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20 Abstract

21 Multi-proxy analyses of an 8 m sediment core from Lake Hayk, a closed, freshwater lake in 

22 the north-central highlands of Ethiopia, provide a record of changing lake level and inferred 

23 regional climatic change for the last 15.6 cal ka years. Between ca. 15.6-15.2 cal ka BP, a 

24 lowstand was synchronous with Heinrich Event 1 and an intense drought across Eastern 

25 Africa. At ca. 15.2 cal ka BP a lake began to develop at the core site in response to wetter 

26 conditions, at the onset of the African Humid Period (AHP). However, in contrast to other 

27 lakes in eastern Africa, Hayk lake level fell around ca. 14.8 cal ka BP, indicating a climate 

28 shift towards aridity. The lake began filling again at ca. 12.3 cal ka BP and reached maximum 

29 water depth between ca. 12.0-10.0 cal ka BP. Lake level declined slowly during the 

30 Holocene, culminating in the termination of the AHP at Hayk between ca. 5.2-4.6 cal ka BP. 

31 In the late Holocene, ca. 2.2-1.3 cal ka BP, Lake Hayk was again deep and fresh with some 

32 evidence of short-term lake level variability. 

33
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34 The palaeo-record from Lake Hayk indicates that while it experienced, to a broad degree, the 

35 same glacial-interglacial dynamics and sub-millennial shifts in climate found in other 

36 palaeolimnological records from eastern Africa, there are offsets in timing and rate of 

37 response. These differences reflect chronological discrepancies between records, as well as 

38 the varying climate sensitivities and site-specific factors of individual lake basins. This record 

39 highlights the different responses by lakes in a climatically vulnerable area of Ethiopia.

40

41 Key words: African Humid Period, Ethiopia, lake level, diatoms, pigments, Heinrich Event, 

42 Holocene, palaeolimnology.  

43

44 1. Introduction

45 Northern Ethiopia is a climatically sensitive region due to its location close to the 

46 northernmost limit of the Inter Tropical Convergence Zone (ITCZ).  Even slight displacement 

47 in position or change in strength of the monsoon system can cause switches between aridity 

48 and moisture surplus. Sedimentary records from Lakes Ashenge (Marshall et al. 2009) and 

49 Tana (Lamb et al. 2007a; Marshall et al. 2011; Costa et al. 2014) indicate that the region is 

50 strongly influenced by millennial-scale variations in the monsoon system. However, local 

51 site-specific mechanisms may have affected the expression of climate change during the late 

52 Quaternary.

53

54 Lake Hayk (also spelled Hayq and Haik), close to Lake Ashenge, provides a test of the extent 

55 to which site-specific effects influence the sedimentary record of climatic events.  Here a 

56 multi-proxy sedimentary record from Lake Hayk is presented, focussing on diatom and 

57 photosynthetic pigment analyses. We examined the lake’s palaeolimnological archive in 

58 order to determine the nature and timing of millennial-scale hydrological changes during the 

59 late Quaternary. These include Heinrich Event 1 (ca. 17.0-16.0 ka BP), the Younger Dryas 

60 Stadial (ca. 12.8-11.6 ka BP), the African Humid Period, and more contested episodes such 

61 as drought events at ca. 8.2 ka BP and ca. 4.2 ka BP. There is no clear consensus on the 

62 abruptness of these events and uncertainty remains regarding the timing and expression of 

63 these high-magnitude transitional periods based on the diverging response of biotic and 

64 hydrological systems. Differences are found not only between sites, but also within the same 

65 lake; palaeo-shorelines and hydrological modelling at Lake Suguta provide contrasting 

66 evidence of both a gradual and abrupt termination of the AHP (Junginger et al. 2013).

67
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68 This gap in our understanding is amplified further by the uneven spatial representation of 

69 high-resolution palaeo-records from Ethiopia. Attention has only recently focused on records 

70 from the north (Lamb et al. 2007a; 2007b; Marshall et al. 2009; 2011) rather than the south, 

71 Main Ethiopian Rift or mountain regions. Therefore, understanding of the timing, expression 

72 and mechanisms of these climatic transitions in northern Ethiopia remains limited. This 

73 paleao-record sheds light on the spatial and temporal expression of regional drivers of 

74 climatic and hydrological change at a site affected by both the African and Indian Monsoon 

75 systems.

76

77 2. Regional Setting

78 The Ethiopian climate is characterised by strong rainfall seasonality caused by the annual 

79 migration of the ITCZ. This gives rise to three seasons: intense rainfall from June to 

80 September (kiremt), dry conditions from October to January (bega) and lesser rains from 

81 February to May (the belg) (Umer et al. 2004). When superimposed over the large changes in 

82 elevation over short distances, a patchwork of seasonal rainfall patterns and microclimates 

83 can be identified across Ethiopia. Climate data from four weather stations within 50 km of the 

84 lake record total annual rainfall as 1000-1100 mm yr-1 with most rainfall (~ 79%) falling 

85 between April and September (Darbyshire et al. 2003). The mean annual temperature is 18ºC 

86 with a diurnal range of 8-23ºC.  

87

88 Lake Hayk (11º20’53’’N, 39º42’32’’E; 1920 m altitude) lies on the eastern margin of the 

89 north-central highlands in the South Wollo province of the Amhara region, northern Ethiopia 

90 (Fig. 1). The lake lies in a graben in Tertiary volcanic bedrock. It has a surface area of 23.2 

91 km², and a catchment area of 65.0 km². It is a deeply shelving lake with a mean depth of 37.4 

92 m. In 1938 the maximum lake depth was 88.8 m but this had decreased to 81.0 m by 2000 

93 (Lamb et al. 2007b). The main input to the lake is the Ankwarka River but there is no surface 

94 outlet. An apparent palaeochannel indicates that the nearby Lake Hardibo previously 

95 overflowed into Lake Hayk. The palaeochannel is now permanently dry and would require a 

96 16-18 m rise in water level at Lake Hardibo to cause overflow again (Ghinassi et al. 2012). 

97 Occasional water flow now occurs between the lakes through an artificial irrigation canal. A 

98 second palaeochannel indicates that Lake Hayk overflowed during highstands into the Wazi 

99 River, a tributary of the Mille River which ultimately joins the Awash River in the south of 

100 the Afar Depression. It is estimated that a rise of approximately 40 m would be required to 

101 make Lake Hayk overflow again (Lamb et al. 2007b). Lake level changes in the 1970s and 
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102 1980s demonstrate the lake’s hydrological sensitivity to inter-annual climate change and to 

103 human impact, largely through catchment land use (Yesuf et al. 2013). 

104

105 Lake Hayk is fresh, with a conductivity of 920 µS cm-1 (Williams 1967; Gasse 1986) and pH 

106 9 as recorded in 1969 (Baxter and Golobitsch 1970). The water balance of the lake is 

107 relatively well understood given the availability of hydrometeorological data, field 

108 hydrogeological investigations and groundwater modelling (Demelie et al. 2007). Total 

109 annual inflow from precipitation, catchment runoff and rivers into Lake Hayk is 45.2 million 

110 m3. Evaporation is the main water loss from the lake (65%), which combined with abstraction 

111 for irrigation, makes an annual loss of 34.6 x 106 m3. Groundwater flows play a significant 

112 role in the lake’s hydrology, with inflow (5.9 x 106 m3 yr-1, 11%) about a third of outflow (1.4 

113 x 106 m3 yr-1, 3%) (Lamb et al. 2007b). Oxygen isotope composition of the lake water ranged 

114 from +7.1 to +9.1 ‰ between 1975 and 2001, indicating evaporative enrichment relative to 

115 the mean annual precipitation value of −1.2 ‰ and confirming the role of evaporation as a 

116 major influence on lake hydrology (Lamb et al. 2007b).

117

118 3. Materials and Methods

119 3.1 Field Sampling

120 Core Hayk-01-2010 (hereafter Hayk-10) was recovered from Lake Hayk in January 2010, 

121 using a UWITEC hammered piston corer, with a 5.8 cm diameter and 210 cm barrel. It was 

122 operated from a raft anchored in the lakes’ northern basin at 78.2 m water depth (Fig. 1). 

123 Beginning 89 cm below the sediment surface, ca. 1200 cm was recovered as nine drives 

124 (hence the upper section was not sampled in 2010, rather than representing a sedimentary 

125 hiatus; see Lamb et al. 2007b).. The cores were stored under refrigeration at Aberystwyth 

126 University in the original plastic core liners until split longitudinally for analysis in 2013. 

127

128 3.2 Sedimentology

129 The Troels-Smith sediment classification scheme was applied to characterise and define the 

130 lithostratigraphic units of core Hayk-10 (Schnurrenberger et al. 2003). Organic (Corg) and 

131 carbonate content (CO3
2-) was estimated at approximately 2 cm intervals using loss-on-

132 ignition (LOI) at 550°C and 925°C, following standard methodology (Dean 1974). Loss-on-

133 ignition data served as the primary tool for identifying any depth discrepancies and overlap 
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134 between cores, in conjunction with chronological and diatom data; based on overlapping 

135 sections, the composite core Hayk-10 was deemed to be 822 cm in length.

136

137 3.3 Radiocarbon chronology 

138 In the absence of macrofossils and sufficient charcoal, fourteen bulk organic matter samples 

139 were extracted for AMS 14C dating. Samples were treated following standard techniques; 

140 nine were sent to the 14CHRONO Centres’ radiocarbon dating laboratory at Queens 

141 University Belfast and five to the Oxford Radiocarbon Accelerator Unit at the University of 

142 Oxford. Radiocarbon ages were corrected for isotope fractionation using the δ13C measured 

143 by AMS. Results are reported as conventional radiocarbon years before present (yr BP) 

144 relative to AD 1950 and calibrated using CALIB Rev 7.0.2 (Stuiver and Reimer 1993). The 

145 median probability of age is based on weighted average, two sigma probability distributions. 

146 An age-depth model was constructed based on a 0.4 span smooth spline interpolation using 

147 the programme CLAM (Blaauw 2010).

148

149 3.4 Diatom analysis and conductivity reconstructions

150 Diatom preparation and analyses followed a standard methodology with counts at non-

151 contiguous 0.5-2.0 cm intervals. Samples were mounted in Naphrax and counted under oil-

152 immersion phase-contrast light microscope at x 1000 magnification using a Leica DMRA 

153 research microscope. At least 300 valves were counted per sample, except where diatom 

154 abundance was especially low. Percentage data are reported for all counts >50 valves. 

155 Taxonomy follows Krammer and Lange-Bertalot (1988; 1991; 1999), Gasse (1986), Hustedt 

156 (1949) and Patrick and Reimer (1966), with reference also made to other regional flora such 

157 as Cocquyt et al. (1993) and Cocquyt (1998). Diatom concentration was estimated by adding 

158 a known number of microspheres to the samples.

159

160 Assemblage zones were determined using the optimal sum of squares portioning method in 

161 the package PsimPoll 4.27 (Bennett 1995-2007). Statistically significant splits were identified 

162 using a broken-stick model (Bennett 1996). Ordination of diatom data was carried out using 

163 PCA on Hellinger-transformed data within Canoco 4.54.

164

165 Diatom data were used to make palaeosalinity inferences using the EDDI (European Diatom 

166 Database at http://craticula.ncl.ac.uk/Eddi/jsp/index.jsp) combined African dataset. 

167 Additionally, selected European sites from the EDDI database were added to the African 
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168 training set to provide analogues for the earlier part of the Hayk sequence, most significantly 

169 for the species Cyclotella ocellata. This planktonic freshwater diatom was common (40-

170 100%) in one section of the core (diatom zone Hayk-1b; 748-716 cm), but is poorly 

171 represented in the EDDI African training set (maximum abundance 8.5%), where its 

172 distribution is skewed to more saline sites, although unequivocally known to be freshwater. 

173 Its presence in other Ethiopian and African records has also resulted in problems with 

174 palaeosalinity inferences using the EDDI dataset (Chalié and Gasse 2002a; Marshall et al. 

175 2009). Analogue matching was used to find sites most similar among the European EDDI 

176 dataset, and these were carefully inspected before adding to the African salinity training set. 

177 The frequency distribution of C. ocellata against conductivity in this hybrid training set was 

178 further examined and several African sites removed that skewed this towards higher values 

179 (the model was also tested on another model with only sites added and the differences in 

180 performance and inference were negligible; see Loakes 2015 for further detail). Twelve 

181 European sites were added to the model with up to 68.4% C. ocellata. Transfer function 

182 development was carried out in C2 v.1.7.2 (Juggins 2007). The new training set comprised 

183 251 sites and 852 species. Weighted averaging (WA) was used to produce the final model, as 

184 WA-PLS did not improve the performance assessed against RMSEP, with WA with inverse 

185 deshrinking performing best (r2 = 0.843; RMSEP = 0.466 log units). 

186

187 A simplified lake level curve, representing maximum depth at a relatively coarse temporal 

188 resolution, was based on comparison of modern conductivity (measured in 1969) and lake 

189 level (920 µS cm-1, 81 m), and inferences from the sedimentology, and fossil diatom and 

190 pigment assemblages. For example, modern analogues of European lakes where Cyclotella 

191 ocellata (found towards the base of the Hayk sequence) is important, imply a maximum lake 

192 depth < 20 m (EDDI database). Similarly, the presence of green sulphur bacterial pigments 

193 (e.g. isorenieratene), and sections of finely laminated sediments, imply a water column deep 

194 enough for long-term anoxic stratification (meromixis). Together with knowledge of the 

195 autecology of other key diatom taxa (Aulacoseira, Stephanodiscus, long and slender 

196 Fragilaria, Ulnaria and benthic/epiphytic diatoms), we inferred the most likely maximum 

197 depth for core sections using this combined suit of multiproxy data. 

198

199 3.5 Photosynthetic pigment analysis

200 Sedimentary pigments from freeze-dried samples at non-contiguous 0.5-14.0 cm intervals and 

201 weighing approximately 200 mg, were extracted following standard methodology. High 
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202 performance liquid chromatography (HPLC) analysis was conducted using a modification of 

203 the method of Chen et al. (2001) on an Agilent 1200 Series separation module with 

204 Quaternary pump, autosampler, ODS Hypersil column (205 x 4.6 mm; 5 μm particle size) 

205 and the mobile phase of three solvents: solvent A (80: 20, methanol: 0.5 M ammonium 

206 acetate), solvent B (9: 1, acetonitrile: water) and solvent C (ethyl acetate). Pigments were 

207 identified and quantified by comparing retention times and the absorbance spectra of 

208 chromatogram peaks with an authentic standard under the same separation conditions (Roy et 

209 al. 2011). As commercial standards were unavailable for bacteriochlorophyll e (bchl e), 

210 isorenieratene and chlorobactene, they were identified based on their relative chromatogram 

211 positions and their concentrations were estimated by using calibration constants for 

212 chlorophyll a (for bacteriochlorophyll e) and for lutein (isorenieratene, chlorobactene). 

213 Assemblage zones were determined using the sample method as applied to the diatom 

214 stratigraphy, after being normalised using a log (x + 1) transformation.

215

216 4. Results and limnological interpretation

217 4.1 Chronology and lithology

218 The age-depth model shown in Figure 2 is based on 14 AMS 14C dates (Table 1). Hayk-10 

219 covers the period from 15,600-1,350 cal yr BP (the period 1,350 cal yr BP to present was not 

220 retrieved during coring). Sedimentation rates vary over five main periods: (1) 15,600 – 

221 15,450 cal yr BP (822.0 – 789.0 cm) sediment accumulation rate is relatively stable and high, 

222 averaging 0.2 cm yr-1; (2) 15,450 – 12,200 cal yr BP (789.0 – 541.0 cm) sedimentation 

223 decreases to 0.05 cm yr-1 before increasing; (3) 12,200 – 11,800 cal yr BP (541.0 – 474.0 cm) 

224 accumulation is stable averaging 0.2 cm yr-1; (4) 11,800 cal yr BP, sedimentation declines to 

225 0.01 cm yr-1 (296.25 cm) before increasing; (5) 2,500 – 1,350 cal yr BP (200.0 – 89.5 cm) 

226 sedimentation averages 0.1 cm yr-1. These rates are generally comparable to average 

227 sedimentation across the larger East African Rift Lakes, such as Lakes Malawi and 

228 Tanganyika, during the Holocene (0.1 cm yr-1; Johnson 1996).

229

230 Three lithostratigraphic units are defined in core Hayk-10 based on variations in composition 

231 and physical properties of the sediment layers (Fig. 3). The basal, and smallest unit (L-I, 822-

232 797 cm) consists of stiff black clay, intermixed with fine sand. Organic matter (6.5-7.1%), 

233 carbonate (4.8-6.5%) and water content (36.2-38.3%) are low in this unit. Accumulation rates 

234 for dry mass, organic and minerogenic matter are at maximum values. The overlying unit (L-

235 II, 797-595 cm) is composed of grey gyttja intermixed with silt. Between 739.0-754.5 cm 
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236 faint marl laminations are identifiable at irregular intervals. Organic matter remains low (4.7-

237 10.8%). Carbonate content varies substantially (3.0-44.7%), whilst water content increases 

238 (37.6-75.8%). Dry mass, organic matter and minerogenic accumulation rates all plateau in 

239 this unit, whereas calcium carbonate accumulation is higher in the mid-zone (750-710.5 cm). 

240 The largest unit (L-III, 595-89 cm) consists of brown gyttja intermixed with silt. Traces of 

241 plant material are found in the top 70 cm. The unit contains irregularly spaced, thick (>1-7 

242 mm) laminations consisting of a yellow, pulp-like material alternating with darker organics 

243 (Fig. 3). Smear slides of this yellow material show that it contains dense mats of the long, 

244 slender diatom taxa Fragilaria and Ulnaria. Organic matter reaches maximum values 

245 between 340-298 cm (38.0-30.7%) after which it declines. Water content is highest in this 

246 unit (74.8%). Dry mass, organic matter, minerogenic and calcium carbonate accumulation 

247 rates plateau in the mid-zone before increasing between 196-89cm. The top 89cm of sediment 

248 were collected in the field. 

249

250 4.2 Diatom and pigment data

251 The Hayk-10 sediment sequence is divided into nine diatom assemblage zones with taxa 

252 categorised and interpreted by habitat (Fig. 4). A summary diagram is presented in Figure 5.

253

254 4.2.1. Hayk-1a (822-748 cm, 15,600-15,200 cal yr BP)

255 In this zone Lake Hayk was at a lowstand, expressed by negligible concentrations of diatoms 

256 and traces of benthic and aerophilous taxa. The presence of Hantzschia amphioxys provides 

257 evidence of a shallow lake environment and indicates sediment reworking from marginal or 

258 exposed areas in the catchment. This is in agreement with the compacted nature of the 

259 sediment as well as the low water content, which suggests the core site may have been 

260 exposed at times, possibly alternating between longer periods of dry, saline conditions and 

261 short wet episodes, when runoff in the catchment would have been channelled down the 

262 steep-sided lake basin to the core site. Diatom-inferred conductivity (800-9,000 µS cm−1) and 

263 variable preservation indicate the core site was slightly oligosaline to mesosaline, which may 

264 have prevented vegetation and soils from developing (Hammer 1986). It was most likely an 

265 ephemeral lake, which dried out repeatedly during this time. 

266

267 Pigment accumulation rate was similarly low during this period (< 450 pmol cm-2 yr-1), 

268 indicating poor preservation conditions. Over exposure to light, oxygen rich and high 

269 temperature conditions in a very shallow lake habitat, as well as physical reworking of the 
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270 sediments and occasional drying out may have degraded pigments in the water column and in 

271 the uppermost sediments, preventing them from being incorporated into the fossil record.  

272

273 4.2.2 Hayk-1b (748-716 cm, 15,200-14,800 cal yr BP)

274 The diatom record is dominated by Cyclotella ocellata (42-100%) during Hayk-1b, indicating 

275 an increase in lake depth and a degree of water permanence, caused by wetter conditions. The 

276 taxon has a wide ecological tolerance in terms of trophic state, being present in ultra-

277 oligotrophic to eutrophic lakes and is able to maintain itself in both deep water and littoral 

278 environments, although it is only found above 50% abundance within the European database 

279 in lakes < 20 m deep (Gasse et al. 1989; Cremer and Wagner 2003). Valve preservation 

280 however is poor (F index ca. 0.3) and may be biased by differential preservation (Ryves et al. 

281 2006; see Discussion).

282

283 Sedimentary pigments (12.5-225.0 nmol pigments g-1 OM) are also poorly preserved. There 

284 is a greater diversity of carotenoids as they are generally more stable than labile chlorophylls. 

285 β-carotene (most algae and plants; 0.6 nmol pigments g-1 OM) is a stable carotenoid, as is 

286 canthaxanthin (colonial cyanobacteria and herbivore tissues; 0.8 nmol pigments g-1 OM), 

287 indicating the core site may have experienced nutrient enrichment at this time. However, 

288 limited preservation precludes evaluation of phytoplankton community changes in this zone.

289

290 4.2.3 Hayk-1c (716-553 cm, 14,800-12,300 cal yr BP)

291 The diatom record indicates an end to the wetter conditions at ca. 14,800 cal yr BP and a 

292 return to shallow lake conditions at the core site, evidenced by the decline and disappearance 

293 of C. ocellata (< 5%). The intermittent presence of planktonic, facultatively planktonic and 

294 benthic taxa found in trace amounts suggests a fluctuating lake level; the core site may have 

295 been occasionally wet and fresh at times (however diatoms present are too few to permit any 

296 solid interpretation) but otherwise low, repeatedly drying out preventing the preservation of 

297 diatom taxa. Sedimentary pigments likewise indicate a poor preservation environment, based 

298 on the irregular pigment content. β-carotene (0.6 nmol pigments g-1 OM) and canthaxanthin 

299 (0.8 nmol pigments g-1 OM) are the only pigments to appear consistently throughout this 

300 zone, suggesting reduced productivity due to repeated desiccation of a shallow lake.

301

302 4.2.4 Hayk-2a (553-376 cm, 12,300-10,300 cal yr BP)
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303 The transition from a shallow water body to a deeper, stable lake occurs at the start of this 

304 zone. The diatom assemblage is characterised by C. ocellata (24%) and C. cyclopuncta 

305 (18%), which are often found together today in moderately deep, oligotrophic to mesotrophic 

306 lakes in Europe (EDDI; Scussolini et al. 2011).

307

308 The periphytic and facultatively planktonic assemblage indicate that the lake level remained 

309 low, with the core site close to the littoral zone, while the presence of aerophilous forms such 

310 as H. amphioxys (2%) and littoral/subaerial Nitzschia amphibia (4%) may indicate sediment 

311 reworking from exposed margins of the basin (Chalié and Gasse 2002b). Diatom-inferred 

312 conductivity confirms this variability in hydrology, with the lake interpreted as fresh with 

313 intermittent subsaline intervals (150-1,000 µS cm−1).

314

315 The increased diversity of sedimentary pigments (81.6 nmol pigments g-1 OM) indicates that 

316 preservation conditions at the core site improved. Diatoxanthin (siliceous algae; 1.0 nmol 

317 pigments g-1 OM), bacteriochlorophyll e, isorenieratene and chlorobactene (green sulphur 

318 bacteria; 1.6, 1.8 and 1.2 nmol pigments g-1 OM respectively) establish at this time. This 

319 indicates an availability of fresh, benthic conditions and occasional meromixis and bottom 

320 water anoxia, as documented in West Greenland lakes (McGowan et al. 2008). 

321

322 Between approximately 12,100-12,050 cal yr BP a unique peak occurs in the record, 

323 characterised by the appearance of Stephanodiscus parvus (82%), which alternates in 

324 dominance with Aulacoseira granulata var. angustissima (27-91%). Within the constraints of 

325 dating, these seemingly multi-decadal fluctuations (ca.20 - 40 yrs) may suggest oscillations in 

326 nutrient availability (primarily the Si:P ratio) expressed as dominant decadal blooms, with 

327 high Si:P favouring Aulacoseira and low Si:P, Stephanodiscus. Both are planktonic taxa, 

328 indicating a deep, fresh (DI conductivity, ca. 90 µS cm−1) lake and both can tolerate low light 

329 conditions (Kilham et al. 1986). Periods of Aulacoseira dominance suggest deeper mixing 

330 events bringing Si into the photic zone, while Stephanodiscus periods suggest stable 

331 stratification (reducing upwelling Si from depth).  

332

333 A. granulata var. angustissima comes to dominate the diatom assemblage around 12,050 cal 

334 yr BP (82%), signalling moderately alkaline, eutrophic conditions (Kilham et al. 1986). Its 

335 increase in abundance in conjunction with the abrupt decline and disappearance of S. parvus 

336 indicates a greater availability of silicon in the lake, most likely a result of a major rise in lake 
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337 depth and area, deeper mixing year-round and frequent upwelling of Si to the upper waters in 

338 response to a wetter climate. 

339

340 A deep, stratified and productive lake system is in agreement with the sedimentary pigment 

341 record. High biological productivity is evidenced by the rapid increases in diatom and total 

342 pigment accumulation rates (67.9 x 106 valves cm-2 yr-1 and 2,455 picomol cm-2 yr-1 

343 respectively). The phytoplankton community is relatively stable in this zone with evidence of 

344 chlorophytes and cyanobacteria (lutein-zeaxanthin 2.3 nmol pigments g-1 OM), cryptophytes 

345 (alloxanthin 1.4 nmol pigments g-1 OM), siliceous algae (diatoxanthin 1.3 nmol pigments g-1 

346 OM), which indicate the lake was most likely productive (McGowan 2013). The high 

347 concentrations of pheophorbide a (2.5 nmol pigments g-1 OM) alongside low chlorophyll a 

348 concentrations (all algae and cyanobacteria, 0.8 nmol pigments g-1 OM), signal that 

349 zooplankton populations may have become established (Hurley and Armstrong 1990). Green 

350 sulphur bacteria (bacteriochlorophyll e, isorenieratene and chlorobactene; 1.4, 2.1 and 1.7 

351 nmol pigments g-1 OM respectively) indicate strong stratification and likely a chemocline, 

352 with long term anoxia in the hypolimnion (Hodgson et al. 1996). Excellent diatom 

353 preservation (F index = 0.99) with high sediment accumulation rates agrees with inferences 

354 of meromixis and deep water anoxia, reducing degradation of organic coatings on diatom 

355 frustules and enhancing silica preservation (Ryves et al. 2006).

356

357 Lake Hayk was most likely at its maximum extent and depth between 12.0-10.3 cal ka BP. 

358 The lake probably received overflow from Lake Hardibo at this time, assuming that Lake 

359 Hardibo was also at a highstand in response to the wetter, humid conditions. The overflow 

360 into Hayk would have caused its surface area to increase by up to three-fold (Ginassi et al. 

361 2002), allowing wind-driven mixing to dominate nutrient dynamics. Lake Hayk would have 

362 potentially overflowed into the Wazi River, creating a hydrologically open system, requiring 

363 the lake to have been ca. 40 m higher than present (Lamb et al. 2007b).

364

365 4.2.5 Hayk-2b (376-299 cm, 10,300-6,500 cal yr BP)

366 Between 10.3-6.5 cal ka BP a gradual water level and lake area decline is inferred at Lake 

367 Hayk. A. granulata var. angustissima continues to dominate (96%) but abundance declines in 

368 conjunction with increases in facultatively planktonic and benthic taxa. The increase in 

369 Ulnaria ulna (71%) indicates availability of macrophytes in shallow benthic areas. Increases 

370 in the planktonic Ulnaria delicatissima (51%) and facultatively planktonic Fragilaria radians 
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371 (63%) may also be indicative of lake level decline; Gasse (1986) identifies these varieties as 

372 important components of the plankton and bottom mud in small, shallow lakes, although it is 

373 also present in deeper lakes. This assemblage indicates that water level was beginning to 

374 decline but the lake remained alkaline and fresh, confirmed by diatom-inferred conductivity 

375 (170 µS cm−1). 

376

377 Green sulphur bacteria continued to dominate the pigment record (bacteriochlorophyll e, 

378 isorenieratene and chlorobactene; 1.0, 2.4 and 1.6 nmol pigments g-1 OM respectively), 

379 indicating the lake remained deep enough to be meromictic. Cryptophytes, chrysophytes and 

380 dinoflagellates decline in this zone but total algal abundance remains relatively stable (9.5 

381 nmol pigments g-1 OM), indicating productivity did not decline. Diatom (8.2 x 106 valves cm-

382 2 yr-1) and pigment (552 pmol cm-2 yr-1) accumulation rate falls markedly from the previous 

383 zone. This marks a hydrological threshold when we suggest the lake essentially ceased to 

384 overflow into the Wazi River.

385

386 4.2.6 Hayk-3a (299-280 cm, 6,500-5,200 cal yr BP)

387 The diatom assemblage in Hayk-3a suggests the water level continued to fall, evidenced by 

388 further declines in A. var. angustissima (53%). Green sulphur bacteria indicate that Lake 

389 Hayk was still meromictic however, suggesting that lake depth had not declined to such an 

390 extent that the waterbody was completely mixed. The rapid increase in abundance of F. 

391 radians (83%) may indicate the point at which the permanent connection to Lake Hardibo 

392 was lost, resulting in lower lake level, reduced lake area and a relative decline in deeper 

393 mixing. The lake remained fresh (180 µS cm−1), implying salts were effectively removed 

394 through groundwater outflow, and somewhat alkaline (Gasse 1986). 

395

396 Organic matter content remains high (ca. 20% OM), whilst accumulation rates for diatoms 

397 (5.5 x 106 valves cm2 yr-1), total pigments (115 picomol cm-2 yr-1) and dry mass (2.8 mg cm-2 

398 yr-1) are low. While productivity was likely lower, this may be exaggerated by reduced 

399 sediment focussing at lower lake level as the basin filled with sediment. Diatom preservation 

400 remains good but shows a steady decline since the early Holocene, in keeping with inferences 

401 about increasing DI-conductivity and reducing lake level, both contributing to diatom 

402 dissolution.

403

404 4.2.7 Hayk-3b (280 - 257 cm, 5,200-3,950 cal yr BP)



13

405 A major water level decline is inferred at Lake Hayk between 5.20-3.95 cal ka BP, probably 

406 as a further depth threshold was crossed in response to continued long-term decline in 

407 effective moisture since the early Holocene. The littoral/benthic Gomphonema parvulum 

408 (20%) and G. pumilum (5%) increase in abundance, alongside an increase in the diversity of 

409 other periphytic taxa. This would suggest that as lake level declined, shallow near-shore 

410 sections of the lake basin were exposed and colonised, creating a greater availability of 

411 macrophyte habitat (Cocquyt 1998). The lake was most likely shallower than its modern state 

412 (approximately 80-90 m maximum) and hydrologically closed (Umer et al. 2004; Lamb et al. 

413 2007b).

414

415 Despite the decline in water level, Lake Hayk was still at least occasionally meromictic 

416 (potentially due to being shielded from deep wind mixing within its catchment), evidenced by 

417 the presence of green sulphur bacteria (isorenieratene and chlorobactene, 1.8 and 1.3 nmol 

418 pigments g-1 OM respectively), while pigments indicate populations of green algae, 

419 cryptophyte, dinoflagellate and chrysophytes. Diatom preservation declines marginally (F 

420 index of 0.8) while DI-conductivity rises persistently throughout the zone (200-300 µS cm−1), 

421 which is consistent with hydrological closure.

422

423 4.2.8 Hayk-4a (257-173 cm, 3,950-2,200 cal yr BP)

424 The zone is largely dominated by U. ulna var. ulna (94%) and U. delicatissima (93%), 

425 although Gomphonema taxa remain important, as well as other benthic and facultatively 

426 planktonic taxa, indicating the proximity of the core site to the shore. The aerophilous H. 

427 amphioxys (4%) and Nitzschia amphibia var. amphibia (4%) increase in abundance, 

428 signalling sediment reworking and inwash from the catchment, or large scale colonisation of 

429 wetter margins, washing in littoral diatom valves. 

430

431 The preservation of chlorophyll a (1.3 nmol pigments g-1 OM) indicates increased availability 

432 of phosphorus and a decrease in lake depth; potentially the diversity of benthic substrates 

433 would have encouraged growth of algae in the shallow regions of the lake, while also 

434 improving preservation by reducing sinking depth (McGowan 2013). Fucoxanthin (siliceous 

435 algae; 1.8 nmol pigments g-1 OM) also indicates improved preservation as it is particularly 

436 labile (McGowan 2013). Many chlorophyll degradation products are present however, 

437 indicative of mixing of the water column and an oxygenated photic sediment surface (Leavitt 

438 and Brown 1988). Overall, the diatom and algal assemblage is typical of shallow, fresh-
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439 subsaline, mesotrophic-eutrophic eastern African lakes with an availability of epiphytic and 

440 epilithic habitats (Gasse 1986).

441  

442 Lake Hayk was at a Holocene lowstand, with DI conductivity reaching modern values on 

443 several occasions, with a maximum of 1800 µS cm−1 at ca. 3,000 yr BP (230 cm), twice the 

444 modern value. Salt removal was less effective through reduced groundwater flows, allowing 

445 the lake to become subsaline at times. . Potentially Lake Hayk may have declined to 30 m or 

446 less, where the deeply shelving morphometry gives way to a larger, shallow expanse on the 

447 lake bottom, providing suitable habitat for benthic and periphytic algae.

448

449 4.2.9 Hayk-4b (173-89 cm, 2,200-1,350 cal yr BP)

450 A. granulata var. angustissima (97%) exhibits a rapid return to dominance, while the 

451 abundance and diversity of periphytic taxa generally decline, signifying a return to deep 

452 water with deep mixing. The disappearance of chlorophyll a also indicates an increase in lake 

453 depth (reducing preservation), which in conjunction with the re-establishment of green 

454 sulphur bacteria (bacteriochlorophyll e, isorenieratene and chlorobactene; 1.9, 2.1 and 1.6 

455 nmol pigments g-1 OM respectively) implies the reoccurrence of meromixis and an anoxic 

456 hypolimnion. The rising sedimentation rate also points to a return to high lake level through 

457 enhanced sediment focussing, increasing diatom accumulation rates. DI conductivity 

458 indicates a return to freshwater conditions for much of the zone (ca.200 µS cm−1), although 

459 values are on the cusp of being subsaline (670 µS cm−1) in the early part, indicating a steady 

460 recovery rather than abrupt transition. 

461

462 Lake depth may have been greatest at ca. 2 ka BP, when A. granulata var. angustissima 

463 dominates the diatom record, and diatom accumulation rate reaches levels not seen since the 

464 early Holocene. However, while there are strong similarities with conditions at the start of the 

465 Holocene, fluctuations in both diatom and pigment assemblages suggest rapid changes in 

466 limnological conditions and lake level. This is shown by major decreases in A. granulata var. 

467 angustissima in conjunction with increases in U. ulna var. ulna (82%) and U. delicatissima 

468 (4%). The phytoplankton assemblage is also indicative of short-term fluctuations in lake level 

469 as peaks in dinoflagellates, chrysophytes, euglenophytes and colonial cyanobacteria occur 

470 (diatoxanthin, lutein-zeaxanthin, canthaxanthin, 1,4, 2.8 and 1.5 nmol pigments g-1 OM 

471 respectively), synchronously with peaks in Ulnaria ulna.

472
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473 5. Discussion: Late Quaternary regional palaeohydrology and palaeoclimatology

474 The results are examined below in the context of other Ethiopian, eastern African and 

475 intertropical African palaeoenvironmental records from the late Pleistocene and Holocene, 

476 listed in Table 2 and displayed graphically in Figures 6-8. When comparing records, 

477 consideration has been given to differences and discrepancies in dating methods and 

478 associated chronological accuracy and precision. 

479

480 5.1 The Late Pleistocene, 15.6-15.2 ka BP

481 The lowstand recorded at Lake Hayk at the start of the sequence ca. 15.6 ka BP reflects arid 

482 conditions throughout eastern and southern Africa and Asia associated with Heinrich Event 1 

483 (HE-1; centred on 17-16 ka BP; Stager et al. 2011; Fig. 6). The collapse of the Afro-Asian 

484 Monsoon systems at this time and the regional weakening of the ITCZ have been linked to 

485 changes in Indian Ocean sea surface temperature (SST), through teleconnections from North 

486 Atlantic cooling following the iceberg rafting event of HE-1 (Denton et al. 2010). Arid events 

487 in other lakes and rivers across eastern and southern Africa and Asia, including the 

488 desiccation of the River Nile, at this time have been linked to HE-1; records from Lake 

489 Challa (Barker et al. 2013), Lake Bosumtwi (Peck et al. 2004), the Niger-Sanaga and Congo 

490 watersheds (Weijers et al. 2007; Weldeab et al. 2007) and northern Borneo (Partin et al. 

491 2007) all indicate drying in response to HE-1. 

492

493 The start of this arid phase at Hayk is not known as it precedes the base of the sequence at ca. 

494 15.6 ka BP, but arid events recorded in other northern Ethiopian lake records are consistent 

495 with the timing of HE-1. At Lake Tana, Lamb et al. (2007a) using a simple hydrological 

496 model to reconstruct rainfall, estimated that precipitation was at most 40% of modern values. 

497 Lake Tana dried out sometime after 18.7 ka BP and remained closed until 15.7 ka BP when a 

498 Cyperus swamp developed at the centre of the lake basin (Marshall et al, 2011). Lake 

499 Ashenge may also have been exposed between 17.2-16.2 ka BP, evidenced by a relatively 

500 slow accumulation rate, compacted sediments and presence of aerophilous and other lake 

501 marginal diatom taxa (Marshall et al. 2009). The high rate of sediment accumulation inferred 

502 at Hayk at this time (Fig. 3[a]), despite ephemeral conditions, may be due to both greater 

503 minerogenic inputs from the catchment (e.g. fine sand; Fig. 3) and less certain dating control 

504 (with a wide dating envelope modelled in the base of the core; Fig. 2).

505

506
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507 5.2 Start of the African Humid Period, 15.2-14.8 ka BP 

508 An abrupt (ca. 100 years) shift towards wetter, more humid conditions at Lake Hayk is 

509 inferred at ca. 15.2 cal ka BP, evidenced by lithological changes and by the abundant pioneer 

510 freshwater diatom C. ocellata (Fig. 4). This transition coincides with the timing of rapid 

511 refilling at other tropical lake sites across Ethiopia and eastern Africa caused by increased 

512 monsoon strength at the onset of the AHP at ca. 15 ka BP (Figs. 6 and 7). The rejuvenation of 

513 the African-Indian monsoonal circulation has been attributed to the precessional increase in 

514 northern hemisphere summer insolation (Adkins et al. 2006). However, the onset of wetter 

515 conditions appears to vary in timing and rapidity among sites (Costa et al. 2014). This may 

516 reflect the varying behaviour of individual lake systems, as well as regional and topographic 

517 differences in air mass trajectories. 

518

519 At Lake Ashenge an early return of wet conditions in the Ethiopian highlands is documented 

520 between ca. 16.2-15.2 ka BP, inferred from lake level rise following HE-1 (Marshall et al. 

521 2009; Fig 7[a]).). At Lake Tana, magnetic and geochemical data indicate abrupt lake 

522 deepening and flooding at 15.3-15.2 ka BP (Marshall et al. 2011; Loomis et al. 2015), 

523 causing the lake to overflow into the Blue Nile. This occurred at the same time as refilling at 

524 Lakes Victoria and Albert, the sources of the White Nile (Williams 2009). As a result, flow in 

525 the main River Nile re-established between 14.7-14.5 ka BP (Williams 2009; Box et al. 

526 2011).

527

528 Elsewhere in eastern Africa, lake deepening at the onset of the AHP occurred in the Ziway-

529 Shala basin (14.5 ka BP; Grove et al. 1975), Lake Turkana (14 ka BP; Morrissey and Scholz 

530 2014), Chew Bahir (14.5 ka BP; Foerster et al. 2012), palaeo-Lake Suguta (14.8 ka BP; 

531 Garcin et al. 2009) and at Lakes Magadi (Roberts et al. 1993), Manyara (Barker et al. 2004), 

532 Nakuru (Richardson and Dussinger 1986), Challa (Tierney et al. 2011; Barker et al. 2013) 

533 and Tanganyika (Gasse et al. 1989; Costa et al. 2014) around 15 ka BP (Fig. 7[a]).  Refilling 

534 was not a rapid, linear process at all sites however, and some lakes such as Lakes Ashenge 

535 and Tanganyika show oscillations in lake level during this time. 

536

537 Discrepancies in the timing of the AHP onset, due to factors other than chronological 

538 uncertainty, probably reflect local manifestations of individual lake hydrology, variability in 

539 precipitation, water vapour transport and convection over eastern Africa caused by shifts in 

540 the position of major convergence zones such as the Congo Air Boundary. These air masses 
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541 are in turn affected by SST variability in the Atlantic and Indian Oceans, the Red Sea and 

542 Mediterranean (Nicholson 2000; Tierney et al. 2011). As such, Costa et al. (2014) propose a 

543 time-transgressive change in atmospheric circulation caused by a north-south migration of the 

544 tropical rain belts and an east-west migration of the Congo Air Boundary, as suggested at this 

545 site.

546

547 5.3 The Deglacial Transition, 14.8-12.3 ka BP: Evidence of Regional Climatic 

548 Heterogeneity

549 Lake Hayk dried and contained little water between ca. 14.8-12.3 cal ka BP (Figs. 4, 6[h]). 

550 Lake Ashenge also experienced the onset of drying later, at ca. 13.6 ka BP, evidenced by 

551 maximum enriched δ18O and δ13C of authigenic carbonates and enhanced aragonite 

552 precipitation, signalling a highly negative water balance and lake shallowing (Marshall et al. 

553 2009). This contrasts with most records from Ethiopian and eastern African lakes, which 

554 continued to refill to highstands following the beginning of the AHP (Fig. 7 [a,b]; Beuning et 

555 al. 1997; Gasse et al. 2002; Barker et al. 2004; Garcin et al. 2009; Foerster et al. 2012). These 

556 lakes then demonstrate a shift to aridity between 12.8-11.6 ka BP synchronous with high-

557 latitude European Younger Dryas Stadial. The Younger Dryas proper does not appear at Lake 

558 Hayk at 12.8 cal yr BP; instead the lake refilled and deepened (Figs. 6 and 7). Potentially, the 

559 dry period documented at ca. 14.8-12.3 cal ka BP is the Younger Dryas with anomalous 

560 dating. Blaauw et al. (2011) estimate age offsets of between 200 – 450 years for dating of 

561 bulk organic carbon samples from Lake Challa. However, whilst dating errors may explain in 

562 part the age offsets identified in this record, the differences in the timing and length of the dry 

563 period beginning 14.8 cal ka BP are considerable and it seems unlikely to be caused purely 

564 by a dating issue.

565

566 Alternatively, Lake Hayk may show evidence of regional climatic heterogeneity, as 

567 documented in other Ethiopian and African sites (Fig. 7[a, b]). At Lake Albert Berke et al. 

568 (2014) used the TEX86 temperature proxy, δ13Cwax and δD analysis to reconstruct the climatic 

569 expression of the deglacial transition prior to the Younger Dryas. Between 13.8-11.5 ka BP, 

570 significant aridity and cooling (around 3°C) occurred leading to a decline in lake level (Berke 

571 et al. 2014), reflecting Indian Ocean SST cooling, weakening the monsoon and reducing 

572 precipitation in this part of eastern Africa (see below). Cooling is similarly documented at 

573 Lakes Tanganyika (Tierney et al. 2008) and Malawi (Powers et al. 2005) between 13.8-13.6 

574 ka BP, resulting in reduced lake levels. The cooling and drying documented prior to the 
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575 Younger Dryas indicate a complex pattern of spatial and temporal change, coinciding with 

576 step-wise cooling in Greenland and the warm, wet Bølling-Allerød interstadial (ca. 14.7-12.8 

577 ka BP) and the Antarctic Climatic Reversal cold interval (ACR, ca. 14.8-12.0 ka BP) (Alley 

578 and Clark 1999). Beal et al. (2011) suggest that the ACR may have impacted the Agulhas 

579 Current by reducing the exchange of water between the Indian and Atlantic Oceans around 

580 Africa, subsequently weakening the Atlantic Meridional Overturning Circulation (AMOC). 

581 Reconstructions of the AMOC using 231Pa/230Th, temperature proxies and δ13C values of 

582 benthic foraminifera indicate reduced circulation strength at ca. 14 ka BP (Ritz et al. 2013). 

583 Although not as significant as at the Younger Dryas, this reduction may have been sufficient 

584 to cause anomalies in Indian Ocean SST and consequently weakened the Indian Ocean 

585 monsoon. This in turn triggering the cooling and drying observed at subtropical African lake 

586 sites as precipitation in the region decreased.

587

588 The aridity observed at Lake Hayk beginning ca. 14.7 cal ka BP (Figs. 4, 6[h]) coincides with 

589 the proposed changes to the Indian Ocean monsoon system caused by the ACR and 

590 disturbance to the AMOC. It is likely that the drying reflects changes to the subtropical 

591 (northern and southern) monsoon alongside local, site-specific mechanisms affecting 

592 moisture delivery. This occurred during a period of complex climate change that remains 

593 poorly constrained in eastern African palaeo-records. 

594

595 5.4 Resumption of the African Humid Period, 12.3-5.2 ka BP

596 While much of the rest of tropical Africa and the Arabian Peninsula remained dry until end of 

597 the Younger Dryas at ca. 11.6 ka BP, at Hayk permanent lake formation begins ca. 12.3 cal 

598 ka (Figs. 4, 6, 7[c, d]). This signifies that the reactivation of the monsoon system across 

599 Africa and the Arabian Peninsula was first seen in central and northern Ethiopia (as the 

600 Ziway-Shala lakes also experience rising lake levels at this time; Benvenuti et al. 2002). 

601 Whilst there are uncertainties with dating methods, the earlier timing (ca. 700 years) of 

602 moisture increase at Hayk is beyond the likely error given the number of dates in this part of 

603 the sediment sequence, especially as such errors would be common to other records using 

604 bulk dates. 

605

606 Regionally, other Ethiopian and eastern African lakes exhibit similar signals to Lake Hayk as 

607 highstands occurred between 13-5 ka BP in response to the resumption of the AHP (Figs. 6, 

608 7[c, d]; Bergner et al. 2003; Barker et al. 2004; Junginger et al. 2013). Lakes Tana, 
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609 Tanganyika and Nakuru document highstands in the early Holocene (Fig. 6; Richardson and 

610 Dussinger 1986; Gasse et al. 1989; Costa et al. 2014). At Lake Challa the most positive water 

611 balance occurred at ca. 11.5-9.8 ka BP, after which the lake level and aquatic productivity 

612 remained high (Tierney et al. 2011; Barker et al. 2013). Increasingly wet and humid 

613 conditions are also documented at sites in North Africa (Giraudi et al. 2012) and the 

614 Mediterranean (Bar-Matthews et al. 2000) at the start of the Holocene, including the 

615 formation of the eastern Mediterranean sapropels (Rholing and Hilgen 1991). 

616

617 There does not appear to be any significant change or variability in the palaeolimnological 

618 record at Lake Hayk in response to the drought event at ca. 8.2 ka BP. With improved dating 

619 an arid episode pertaining to the event may become identifiable and constrained, as there are 

620 subtle but distinct diatom assemblage changes at this time (Fig. 5). However, even if 

621 identified, it did not have such an extreme effect on the lake system as other arid events such 

622 as HE-1 or the Younger Dryas Stadial. Potentially, the drought may not be recorded because 

623 the event was not an abrupt occurrence caused by catastrophic melt water outburst, but was 

624 rather a fluctuation in a long-term background climatic anomaly (Rohling and Palike 2005). 

625 Most subtropical African lakes do not exhibit a clear climatic response to the 8.2 ka BP event 

626 (Fig. 8[a]). Where a fluctuation is evident (several hundred years either side of 8.2 ka BP, 

627 within the margin of dating errors), it more likely reflects long-term changes in eastern 

628 African climate. For example, Marshall et al. (2011) argues that the decline in rainfall at Lake 

629 Tana from ca. 8.5 ka BP onwards is due to the gradual migration of the tropical rain belts 

630 southward. This has also been identified by Stager et al. (2003) in a study of the White Nile 

631 and would account for the long-term decline in water level at Hayk from the early to mid-

632 Holocene, rather than an abrupt shift centred at 8.2 ka BP.

633

634 5.5 Termination of the African Humid Period, 5.2-3.9 ka BP

635 The diatom and pigment records indicate Lake Hayk experienced a seemingly rapid 

636 termination of the African Humid Period, following a long-term decline in lake depth (Figs. 

637 4, 5, 8[b]). Between ca. 10.0-6.4 cal ka BP a gradual decline in lake depth is observed in the 

638 diatom data, but it is not until ca. 5.2 cal ka BP that major changes in the diatoms and 

639 phytoplankton are observed; a substantial increase in benthic diatom taxa occurs, signalling 

640 an increasingly arid climate. 

641
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642 It is tentatively interpreted therefore, that the AHP termination, in terms of diatom and 

643 pigment response, was relatively abrupt, spanning ca. 600 cal years between ca. 5.2-4.6 cal ka 

644 BP. This is broadly synchronous with regional records and closest to that of Lake Turkana, 

645 which is placed at 5,270 ± 300 yr BP (Tierney and deMenocal 2013) and Lake Edward, 

646 which is also placed at 5.2 ka BP (Ivory and Russell 2018). This reflects the north to south 

647 diminishing strength of the summer monsoon, and progressively less northward penetration 

648 of the ITCZ (Shanahan et al. 2015). 

649

650 However, despite this latitudinal decline in precipitation, lake responses to the termination do 

651 not mirror this north to south trend (Table 2; Fig. 8[b]). The earliest recorded responses are 

652 identified at Qunf cave, Oman (Fleitmann et al. 2007) and Lake Victoria (Stager et al. 1997) 

653 and the later signals from the River Nile (Williams 2009), Lake Chad (Armitage et al. 2015), 

654 Lake Tritrivakely (Gasse and Van Campo 1998) and the Gulf of Aden (Tierney and 

655 deMenocal 2013). Therefore, there is no discernible geographic pattern in terms of climatic 

656 response to the termination of the AHP across Africa (Fig. 8[b]). This contrasts to the 

657 conclusion of Shanahan et al. (2015) of a time-transgressive termination which occurred later 

658 at lower latitudes as the rain-belts migrated southwards. The termination at Lake Hayk is 

659 neither significantly early nor late in comparison to other records from Ethiopia, the Horn of 

660 Africa or subtropical Africa, but in combination with these other records, emphasises the 

661 heterogeneous pattern of regional response to this climatic event across the African continent.

662

663 The theoretical duration of the AHP termination ranges from 280 – 490 years in the Gulf of 

664 Aden records and ~1000 years at Chew Bahir (Foerster et al. 2012). Palaeo-Lake Suguta 

665 similarly shows a gradual transition (Junginer and Trauth 2013). The termination at Lake 

666 Hayk lasted around 600 years, making it neither exceptionally rapid nor long. The non-linear 

667 response of palaeorecords suggests the abruptness of the termination is caused by feedback 

668 mechanisms that enhance or suppress the transition. These mechanisms are not well 

669 understood but may be site-specific positive feedbacks caused by vegetation and soil 

670 moisture coupled with albedo, ocean temperature-moisture feedback, or differences in lake 

671 morphometry (Garcin et al. 2012; Junginger and Trauth 2013). Clearly more research is 

672 needed on well-dated, high-resolution records form a suite of lakes and other sites in eastern 

673 Africa to address this uncertainty and provide high quality palaeodata for climate modelling 

674 hindcasts.

675
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676 5.6 The Late Holocene, 3.9-1.3 ka BP

677 Following the AHP termination a lowstand occurred at Hayk from ca. 3.9-2.2 cal ka BP (Figs 

678 4, 6[h]). The lake became subsaline at times in response to a negative water balance. There is 

679 no evidence of the 4.2 arid event at Lake Hayk, despite suggestion by Ghinassi et al. (2012) 

680 that a lowstand identified in fluvial and coastal deposits in the Ankarka River area and 

681 stromatolitic deposits in Uarababo area of the lake were due to the event. This is more likely 

682 due to the lowstand beginning at ca. 3.9 cal ka BP, or the termination of the AHP. 

683

684 Similarly to Lakes Ashenge, Turkana and Chew Bahir (Fig. 6), Lake Hayk saw an increase in 

685 lake depth and wetter conditions at ca. 2.2 cal ka BP, evidenced by the rise of planktonic 

686 diatoms in both records, and the surface connection to Lake Hardibo may have become re-

687 established at times. This wet period lasted until at least ca. 1.3 cal ka BP, when the core 

688 Hayk-10 ends and is most likely the same highstand identified in the Uarababo and Ankarka 

689 River districts from 2.6-0.95 ka BP (Ghinassi et al. 2012). There is tentative evidence of a 

690 drop in water level at Hayk at ca. 1.5 cal ka BP. This may coincide with a similar shift 

691 observed at Lake Ashenge at 1.5 ka BP, signalling a move towards aridity (Marshall et al. 

692 2009). 

693

694 The relatively rapid shifts in aridity-humidity at Lake Hayk during the late Holocene may 

695 reflect higher frequency variability in the El Niño Southern Oscillation regime (ENSO) 

696 caused by cooling of the Pacific tropical deep waters (Foerster et al. 2012; Fig. 6[a, h]). In 

697 particular, a period of heightened ENSO activity centred from 2.5-1.6 cal ka BP (Fig. 6) may 

698 account for the variability seen in the upper Lake Hayk record, as ENSO events are linked to 

699 more recent increases in regional rainfall across eastern Africa (Nicholson 2000). The Hayk-

700 10 sequence ends at ca. 1.3 cal ka, although sedimentation continues to the present day 

701 (Lamb et al. 2007b). 

702

703 6. Conclusion

704 The palaeolimnological records obtained from Lake Hayk using a multi-proxy approach have 

705 successfully provided high-resolution evidence of millennial to multi-decadal variability in 

706 the lake. Changes identified since ca. 15.6 cal ka BP includes variability in productivity and 

707 trophic state, stratification and overturn, catchment weathering and erosion, preservation, lake 

708 level and conductivity. 

709
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710 At the millennial scale, the palaeolimnological records indicate that local climate at Hayk has 

711 been sensitive to high-latitude glacial conditions, which have been paced by variations in 

712 insolation, and changes in Earth’s orbital precession. Hayk experienced the same transitions 

713 from arid to humid and humid to arid as experienced by other lake sites across eastern Africa 

714 since the Last Glacial Maximum, including high-magnitude events such as HE-1 (ca. 18.0-

715 15.0 ka BP), the onset and termination of the African Humid Period (ca. 15.0-5.0 ka BP) and 

716 the Younger Dryas Stadial (ca. 12.8-11.6 ka BP). 

717  

718 Though broadly synchronous, there are discrepancies in the precise timing and expression of 

719 climatic events and comparison of Lake Hayk sedimentary record to other sites from the 

720 region shows variability in the nature of climate shifts. Minor discrepancies may be attributed 

721 to chronological uncertainties and have been identified where possible. Beyond this, response 

722 to climatic change reflects the inherent climatic sensitivity of individual lake basin 

723 characteristics. Such differences are the likely cause of discrepancies between the Hayk, Tana 

724 and Ashenge records, despite their proximity to one another, as well as discrepancies between 

725 Hayk and other sites across Ethiopia and eastern Africa. Given such local, site-specific 

726 factors, synthesising records from across a landscape is vital for identifying the full nature of 

727 regional Quaternary climate change. The Lake Hayk palaeo-record therefore has an important 

728 role to play in bridging knowledge gaps in the currently under-represented, data-sparse and 

729 climatically vulnerable north of Ethiopia.

730
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1080 Figure captions

1081 Figure 1. (a) Location of Lake Hayk (1) on the eastern margin of the north-central highlands 

1082 in northern Ethiopia. Lakes Tana (2) and Ashenge (3) are also indicated. (b) Aerial view of 

1083 Lake Hayk. The red circle shows the location of core Hayk-01-2010. The blue circle indicates 

1084 the approximate location of core HYK99-1 extracted in 1999 by Lamb et al. (2007b) and 

1085 Darbyshire et al. (2003). The black box indicates the position of the Istifanos monastery, 

1086 located on an island in the 9th century, which has since become attached to the mainland 

1087 (Google Earth 2018).

1088

1089 Figure 2. Age-depth model of fourteen bulk AMS 14C dates using CLAM. Depth refers to 

1090 depth below the top of the sediment core. The individual age distribution for each date, as 

1091 relative area under probability distribution, is shown in blue. The black line indicates the 

1092 most likely age-depth distribution, whilst the grey envelope represents the model’s 

1093 chronological uncertainty.

1094

1095 Figure 3. (a) The three main lithostratigraphical units (L-I-III) identified in Hayk-01-2010. 

1096 Organic, carbonate and water content are expressed as percentages of the total wet weight of 

1097 the sediment, sedimentation accumulation rate as cm yr-1, dry mass, organic matter, calcium 

1098 carbonate (CaCO3) and minerogenic accumulation rates as mg cm-2 yr-1. (b) Photograph of a 

1099 section of sediment from core 1B. The pulp-like dark yellow deposits identified are dense 

1100 mats of the long, slender diatom taxa, Fragilaria and Ulnaria.

1101

1102 Figure 4. Summary diagram of key diatom species and photosynthetic pigments. Diatom data 

1103 are shown as a percentage (%) and pigments as concentration (nmol pigments g-1 OM).

1104

1105 Figure 5. Summary diagram of stratigraphic data from Lake Hayk. Sediment accumulation 

1106 rate is expressed as cm yr-1. Diatom data are shown as a percentage (%), concentration as x 

1107 105 g-1, accumulation rate as x 106 valves cm-2 yr-1 and log diatom-inferred (DI) conductivity 

1108 as μS cm-1. Conductivity recorded in 1969 (920 μS cm-1) is indicated by the red line (Baxter 

1109 and Golobitsh 1970). Total pigment concentration is shown as nmol pigments g-1 OM and 

1110 accumulation rate as picomol cm-2 yr-1. A simple lake level curve, representing maximum 

1111 depth, is based on modern lake level data and interpretation of diatom and pigment proxies. 

1112 Maximum lake level in 2000 (81.0 m; Lamb et al. 2007b) is indicated by the red line.

1113
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1114 Figure 6. Comparison of the onset and termination of eastern African lake levels and other 

1115 palaeo-records, arranged in an approximate south to north order. Increasing lake level is to 

1116 the right of all profiles. (a) Paleo-ENSO record from Laguna Pallcacocha, southern Ecuador 

1117 (events per century; Moy et al. 2002). (b) Lake Tanganyika (height above present lake level; 

1118 Gasse et al. 1989). (c) Lake Challa δD leaf wax (Tierney et al. 2011); (d) Kilimanjaro aeolian 

1119 dust record (NIF3 dust 105; Thompson et al. 2002); (e) Nakuru lake level (Richardson and 

1120 Dussinger 1986); (f) Turkana lake level (Brown and Fuller 2008); (g) Chew Bahir potassium 

1121 (K, cps) content (Foerster et al. 2012); (h; this study) Hayk diatom-inferred (DI) 

1122 conductivity (μS cm-1);  (i) Tana DI conductivity ( Marshall 2006); (j) Ashenge DI 

1123 conductivity (Marshall et al. 2009); (k) Dongge cave oxygen-isotope record (Dykoski et al. 

1124 2005). Key time periods identified are indicated: HE-1-Heinrich Event 1, AHP-African 

1125 Humid Period and YD-Younger Dryas. Note the reversed axes for Lakes Challa, Chew Bahir, 

1126 Hayk, Tana, Ashenge and the Dongge Cave record.

1127
1128 Figure 7. Site map of records showing average hydrological conditions between (a) 15-14 ka 

1129 BP; (b) the onset of the African Humid Period (AHP), 14-13 ka BP; (c) Younger Dryas 

1130 Stadial, 12.8-11.6 ka BP; (d) The African Humid Period (AHP); 11.6-5.5 ka BP. Base map 

1131 from Google Maps (2018). See Table 2 for references.

1132

1133 Figure 8. Site map of records showing hydrological signal for (a) 8.2 ka BP and (b) African 

1134 Humid Period (AHP) termination, 8.0-4.0 ka BP. Base map from Google Maps (2018). See 

1135 Table 2 for references.

1136
1137
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1138 Table 1. AMS radiocarbon chronology of Lake Hayk, core Hayk-01-2010.

Laboratory
Laboratory 

reference

Depth below 

top of 

sediment 

sequence (cm)

Conventional 

age, 14C yrs BP

Calibrated age, cal yr BP, weighted 

average, 2 sigma calibration (relative 

area under probability distribution)

Calibrated age, cal yr 

BP, median probability 

(to nearest 10 yrs)

14CHRONO Centre UBA-27072 12.5 1583 ± 32 1404 - 1545 (1.00) 1470
ORAU OxA-30960 100 2485 ± 32 2432 - 2728 (0.99) 2580
ORAU OxA-30883 140 2795 ± 31 2837 - 2965 (0.93) 2900
14CHRONO Centre UBA-25092 172 3563 ± 36 3816 - 3934 (0.74) 3860
ORAU OxA-30885 183 4068 ± 33 4496 - 4645 (0.68) 4560
ORAU OxA-30886 196 4914 ± 35 5592 - 5715 (1.00) 5640
ORAU OxA-30887 240 7650 ± 45 8386 - 8540 (1.00) 8440
14CHRONO Centre UBA-27073 314.5 9643 ± 79 10749 - 11204 (1.00) 10970
14CHRONO Centre UBA-27074 396.5 10102 ± 44 11587 - 11840 (0.69) 11710
14CHRONO Centre UBA-25093 429 10393 ± 45 12061 - 12423 (0.98) 12270
14CHRONO Centre UBA-25094 442 10287 ± 46 11926 - 12241 (0.85) 12060
14CHRONO Centre UBA-27075 447.5 10254 ± 62 11756 - 12239 (0.96) 12000
14CHRONO Centre UBA-27076 657.5 12846 ± 67 15120 - 15596 (1.00) 15320
14CHRONO Centre UBA-25095 717.5 12873 ± 60 15157 - 15614 (1.00) 15360
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1141 Table 2. Palaeo-records from Africa, the Mediterranean and Europe and their approximate termination of the African Humid Period.

Site Country/  Location Map ID Authority
Approximate AHP 
termination (cal 
kyr BP)

Lake Victoria Rift Lake, 1°16’S 1 Stager et al. (1997) 7.2
Lake Albert Rift Lake, 1°38’ N 2 Berke et al. (2014) -
Lake Tanganyika Rift Lake, 6°42’S 3 Tierney et al. (2010) 6.2
Lake Malawi Rift Lake, 12°03’S 4 Konecky et al. (2011) 6.2 
Lake Challa Kenya, 3°19’S 5 Barker et al. (2013) 5.5
Lake Turkana Kenya, 3°36’N 6 Morrissey and Scholz (2014) 5.2
Lake Tana Ethiopia, 12°01’N 7 Marshall et al. (2011) 6.3
Lake Chad Chad, 13°06’N 8 Armitage et al. (2015) 5
Lake Tritrivakely Madagascar, 19°47’S 9 Gasse and Van Campo (1998) 4
Soreq cave Israel, 31°45’N 10 Bar-Matthews et al. (1997) 7
paleo- Lake Suguta Kenya, 2°11’N 11 Junginger et al. (2013) 6.7
Chew Bahir Ethiopia, 4°47’N 12 Foerster et al. (2012) 5
Ziway-Shala basin Ethiopia, 7°58’N 13 Benvenuti et al. (2002) 5
Lake Hayk Ethiopia, 11°20’N 14 This study 5.2
Lake Ashenge Ethiopia, 12°34’N 15 Marshall et al. (2009) 5.6
Socotra Island Yemen, 12°30’N 16 Shakun et al. (2007) -
Gulf of Guinea West Africa, 4°07’N 17 Armitage et al. (2015) 4.9
River Nile Egypt, 30°49’N 18 Williams (2009) 4.3
Lake Naivasha Kenya, 0°45’S 19 Bergner et al. 2003 -
Ebro desert Spain,41°50’N 20 Davis and Stevenson (2007) N/A
Lake Accesa Italy, 42°59’N 21 Peyron et al. (2011) N/A
Tenaghi Philippon NE Greece 22 Peyron et al. (2011) N/A
Antalaya Turkey, 36°53’N 23 Weninger et al. (2006) N/A
Gulf of Aden Arabian Sea, 12°21’N 24 Tierney and deMenocal (2013) 5
Saqqara necropolis Egypt, 29°51’N 25 Welc and Marks (2014) 5
Qunf cave Oman, 17°10’N 26 Fleitmann et al. (2007) 7.8
Lake Yoa Chad, 19°03’N 27 Kröpelin et al. (2008) 5.6
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