvector [20, 21]. The rest of this article is organised as follows:
in Section 2, the numerical model is introduced; the flow problem and numerical setup are presented in Section 3; the
model validation is described in Section 4; Section 5 outlines the results of the systematic analysis and the conclusions
are summarised in the final Section 6.
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2. Numerical method

We consider the unsteady, laminar and isothermal flow of two immiscible, Newtonian fluids in incompressible
flow, namely liquid and gas. The two-phase flow is simulated using OpenFOAM’s geometric VOF solver isoAdvector
[20], augmented with additional libraries to improve interface advection [21] and surface tension reconstruction as
implemented in the TwoPhaseFlow library for OpenFOAM recently released by Scheufler and Roenby [19]; the
TwoPhaseFlow library was compiled on ESI-OpenFOAM v.1812. According to VOF, liquid and gas are treated as
a single mixture fluid, with the volume fraction c indicating the fraction of the computational cell volume occupied
by a selected primary phase, 0 ≤ c ≤ 1. A single set of mass and momentum equations is formulated and solved
throughout the computational domain, these take the following form:

∇ · u = 0 (1)

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + ∇ · µ
[
(∇u) + (∇u)T

]
+ Fσ (2)

where u indicates the fluid velocity, t the time, p the pressure, ρ the density, µ the dynamic viscosity, and Fσ the
surface tension force vector. All the fluid-specific properties, ρg, ρl, µg, and µl, are considered constant in this work,
whereas the local mixture fluid properties ρ and µ are calculated as an average over the two phases (here gas: c = 1;
liquid: c = 0), e.g. density ρ = cρg + (1 − c)ρl. The volume fraction field is evolved in time by solving the following
transport equation:

∂c
∂t

+ ∇ · (cu) = 0 (3)

In the geometric VOF method isoAdvector [20], Eq. (3) is solved according to a two-step procedure. First, a piecewise
planar approximation of the interface is reconstructed in each cell where 0 < c < 1. This is found as the isosurface of c
that cuts the cell into two subvolumes corresponding to the cell’s volume fraction value. Then, an interface advection
step calculates the volume of fluid crossing each control volume face during the time-step, under the assumption that
the previously reconstructed interface translates steadily across the control volume face; the sum of these fluxes repre-
sents the discretised version of the convective term of Eq. (3). Once the fluxes are calculated, the volume fraction value
at the new time level is found. Details of the algorithm are provided by Roenby et al. [20]. For the interface recon-
struction step, we adopt the novel plic-RDF method proposed by Scheufler and Roenby [21] and implemented in the
library TwoPhaseFlow [19]. With this method, a first guess of the interface unit normal vector is found using gradients
of the volume fraction, n = ∇c/|∇c|, as in the original PLIC (Piecewise Linear Interface Calculation) method [22].
Then, an iterative procedure is performed to improve this estimation, based on gradients of a reconstructed distance
function (RDF) ϕ, n = ∇ϕ/|∇ϕ|, with ϕ being a signed distance function that identifies the shortest distance from a
cell centre to the planar interface previously obtained. Compared to the original algebraic VOF method implemented
in OpenFOAM’s solver interFoam [23], Roenby et al. [20] have shown that isoAdvector yields sharper and more
accurate interface representation in the presence of complex flow motion and arbitrary meshes, also enabling larger
time-steps. Scheufler and Roenby [21] have demonstrated that isoAdvector with interface reconstruction based on the
plic-RDF method exhibits second-order convergence with mesh refinement on both structured and unstructured grids,
thus overcoming the poor convergence rates achieved by the original interface reconstructions based on isosurfaces.

The surface tension force Fσ in the momentum Eq. (2) is formulated according to the Continuum Surface Force
(CSF) method [24] and computed as Fσ = σκ∇c, with σ being the surface tension coefficient (considered constant)
and κ the local interface curvature. Both OpenFOAM’s built-in interFoam and isoAdvector solvers estimate κ based
on gradients of the volume fraction, κ = ∇ · (∇c/|∇c|), as originally proposed by Brackbill et al. [24]. The accuracy
of the calculation of κ is crucial for surface tension dominated flows, as errors yield spurious velocity fields whose
magnitude is inversely proportional to the capillary number, and thus are particular detrimental when simulating
capillary flows [25]. The TwoPhaseFlow library provides multiple options to calculate κ based on different geometrical
approximations of the interface [19]. For the work presented in this article, we selected a parabolic fitting method
which first fits a local paraboloid of equation:

f (x, y, z) = C0x + C1x2 + C2y + C3y2 + C4xy + z (4)
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to the neighbour interface centres obtained in the reconstruction step, with the coefficients calculated based on a
least-square minimisation, and then estimates the local interface curvature as:

κ =
fxx(1 + fx) + fyy(1 + fy) − 2 fx fy fxy

(1 + f 2
x + f 2

y )3/2 (5)

where the subscripts denote the order of derivation. Further details about this method are provided by Scheufler and
Roenby [19]. A comparison of the different surface tension modules available in the library TwoPhaseFlow with
interFoam’s and isoAdvector’s built-in methods is provided in Appendix A.

OpenFOAM discretises the transport equations with a finite-volume method, on a collocated grid arrangement.
The unsteady flow equations are integrated in time with a second-order Crank-Nicolson scheme with a blending
coefficient of 0.9. The divergence operators are discretised using second-order TVD (Total Variation Diminishing)
schemes [26], whereas Laplacian operators are discretised with central finite-differences. OpenFOAM’s PIMPLE
scheme, which is based on the PISO (Pressure Implicit Splitting of Operators) algorithm [27], is used for the pressure-
velocity coupling, with 3 correction steps. The residuals thresholds for the iterative solution of the flow equations are
set to 10−7 for the velocity and 10−8 for both volume fraction and pressure. The time-step of the simulation is variable
and is calculated based on a maximum allowed Courant number of 0.1.

3. Problem definition and simulation setup

We consider an isolated, long gas bubble travelling steadily into a straight capillary of noncircular cross-section;
Fig. 1 provides a schematic representation of the flow. To describe the flow, we adopt a Cartesian reference frame
where z denotes the streamwise coordinate, while x and y indicate cross-stream coordinates, with x (y) parallel to the
longer (shorter) side of the cross-section. The bubble travels along z at speed Ub, while liquid enters the channel with
a fully developed laminar velocity profile of average speed Ul. The channel cross-section has width 2w and height
2h, with w ≥ h and aspect-ratio defined as ε = w/h ≥ 1. Surface tension forces rearrange the liquid surrounding the
bubble into thin films covering the central regions of the channel walls, with thick liquid lobes at the corners. The
thickness and distribution of the liquid film depend on the channel aspect-ratio, on the competition between surface
tension and viscous forces quantified by the capillary number Ca = µlU/σ, and on the competition between inertial
and viscous forces quantified by the Reynolds number Re = 2ρlURh/µl, with Rh being the hydraulic radius of the
channel. The velocity scale U can be either the bubble speed Ub, identifying the bubble capillary and Reynolds
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c,y

min,y

w

h
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Figure 1: Schematic of the flow configuration under analysis and notation used in this work. A long gas bubble travels steadily (speed Ub) along
a capillary of half-width w and half-height h, w ≥ h; the aspect-ratio of the channel is defined as ε = w/h, ε ≥ 1. A thin liquid film is trapped
between the liquid-gas interface and the channel wall, and its thickness varies along the perimeter of the channel cross-section. We assume that
the flow has π/2 symmetry on the cross-section (x − y plane). The thickness of the film measured along the vertical direction at the centre of the
longer wall (x = 0) is denoted as δc,y (vertical bubble radius: rc,y = h − δc,y); the thickness measured along the horizontal direction at the centre
of the shorter wall (y = 0) is δc,x (horizontal bubble radius: rc,x = w − δc,x). The thin film covering the longer wall exhibits a saddle-like shape
and an interfacial dimple forms at the matching point between thin film and static meniscus at the corner, where a minimum film thickness δmin,y is
detected at a distance `x from the wall centre.
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numbers Cab = µlUb/σ and Reb = 2ρlUbRh/µl, or the average liquid speed Ul, identifying the liquid capillary and
Reynolds numbers Cal = µlUl/σ and Rel = 2ρlUlRh/µl; note that Ub > Ul owing to the presence of the lubricating
film at the walls. Gravitational effects are neglected in this study. The range of channel aspect-ratios, liquid capillary
and Reynolds numbers covered in this work are ε = 1−8, Cal = 0.005−0.5 and Rel = 1−1000, to which it corresponds
Cab = 0.0055 − 1 and Reb = 1.1 − 1330. de Lózar et al. [15] showed that the widths of air fingers propagating in
rectangular capillaries for ε ≥ 8 collapse onto a single curve, thus motivating the range of ε selected in this study. The
range of capillary and Reynolds numbers investigated is relevant to a variety of engineering applications, from the
flow of high-viscosity oil through reservoir rocks [28] to that of water or low-viscosity refrigerants in microchannels
for cooling applications [29].

In the numerical model, the channel is represented with a three-dimensional geometry. The hydraulic radius of
the channel Rh is kept constant throughout the study; width and height vary depending on ε, with 2w = Rh(1 + ε) and
2h = Rh(1 + ε)/ε. At the inlet, a fully-developed laminar flow of liquid is set, together with a zero-gradient pressure
condition. At the outlet, the pressure is set to a uniform reference value while a zero-gradient condition is applied
to the velocity. No-slip is imposed at the channel walls. Owing to the π/2 symmetry of the flow, only one quarter
of the cross-section is simulated and symmetry boundary conditions are utilised on the symmetry planes x = 0 and
y = 0. A long gas bubble is initialised close to the channel inlet, as a cuboid of cross-section 1.8w×1.8h and length Lb

taken as the maximum value between 5w and 14Rh; this choice of Lb yields bubbles that are sufficiently long to enable
comparison with the simulation results of Magnini and Matar [9] for square channels and with those of de Lózar et al.
[16] for rectangular tubes. The liquid-to-gas density and viscosity ratios are set to 1000 and 100, respectively. Cal
and Rel are input values in our numerical model, whereas Cab and Reb depend on the bubble speed resulting from
the flow dynamics. At the onset, the bubble starts moving downstream and its profile evolves from that of the cuboid
set at t = 0. As time elapses, the profile develops with the bubble nose first reaching a terminal shape, corresponding
to a constant propagation speed Ub. An interfacial wave travels backward from the front to the rear of the bubble as
observed by Yu et al. [30], and as the wave sweeps the bubble in the upstream direction, the bubble profile attains
a steady-state shape. It is not always possible to run simulations until the entire bubble, including its rear end, has
reached steady-state, because this may take very long time, in particular for ε = 8. Therefore, simulations terminate
when a sufficiently long portion of the downstream end of the bubble (z > zN − max[12Rh, 4ε], with zN locating the
tip of the nose) has achieved steady-state. All the bubble and liquid film profiles presented in the next sections verify
this condition.

The domain is discretised with a structured mesh made of orthogonal hexahedra, which are gradually refined in
the near-wall region in order to fully resolve the flow in the liquid film at the wall. The cross-section of the channel
is discretised with 58 × 58 mesh elements, with 38 elements of constant size in the region x/w, y/h = 0 − 0.9 and 20
elements in the graded region x/w, y/h = 0.9−1, with the smallest element near the wall being of thickness 2.4 ·10−4w
or 2.4 · 10−4h. To avoid excessive transversal stretching of the cells, 116 cells along the channel width (x−direction)
are used when ε = 8. This mesh ensures that the liquid film at the wall is always adequately discretised in the
range of conditions of interest. The same arrangement was used in previous studies by Magnini and Matar [31, 9]
and tests carried out with finer meshes did not yield appreciable differences in the results. Along the flow direction,
cells are twice as long as their maximum size along the y−direction. The length of the computational domain varies
between 50Rh and 100Rh according to the flow conditions, with longer domains necessary to achieve steady dynamics
at larger Reynolds numbers. Overall, domain grids with number of cells ranging from 3 to 10 million were utilised,
with high Reynolds numbers or high aspect-ratio channels requiring more computational resources. Simulations were
run on the high-performance computing cluster HPC Midlands Plus (www.hpc-midlands-plus.ac.uk), which features
28-core nodes (each with two processors Intel Xeon E5-2680v4 at 2.40 GHz, total 128 GB of memory) and Mellanox
EDR infiniband interconnection. Using typically 3 computing nodes (84 cores) and OpenFOAM’s scotch domain
decomposition, the computational time for each simulation ranged from 5000 (low Re and aspect-ratio) to 50000
CPU hours (high Re or high aspect-ratio).

4. Validation

In order to validate the numerical model, we compare our numerical results to those obtained by de Lózar et al.
[16] using the finite-element library oomph-lib (oomph-lib.maths.man.ac.uk) and a free-surface approach. de Lózar
et al. [16] simulated the propagation of an air finger at a constant speed into a tube of rectangular cross-section filled
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with a wetting liquid. Their numerical model solved the three-dimensional steady-state Stokes equations governing
the flow of liquid surrounding the finger, thus disregarding inertial forces, in a reference frame moving with the finger.
Non-penetration and dynamic boundary conditions were imposed at the air-liquid free-surface. In our model, we can
neither neglect the convective term of the momentum equation nor set a vanishing Reynolds number value, because the
time-explicit treatment of the surface tension would require an infinitely small time-step to satisfy the capillary time-
step constraint [32], and thus we limit the Reynolds number to Re = 1. As long as the Weber number, We = Ca Re, is
sufficiently smaller than 1, inertial effects will be negligible [4].

de Lózar et al. [16] reported measurements of the cross-sectional liquid fraction, finger width and pressure drop
across the finger in the range 10−3 ≤ Cab ≤ 5 and 1 ≤ ε ≤ 8. A comparison of the cross-sectional bubble width
obtained with the present numerical framework and their numerical results is presented in Fig. 2; the right panel of the
figure illustrates the liquid-gas distribution on the channel cross-section for some selected cases. The bubble width,
rc,x (see nomenclature in Fig. 1), is measured 3.92ε behind the tip of the bubble nose as done by de Lózar et al. [16],
and thus this distance increases with the channel aspect-ratio. As a general trend, the bubble width decreases as Cab
is increased and viscous forces overcome surface tension. This trend changes for sufficiently high Cab and ε > 1
in the data of de Lózar et al. [16]. This is attributed to the fact that the bubble width is measured at a fixed axial
distance behind the tip, where the width is still dependent on the axial coordinate, while it is expected that the bubble
width measured far behind the bubble tip will decrease monotonically with increasing Cab. For sufficiently large Cab,
approximately Cab > 0.01, increasing the aspect-ratio yields a monotonic decrease of the relative finger width, as
evident also in the cross-sectional bubble shapes illustrated in the right panels of Fig. 2. A qualitatively similar trend
was observed for the width of gas fingers penetrating into liquid-filled Hele-Shaw cells by Tabeling et al. [33], who
reported the linear dependency δc,x/w ≈ 0.011/B, with 1/B = 12ε2Cab being the Saffman-Taylor parameter. When
Cab > 0.01 and ε ≥ 2, the cross-sectional interface shape can be approximated as two semi-circles connected by two
straight lines. An axial balance of pressure and viscous forces acting in the thick lateral liquid film along the dynamic
meniscus at the bubble front yields [15, 16]:

µl

(
∂2u
∂x2 +

∂2u
∂y2

)
∼
∂p
∂z

(6)

x

y

x

y

x

y

10
-3

10
-2

10
-1

10
0

Ca
b

0.5

0.6

0.7

0.8

0.9

1

r c
,x
/w

=1

=2

=4

=8

� 2, ��� 0.01

� = 4, ���= 0.01

� = 8, ���= 0.01

Figure 2: Horizontal bubble width rc,x, rescaled by the channel width w, against bubble capillary number for different aspect-ratios (Wel � 1);
rc,x is measured 3.92ε behind the tip of the bubble nose. The solid lines display the numerical results of de Lózar et al. [16], which are used as
a benchmark. The full symbols are the results obtained with the present numerical framework. The empty circles indicate the results obtained by
Magnini and Matar [9] for a square channel, using OpenFOAM v. 2.3.1 and the built-in algebraic VOF solver interFoam. The boxes on the right
display the bubble and liquid film distribution on the channel cross-section for some selected cases.
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where u is the streamwise component of the fluid velocity. The viscous forces in the thick liquid lobes act along the
length scales x ∼ δc,x and y ∼ h, and thus the viscous stresses can be approximated as µl∂

2u/∂x2 ∼ µlUb/δ
2
c,x and

µl∂
2u/∂y2 ∼ µlUb/h2. Pressure can be rescaled with the capillary length scale p ∼ σ/w, whereas z can be rescaled by

the length of the dynamic meniscus at the bubble front, which is the distance from the bubble tip that it takes for the
liquid film to form, and is ∼ w [33, 16]. Therefore, Eq. (6) can be approximated as:

Cab

(
1
δ2

c,x
+

1
h2

)
∼

1
w2 (7)

leading to the following scaling law for the bubble width:

rc,x

w
∼ 1 −

√
Cab

1 − ε2Cab
(8)

which explains the reduction of the bubble width with increasing the channel aspect-ratio, observed in Fig. 2. The
trend of the bubble width with the aspect-ratio reverses as Cab → 0 and the bubble dynamics approaches a quasi-static
configuration. There exists a threshold value of the capillary number, which decreases with increasing ε, below which
the cross-sectional distribution of the liquid film rearranges from two semi-circles (or one complete circle for ε = 1) to
four quarter-circles, connected by thin liquid films. For square channels, this transitional value is of about 0.04 [5, 9].
When Cab approaches this value, the rate of increase of the bubble width with decreasing Cab subsides, explaining
the intersection of the curves for ε = 1 and 2 when Cab ≈ 0.01 in Fig. 2.

Overall, the agreement between the results obtained with the present numerical framework and those of de Lózar
et al. [16] is excellent. Deviations appear for increasing values of Cab and ε due to the finite value of the Reynolds
number in our simulations, but the difference in the values of the bubble width between the two studies is always
below 3%. Fig. 2 includes also the data for ε = 1 published by Magnini and Matar [9], which were obtained using
OpenFOAM v. 2.3.1 and the built-in algebraic VOF solver interFoam. Although the interface curvature calculation
method of interFoam is, in principle, less accurate than the parabolic fit presently used, the values of the bubble widths
calculated with these two different solvers are almost indistinguishable.

5. Results and discussion

Numerical simulations were performed for a range of capillary and Reynolds numbers of, respectively, Cal =

0.005−0.5 and Rel = 1−1000, and values of the channel aspect-ratio in the range ε = 1−8. The results are organised
in two subsections. Section 5.1 presents the bubble and liquid film dynamics obtained by systematically varying ε
and Cal, but setting Rel = 1 in order to investigate the visco-capillary regime where Wel � 1 and inertial effects are
expected to be negligible. Section 5.2 presents the results of simulations run by systematically varying the Reynolds
number to investigate the visco-inertial regime (Wel � 1), for two selected values of the capillary number (Cal = 0.02
and 0.1) and one channel aspect-ratio (ε = 2).

5.1. Flows with negligible inertia
5.1.1. Liquid film topology

We begin with discussing the topology of the lubricating film in the visco-capillary regime, for the channel aspect-
ratios ε = 2, 4 and 8, which is illustrated in Figs. 3, 4 and 5. The dynamics for square channels were investigated in
detail by Magnini and Matar [31], and thus this section focuses mainly on rectangular channels, ε > 1. In Figs. 3, 4
and 5, panels (a) show the contours of the liquid film thickness δy, measured as the vertical distance of the liquid-gas
interface from the top wall (y = h). Panels (b) depict the contours of the liquid film thickness δx, measured as the
horizontal distance of the interface from the side wall (x = w). In (a) and (b), the liquid capillary number is always
the same, Cal = 0.02. Panels (c) plot the centreline (x = 0) vertical liquid film thickness δc,y versus the distance from
the bubble nose (zN − z), for different values of Cal. Panels (d) present an analogous plot for the centreline (y = 0)
horizontal liquid film thickness δc,x. Panels (e) illustrate the streamwise evolution of the minimum value of the vertical
film thickness δmin,y. The final panels (f) illustrate the cross-sectional interface profile, extracted 11Rh behind the tip
of the bubble nose.
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A comparison of the liquid film thickness contours of panels (a) and (b) in Figs. 3, 4 and 5, reveals that for
Cal = 0.02 the bubble exhibits always a concave surface when observed from the top wall, with the interface curvature
changing sign already at very short distance from the bubble nose. This corresponds to the formation of a dimple on
the bubble surface, where minimum values of the film thickness (red streaks in panels (a)) are detected. The film
thickness decreases monotonically towards the bubble rear along these minimum thickness streaks, owing to the
combined effect of liquid film rearrangement by surface tension forces and transversal curvature gradients inducing
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Figure 3: Liquid film morphology for ε = 2 (Wel � 1). (a,b) Contours of liquid film thicknesses for Cal = 0.02, measured as distance from (a)
top y = h and (b) side x = w walls; figures not to scale. (c,d,e) Streamwise evolution of the centreline liquid film thickness measured from (c) top
and (d) side walls, and (e) minimum liquid film thickness from top wall. (f) Cross-sectional interface profiles extracted 11Rh behind the tip of the
bubble nose. The legend in (f) applies also to (c,d,e). zN denotes the bubble nose location. In (a) and (b), the bubble is moving from left to right,
and the white line identifies the liquid-gas interface on the (a) y = 0 and (b) x = 0 planes.
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film draining flows [14, 8, 9]. While the minimum film thickness values, relative to the channel height, seem rather
constant when varying aspect-ratio ε, the relative film thickness at the channel centre increases with increasing ε, see
panels (a). A comparison of panels (b) suggests that the bubble exhibits always a convex surface when observed from
the side wall for Cal = 0.02, with lateral film thickness values δx much larger than δy, and increasing as ε is increased.

A quantitative analysis of the streamwise evolution of the liquid film when varying capillary number and aspect-
ratio is provided in panels (c), (d) and (e) of Figs. 3, 4 and 5. As a general trend, all film thicknesses increase
with increasing Cal, in line with the traditional lubrication theory [1]. A thin liquid film forms quickly over both
shorter (vertical) and longer (horizontal) channel walls, from a distance of approximately 1Rh behind the tip of the
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Figure 4: Liquid film morphology for ε = 4 (Wel � 1). (a,b) Contours of liquid film thicknesses for Cal = 0.02, measured as distance from (a)
top y = h and (b) side x = w walls; figures not to scale. (c,d,e) Streamwise evolution of the centreline liquid film thickness measured from (c) top
and (d) side walls, and (e) minimum liquid film thickness from top wall. (f) Cross-sectional interface profiles extracted 11Rh behind the tip of the
bubble nose. The legend in (f) applies also to (c,d,e). zN denotes the bubble nose location. In (a) and (b), the bubble is moving from left to right,
and the white line identifies the liquid-gas interface on the (a) y = 0 and (b) x = 0 planes.

9



10
-2

10
-1

10
0

10
1

(z
N
-z)/R

h

10
-2

10
-1

10
0

m
in
,y
/h

10
-2

10
-1

10
0

10
1

(z
N
-z)/R

h

10
-2

10
-1

10
0

c
,y
/h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/w

0

0.5

1

y
/h

(a) (b)

(c) (e)

(f)

�� ℎ �� �

0.7 0.8

Ca
l
=0.01

Ca
l
=0.02

Ca
l
=0.05

Ca
l
=0.1

10
-2

10
-1

10
0

10
1

(z
N
-z)/R

h

10
-2

10
-1

10
0

c
,x
/w

(d)

� �� − �
−0.5

Figure 5: Liquid film morphology for ε = 8 (Wel � 1). (a,b) Contours of liquid film thicknesses for Cal = 0.02, measured as distance from (a)
top y = h and (b) side x = w walls; figures not to scale. (c,d,e) Streamwise evolution of the centreline liquid film thickness measured from (c) top
and (d) side walls, and (e) minimum liquid film thickness from top wall. (f) Cross-sectional interface profiles extracted 11Rh behind the tip of the
bubble nose. The legend in (f) applies also to (c,d,e). zN denotes the bubble nose location. In (a) and (b), the bubble is moving from left to right,
and the white line identifies the liquid-gas interface on the (a) y = 0 and (b) x = 0 planes.

bubble nose. Behind this point, the trends of centreline film thicknesses δc,y (panels (c)) and δc,x (panels (d)) are
strongly dependent on Cal and ε. The centreline top film thickness δc,y for ε = 2, Fig. 3(c), stays rather constant
along the bubble body (towards −z) for sufficiently small Cal, whereas for Cal ≥ 0.02 a monotonic decreasing trend
towards the bubble rear becomes apparent. The ε = 4 channel exhibits a similar behaviour, see Fig. 4(c), although
the transition from constant to monotonically decreasing film thickness occurs at higher capillary number, Cal ≥ 0.2.
This decreasing trend is never observed in the largest aspect-ratio channel ε = 8, Fig. 5(c), where δc,y is constant along
the bubble within the range of capillary numbers tested. All these trends are consistent with the asymptotic theory
of Wong et al. [14]; Appendix B at the end of this article describes some useful relationships to estimate geometrical
features of the liquid film, based on Wong et al. [14]. Wong et al. [14] suggested that behind the bubble front meniscus
there exists a first stage of film rearrangement where surface tension rearranges the thin film into a parabolic shape
and, at leading-order, the cross-sectional area of the thin film (in the region −`x ≤ x ≤ `x) is conserved, with minimal
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streamwise variations of the centreline thickness (Fig. 5 in Wong et al. [14]). This is followed by a second stage, further
upstream the bubble body, where transversal drainage flows become important and the film area and thickness reduce
monotonically towards the bubble rear. While the latter stage lasts indefinitely, the length of the film rearrangement
stage is proportional to `7

x/(A
3
0Cab) [14], with A0 being the cross-sectional area of the thin film. Therefore, the length

of this first stage decreases as Cab increases, and it may become infinitely short at sufficiently large capillary numbers;
this corresponds to the situation exemplified in Fig. 3(c), ε = 2 and Cal ≥ 0.05, where only the second monotonic
film thinning stage is present. The length of the rearrangement stage depends also on the channel aspect-ratio via the
factor `7

x/A
3
0. For increasing ε, it follows from Wong et al. [14] theory that both `x and A0 are linear functions of ε (see

Fig. B.1(c) in the Appendix), thus suggesting the scaling `7
x/A

3
0 ∼ ε

4, i.e. the rearrangement stage grows greatly with
increasing the aspect-ratio. This is consistent with the observations in panel (c) of Figs. 3, 4 and 5, and motivates the
transition to a monotonically decreasing δc,y trend being shifted at progressively larger values of Cal as ε is increased,
while it does never occur for ε = 8. Note that, even for ε = 8 or very small capillary numbers, the second film thinning
stage would eventually appear at long distance from the bubble nose, much longer than the bubble lengths simulated
in this work.

The centreline horizontal film thicknesses for ε = 2 and 4, panels (d) in Figs. 3 and 4, exhibit an initially decreasing
trend as the front meniscus of the bubble develops towards the rear, followed by a mildly increasing trend once a thin
liquid film is formed. The only exception is the case run with ε = 2 and Cal = 0.005 (dark blue line in Fig. 3(d)),
where the film thins monotonically towards the bubble rear. The trends observed for δc,x are related to those discussed
previously for the centreline vertical film thickness δc,y in panels (c). Within horizontal channels, the axial flow rate of
liquid through the film is very small [10] and, assuming a stagnant film, the overall cross-sectional area occupied by
the liquid must be conserved along the bubble. As such, in regions where the top film thickness exhibits an upstream
decreasing profile, the side film thickness must increase, and vice versa. For the largest aspect-ratio channel tested,
Fig. 5(d), the centreline horizontal film thicknesses remain approximately constant along the bubble once a thin liquid
film is formed, which is consistent with the similar trend exhibited by δc,y in Fig. 5(c).

The minimum liquid film thickness δmin,y measured from the channel top, panels (e) of Figs. 3, 4 and 5, decreases
always monotonically towards the bubble rear, as a result of the transversal flows that drive liquid out of the top
film. This signifies that liquid film dewetting in elongated bubble flows in noncircular microchannels will always
begin from these minimum film thickness regions, as observed in experiments [17, 34]. It is interesting to observe
in panels (e) that the streamwise profiles of the minimum film thickness follow quite well the power-law dependence
δmin,y ∼ (zN − z)−β for all aspect-ratios tested. Figures 3(e) and 4(e) include the power-law δmin,y ∼ (zN − z)−0.5 as a
black line, which matches well the film thickness trends at low capillary numbers. The same dependence was found
by Magnini and Matar [9] for bubbles propagating in square channels and by Kreutzer et al. [35] for the capillary-
driven drainage of liquid films around long bubbles in noncircular channels. The same exponent for the power-law is
found from the film profiles obtained with ε = 8 at larger capillary numbers, Fig. 5(e), whereas the slope of the curves
increases for decreasing values of Cal, the reason of which can be ascribed to an insufficient length of the bubble to
retrieve the asymptotic film thinning trend.

The plots of the cross-sectional profiles of the liquid-gas interface reported in panels (f) of Figs. 3, 4 and 5, indicate
that the liquid film over the top wall exhibits always a saddle-like profile, with the generation of a dimple between
the wall centre and channel corner, except the ε = 2 and Cal = 0.5 case. This is in agreement with the findings of
Hazel and Heil [8], who showed that for ε < 2.04 it is still possible to attain axisymmetric cross-sectional profiles
at sufficiently high Cal. A comparison of the interface profiles for decreasing capillary numbers confirms that the
centreline top film thickness δc,y decreases at a slower rate than the minimum thickness δmin,y does, so that dewetting
of the film is likely to initiate at the interface dimple.

The results presented in Figs. 3, 4 and 5 were obtained for bubbles of length Lb > 10Rh. Since the liquid film
dynamics are driven by the bubble nose [30], shorter bubbles are expected to exhibit the same liquid film profiles and
thicknesses, provided that Lb/w > 1 so that a thin film forms upstream the bubble nose.

5.1.2. Liquid film thickness
In order to compare the values of the liquid film thicknesses obtained with different channel aspect-ratios, Fig. 6

displays centreline horizontal (δc,x), centreline vertical (δc,y) and minimum vertical (δmin,y) film thicknesses, measured
at a distance of 11Rh from the bubble tip, as a function of the bubble capillary number. The data are rescaled by the
channel hydraulic radius Rh rather than the height or width, because Rh is maintained constant throughout this study,
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Figure 6: (a) Centreline and (b) minimum film thicknesses measured 11Rh behind the tip of the bubble nose, rescaled with the channel hydraulic
radius (Wel � 1). In (a), the full symbols and solid lines represent the centreline horizontal film thickness, δc,x, whereas the empty symbols
and dashed lines identify the centreline vertical film thickness, δc,y; the black dash-dot line shows the film thickness prediction for circular tubes
obtained using Aussillous and Quéré [2] correlation, Eq. (9); the black solid line identifies the predictions obtained by a modified version of the
relationship derived by Wong et al. [14] for the centreline film thickness in noncircular channels, Eq. (10). In (b), the inset shows the minimum
thickness data rescaled with the channel height instead of Rh.

whereas h and w vary depending on ε as explained in Sec. 3. As such, a comparison of the absolute values of the
film thicknesses among the different channel aspect-ratios is possible. The data for ε = 1 in Fig. 6 are taken from the
previous work of Magnini and Matar [9], which covered a slightly wider range of Cal than the present work, and with
more data points. As an additional comparison, Fig. 6(a) includes also a black dash-dot line identifying the predicted
values of the film thickness for long bubbles advancing in circular tubes, obtained using Aussillous and Quéré [2]
correlation. Bretherton [1] derived theoretically that in the limit of a small capillary number (Cab < 0.005), the liquid
film thickness in circular channels obeys δcirc/r = 1.34Cab

2/3, where r is the radius of curvature of the bubble nose
and was assumed equal to the tube radius R, which is acceptable for small capillary numbers and very thin liquid
films. Aussillous and Quéré [2] extended this relationship to Cab → 2 considering that, for a thick film, the radius of
curvature of the bubble nose will be smaller than R by an amount proportional to the film thickness, r = R − c δcirc.
The constant c was derived empirically by Aussillous and Quéré [2], from a best fit of Taylor’s [36] and their own
experimental data for very viscous fluids, giving c = 2.5 and leading to the following well-known correlation for the
liquid film thickness in circular tubes, valid in the limit of negligible inertial effects [2]:

δcirc

R
=

1.34Cab
2/3

1 + 3.35Cab
2/3 (9)

which yields the prediction identified as a black dash-dot line in Fig. 6(a).
Inspection of Fig. 6(a) reveals that the centreline horizontal thickness δc,x is always larger than the vertical one

δc,y, as w > h and therefore the bubble is less confined in the horizontal direction. This trend is reversed for ε = 2
and Cab < 0.02, where the horizontal bubble width rc,x → 1 and thus δc,x drops quickly below δc,y. The same trend
is expected to occur for larger aspect-ratios as well, but at decreasing values of Cab for increasing ε, and it is never
observed in the range of conditions analysed here. While δc,x for ε ≥ 2 is, generally, always above the film thickness
that would occur at the same Cab in a circular tube, the centreline vertical film thickness δc,y is always smaller than
the value for a circular channel. The non-monotonic trend of δc for ε = 1 was investigated in detail by Magnini and
Matar [9]. When Cab ≥ 0.05 the bubble cross-section in a square channel is axisymmetric and, as Cab is increased,
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Fig. 6 reveals that δc is larger than δc,y in a rectangular duct, but always smaller than δc,x. As Cab is reduced below
0.01, a thin liquid film forms and an interfacial dimple appears, first near the wall centre and then progressively closer
to the corner as Cab is further reduced. During this process, δc first increases slightly as the dimple forms and then
reduces monotonically as the dimple shifts sideways. In this range of Cab, δc for a square channel is always smaller
than δc,y for a rectangular channel, whereas it is expected to be larger than the horizontal film thickness δc,x, once that
Cab is small enough for an interfacial dimple to appear also over the shorter wall, as demonstrated by the data points
for ε = 2.

It is interesting to observe that, when δc,y is rescaled by Rh as done in Fig. 6(a), the data for ε = 4 and 8 collapse
onto a single line throughout the whole range of Cab investigated, those for ε = 2 reach the same line as Cab ≤ 0.01,
and those for ε = 1 seem to approach the same curve as Cab → 0. This trend can be explained by extending the
asymptotic theory of Wong et al. [14] for Cab → 0, to non-vanishing capillary numbers. Wong et al. [14] predicted
that, in the first stage of film rearrangement, the centreline film thickness in a noncircular channel obeys Bretherton’s
law δc/r = 1.34Cab

2/3, where r is now the radius of the circular arc that the liquid film forms at the channel corner. In
quasi-static conditions, r has an analytical expression that, for a rectangular channel cross-section, depends only on
ε; this is reported in Appendix B, see Eq. (B.2), and Fig. B.1(a) shows that r is very weakly dependent on ε and takes
values in the range r ≈ (0.51 − 0.53)Rh, i.e. the radius of curvature of the static meniscus at the channel corner is
about half the hydraulic radius of the channel, irrespective of the aspect-ratio of the cross-section. Taking an average
value r = 0.52Rh, the scaling law of Wong et al. [14] can be rewritten as δc/Rh = 0.7Cab

2/3, which is independent of
the channel aspect-ratio and is valid in the limit of small capillary numbers. This can be extended to larger capillary
numbers by applying the same reasoning as Aussillous and Quéré [2], thus considering that in the case of a thick
liquid film, the radius of curvature of the corner meniscus must reduce to r − c δc. Using the same constant c = 2.5 as
Aussillous and Quéré [2], a new correlation for the centreline fim thickness in noncircular channels at non-vanishing
capillary numbers is finally derived:

δc

Rh
=

0.7Cab
2/3

1 + 3.35Cab
2/3 (10)

This correlation suggests that the centreline film thickness depends only on Rh and is independent of the channel
aspect-ratio, in agreement with the trends for δc,y emerging from Fig. 6(a), and that this thickness is about half the
value that it would take in a circular channel at the same flow conditions. The film thickness prediction by Eq. (10) is
indicated as a black solid line in Fig. 6(a) and it fits remarkably well the present numerical data for the vertical film
thickness δc,y. The scaling breaks down above an aspect-ratio-dependent value of Cab, e.g. Cab ≥ 0.02 for ε = 2,
where the film rearrangement stage disappears and thus Eq. (10) does no longer apply.

The values of the minimum film thickness measured from the top wall, δmin,y, are reported as a function of the
capillary number in Fig. 6(b). All the data follow the trend δmin,y ∼ Cab

1 as the capillary number decreases regardless
of the channel aspect-ratio, as theoretically derived by Wong et al. [14]. Notably, not only the trends but also the
values of the minimum film thicknesses are comparable among the different aspect-ratios as Cab is reduced, and the
data points for ε ≥ 2 actually overlap almost perfectly when rescaling δmin,y with the channel height h, instead of Rh,
see the inset in Fig. 6(b). This suggests that the channel height is the controlling parameter for the minimum film
thickness δmin,y in rectangular channels. The liquid film thicknesses reported in Fig. 6 were extracted at a distance of
11Rh from the bubble tip. Bubbles shorter than 11Rh would exhibit slightly different film thickness values when this
is measured at a shorter distance from the nose, as revealed by analysis presented in Sec. 5.1.1. Figures 3, 4 and 5
suggest that δc,x and δmin,y are more sensitive to the streamwise coordinate, whereas δc,y is constant in the first stage of
film rearrangement where the data in Fig. 6(a) collapse onto a single curve. As such, Eq. (10) is expected to hold also
for shorter bubbles, or centreline film thicknesses measured at shorter distance from the nose.

The discussion over the liquid film topology concludes with the analysis of Fig. 7, where the transversal distance
between the minimum film thickness location and the top wall centre, `x, is plotted versus the capillary number for
the different aspect-ratios tested. Note that, once the dimple is formed near the bubble nose, `x is constant along the
bubble body, as indicated by the red streaks in the film thickness contours of Figs. 3, 4 and 5, panels (a), being parallel
to the x = 0 plane. For ε ≤ 2, the dimple first forms near the channel centre (`x = 0), whereas for ε > 2 the bubble
cross-section cannot become axisymmetric and therefore the dimple is always farther from the channel centre. In all
cases, the dimple shifts sideways as the capillary number is decreased and `x approaches an aspect-ratio-dependent
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value as Cab → 0, for which a theoretical relationship was provided by Wong et al. [14]:

`x

w
= 1 −

r
Rh

2
1 + ε

≈ 1 −
1.04
1 + ε

(11)

where we have taken r ≈ 0.52Rh to replace for r/Rh. Equation (11) and the data in Fig. 7 may be used to estimate `x as
a function of both ε and Cab, and thus predict the location where dryout may first occur in a rectangular microchannel
(at x = `x) or calculate the fraction of the channel wall covered by a thin liquid film (which will be `x/w), which is of
interest in heat transfer applications [37].

5.1.3. Bubble speed and gas area fraction
When an elongated bubble is transported by a liquid flow within a microchannel, the bubble velocity Ub and cross-

sectional gas area fraction α (fraction of the channel cross-section occupied by the gas phase) are related by a material
balance which, under the assumption of negligible axial flow rate of liquid through the film, states that Ub/Ul = 1/α.
Figure 8 displays the bubble-to-liquid velocity ratio and gas area fraction as a function of the bubble capillary number
for different aspect-ratios, and confirms the opposite trends of Ub/Ul and α vs Cab. As Cab → 0, the gas fraction
increases and approaches a quasi-static value αs that depends on ε. Wong et al. [14] derived an expression to estimate
αs as a function of ε which is reported in Appendix B, see Eq. (B.4), and Fig. B.1(b) shows that αs ≈ 0.94 − 0.98
for ε = 1 − 8, i.e. the static gas fraction increases only slightly as the channel aspect-ratio is increased. Conversely,
Ub/Ul → 1/αs when Cab → 0 and thus the bubble speed data in Fig. 8(a) approach values close to unity regardless of
the channel aspect-ratio. As the capillary number is increased, the gas fraction decreases owing to the thicker liquid
film and the bubble speed increases. In this regime, the horizontal bubble radius decreases significantly as the aspect-
ratio is increased, see Fig. 2, so the gas fraction decreases apparently when ε increases, while the bubble travels much
faster.

de Lózar et al. [15, 16] observed that there exists a modified capillary number Ĉab that depends on the aspect-ratio,
which correlated well their experimental and numerical gas fraction data for all aspect-ratios when Ĉab > 0.035. Based
on scaling arguments, de Lózar et al. [16] suggested Ĉab = Cab(1 + ε2/ε2

t ), with εt being a transitional aspect-ratio
at which the horizontal and vertical components of the viscous term within the liquid film balance. They proposed
εt = 6.4 according to a best fit of their numerical database. This scaling does not apply at low Cab, where the bubble
dynamics approaches the quasi-static behaviour and α → αs, with αs depending on ε as derived by Wong et al. [14]
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Figure 7: Transversal distance `x between minimum film thickness location and top wall centre x = 0 (Wel � 1); see schematic in Fig. 1.

14



and reported in Appendix B. To obtain a general correlation to predict both α and Ub/Ul as a function of Cab and ε at
all regimes, we first replot the gas fraction as α/αs and the bubble-to-liquid speed ratio as (Ub/Ul)αs, see the insets
in Fig. 8, so that they both approach unity as Cab → 0. The data are presented as a function of a modified capillary
number, Ĉab = Cab(1 + ε2/ε2

t ), with εt obtained by a best fit to our database. We assume the following functional
relationship:

α

αs
= f

(
Ĉab

)
= 1 − (1 − α∞) exp

(
a1Ĉab

a2
)

(12)

where α∞ is the asymptotic gas fraction for Cab → ∞ and is taken from the correlation of Aussillous and Quéré [2]
for flow in circular channels, α∞ = 0.37. Since the gas fraction must approach the static value as the quasi-static
regime is recovered (Cab → 0), a1 and a2 in Eq. (12) must be negative. A least-squares fit is performed to find εt, a1
and a2 based on our database. This yields εt = 5.5, a1 = −0.24 and a2 = −0.5. The prediction of α/αs obtained with
Eq. (12) can be used also to estimate the bubble-to-liquid velocity ratio, as (Ub/Ul)αs = αs/α, with αs then calculated
according to Eq. (B.4). It can be seen in Fig. 8 that the scaling proposed is effective in collapsing all the data for
different aspect-ratios onto a single curve throughout the entire range of Cab investigated. Note that Eq. (12) can be
used to predict the gas fraction (or bubble speed) even if the bubble capillary number is not known, assuming that Cal
is available. It is sufficient to start with Cal in place of Cab in Eq. (12) to extract a first guess of α, then using the
material balance Ub/Ul = 1/α to calculate a first guess for Cab, and iterate between Eq. (12) and the material balance
until converged values of α and Cab are achieved.

5.2. Flows with inertia
Inertial forces generally impact the bubble dynamics by thinning the liquid film in an intermediate range of

Reynolds numbers, Re = 100 − 500, whereas as Re is further increased the film thickens monotonically [38, 3, 9].
The bubble nose elongates for increasing Reynolds numbers and the thin liquid film forms at increasing distance from
the bubble nose. Furthermore, inertia is responsible for the appearance and growth of undulations on the liquid-gas
interface, in the proximity of the bubble rear meniscus, as the Weber number of the flow exceeds a threshold value of
about 0.1 [4, 39, 40].

In this section, the impact of inertial forces on the bubble and liquid film dynamics is investigated for a rectangular
channel of aspect-ratio ε = 2. The streamwise evolution of the liquid film along the bubble and cross-sectional profiles
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Figure 9: Effect of the Reynolds number, for ε = 2, on the streamwise evolution of the (a,d) centreline vertical, (b,e) centreline horizontal and (c,f)
minimum liquid film thickness, for (a,b,c) Cal = 0.02 and (d,e,f) Cal = 0.1. (g,f) Cross-sectional interface profiles extracted 11Rh behind the tip of
the bubble nose. The legend in (g) applies also to (a,b,c) and that in (h) applies also to (d,e,f).

of the liquid-gas interface are displayed in Fig. 9, for Cal = 0.02 and 0.1 and a range of Reynolds numbers. As the
Reynolds number is increased, Fig. 9(a,d) confirm that the distance from the bubble nose at which the liquid film
forms increases, from about 1Rh as long as Wel = Cal Rel ≤ 10 to 5Rh − 10Rh at the largest Reynolds numbers tested.
Once the film is formed, the vertical film thickness δc,y decreases as Rel is increased for Cal = 0.02, whereas this
dependence is not monotonic for Cal = 0.1 and it depends greatly on the distance from the bubble nose. The profiles
of the horizontal film thickness δc,x, depicted in Fig. 9(b,e), exhibit a marked change when the Weber number of
the flow transitions above 10, with δc,x first increasing and then decreasing towards the upstream direction when Rel
is increased. As already discussed for Figs. 3, 4 and 5, the streamwise trends of δc,x oppose those for δc,y because
the cross-sectional area occupied by the liquid must be conserved along the bubble. It is interesting to observe that
interfacial undulations appear near the bubble rear along the thicker lateral film, see the oscillations in the plot of δc,x
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Figure 10: Effect of the Reynolds number, for ε = 2, on the centreline horizontal and vertical film thicknesses, measured 11Rh behind the tip of the
bubble nose and rescaled with the channel hydraulic radius. In (a) the data are displayed versus the bubble Reynolds number, Reb = 2ρlUbRh/µl,
whereas in (b) data are replotted as a function of the film Weber number, Web,δ = ρlU2

bδc/σ, where δc is either δc,x or δc,y.

for Cal = 0.02. These possess the same geometric features identified by Magnini et al. [4] on long bubbles translating
in circular channels. Only one undulation is present when Rel = 1 and inertial effects are negligible, but multiple crests
become apparent as Rel ≥ 100. Inertia-driven undulations are absent on the top of the bubble, where the profiles of
δc,y appear smooth, because the liquid film is much thinner (inertial effects scale with the local film thickness), and
do not appear for Cal = 0.1 despite the larger Weber numbers, as the damping effect of viscous forces prevail [4, 39].
The minimum film thickness δmin,y, reported in Fig. 9(c) and (f), exhibits monotonic decreasing trends towards the
bubble rear for all the conditions investigated. Corresponding profiles of the bubble interface on the cross-section are
shown in Fig. 9(g) and (h), and reveal that as the Reynolds number is increased the bubble cross-section shrinks and
the change in concavity of the top film becomes less apparent. For Cal = 0.1 and Rel = 500, cyan profile in Fig. 9(h),
no dimple has yet formed in the displayed profile, which is extracted 11Rh behind the tip of the bubble nose, because
it takes about 20Rh from the bubble front tip for the curvature of the top film to change sign and the dimple to appear.

The centreline vertical and horizontal film thickness data in the presence of inertial effects, measured 11Rh behind
the tip of the bubble nose, are compiled in Fig. 10. Figure 10(a) confirms that the horizontal film thickness δc,x exhibits
first a descending and then a monotonic ascending trend as Rel increases, in agreement with the observations taken in
square [9] and circular channels [38, 3]. The film measured along the vertical direction, δc,y, is significantly thinner
and follows a monotonic descending trend throughout the range of Rel tested, so that when Rel > 100, the thicker
lateral film thickens further while the thinner top film gets even thinner. Since the Weber number and the local film
thickness are more suitable indicators of the importance of inertial forces on the film dynamics, Fig. 10(b) replots the
data as a function of the film Weber number, defined as Web,δ = ρlU2

bδc/σ. This rescaling has the effect of shifting the
δc,y data to the left, as they are characterised by a smaller Web,δ than δc,x. It can be seen that, for each Cal tested, the
descending trends for both δc,x and δc,y occur approximately in the same range of Web,δ, thus suggesting that inertial
effects appear at larger Rel on the thinner film on top, being this one order of magnitude thinner than the film at the
side.

6. Conclusions

The topology of the liquid film formed around long gas bubbles advancing in noncircular channels has been
investigated systematically, for a range of cross-sectional aspect-ratios ε = 1 − 8, liquid capillary numbers Cal =

0.005 − 0.5 and Reynolds numbers Rel = 1 − 1000, thus covering both the visco-capillary and visco-inertial regimes.

17



The analysis is based on the results of direct numerical simulations conducted utilising a geometric Volume-Of-Fluid
method as implemented in the TwoPhaseFlow library for OpenFOAM recently released by Scheufler and Roenby
[19]. The interface curvature, which enters the calculation of the surface tension force and is crucial for the accuracy
of the numerical method when applied to low capillary number flows, is estimated based on a geometric parabolic
reconstruction method. The main conclusions of this work, applicable to the range of conditions studied, are as
follows:

• The bubble cross-sections exhibit circular arcs at the sides, nearby the shorter wall, and a flatter interface with
a wide saddle-shaped liquid film along the longer wall.

• The different lengths of the channel sides (ε > 1) induce different dynamics of the liquid film draining flows in
the two sides. As a consequence, the streamwise evolution of the liquid film along the bubble shows distinctive
features depending on the channel aspect-ratio, capillary and Reynolds numbers, and a region of uniform film
thickness along the bubble is never observed.

• The thickness of the film covering the longer channel wall, measured along the centreline, is constant along the
bubble at small Ca, whereas it decreases monotonically towards the bubble rear above a threshold value for Ca,
which increases as the aspect-ratio increases. This agrees with the asymptotic theory of Wong et al. [14] for
Ca → 0, which suggested the existence of a region of constant film area within a distance of order ε4/Ca from
the bubble front meniscus, followed by a monotonic film thinning stage closer to the bubble rear.

• The film thickness measured along the centreline of the longer wall obeys the scaling law δc,y/Rh ∼ Ca2/3/(1 +

Ca2/3) regardless of the channel aspect-ratio (for ε > 1), and takes values that are about half those characteristic
of flows in a circular channel at the same conditions.

• The cross-sectional gas fraction decreases when the aspect-ratio increases owing to the thick liquid film left
over the shorter wall. However, the gas fraction α trends vs Ca are all similar and we propose an empirical
correlation to predict α as a function of Ca and ε, that matches well the present data from Ca→ 0 to Ca ≈ 1.

• Inertial effects on the liquid film topology are more apparent on the side of the channel where a thicker film is
present; this exhibits first a thinning and then a thickening trend as Re is increased. The thinner film deposited
along the longer wall shows only the initial descending trend.
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Appendix A. Evaluation of spurious velocity

In order to evaluate the performance of the different surface tension models implemented in the TwoPhaseFlow
library [19], we have performed a traditional two-dimensional static bubble test case, which enables to quantify the
magnitude of the spurious currents generated by inaccuracies in the surface tension calculation. The configuration
simulated is taken from Gamet et al. [41] and the simulation setup was downloaded from the link that they provide
at the end of the Conclusion section of their article; we refer to their article for the details of the solution algorithm
options. A circular bubble of diameter D = 0.8 m is placed within a liquid-filled domain. Only a quarter of the
geometry is simulated in a domain of size 1 × 1 m, and the bubble is centred at one corner of the domain. The fluid
properties are: ρl = ρg = 1 kg/m3, σ = 1 N/m. The viscosities of liquid and gas are the same and the value chosen
to match a Laplace number La = ρDσ/µ2 = 120. Symmetry boundary conditions are applied to all boundaries. The
fluid is initially at rest. A uniform structured mesh with 32 × 32 square cells is utilised to discretise the domain, so
that the bubble is meshed with about 25 cells per diameter. The simulation is run with a constant time step of 10−3 s
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Figure A.1: Maximum capillary number, Camax = µUmax/σ, versus nondimensional time, t∗ = t/tcap with tcap =
√
ρD3/σ, for the static bubble

test case performed with different advection and curvature calculation methods available in the library TwoPhaseFlow [19]: gradAlpha stands for
κ = ∇ · (∇c/|∇c|), RDF stands for Reconstructed Distance Function, fitParaboloid identifies the parabolic fit adopted in this work, whereas HF
stands for Height Function method.

for an overall sampling time of t = 71.5 s, which is much larger than the characteristic time of the spurious velocity
generated and thus enables a robust statistical analysis [42].

The temporal evolution of the maximum value of the spurious velocity generated within the domain is presented
in Fig. A.1 for the different algorithms tested. The reference case is OpenFOAM’s built-in isoAdvector (geometric
VOF) solver, with the interface curvature κ within the surface tension force term calculated based on the gradients of
the volume fraction. This yields the largest spurious currents, with magnitude little below 10−2 in nondimensional
units. InterFoam performs slightly better, owing to the algebraic VOF that allows a smoother interface, thus making
the gradients of the volume fraction better representative of the interface geometry. The use of the plic-RDF option
in isoAdvector for the interface advection alone does not impact the magnitude of the spurious velocities, but the use
of the reconstructed distance function to evaluate κ yields a significant reduction of Camax compared to the reference
case. The best performances are achieved by the parabolic reconstruction and the Height Function method. Since the
latter is limited to square/cubic mesh cells only, the parabolic reconstruction has been chosen to perform the study
presented in this article. The results of additional benchmark tests for the different surface tension algorithms available
in the TwoPhaseFlow library are included in the article of Scheufler and Roenby [19].

Appendix B. Liquid film features from the asymptotic solution of Wong et al. [14]

We report here the evaluation of selected geometrical features of the liquid film surrounding long bubbles advanc-
ing in rectangular channels, evaluated based on the asymptotic solution of Wong et al. [14] for Ca→ 0. Figure B.1(a)
displays the radius of curvature of the circular arc formed by the static meniscus at the corner of the channel cross-
section. This is calculated as [14]:

r
h

=
2ε

ε + 1 +
[
(ε − 1)2 + πε

]1/2 (B.1)

where h is the channel half-height and, since h/Rh = (1 + ε)/(2ε):

r
Rh

=
ε + 1

ε + 1 +
[
(ε − 1)2 + πε

]1/2 (B.2)
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which is plotted in Fig. B.1(a) as a function of the channel aspect-ratio ε.
The static cross-sectional gas fraction is approximated by taking the area of a quarter of the cross-section and

subtracting the area of the circular liquid lobe left at the corner (see insets in Fig. B.1(a)):

αs =
hw − r2(1 − π/4)

hw
(B.3)

where w is the channel half-width and, rearranging:

αs = 1 −
1 − π/4

ε

( r
h

)2
(B.4)

where r/h can be calculated via Eq. (B.1). The static gas fraction obtained using Eq. (B.4) is plotted in Fig. B.1(b).
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Figure B.1: Results from the theory of Wong et al. [14]: (a) radius of curvature r of the circular arc formed by the meniscus at the corner of the
channel cross-section, Eq. (B.2); (b) cross-sectional static gas fraction αs, Eq. (B.4); (c) transversal distance `x between minimum film thickness
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constant values of c.
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The transversal distance `x between minimum film thickness location and channel centre along the width is cal-
culated as indicated in Eq. (11) and the result is displayed in Fig. B.1(c). The figure reports also the plot of the
cross-sectional half-area of the thin film in the first stage of film rearrangement which, according to Wong et al. [14],
can be obtained by integrating the film profile:

A0

h2 =
1

(3Cab)2/3

`x∫
0

δ0(x) dx (B.5)

with the film profile δ0(x) expressed as:

δ0

h
= 1.34

( r
h

)
Cab

2/3

1 +

(
π

2`xc

)2

tan2
(
πx
2`x

)−1/3

(B.6)

with c being a constant that identifies the shape of the apparent contact line at the bubble front. This constant depends
on ε and does not have an analytical expression. Wong et al. [14] calculated it by fitting their numerical results and
provided values only for 1 ≤ ε ≤ 2. The resulting trend of A0 within this range is displayed as a red solid line
in Fig. B.1(c). To extrapolate A0 to larger aspect-ratios, we used Eqs. (B.5) and (B.6) with four selected values of
c: c = 1.86, which is the actual value corresponding to ε = 2, and three lower values, because c decreases with
increasing ε. The four extrapolated trends are plotted in Fig. B.1(c) with red dashed lines and indicate that, regardless
of the value of c, the film area is approximately a linear function of ε as ε > 1. Since Fig. B.1(c) shows that `x ∼ ε as
well, this justifies the assumption made in Sec. 5.1.1 that the length of the first stage of film rearrangement `7

x/(A
3
0Cab)

can be well approximated as ε4/Cab.
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