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Abstract
The association process of Feshbach molecules is well described by a Landau–Zener (LZ)
transition above the Fermi temperature, such that two-body physics dominates the dynamics.
However, using 6Li atoms and the associated Feshbach resonance at Br = 834.1 G, we observe an
enhancement of the atom–molecule coupling as the fermionic atoms reach degeneracy,
demonstrating the importance of many-body coherence not captured by the conventional LZ
model. In the experiment, we apply a linear association ramp ranging from adiabatic to
non-equilibrium molecule association for various temperatures. We develop a theoretical model
that explains the temperature dependence of the atom–molecule coupling. Furthermore, we
characterize this dependence experimentally and extract the atom–molecule coupling coefficient
as a function of temperature, finding qualitative agreement between our model and experimental
results. In addition, we simulate the dynamics of molecular association during a nonlinear field
ramp. We find that, in the non-equilibrium regime, molecular association efficiency can be
enhanced by sweeping the magnetic field cubically with time. Accurate measurement of the
atom–molecule coupling coefficient is important for both theoretical and experimental studies of
molecular association and many-body collective dynamics.

In the past decades, Feshbach molecules formed via magnetoassociation [1–5] have captured much
attention in the study of unitary dynamics [6], collective dynamics [7, 8] and many-body effects [9].
Starting from BCS pairs, deeply bound molecules are created when the magnetic field is tuned across the
Feshbach resonance. A simple model that captures the atom–molecule dynamics is a spin–Boson coupled
model [10–12], where BCS pairs and molecules are mapped to spin-half and bosonic particles, respectively.
At zero temperature, the spin–Boson model exhibits rich collective, many-body dynamics [13, 14].
Combined with established cooling and trapping techniques [15, 16], this opens up opportunities to
explore new fundamental physics [17–21], controlled chemistry [22–26] and the quantum simulation of
complex many-body systems [27–30].

A key parameter by which the dynamics of the spin–Boson model are characterized is the
atom–molecule coupling coefficient. The coupling coefficient determines the time scale of the
Landau–Zener (LZ) transition [4, 31], and many-body dynamics [10, 11, 32–37] of the atom–molecule
system. Understanding the coupling coefficient therefore allows control of the molecular dynamics,
including pathways to adiabaticity, and is also crucial for ultracold quantum chemistry. We show here that
the temperature dependence of the coupling constant reveals the onset of condensation and provides a
smooth connection between the LZ regime and the fully degenerate regime.

Many theoretical works have shown that the coupling coefficient depends on the magnetic moment of
the atom, the background s-wave scattering length and a volume parameter [1, 12]. Here both the magnetic
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Figure 1. Temperature dependence of coherence of Feshbach molecules. (a) Above the Fermi temperature (top), the thermal
wavelength of the atoms is comparable to or smaller than the typical size of the Feshbach molecule. Around the Fermi
temperature (middle), the thermal wavelength of atoms is larger than the size of BCS pairs, such that the molecules are partially
coherent. At very low temperature (bottom), macroscopic coherence in the atomic gas is established and the 6Li molecules form a
Bose–Einstein condensate. (b) Broad Feshbach resonance of 6Li at magnetic field Br = 834.1 G, showing the scattering length as
a function of the magnetic field for the zero energy collision between an mf = −1/2 and an mf = +1/2 6Li atom. By ramping
down the magnetic field linearly from 860 G to 707 G, pairs of atoms with opposite spin form Li2 molecules. (c) Experimental
timing. An ensemble of 6Li atoms in mf = ±1/2 are prepared with equal populations in a dipole trap. The magnetic field is
linearly decreased across the Feshbach resonance to 707 G. We then detect the remaining (unassociated) atoms via absorption
imaging.

moment and the background s-wave scattering length are constants near the resonance. On the other hand,
it has been shown theoretically that the atom–molecule dynamics becomes collective and should depend on
N (N to be the total number of atom pairs), i.e. the association is enhanced by many-body coherence
[11, 35, 38–41]. In the fully degenerate regime, the association efficiency is enhanced due to the target state
being Bose condensed. This typically requires ultracold temperatures, where the de Broglie wavelength is
large, even comparable to the spatial extension of the gas. Experimental and theoretical studies in this
regime have provided evidence that the atom–molecule dynamics depends on the entire ensemble. An
emerging question is how the coupling coefficient behaves in intermediate temperature regimes 0 < T < TF

and how it depends on the relevant length scales, such as the de Broglie wavelength and the trap
dimensions. A systematic experimental investigation of this dependence has yet to be conducted.

In this work, we investigate collectively enhanced magnetoassociation of 6Li atoms below and above the
Fermi temperature (figure 1(a)). The magnetic field is ramped linearly across the broad Feshbach resonance
at Br = 834.1 G, from BCS pairs (B > Br) to Feshbach molecules (B < Br) [42], as depicted in figure 1(b).
The fraction of atoms converted to molecules is measured experimentally, as a function of both the
temperature of the atomic gas and the sweep rate of the magnetic field. The atom–molecule coupling
coefficient is derived from the experimental data through a modified LZ model. We observe that the
coupling coefficient increases when the temperature of the atomic gas is lower than the Fermi temperature.
An empirical theory based on the mean-field approximation is used to interpret the enhancement of the
coupling coefficient as a result of the increased spatial coherence of the molecules, as illustrated in
figure 1(a). With the coupling coefficient, we then theoretically examine the molecular formation dynamics
in the quantum degenerate regime. Our numerical simulations based on full quantum mechanics and
beyond the mean-field approximation show that molecule conversion can be increased in the diabatic
regime when the magnetic field is changed cubically with time. This provides insight into the
magnetoassociation process at ultracold temperatures and will be important for the development of
quantum technologies based on ultracold molecules.

This paper is constructed as follows. First, we present the experimental protocol and data, which show
that the molecular conversion efficiency is temperature dependent. Second, we revisit the LZ model, and
make a comparison between the coupling strengths fitted from the experiment and the calculated values
based on two-body coupling. Based on the observed Bose enhancement, we provide a theoretical analysis of
the enhancement rate, which agrees with the experimental data. Lastly, we propose a non-linear quench
scheme, which may further enhance molecular conversion according to our simulation.
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Figure 2. Molecule formation at different temperatures and sweeping rates. (a) Remnant fraction of non-associated atoms.
Different colors refer to different temperatures as given in the legend. When the inverse ramp rate α−1 is low (i.e. fast ramp), the
atom fraction is large. Decreasing the ramp speed reduces the fraction of remaining atoms. The solid lines are fitting results based
on equation (3). The error bars are the standard error of five measurements. We show the temperature dependence of the
molecule fraction for a fast ramp with α−1 = 1 ms G−1 in (b) and a slow ramp with α−1 = 4 ms G−1 in (c). In both cases, the
molecule fraction increases when the temperature is decreased. For the slow ramp, the molecule fraction is around 80% when
T/TF ∼ 0.1. In the experiment, the initial and final magnetic field are Bi = 860.6 G and Bf = 707 G respectively.

1. Experiment

In our experiment, we first prepare a cloud of cold 6Li atoms in a crossed optical dipole trap. A balanced
spin mixture of two hyperfine states is loaded from a magneto-optical trap (MOT) and evaporatively cooled
under a static magnetic field of Bi = 860.6 G, thus placing the atoms on the fermionic side of the Feshbach
resonance (see appendix A for details). With the atoms held in the dipole trap, the magnetic field is then
ramped linearly across to the bosonic side of the resonance according to B(t) = Bi − αt, where B(0) = Bi,
B(tf ) = Bf and the ramping rate α = (Bi − Bf )/tf . The quench ends with Bf = 707 G, and tf is tuned in
accordance with α. During this process a fraction of the atoms associate into Feshbach molecules. An
absorption image of the resulting cloud is taken using light resonant with the D2 line of unassociated atoms
of one spin species after a time-of-flight of 1.5 ms. Due to the molecular binding energy, the imaging light is
now detuned by many linewidths (178 MHz binding energy vs natural linewidth of 6 MHz) from the
corresponding transition in magneto-associated atoms. As a result, the absorption imaging process detects
only the unassociated atoms. The molecular conversion efficiency can then be determined by comparing the
number of unassociated atoms remaining after the magnetic field ramp to the number present before. For
each experimental setting a calibration procedure is applied by ramping back over the resonance, thus
dissociating molecules back into atoms (appendix B). A range of different ramping rates α are employed,
such that the total ramping time, tf , varies from 50 to 700 ms. This whole procedure is then repeated at
temperatures between 3.2 μK and 130 nK, i.e. both above and below TF. This allows us to explore the
molecular association behavior over a broad range of initial temperatures of the atomic gas.

We first investigate non-equilibrium and equilibrium molecule formation by varying the ramp time.
The experimental results are shown in figure 2(a). At a given temperature T/TF, the fraction of remaining
atoms (as determined via absorption imaging) depends on α−1 nonlinearly. A general trend for all
temperatures is that the fraction of remaining atoms increases when the magnetic field is changed faster.
The fraction of the remnant atoms (molecules) is small (large) when α is small. We find that the remnant
atom fraction is non-negligible even in the adiabatic regime. The molecule formation efficiency, i.e. the
ratio of the molecules formed to initial atom pairs present, in the adiabatic limit has been shown to be
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influenced by multiple collisions [43], and many-body effects [44]. Combined with experimental
imperfections, such as spin state imbalance in the initial atom cloud, these are sufficient to explain our
observation of sub-unity conversion efficiencies. In the opposite, diabatic regime when α is large, we find
the remnant atom fraction increases significantly with respect to α after sweeping the magnetic field.

We find that the molecule conversion rate changes dramatically at different temperatures. In figures 2
(b) and (c), the molecule conversion is shown as a function of the temperature of the atomic gas. When the
ramp is fast (figure 2(b)), the molecule fraction is low at high temperatures and high when the temperature
is below the Fermi temperature TF = �

2/(2mkB)(3π2n)2/3, with � being the reduced Planck constant, kB the
Boltzmann constant, m the mass of a 6Li atom and n the total atom number density. The molecule fraction
increases monotonically as temperature decreases. Similar dependence is found in the case of a slow ramp
(figure 2(c)). Note that for T/TF = 0.61, this is not the case for very fast ramps. In this regime (fast ramps)
the data points for different temperatures are very close to each other, the error bars overlap and the
observed variation is attributable to experimental fluctuations. The data points for the two lowest
temperatures are also very close to each other as the molecular production efficiency saturates in the low
temperature limit (see figure 2(c)). However, one should note that the overall conversion efficiency is higher
in this case. For example, the final molecule fraction (at T = 130 nK) increases from less than 60% for
α−1 = 1 ms G−1 to >80% for α−1 = 4 ms G−1. The conversion rate is generally high, comparable
efficiencies (>80%) have been observed and analyzed in other experiments and theories [2, 22, 45].

2. Atom–molecule coupling coefficient

A key parameter to describe the atom–molecule dynamics is the atom–molecule coupling coefficient. While
existing theoretical works use different Hamiltonians to describe molecule formation [1, 35, 46], the
coupling coefficient is generally given by [47, 48]

gc = �

√
4π|abgΔB|Δμ

mV , (1)

where V , abg, ΔB and Δμ are the mode volume, background scattering length, resonance width, and the
difference in magnetic moments between open and closed channels respectively. In this experiment,
Δμ = 2μB with μB being the Bohr magnetic moment. At sufficiently low temperatures, the coupling
constant is not directly associated with temperature except through V . To reach different temperatures, the
dipole trap frequencies are varied; the mode volume V is determined from the trapping frequencies [35].
Equation (1) has been widely accepted under low densities or relatively high temperature (T � TF)
conditions [2], where the molecular coupling is truly based on two-body physics. Nevertheless, we note that
when T � TF, equation (1) needs to be modified as the energy (momentum) dependent scattering should
be taken into account [1, 12], but it is beyond our work.

The coupling coefficient gc is a composite parameter and considered as a constant. It connects the
atomic properties (abg, Δμ and ΔB) and external fields (V) of the system. Although it is an important
parameter when modeling atom–molecule dynamics [10, 11, 32], the value of gc has not been widely
discussed and a detailed, temperature-dependent experimental measurement has not been achieved so far.
An investigation of the coupling coefficient is important to understand the dynamics of the ensemble under
adiabatic vs non-adiabatic timescales, and to study shortcuts to adiabaticity [49–53].

To obtain the coupling coefficient, we note that parameters abg and ΔB have been measured in a
number of experiments [54]. The mode volume of strongly interacting Fermions in an anisotropic

harmonic trap is V = 4π
3 a3

hoξ
3/4
B

√
24N, where the oscillator length is aho = (�/mω)1/2 with ω the geometric

mean of the oscillation angular frequency. The parameter ξB is the Bertsch factor [55, 56] accounting for
the atomic interactions. In the dilute limit, ξB ≈ 0.37 is obtained from Monte Carlo simulations [57]. Using
the experimentally obtained total atom number N (and hence V), we obtain the coupling coefficient gc. The
related parameters and the coupling coefficient are summarized in table 1. The table shows that the
coefficient gc varies only marginally as we change the temperature. Note that the value of gc depends on the
definition of the mode volume V , while gf is a parameter that is directly obtained from the experimental
data.

The molecule formation can be described by a two-state model [54], where two atoms form a molecule
through a LZ transition. The two-state model is used to fit the experimental data. The dynamics is governed
by the Hamiltonian

H =

(
0 gc

gc δ(t)

)
, (2)
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Table 1. Overview of the calculated and fitted coupling coefficients and the resulting enhancement factor
for the respective temperature.

Fermi temp.
TF (μK)

Temp.
T/TF

Calculated
ggc (2π�× kHz)

Fitted
g gf (2π�× kHz)

Enhancement
g2

f /g2
c

1.23 (1) 0.11 (1) 4.79 8.78 (42) 3.4 (6)
1.30 (1) 0.20 (1) 4.62 7.68 (14) 2.76 (16)
1.39 (1) 0.43 (2) 4.48 6.46 (22) 2.08 (20)
1.48 (1) 0.50 (2) 4.30 5.31 (29) 1.52 (21)
1.53 (3) 0.62 (1) 4.30 4.51 (42) 1.10 (21)
1.61 (3) 0.86 (2) 4.19 4.55 (27) 1.18 (15)
1.69 (2) 1.23 (7) 4.69 5.95 (29) 1.61 (20)
1.86 (3) 1.73 (4) 4.73 4.64 (47) 0.96 (19)

where δ(t) = ΔμB(t). Based on this two-state model, the time-dependent Schrödinger equation can be
solved analytically. In this idealized scenario, the molecule conversion rate ΓLZ

m is given by
ΓLZ

m = 1 − exp
[
−2πg2

c /(Δμα)
]

in the limit t →+∞, and the remnant fraction of atoms is na = 1 − ΓLZ
m .

On the other hand, for T ∼ 0, theoretical investigation of atom–molecule conversion for fully
degenerate gases has gone beyond the simple two-state model. It has been found that collective dynamics is
expected due to the many-body coherence of the Feshbach molecules. When taking the many-body effect
into account, the atom–molecule coupling strength should be scaled by a factor

√
2 − Γm [40, 41, 58]. We

adapt this theory to analyze our experimental data in the low temperature regime. To account for
non-participating atoms during the conversion, we introduce a prefactor Γ∞ for Γm, which accounts for
thermal fluctuations as well as for pairing imbalance and experimental imperfections, such as the
inhomogeneity of the laser fields and collisional loss. The molecule conversion rate Γm is therefore
described by

Γm = Γ∞

[
1 − exp

(
− 2πg2

f

Δμα
Cm

)]
, (3)

where gf is the coupling coefficient obtained by fitting the experimental data (see table 1), and
Cm = (2 − Γm)(2 − Γ∞) is a parameter that is determined from a fit to the experimental data. Using (3)
and the relation na = 1 − Γm, we fit the experimental data from the diabatic to the adiabatic sweeping limit
(see figure 2). In the latter case, the adiabatic remnant atom fraction nr approaches nr = 1 − Γ∞ as α→ 0,
hence Γ∞ will depend on the temperature of the atomic gas. This choice reflects the fact that in the
experiment, some fraction of the atoms do not participate in the atom–molecule conversion process, due
to, e.g., the finite temperature and inhomogeneous density. This fitting equation is consistent with the one
studied in references [40, 41, 58], where the use of the ideal situation (zero temperature and homogeneous
density) corresponds to Γ∞ = 1.

By fitting the experimental data with equation (3), we obtain the fitted coupling coefficient gf shown in
table 1. In contrast to gc, the fitted coefficient g f depends on the temperature of the gas. We find that gf is
small at higher temperatures and for T > TF, gf is nearly identical to gc. At lower temperatures gf grows
gradually and is almost twice gc when T/TF = 0.11. We note that at T/TF = 1.23, gf is slightly larger than
its neighboring values. It is unclear what causes this discrepancy.

3. Coherence enhanced molecule conversion

An interesting question arising from the experimental study is what is the relation between gc and gf . We
first define a geometric factor R = g2

f /g2
c . Using the experimental data, R is plotted in figure 3 (also see

table 1). It shows that the fitted coupling coefficient becomes large when the temperature is decreased. Note
that the system volume and atom number change with temperature. This favours an empirical theory to
explain the enhancement of the coupling coefficient. Though the loosely bound Feshbach molecules can
spatially extend over the atom cloud, the deeply bound molecules have a much smaller size. When the
spatial extension of the molecule is smaller than the thermal wavelength at low temperatures, many-body
coherence of the molecules can not be neglected [17, 59]. We can estimate that the coupling coefficient is
amplified to be gT =

√
NTgc, where NT = ρVT is the number of molecules in a thermal volume VT at

density ρ. Assuming that the molecules have the same temperature as the atoms, their de Broglie wavelength
at temperature T is given by λT = �

√
2π/MkBT, with M being the mass of the Li2 molecule. Thermal

volumes of molecules at temperature T are hereafter VT = λ3
T.

For the expected enhancement of the molecule creation, we compare gT with the coupling coefficient at
the Fermi temperature gF =

√
NFgc, where NF = ρVF, with VF = 3π2

�
3
√

(2mkBTF)−3 corresponding to a

5
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Figure 3. Temperature dependence of the coupling coefficient. The orange line represents the factor RT as defined in
equation (4). The theory estimation is bounded by 1 (blue horizontal line) in the thermal case, and the orange line is dashed
where it is lower than this bound.

Fermi volume at the temperature TF. As shown by the LZ transition and equation (3), the molecule fraction
depends on g2 when other parameters are given. Inspired by this observation, we therefore characterize the
temperature dependence of the molecular production enhancement with a geometric ratio factor,

RT =
g2

T

g2
F

=
2
√

2

3
√
π

(
T

TF

)−3/2

, (4)

which leads to a high agreement with the experimental data.
This temperature dependence of the geometric ratio factor shows qualitative agreement with the

experimentally fitted gf when the temperature T < TF, as shown in figure 3. We thus can interpret the
experimental result as follows. When the temperature is high T > TF, the thermal volume is smaller than
the Fermi volume, VT < VF. The atom–molecule coupling takes place at the two-body level in this high
temperature regime. When T < TF, however, the thermal volume is larger than the Fermi volume, which
leads to many-body enhanced collective atom–molecule coupling. This means that the molecule conversion
efficiency will be higher at lower temperatures, which is consistent with the experimental result
(see figure 3). Note that equation (4) provides a theoretical maximum and experimental values are likely to
be below that. Technological restrictions, including the limited lifetime of the dipole trap, three body loss,
collisional loss, heating time and the stability of the magnetic fields, are inevitable in low-temperature
experiments, which increases the difficulty of reaching the adiabatic regime in our current settings.
Moreover, shot-to-shot variations can lower the resulting average value of gf but not enhance it. Finally, we
would like to point out that the model used to interpret the experimental result (i.e. R) is empirical.
Rigorous theories are thus needed in order to reveal the scaling of the coupling coefficient.

4. Quantum dynamics of finite systems

So far we have focused on linear ramps, where the magnetic field is changing linearly across the Feshbach
resonance. Here, the maximal molecule conversion rate is only realized in the adiabatic limit. Knowing the
coupling coefficient allows the development of alternative schemes to control the molecule association, in
particular the achievement of a high conversion rate without the restriction to the adiabatic limit. Recent
studies have shown that shortcuts to adiabaticity can be realized through employing engineered,
time-dependent light–atom coupling [51]. In comparison to the linear association regime, the advantage of
a shortcut to adiabaticity is that it provides a fast route to reach the target molecular state while maintaining
a high transition probability. Inspired by this advantage, we will explore theoretically the speed-up of the
molecule conversion through nonlinear driving, i.e. the magnetic field is swept nonlinearly as a function of
time. In particular, we will show that the conversion becomes faster when the magnetic field is changed
according to B(t) ∝ t3.

6
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Figure 4. Quantum dynamics of the molecule formation. (a) Comparison between linear (red diamonds) and polynomial
magnetic field ramping (blue triangles) for the remnant atoms at different rate ᾱ for a single pair of atoms. The linear ramping
follows the LZ formula (black line). Dynamical evolution of the molecule fraction for (b) ᾱ = 1, (c) ᾱ = 5, (d) ᾱ = 10. When
the number of atom pairs is N = 1, the final conversion efficiency drops dramatically as ᾱ increases ((b)–(d), red). However,
when N = 4, the final conversion efficiency is more resistant to the ramping rate ((b)–(d), blue).

At low temperature T < TF, the Hamiltonian [10, 11, 59] describing the dynamics of molecule
formation is given by H =

∑
j Hj, where Hamiltonian of the jth pair of atoms reads

Hj = δ(t)b̂†j b̂j +
∑

k

εjk

(
ĉ†jk↑ ĉjk↑ + ĉ†jk↓ĉjk↓

)

+ gc

(
b̂†j
∑

k

ĉjk↓ĉjk↑ + H.c.

)
.

(5)

Here b̂j (b̂†j ) is the bosonic annihilation (creation) operator of a molecule in the jth energy level of the

harmonic trap, while ĉjkσ (̂c†jkσ) denotes the annihilation (creation) operator of a fermionic atom with
momentum k and spin σ (σ =↑, ↓). The parameter δ(t) = ΔμB(t) gives the molecular energy, where B(t) is
the magnetic field which is tuned through the resonance point, and εjk is the sum of kinetic and potential
energy of the atom pair. It is a good approximation to neglect this term when the temperature is low [11].
The atom–molecule coupling coefficient, gc, is given by equation (1). At low temperatures, molecules

condense into the ground state, and only the harmonic state j with the lowest energy is occupied, i.e. b̂j → b̂

(b̂†j → b̂†). To study dynamics of the molecule formation, we propose a general ramping scheme

δ(t)/gc = ᾱ(gct)ν , (6)

where ᾱ is a dimensionless ramping rate and ν is an odd positive integer (if ν is even, then δ(t) becomes
non-monotonic). The ramping exhibits power-law dependence on time, and returns to the LZ problem
when ν = 1.

We simulate the dynamics with the effective two-level model of equation (5), where the system starts
with the atomic state and ramps from δ/gc = −50 to 100. For a single pair of atoms, the ramping with
ν = 3 is drastically different from the linear ramping, as shown in figure 4(a). In case of ν = 1, the atom
fraction is small only when the ramping is slow. In contrast, the atom fraction in the nonlinear ramping
(ν = 3) is much smaller than the linear case even when ᾱ is large (figures 4(b)–(d)). The minimal
(maximal) atom (molecule) fraction appears when 1/ᾱ ≈ 0.2. The abrupt reduction of the atom fraction
happens due to the non-equilibrium dynamics.

We then simulate the influence of the many-body effects by increasing the number of atom pairs. The
results are shown in figures 4(b)–(d). For the linear ramping, the molecule fraction increases gradually with
increasing N (see figures 4(b)–(d), red). However the conversion efficiency reduces when the ramping
becomes faster. When ν = 3 and N = 4, the molecule fraction is lower than the ν = 1 case in the slow
ramping regime (see figures 4(b)–(d)). In the fast ramping regime (d), the final conversion rate is
significantly enhanced when ν = 3. The choice of an odd number was made to keep the quench process
monotonic, apart from that ν = 3 was chosen arbitrarily. This result suggests that applying the nonlinear
ramp in the fast regime is particularly beneficial as it facilitates the molecule formation.

7
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5. Conclusion

Applying a linear magnetic field ramp, we have performed molecule association measurements in the
adiabatic and diabatic regime for temperatures between the deeply degenerate and non-degenerate regimes.
Our experiment shows that the fraction of atoms associated into molecules increases when both the
temperature of the atom gas and the sweeping rate of the magnetic field are decreased. We have measured
the atom–molecule coupling coefficient, which increases at lower temperatures and in the adiabatic regime,
as a result of many-body coherence. The qualitative trends predicted by an empirical theory agree with our
experimental findings, and quantitative agreement appears strong at temperatures slightly below the Fermi
temperature. The quantitative differences at even lower temperature indicate that a more sophisticated
theory and further experiments are needed. Our study provides a first attempt to accurately measure the
atom–molecule coupling coefficient. Exploitation of the coupling coefficient is important to understand the
time scale of the molecule association and might lead to a path for efficient molecule creation through
ramping the magnetic field nonlinearly. For example, our theoretical study shows that cubic ramping
enhances the molecule production efficiency even in the diabatic regime. Such nonlinear ramping is thus
worth investigating in future experiments.
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Appendix A. Technical details of the experimental procedure

The generation of the cold atom cloud prior to magnetoassociation begins with a MOT [60]. The MOT is
loaded via a Zeeman slower [61], which slows an atomic beam that is transmitted through a differential
pumping stage from a source chamber. Over a 10 s loading cycle, the MOT captures ∼2 × 108 6Li atoms.
An additional cooling step, in which the trapping lasers are tuned to half a natural linewidth below
resonance (for optimal Doppler cooling), brings the temperature of the atom cloud down to ∼300 μK.

An optical dipole trap is loaded from this cold cloud. A 100 W fiber laser, operating at 1070 nm, is used
to produce a crossed-beam dipole trap, in which each beam is focused to a waist of 80 μm. The crossing
angle is 14 degrees. This captures up to 2 × 106 atoms. These atoms are then evaporatively cooled to a
regime close to quantum degeneracy to temperatures between 0.1–2.0T/TF with total atom numbers
between 100 000–200 000 atoms. After the loading, the dipole trap is first held at constant power for
600 ms, following which the power in the optical dipole trap is ramped down to the range of tens to
hundreds of mW. The end point depends on the final trap depth desired and is reached in a series of linear
ramps that collectively approximate an exponential decay of the trapping power. The power is lowered
through a combination of reducing the laser current and the use of an acousto-optic modulator. A
photodiode is used to measure the optical power that passes through the dipole trap, with servo-controlled
feedback to the acousto-optic modulator enabling active stabilization of the dipole trap’s depth to its set
value. This is necessary to reduce unwanted heating effects arising from small variations in trap depth.

At the end of this evaporative cooling cycle, which lasts ∼10 s, on the order of 105 atoms typically
remain, at temperatures ranging from tens of nK to several μK. The cloud is then held at constant trap
depth corresponding to trapping frequencies between 622–750 Hz (radially) and 74–90 Hz
(longitudinally).

The magnetic field is then ramped linearly from 860.6 G to the BEC side of the Feshbach resonance
(707 G). The linear magnetic field ramp is applied through a change in the current in the Feshbach coils as
shown exemplary in the figure A1.
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Figure A1. Magnetic field ramp. Current transducer signal for a 50 ms ramp.

Appendix B. Determination of molecule fraction via absorption imaging

To reduce the impact of technical noise sources on the absorption imaging, the atom cloud was released
from the dipole trap and allowed to expand for a period of 1 to 2 ms (depending on exact experimental
parameters) prior to imaging. The size of the atom cloud after this period was typically some hundreds of
micrometers, which greatly exceeds our imaging resolution of 3 μm. Each absorption image is
background-subtracted and then normalized to an equivalent image taken 50 ms after the atoms have been
dispersed, which greatly reduces the influence of technical noise sources on our data.

We also carry out additional control experiments to account for the effect of loss of unassociated atoms
from the dipole trap during the magnetic field ramp. If not properly accounted for, this could cause
overestimation of the molecular fraction after the ramp, since we assume that atoms not seen in the
absorption image are associated into molecules. We therefore conduct, for each set of experimental
conditions under which we take data, a control experiment in which the magnetic field is ramped across the
Feshbach resonance and then back again, thus dissociating any molecules that were previously formed.
This process is time-symmetric, taking twice as long as the unidirectional ramp, and we therefore assume
that the fraction of the atoms remaining after this process is equal to the square of the total fraction
remaining (in both associated and unassociated forms) after a unidirectional ramp. This allows us to
estimate the reduction in apparent atom number that results from atom loss during the magnetic field ramp
under each set of experimental conditions employed. By dividing the apparent unassociated atom fraction
that we measure using absorption imaging by this value, we can thus eliminate the systematic bias resulting
from atom loss during the magnetic field ramp.

Appendix C. LZ transition of a two-level system

The molecule formation via sweeping a magnetic field through the Feshbach resonance can be modeled to
be a LZ transition. Using a two-state process picture [31, 54], LZ describes the transition under the
Hamiltonian

H =

(
ε g
g δ(t)

)
, (C.1)

where δ(t) slowly increases from −∞ to +∞ at a constant speed δ̇. Near a Feshbach resonance,
δ(t) = ΔμB(t) = −αt, where Δμ is the difference of magnetic moment, and α the sweeping rate. g is the
atom–molecule coupling strength. For fermions, it is equal to g = �

√
4π|abgΔB|Δμ/m/

√
V [12]. For 6Li

at Br = 834.1 G, Δμ = 2μB, the resonance width ΔB = −300 G and the background scattering length
abg = −1405a0. V is the mode volume.

Now we define the wave function |ψ〉 = A|a〉+ B|m〉 where |a〉 and |m〉 denote the atomic and
molecular state with probability amplitude A and B, respectively. The dynamics of A and B are governed by
the Schrödinger equation,

Ȧ = −igB,

Ḃ = −igA + iαtB.

9
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Table C1. Overview of the calculated and fitted coupling coefficients and the resulting enhancement factor for the respective
temperature.

Fermi temp.
TF (μK)

Temp.
T/TF

Calculated g
gc (2π�× kHz)

Fitted g
g f (2π�× kHz)

Enhancement
g2

f /g2
c

Peak density
ρ (1012 cm−3)

Mode volume
V (104 μm3)

Adiabatic rate
Γ∞

1.23 (1) 0.11 (1) 4.79 8.78 (42) 3.4 (6) 6.28 5.75 0.77 (2)
1.30 (1) 0.20 (1) 4.62 7.68 (14) 2.76 (16) 7.21 6.18 0.74 (2)
1.39 (1) 0.43 (2) 4.48 6.46 (22) 2.08 (20) 6.35 6.59 0.73 (2)
1.48 (1) 0.50 (2) 4.30 5.31 (29) 1.52 (21) 6.50 7.14 0.74 (5)
1.53 (3) 0.62 (1) 4.30 4.51 (42) 1.10 (21) 5.29 7.14 0.76 (1)
1.61 (3) 0.86 (2) 4.19 4.55 (27) 1.18 (15) 5.39 7.54 0.63 (4)
1.69 (2) 1.23 (7) 4.69 5.95 (29) 1.61 (20) 5.11 6.00 0.49 (2)
1.86 (3) 1.73 (4) 4.73 4.64 (47) 0.96 (19) 5.39 5.91 0.37 (3)

To convert the above equations to the standard LZ problem, we make the following transformation,

A = exp

[∫ t

t0

i
αt

2
dt

]
a = exp

[
i(t2 − t2

0 )

4

]
a,

B = exp

[
i(t2 − t2

0 )

4

]
b.

The dynamics of a and b is given by

ȧ = − iαt

2
a − igb, (C.2)

ḃ =
iαt

2
b − iga. (C.3)

We can obtain a second order differential equation of the atomic wave function,

ä +

(
g2 − iα

2
+

α2t2

4

)
a = 0. (C.4)

Using the initial condition a(−∞) = 0, we find the probability of remaining in the atomic state in the limit
t →+∞ is

Pa = exp
(
−2πg2/α

)
. (C.5)

To obtain the volume, we note that typically two-body interactions will change the shape and density
distribution of atoms in the trap. Papenbrock and Bertsch [56] introduced a parameter ξB such that the
chemical potential is scaled by the Fermi energy of the non-interacting case μ = ξBE0

F. The trapping
frequency is then scaled by

√
ξBωi accounting for the change of effective trapping frequency. Then the radii

of the atomic cloud read
Ri = ξ

1/4
B aho

ωho

ωi
(24N)1/6, (C.6)

yielding the volume of a spherical gas,

V =
4π

3
a3

hoξ
3/4
B

√
24N. (C.7)

In the BCS regime, ξB is calculated by the Monte Carlo method [57]. Though depending on trapping profile
and particle density, ξB converges to ≈0.37 in dilute limit, which is used in the calculation (table C1).

Appendix D. Many-body model of the atom–molecule coupling

The formation of bosonic molecules from pairs of fermionic atoms is modeled by a spin–boson coupled
system [10, 11, 59]. The total Hamiltonian consists of different molecular states, and for a particular
molecular state annihilated by b̂, it reads

H = δ(t)b̂†b̂ +
∑

j

εj

(
ĉ†j↑ ĉj↑ + ĉ†j↓ ĉj↓

)
+ g

⎛
⎝b̂†

∑
j

ĉj↓ ĉj↑ + H.c.

⎞
⎠.

Here δ(t) = Δμ(αt + B0) gives the molecular energy, where α and B0 are the ramping rate and the initial
value of the magnetic field. The parameter ε j denotes the kinetic and trap energy of the atom pair. Typically,
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Figure D1. Instantaneous energy spectrum. (black) The eigenstate energies for Dicke state basis (D.2) with N = 10. (red) The
energy spectrum for the effective Hamiltonian (D.3).

it can be the harmonic levels ε j = �ω( j + 1/2), or free space by replacing j by k, εk = �
2k2/2m. The

molecular energy is given by δ(t).
When sweeping the magnetic field from 860 G to 707 G, the molecular energy changes from

δ(t0)/� = −2π × 72.7 MHz to δ(tf )/� = 2π × 355 MHz. The maximum value of ε j (Fermi level) is
roughly εF = �

2/(2m)(3π2n)2/3 ≈ 2π�× 8.03 kHz for a density of n = 1012 cm−3. Taking the full range of
the magnetic field, the numerical cost in the simulation will be very expensive. To simplify the calculation,
we have chosen an initial value of magnetic field relatively close to the resonance, which captures the LZ
transition dynamics.

As we ignore dephasing and disassociation of the molecular states, the system is closed. We will use the
Dicke state basis due to the U(1) symmetry (i.e. particle number conservation), which will significantly
reduce the Hilbert space. For 2N atoms, there are N + 1 states encoded by the quantum number m (equal to
the number of molecules), such that

|N;m〉 = 1/
√

Cm
N

∑
x∈{0,1}N & wt(x)=m

|m, x〉, (D.1)

where x refers to N-qubit state, Cm
N is the combination number, and wt(x) is the Hamming weight (the

number of non-zero bits in the sequence x). For example, |3; 2〉 = 1/
√

3
(
|2, 110〉+ |2, 101〉+ |2, 011〉

)
.

Then we show that the Dick state basis is closed for the Hamiltonian equation (D.1), and we only need to
focus on the off-diagonal part,〈

N, m + 1|b̂†
∑

j

ĉj↓ĉj↓|N, m

〉
=

1√
Cm+1

N Cm
N

√
m + 1Cm

N

= (m + 1)
√

N − m.

The matrix form of the Hamiltonian reads

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 g
√

N 0 . . . 0 0
g
√

N δ(t) g2
√

N − 1 . . . 0 0
0 g2

√
N − 1 2δ(t) . . . 0 0

...
...

...
. . .

... 0
0 0 0 . . . (N − 1)δ(t) gN
0 0 0 . . . gN Nδ(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.2)

The instantaneous energy spectrum is shown in figure D1.
A comparison of the two-level model with the Hamiltonian

H =

(
0 gN3/2

gN3/2 Nδ(t)

)
(D.3)

are shown. The spectra of the two-level model agree with the upper and lower bound of the Dick states, and
the energy gap is scaled by ∼ N3/2, and the time is scaled by ∼ N−1.
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[34] Szymańska M H, Góral K, Köhler T and Burnett K 2005 Conventional character of the BCS–BEC crossover in ultracold gases of

40K Phys. Rev. A 72 013610
[35] Sun D, Abanov A and Pokrovsky V L 2008 Molecular production at a broad Feshbach resonance in a Fermi gas of cooled atoms

Europhys. Lett. 83 16003
[36] Altland A, Gurarie V, Kriecherbauer T and Polkovnikov A 2009 Nonadiabaticity and large fluctuations in a many-particle

Landau–Zener problem Phys. Rev. A 79 042703
[37] Yi S and Kim S W 2016 Atom–molecule conversion in a periodically driven spin–boson model Phys. Rev. A 93 013616

12

https://orcid.org/0000-0002-5633-7564
https://orcid.org/0000-0002-5633-7564
https://orcid.org/0000-0001-6731-1311
https://orcid.org/0000-0001-6731-1311
https://doi.org/10.1016/s0370-1573(99)00025-3
https://doi.org/10.1016/s0370-1573(99)00025-3
https://doi.org/10.1103/physrevlett.94.120402
https://doi.org/10.1103/physrevlett.94.120402
https://doi.org/10.1103/physrevlett.83.1550
https://doi.org/10.1103/physrevlett.83.1550
https://doi.org/10.1103/physreva.61.022721
https://doi.org/10.1103/physreva.61.022721
https://doi.org/10.1038/nature01738
https://doi.org/10.1038/nature01738
https://doi.org/10.1103/physrevlett.93.050401
https://doi.org/10.1103/physrevlett.93.050401
https://doi.org/10.1103/physrevlett.92.203201
https://doi.org/10.1103/physrevlett.92.203201
https://doi.org/10.1103/physrevlett.125.193201
https://doi.org/10.1103/physrevlett.125.193201
https://doi.org/10.1103/physreva.100.013612
https://doi.org/10.1103/physreva.100.013612
https://doi.org/10.1103/physrevlett.93.120409
https://doi.org/10.1103/physrevlett.93.120409
https://doi.org/10.1103/physrevlett.95.170403
https://doi.org/10.1103/physrevlett.95.170403
https://doi.org/10.1016/j.physrep.2004.03.003
https://doi.org/10.1016/j.physrep.2004.03.003
https://doi.org/10.1103/physreva.94.033808
https://doi.org/10.1103/physreva.94.033808
https://doi.org/10.1103/physrevlett.123.123605
https://doi.org/10.1103/physrevlett.123.123605
https://doi.org/10.1016/s1049-250x(08)60101-9
https://doi.org/10.1016/s1049-250x(08)60101-9
https://doi.org/10.1016/s1049-250x(08)60186-x
https://doi.org/10.1016/s1049-250x(08)60186-x
https://doi.org/10.1103/revmodphys.78.1311
https://doi.org/10.1103/revmodphys.78.1311
https://doi.org/10.1103/physrevlett.99.150801
https://doi.org/10.1103/physrevlett.99.150801
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1126/science.1248213
https://doi.org/10.1126/science.1248213
https://doi.org/10.1038/nature10104
https://doi.org/10.1038/nature10104
https://doi.org/10.1039/b802322k
https://doi.org/10.1039/b802322k
https://doi.org/10.1103/physrevlett.104.053201
https://doi.org/10.1103/physrevlett.104.053201
https://doi.org/10.1126/science.1184121
https://doi.org/10.1126/science.1184121
https://doi.org/10.1038/nphys1939
https://doi.org/10.1038/nphys1939
https://doi.org/10.1126/sciadv.aaq0083
https://doi.org/10.1126/sciadv.aaq0083
https://doi.org/10.1038/nphys287
https://doi.org/10.1038/nphys287
https://doi.org/10.1103/physrevlett.107.115301
https://doi.org/10.1103/physrevlett.107.115301
https://doi.org/10.1103/physrevlett.104.125302
https://doi.org/10.1103/physrevlett.104.125302
https://doi.org/10.1103/physrevlett.111.185306
https://doi.org/10.1103/physrevlett.111.185306
https://doi.org/10.1088/0953-4075/37/17/006
https://doi.org/10.1088/0953-4075/37/17/006
https://doi.org/10.1103/physrevlett.87.120406
https://doi.org/10.1103/physrevlett.87.120406
https://doi.org/10.1103/physrevlett.91.080406
https://doi.org/10.1103/physrevlett.91.080406
https://doi.org/10.1103/PhysRevA.72.013610
https://doi.org/10.1103/PhysRevA.72.013610
https://doi.org/10.1209/0295-5075/83/16003
https://doi.org/10.1209/0295-5075/83/16003
https://doi.org/10.1103/physreva.79.042703
https://doi.org/10.1103/physreva.79.042703
https://doi.org/10.1103/physreva.93.013616
https://doi.org/10.1103/physreva.93.013616


New J. Phys. 24 (2022) 113005 V Naniyil et al

[38] Tikhonenkov I, Pazy E, Band Y B, Fleischhauer M and Vardi A 2006 Many-body effects on adiabatic passage through Feshbach
resonances Phys. Rev. A 73 043605

[39] Band Y B, Tikhonenkov I and Vardi A 2008 Adiabatic molecular dynamics: two-body and many-body aspects Mol. Phys. 106 349
[40] Liu J, Fu L B, Liu B and Wu B 2008 Role of particle interactions in the Feshbach conversion of fermionic atoms to bosonic

molecules New J. Phys. 10 123018
[41] Liu J, Liu B and Fu L B 2008 Many-body effects on nonadiabatic Feshbach conversion in bosonic systems Phys. Rev. A 78 013618
[42] Cubizolles J, Bourdel T, Kokkelmans S J J M F, Shlyapnikov G V and Salomon C 2003 Production of long-lived ultracold Li2

molecules from a Fermi gas Phys. Rev. Lett. 91 240401
[43] Williams J E, Nygaard N and Clark C W 2006 Theory of Feshbach molecule formation in a dilute gas during a magnetic field

ramp New J. Phys. 8 150
[44] Murthy P A et al 2018 High-temperature pairing in a strongly interacting two-dimensional Fermi gas Science 359 452
[45] Dobrescu B E and Pokrovsky V L 2006 Production efficiency of Feshbach molecules in fermion systems Phys. Lett. A 350 154
[46] Javanainen J and Mackie M 1999 Coherent photoassociation of a Bose–Einstein condensate Phys. Rev. A 59 R3186(R)
[47] Falco G M, Duine R A and Stoof H T C 2004 Molecular Kondo resonance in atomic Fermi gases Phys. Rev. Lett. 92 140402
[48] Falco G M and Stoof H T C 2005 Atom–molecule theory of broad Feshbach resonances Phys. Rev. A 71 063614
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