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Aims Familial hypercholesterolaemia (FH) is a disorder of LDL cholesterol clearance, resulting in increased risk of cardiovas-
cular disease. Recently, we developed a Dutch Lipid Clinic Network (DLCN) criteria-based algorithm to facilitate FH
detection in electronic health records (EHRs). In this study, we investigated the sensitivity of this and other algorithms
in a genetically confirmed FH population.

Methods and
results

All patients with a healthcare insurance-related coded diagnosis of ‘primary dyslipidaemia’ between 2018 and 2020 were
assessed for genetically confirmed FH. Data were extracted at the time of genetic confirmation of FH (T1) and during the
first visit in 2018–2020 (T2). We assessed the sensitivity of algorithms on T1 and T2 for DLCN≥ 6 and compared with
other algorithms [familial hypercholesterolaemia case ascertainment tool (FAMCAT), Make Early Diagnoses to Prevent
Early Death (MEDPED), and Simon Broome (SB)] using EHR-coded data and using all available data (i.e. including non-
coded free text). 208 patients with genetically confirmed FH were included. The sensitivity (95% CI) on T1 and T2 with
EHR-coded data for DLCN≥ 6 was 19% (14–25%) and 22% (17–28%), respectively. When using all available data, the
sensitivity for DLCN≥ 6 was 26% (20–32%) on T1 and 28% (22–34%) on T2. For FAMCAT, the sensitivity with EHR-
coded data on T1 was 74% (67–79%) and 32% (26–39%) on T2, whilst sensitivity with all available data was 81% on T1
(75–86%) and 45% (39–52%) on T2. For Make Early Diagnoses to Prevent Early Death MEDPED and SB, using all avail-
able data, the sensitivity on T1 was 31% (25–37%) and 17% (13–23%), respectively.

Conclusions The FAMCAT algorithm had significantly better sensitivity than DLCN, MEDPED, and SB. FAMCAT has the best poten-
tial for FH case-finding using EHRs.
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Graphical Abstract

DLCN
Sensitivity 19%

FAMCAT
Sensitivity 74%

MEDPED
Sensitivity 31%

Simon Broome
Sensitivity 17%

The FAMCAT algorithm performed best when compared to other automated
electronic health record-based algorithms 

74% of FH patients detected in EHR
Treatment by physician following guidelines
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Introduction
Familial hypercholesterolaemia (FH) is an autosomal dominant genetic
disorder of LDL cholesterol (LDL-C) clearance resulting in a 10-fold
increased risk of coronary heart disease (CHD). The prevalence of
FH is estimated at 1:250–1:500 people worldwide, but detection rates
below 5% are common in many countries.1–3 When detected and
treated adequately early in life, the high risk of CHD can be reduced
significantly, comparable with the risk in people without FH.4

Several clinical algorithms have been developed to facilitate detec-
tion of FH, such as the Dutch Lipid Clinic Network (DLCN) criteria,
the US Make Early Diagnoses to Prevent Early Death (MEDPED)
programme, Simon Broome (SB), and the familial hypercholesterol-
aemia case ascertainment tool (FAMCAT).2,5–10 Other studies used
prediction modelling or machine learning algorithms with good diag-
nostic accuracy, but widespread implementation is lacking.9–15

Currently, there is insufficient evidence on the best strategy to iden-
tify potential FH patients in population-based screening.16,17 The
European Society of Cardiology (ESC) guidelines on dyslipidaemia
recommend the use of the DLCN criteria, a clinical scoring mechanism
based on LDL-C levels, physical examination and patient-, and family his-
tory.18 These criteria result in a cumulative score for an individual patient.
A score of ≥6 points in the DLCN algorithm is considered an indication
for genetic testing to confirm FH.2 Lower cut-off has been shown to in-
crease the sensitivity of DLCN for FH but decrease specificity.19

To increase detection of FH, we previously developed an auto-
mated, electronic health record (EHR)-based algorithm using the
DLCN criteria, with automated correction of LDL-C levels for use

of lipid-lowering therapy (LLT).20 In DLCN, LDL-C is a strong dis-
criminatory factor in the clinical diagnosis of FH.21 In the samemanner,
the use of LLTmay play a role in decreased physician alertness and un-
derdetection of FHwhen applying the DLCN algorithm in an individual
patient. Indeed, the previously described EHR-based DLCN algorithm
depends largely on correction for LLT to facilitate the detection of
FH.20 Many algorithms include clinical features that are pathognomon-
ic of FH, such as the presence of tendon xanthoma in FH. By contrast,
FAMCAT was developed from a population-based perspective and
may therefore perform differently in an EHR-based environment
with substantial numbers of patients. Indeed, algorithms may perform
differently when diagnosing an individual FH patient in comparison to
identification of potential FH cases in a large population.22

In the present study, we investigated the sensitivity of the
DLCN-based algorithm in a genetically confirmed FH population and
compared it to the sensitivity of other algorithms to improve the facili-
tation of FH detection in automated EHR-based algorithms. This was in-
vestigated both when using coded EHR-accessible data and also when
adding all available data to study the algorithm’s full potential (including
non-coded free text and non-coded data on classic phenotypical char-
acteristics like tendon xanthoma and arcus cornealis).

Methods

Selection of study population
All patients (>18 years) with a healthcare insurance-related coded diag-
nosis of ‘primary dyslipidaemia’ in 2018–2020 were selected. Patients
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were seen at the outpatient clinic by a physician specialized in lipidology.
Patient files were manually assessed for genetically confirmed FH. Other
types of dyslipidaemia were excluded (e.g. dysbetalipoproteinaemia and
familial combined hyperlipidaemia). Patient data were studied at two dif-
ferent time points to assess the possible influence of changing therapeutic
options [statins, ezetimibe, proprotein convertase subtilisin-kexin type-9
(PCSK9) inhibitors] and guidelines over time. Timepoint one (T1) was de-
fined as as close to the genetic confirmation date of FH as was available. If
the patient was <18 years at T1, but>18 years at T2, the patient was also
included. The moment of the patient’s first follow-up visit in 2018–2020
was defined as time point two (T2). Patients were excluded when infor-
mation on T1 was incomplete to perform further analyses. When T1 was
in 2018–2020 (i.e. within the timespan of T2), patients were also included.

Description of the electronic health record
system
HiX is an EHR developed by ChipSoft, Amsterdam, the Netherlands,
used by Northwest Clinics, Alkmaar, the Netherlands since 2018 and
in approximately 60% of hospitals in the Netherlands. HiX is classified
as a medical device, class IIb, certified for ISO 13485:2016 complying
with the European Medical Device Directive 93/42/EEC MDD. HiX
EHR contains data of patients from Northwest Clinics and of 465.000
people residing in the Northwest Clinics Laboratory adherence, most
of whom are cared for by general practitioners in the area. The EHR
combines demographic data, medical history (preferably coded since
2018), coded current and previous medication, clinical notes, a full array
of automatically downloaded laboratory, radiology, pathology andmicro-
biology data, financial and logistic administration, and more.

Description of data used for analysis
We calculated the sensitivity of the algorithm for DLCN≥ 6 (i.e. indica-
tion for genetic testing) both when using HiX EHR-accessible coded data
and also when adding all available data (including free text) to demon-
strate the full potential of the algorithm.We performed the same analysis
for the other algorithms [the optimized FAMCAT (FAMCAT2),
MEDPED and SB] and compared the sensitivity to that of the DLCN al-
gorithm.9,10 We specifically assessed EHR-recorded prevalence of classic
phenotypical FH characteristics in this population, like tendon xanthoma
and arcus cornealis, items often relevant to FH diagnostic algorithms.
Free text data included all free text information on patient- and family
history and physical examination. Only sufficiently specific algorithm-
related information was taken into account when available in records,
i.e. specific details of FH-related physical examination and family LDL-C
levels and the specific age at which premature CHD had occurred in fam-
ily members. Since the gold standard for this analysis was genetically con-
firmed FH, the criterion of a positive genetic test was not included for
both DLCN and SB. An overview of data used by each of the algorithms
and whether the data are coded in the HiX EHR is shown in Table 1. The
study passed the Northwest Clinics Scientific Board and approval of the
local ethical committee/Institutional Review Board (Northwest Clinics,
Alkmaar, The Netherlands) for the present study was waived since the
study does not fall within the scope of the Dutch Medical Research
Involving Human Subjects Act (section 1.b WMO, 26 February 1998).

Dutch Lipid Clinic Network
DLCN scores were calculated after correction for LLT at the two differ-
ent time points. Data on family-, and patient history as needed for DLCN
were only included if the information was available before or at the time
of diagnosis to simulate real-life practice. Correction for LLT was per-
formed based on original papers and specified in the supplementary ma-
terials (see Supplementary material online, Table S1).20,21,23,24

FAMCAT
The optimized FAMCAT algorithm (sometimes called FAMCAT2) was
applied.9,10 In FAMCAT, all information on family history was included
only if the information was available before or at the time of diagnosis
to simulate real-life practice. Medical history considering hypertension,
chronic kidney disease and diabetes mellitus were extracted separately
for T1 and T2.

25 FAMCAT was applied using a threshold of 0.0047 as
was found to be optimal in a UK population.8,26

Make Early Diagnoses to Prevent Early
Death
MEDPED uses total cholesterol (TC) values, adjusted to the presence of
a positive family history for FH. Family history is non-coded information
in HiX EHR, and this information is not often recorded in those who are
not suspected of FH. Therefore, sensitivity was only calculated for
MEDPED using all available data (coded and non-coded data).

Simon broome
The SB algorithm consists of two components. The first component con-
sists of TC or LDL-C values. The second component is either the pres-
ence of tendon xanthoma (in the patient or a relative) or a positive family
history of myocardial infarction or raised cholesterol. It is not possible to
use the SB algorithm without one of these components. The second
component is non-coded in the HiX EHR and therefore sensitivity was
only calculated using all available coded and non-coded data (including
free text). LDL-C values were corrected for LLT in the same way as de-
scribed for the DLCN algorithm.

Statistical analysis
Continuous variables were displayed as mean with standard deviation if
normally distributed and as median with interquartile range (IQR) if non-
normally distributed. Q–Q plots and histograms were used to determine
normal distribution. Logarithmic transformation was performed to cre-
ate a normal distribution for non-normally distributed data. Categorical
variables were shown as count with percentages (%). Differences be-
tween T1 and T2 were calculated using the paired t-test for comparison
of means, McNemar’s test for categorical variables and the Wilcoxon
signed-rank test for ordinal related variables. The sensitivity was calcu-
lated for MEDPED, SB, FAMCAT and DLCN (DLCN ≥6 and lower
cut-off values of ≥5 and ≥4) on T1 and T2 with corresponding 95% con-
fidence intervals. Statistical analyses were performed with IBM Corp.
Released 2017. IBM SPSS Statistics for Windows, Version 25.0.
Armonk, NY: IBM Corp. Figure 2 was made using R (The R Foundation
for Statistical Computing, version 4.1.3).

Results

Selection of study population
In total, 721 patients with a visit in 2018, 2019 or 2020 with the
healthcare insurance-related coded diagnosis ‘primary dyslipidaemia’
were identified. Of these, 398 (55%) were excluded because genetic
testing did not reveal an FH-associated mutation or because genetic
testing had not been performed. In total, 66 patients (9%) were ex-
cluded because the EHR mentioned a genetically confirmed FH, but
further information on the exact mutation was missing. Forty-nine
patients (7%) were excluded due to unavailable data on either T1
or T2 (Figure 1).
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Baseline characteristics
The remaining 208 patients with genetically confirmed FH were in-
cluded for further analysis. Fifty-nine percent of the population
was female. T1 was similar to T2 in 35 patients (17%). As specified
in the inclusion criteria, all patients were >18 years at T2, but 23 pa-
tients (11%) were <18 years at the time of diagnosis (T1). The me-
dian time between T2 and T1 was 3768 days (IQR: 813–5679).
Baseline characteristics for T1 and T2 are shown in Table 2. The me-
dian uncorrected LDL-C levels were 5.0 mmoL/L (IQR: 3.9–6.6) on
T1 and 2.8 mmoL/L (IQR: 2.2–4.4) on T2. After correction for use of
LLT, median LDL-C levels were 6.5 mmol/L (IQR: 5.3–8.0) on T1 and
6.3 mmoL/L (IQR: 5.3–8.1) on T2 (P= 0.47). Tendon xanthomas
were mentioned in free text in the EHR in four patients (1.9%)
and arcus cornealis in three patients (1.4%).

Sensitivity of the different algorithms
The sensitivity on T1 and T2 with only EHR-coded data for DLCN
≥ 6 was 19% (95% CI: 14–25%) and 22% (95% CI: 17–28%), re-
spectively (Figure 2). When using all available data, the sensitivity
for DLCN≥ 6 was 26% on T1 (95% CI: 20–32%) and 28% on T2

(95% CI: 22–34%). When using all available data on T1, decreasing
the cut-off for DLCN to a cut-off ≥5 and ≥4 resulted in a sensitiv-
ity of 51% (95% CI: 44–57%) and 55% (95% CI: 49–62%), respect-
ively. When using all available data on T2, the sensitivity was 54%
(95% CI: 47–61%) for DLCN ≥4 and 49% (95% CI: 32–56%) for
DLCN≥ 5.
The FAMCAT algorithm had a sensitivity of 74% (95% CI: 67–

79%) on T1 and 32% on T2 (95% CI: 26–39%) with only
EHR-coded data. The sensitivity with all available data for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Data used in the Dutch Lipid Clinic Network criteria, familial hypercholesterolaemia case ascertainment
tool, Make Early Diagnoses to Prevent Early Death, and Simon Broome algorithms and data coded in the ChipSoft HiX
electronic health record

Dutch Lipid
Clinic
Network

Familial hypercholesterolaemia
case ascertainment tool

Make Early
Diagnoses to
Prevent Early
Death

Simon
Broome

HiX electronic
health record

Sex No Yes No No Yes

Age No Yes Yes No Yes

Use of lipid-lowering therapy Yesd Yes No Yesd Yes

Laboratory results

Total cholesterol No Yes Yes Yes Yes

LDL cholesterola Yes Yes No Yes Yes

Triglycerides No Yes No No Yes

Physical examination

Tendon xanthoma Yes No No Yes No

Arcus cornealis <45 years Yes No No No No

Past medical history

Premature coronary heart

diseaseb
Yes Yes No No Yese

Premature cerebral or

peripheral vascular diseaseb
Yes No No No Yese

Chronic kidney disease No Yes No No Yese

Diabetes mellitus Type 1 or 2 No Yes No No Yese

Family history of

Premature coronary heart

diseaseb
Yes Yes No Yes No

Premature vascular diseaseb Yes No No No No

Raised cholesterolc Yes Yes No Yes No

Tendon xanthoma Yes No No Yes No

Arcus cornealis Yes No No No No

Familial hypercholesterolaemia No Yes Yes No No

aDifferent LDL cholesterol cut-off values were used between the Dutch Lipid Clinic Network criteria, the familial hypercholesterolaemia case ascertainment tool and Simon Broome.
bIn the Dutch Lipid Clinic Network criteria and the familial hypercholesterolaemia case ascertainment tool premature was defined before the age of 55 for males and before 60 years
for females.
cRaised cholesterol was defined in the Dutch Lipid Clinic Network criteria as a first-degree family member with LDL-C> 95th percentile. In the familial hypercholesterolaemia case
ascertainment tool, raised cholesterol was not specified with cut-off values.
dLDL-C levels were corrected for lipid-lowering therapy, but medication use is not used in the original Dutch Lipid Clinic Network criteria or the Simon Broome algorithm.
eCoded in HiX since 2018.
SB= Simon Broome
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FAMCAT was 81% on T1 (95% CI: 75–86%) and 45% (95% CI: 39–
52%) on T2.

For MEDPED and SB, the sensitivity on T1 was 31% (95% CI: 25–
37%) and 17% (95% CI: 13–23%), respectively. Using all available data
on T2, sensitivity was 11% (95% CI: 7–15%) for MEDPED and 15%
(95% CI: 11–21%) for SB. The sensitivity of FAMCAT on T1 was high-
er than the sensitivity for DLCN≥ 6 on T1 and T2 for both coded and
with all available data and also when compared to the sensitivity of
MEDPED and SB both on T1 and T2 (McNemar’s test P< 0.05,
Figure 2).

Discussion
The present data show that the sensitivity of an automated
DLCN-based algorithm to facilitate detection of FH in electronic
health records was relatively modest in a population with genetically
confirmed FH. The FAMCAT algorithm was found to have signifi-
cantly higher sensitivity than DLCN. Conclusions remained similar
after the addition of all available data (including non-coded free
text) to the EHR-coded data. Interestingly, EHR-recorded

prevalence of classic phenotypical characteristics for FH, like tendon
xanthoma and arcus cornealis, was low in this genetically confirmed
FH population.
Previous validation of the DLCN algorithm in a population se-

lected for FH phenotype (high LDL-C, TC and tendon xanthoma)
observed a sensitivity for DLCN≥ 6 of 67%, which may be differ-
ent from the current study in which sensitivity for DLCN≥ 6 was
studied in a population with genetically proven FH.19 A Western
Australian study investigated the mutation spectrum of patients
referred for genetic testing for FH. That study found a sensitivity
of 29% for DLCN 6, 7, or 8 points (probable FH) and a sensitivity
of 70% for DLCN> 8 points (definite FH) in 337 patients.28

Recently, a study that validated FAMCAT and other algorithms
in 260 genetically tested primary care patients of which 16
with an FH mutation, found a sensitivity for DLCN≥ 6 of 35%
with a specificity of 96%.26 Importantly, high specificity would
limit false-positive screening which may be particularly important
when considering larger numbers of patients and cost associated
with ensuing genetic confirmation. In the present study, decreas-
ing the DLCN cut-off to lower values (≥5 and ≥4) increased
sensitivity but has previously been shown to reduce specificity
(i.e. increase false positives), possibly resulting in unnecessary
genetic testing.19

FAMCAT was developed in a large population and uses 14 differ-
ent variables, each with its coefficient resulting in a probability for
FH.9,10 An important difference from DLCN is a relatively lower re-
liance on recording family history, which may be difficult to extract
automatically from an EHR, in particular in those individuals not sus-
pected of FH. Although FAMCAT is less reliant on family history, dis-
criminatory accuracy is improved with comprehensive family
history.8 In a validation study in genetically proven FH patients in
the UK, FAMCAT showed a sensitivity of 69%, which was only slight-
ly less than our findings for FAMCAT (with only coded data). In that
study, specificity was 95%.26 The present data may be influenced in
part by a selection bias, created by including genetically confirmed
FH patients only, where LDL-C, TC and triglycerides levels (three im-
portant variables in FAMCAT) are likely to be available more often
than in the general population.
The SB algorithm had a sensitivity of 90% in the study of Damgaard

et al.19 Tendon xanthoma is one of the scoring criteria of SB and this
was also an inclusion criterion for that study. In our study, the pres-
ence of tendon xanthoma was not often recorded: only four patients
with tendon xanthoma were documented in the EHR. When incor-
porated in an algorithm aimed at automated EHR case-finding to fa-
cilitate FH recognition in patients not specifically suspected of FH, SB
is therefore unlikely to be as sensitive as in the study by Damgaard
et al.19 In the study by Damgaard, MEDPED showed a sensitivity of
63–70% (depending on whether TC or LDL-C was used), which is
much higher than in our study.19 However, Damgaard et al. selected
patients with a threshold TC or LDL-C value. MEDPED and SB are
both quite dependent on family history. In MEDPED, family history
is one of the three components used by the algorithm, and in SB it
is not possible to determine ‘possible FH’ without information on
family history. The often non-coded nature of family history in
many electronic health record systems is therefore likely to result
in limited value of the MEDPED and SB algorithms as an automated
FH case-finding algorithm.

721 pa�ents with EHR-coded 
diagnosis of ‘primary dyslipidaemia’

398 pa�ents were excluded
- Gene�c tes�ng did not reveal 
FH
- No gene�c tes�ng was 
performed
- Pa�ent had a different type of 
dyslipidaemia

66 pa�ents were excluded
- The exact type of muta�on 
was missing

323 pa�ents with EHR stated 
‘gene�cally confirmed FH’

257 pa�ents with gene�cally 
confirmed FH with known 

muta�on

49 pa�ents were excluded
- Informa�on on T1 or T2 was 
missing to perform further 
analysis

208 pa�ents were included for 
analysis

Figure 1 The selection process of the patients included in this study.
EHR= electronic health record, FH= Familial hypercholesterolaemia.
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This study illustrates that genotypical FH does not necessarily ex-
press as phenotypical FH. The average LDL-C levels were lower than
perhaps expected and the recorded prevalence of classic phenotyp-
ical traits such as tendon xanthoma and arcus cornealis was <2%.
Older studies estimate a prevalence ranging between 29% and
66% for tendon xanthoma.29,30 This either implicates decreased rec-
ognition by physicians or that the prevalence is indeed lower, possibly
due to earlier recognition and treatment nowadays. Even so, regard-
less of sometimes relatively low LDL-C levels, FH patients remain at
an increased risk of CHD compared with someone without FH with
the same LDL-C values.31 This also illustrates that a screening

strategy using only elevated LDL-C levels is likely to be less adequate
in recognizing all at-risk FH patients. Indeed, the FAMCAT algorithm
was found to perform better in this population-based automated
FH-detection algorithm, possibly by combining 14 different generally
available predictor variables.10

The strength of the present study is that we investigated algo-
rithms in a large genetically confirmed FH population. We found in
the current analysis that only a minority of the genetically confirmed
FH population would have been recognized as DLCN≥ 6 by the
DLCN algorithm currently incorporated in the Chipsoft HiX EHR,
which is available in 60% of hospitals in the Netherlands, emphasizing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Baseline characteristics

T1 (n= 208) T2 (n=208) P-value

Age (years), mean (SD) 39 (15) 49 (16) <0.001

Sex

Female, n (%) 122 (58.7) 122 (58.7) —

Lipid levels

Total cholesterol (mmol/L), median (IQR) 7.0 (5.6–8.7) 4.8 (4.0–6.2) <0.001

LDL-C (mmol/L), median (IQR) 5.0 (3.9–6.6) 2.8 (2.2–4.4) <0.001

LDL-C corrected for LLT (mmol/L), median (IQR) 6.5 (5.3–8.0) 6.3 (5.3–8.1) 0.47

Triglycerides (mmol/L), median (IQR) 1.1 (0.81–1.6) 1.1 (0.80–1.5) 0.11

HDL (mmol/L), median (IQR) 1.2 (1.1–1.6) 1.3 (1.1–1.6) <0.001

Physical examination

Tendon xanthomaa, n (%) 4 (1.9) — —

Arcus cornealisa, n (%) 3 (1.4) — —

Past medical history

Premature coronary heart diseasea, n (%) 11 (5.3) — —

Premature cerebrovascular/peripheral diseasea, n (%) 4 (1.9) — —

Family history

Premature coronary heart diseasea, n (%) 25 (12%) — —

First-degree relative with FHa, n (%) 36 (17.3%) — —

Comorbidities

Chronic kidney diseaseb, n (%) 10 (4.8) 11 (5.3) 1.00

Diabetes mellitusc, n (%) 3 (1.4) 10 (4.8) 0.02

Hypertension, n (%) 17 (8.2) 27 (13.0) 0.01

Medication use

LLT use, n (%) 88 (42.3) 172 (82.7) <0.001

Statin intensityd <0.001

Low intensity, n (%) 5 (2.4) 1 (0.5) —

Moderate intensity, n (%) 37 (17.8) 37 (17.8) —

High intensity, n (%) 42 (20.2) 112 (53.8) —

PCSK9 inhibitor usage, n (%) 2 (1.0) 32 (15.4) <0.001

Ezetimibe, n (%) 13 (6.3) 109 (52.4) <0.001

Type of FH mutationa

LDL-receptor mutation, n (%) 177 (85) — —

ApoB mutation, n (%) 30 (14.5) — —

PCSK9 mutation, n (%) 1 (0.5) — —

aVariables were only extracted at T1.
bChronic kidney disease was defined according to the Kidney Disease: Improving Global Outcome (KDIGO) guidelines.25
cDiabetes mellitus was defined as the use or start of diabetes mellitus treatment.
dStatin intensity was classified by using the 2018 ACC/AHA Blood Cholesterol Guideline.27

Comparison for means and median (after logarithmic transformation) by paired t-test, for categorical variables McNemar’s test, and for ordinal related variables, the Wilcoxon
signed-rank test was used.
LLT= lipid-lowering therapy, PCSK9= proprotein convertase subtilisin-kexin Type-9, FH= familial hypercholesterolaemia
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the need for improvement. Another strength is that, in the current
study, data were analysed at two different time points to assess
the possible influence of changing therapeutic options and guidelines
over time. The observed lower sensitivity for FAMCAT on T2, when
compared with T1, could have several reasons. First, this may be due
to the relatively recent introduction and use of PCSK9 inhibitors.
PCSK9 inhibitors are not incorporated in the FAMCAT algorithm.8

Second, a different explanation could be the higher age of the popu-
lation on T2. The FAMCAT algorithm uses higher age as a negative
predictor for the diagnosis for FH. Lastly, the FAMCAT algorithm
is currently calibrated on a UK primary care population. The lower
sensitivity on T2 could also indicate that the FAMCAT algorithm is
more useful for initial case-finding but not well enough calibrated
to assess risk after specialist treatment is started (T2). Therefore, al-
though the FAMCAT algorithm performed best in the current set-
ting, it may be optimized further.

Our study also has limitations. First, the present study focused on
sensitivity whilst the specificity of algorithms is unknown. FAMCAT
and DLCN showed high specificity in previous studies.26 Second,
some patients have typical phenotypical characteristics of FH, but
genetic testing fails to detect a mutation, which could also relate to
a yet unknown mutation of FH or polygenic hypercholesterolaemia.
Detection of those patients, not included in the current study, may
be equally important. Third, family history may be non-coded in an
EHR, and other FH-related items may also be less accessible or avail-
able in EHRs, in particular in patients not suspected of FH.
Furthermore, we must acknowledge that current findings apply to

the use of an algorithm in case-finding in the general population as
opposed to its use in an individual in whom algorithm performance
to assist in the diagnosis of FH may be entirely different. Also,
European General Data Protection Regulation (GDPR)-legislation
prohibits the combination or use of patient data for purposes not en-
tirely clear to the patient or its LDL-C ordering physician. The use of
algorithms and its outcome or consequences should be known to the
patient and the physician before an algorithm is applied, possibly lim-
iting widespread use. An informative pop-up window when ordering
LDL-C levels could assist in accommodating GDPR legislation. Lastly,
the FAMCAT algorithm has not been recalibrated in a Dutch popu-
lation and FAMCAT could have a different optimal cut-off value in a
non-UK population. Therefore, further research should assess the
discriminatory accuracy of the algorithms including both sensitivity
and specificity across different populations. Perhaps most important,
it is uncertain whether an automated algorithm results in actual sub-
sequent genetic identification of FH in patients and their relatives and
perhaps even in better outcome. This also requires further study.
EHRs contain large amount of data which, when combined and

analysed adequately, can have important clinical consequences.
Consistent coding is essential when EHR data is used for this pur-
pose.14,32 The use of big data analysis and machine learning are in-
creasingly common in medical practice with promising results and
are likely to increase the diagnostic yield in many clinical
areas.12,14,33–35

In conclusion, current ESC guidelines recommend using the
DLCN criteria for suspected cases, but the present data indicate
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Figure 2 Sensitivity for all algorithms at T1 and T2. Sensitivity and 95% confidence intervals at T1 and T2 for Dutch Lipid Clinic Network≥ 6 and
familial hypercholesterolaemia case ascertainment tool (cut-off: 0.0047) for electronic health record-coded data in blue. Sensitivity and 95% con-
fidence intervals for the Dutch Lipid Clinic Network criteria, the familial hypercholesterolaemia case ascertainment tool, Make Early Diagnoses to
Prevent Early Death, and Simon Broome for all available data (i.e. coded and after also including non-coded-free text) are shown in red.
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that FAMCAT performs better in an automated electronic health
record-based algorithm, used to facilitate FH detection in large popu-
lations. FAMCAT also recognizes genotypical FH patients when clas-
sic but rare phenotypical characteristics are less accessible or
available to the case-finding EHR algorithm. The performance of
FAMCAT could be improved further by recalibrating the algorithm
for populations with the use of PCSK9 inhibitors. Improvement of
algorithms, embedded in Chipsoft HiX electronic health records,
currently used in 60% of hospitals in the Netherlands, or in other
electronic health records elsewhere, may result in improvement of
FH identification.
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