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Abstract

This paper studies nonparametric estimation of the infinite order regression

E(Y k
t |Ft−1), k ∈ Z with stationary and weakly dependent data. We propose a

Nadaraya-Watson type estimator that operates with an infinite number of con-

ditioning variables. We propose a bandwidth sequence that shrinks the effects

of long lags, so the influence of all conditioning information is modelled in a

natural and flexible way, and the issues of omitted information bias and speci-

fication error are effectively handled. We establish the asymptotic properties of

the estimator under a wide range of static and dynamic regressions frameworks,

thereby allowing various kinds of conditioning variables to be used. We estab-

lish pointwise/uniform consistency and CLTs. We show that the convergence

rates are at best logarithmic, and depend on the smoothness of the regression,

the distribution of the marginal regressors and their dependence structure in

a non-trivial way via the Lambert W function. We apply our methodology to

examine the intertemporal risk-return relation for the aggregate stock market,

and some new empirical evidence is reported. For the S&P 500 daily data from

1950-2017 using our estimator we report an overall positive risk-return relation.

We also find evidence of strong time variation and counter-cyclical behaviour

in risk aversion. These conclusions are possibly attributable to the allowance

of further flexibility and the inclusion of otherwise neglected information in our

method.
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1 Introduction

Conditional expectations are crucially important in financial economics, with impli-

cations in many applications including asset returns predictability, market efficiency

and risk management. One fundamental objective is to understand the risk/return

trade-offsummarized by the relationship between the expected excess return relative

to the conditional variance of returns. Due to the latency of conditional expecta-

tions however, there has been no universal agreement upon what is the best way to

measure these objects. Differences in the approaches to modelling and estimating the

conditional mean and variance has led to disagreement on their measurement, and

also, conflicting empirical evidence on their intertemporal relation. Theoretical asset

pricing models do not generally restrict the shape of the risk premium or the dynamics

of the risk return trade-off. For example, Backus and Gregory (1993) show that the

shape of the relation between the risk premium and the conditional variance of returns

is largely unrestricted with increasing, decreasing, flat, or nonmonotonic patterns all

possible. Similar conclusions are drawn by studies such as Abel (1988), Gennotte

and Marsh (1993), and Veronesi (2000). Nevertheless, most empirical studies adopt a

simple linear specification.

There are some issues with the usual approaches. First, there is the risk of mis-

specification. For instance, some studies have relied on parametric or semiparametric

assumptions such as the ARCH or stochastic volatility models, where some high degree

of structure is imposed on the return generating process. Other studies have typically

measured the conditional mean and conditional variance as projections onto some

predetermined variables. These approaches cannot be entirely justified, since they are

all necessarily prone to some degree of potential specification error, see Linton and

Perron (2003) and Escanciano, Pardo-Fernández and Van Keilegom (2017) for further

discussions. Nonparametric modelling can be an effective solution in this context. It is

a well established practical tool for analyzing time series data; see for example Härdle

(1990), Bosq (1996), or Fan and Yao (2003) for a comprehensive review. A major

advantage of this approach is that the relationship between the explanatory variables

under study, denoted by X = (X1, . . . , Xd)
ᵀ
, and the response, say Y , can be modelled

without assuming any restrictive parametric or linear structures. Stone (1980, 1982)

showed that the best achievable convergence rate (in minimax sense) is n−β/(2β+d),

where β is a measure of smoothness and d is the dimension of the covariates.

Secondly, there may be potential bias due to the omission of necessary information.

Choosing among a few conditioning variables introduces an element of arbitrariness

into the econometric modelling of expectations. In particular, if information that

2



investors consider important is neglected, then the corresponding estimates may be

unreliable, Harvey (2001). Lettau and Ludvigson (2010) argued that contrasting con-

clusions on the intertemporal risk-return relation are largely due to the prevalent use

of only small amount of conditional information in modelling the conditional mean

and variance. Indeed, such practice greatly restricts the dynamics for the variance

process and may result in poor estimates, especially when the volatility is highly

persistent, Linton and Perron (2003), Giraitis et al. (2008). For example, Pagan

and Hong (1990) estimated the conditional moments with nonparametric estimates

of E(rmt − rft|rm,t−1, . . . , rm,t−p) and var(rmt − rft|rm,t−1, . . . , rm,t−p), where rmt − rft
denotes the excess market return and p = 1 or 4. Having ended up with a negative

risk-return relation using their estimates, they conjectured that the conclusion may

have been affected by their use of only a small, finite number of conditioning variables.

Noting the dependence of a GARCH process on the infinite past history of returns

(with declining weights), they wrote: “[A] nonparametric estimator of σ2
t appeals as a

solution ..., although the fact that it operates with only a finite number of conditioning

elements makes it unable to explicitly handle a GARCH type process. ... [O]ne might

be able to establish consistency of the estimator [which deals with the infinite depen-

dence]. As far as we are aware, however, there are no current theorems that would

justify such a conjecture.”

1.1 Overview of Results

This paper defines an estimation method that effectively addresses the aforementioned

difficulties. We propose a Nadaraya-Watson type estimator that operates with an

unrestricted number of conditioning variables. We derive large sample properties of the

estimator in extensive detail, thereby providing an answer to the longstanding question

in the quotation above. With a bandwidth sequence that shrinks the effects of long

lags, the influence of all conditioning information is modelled in a natural and flexible

way, and both issues of omitted information bias and specification error are effectively

handled. It is worth noting that Harvey (2001) reported sensitivity of conditional

expectations estimates on what type of conditioning variables are used in modelling

the expectations. He showed with examples how several parametric/nonparametric

estimates (and the estimated risk-return relationship) may vary according to the choice

of different predetermined conditioning information. In this paper, we allow for various

kinds of conditioning information. This is achieved by letting our model assumptions

cover a wide range of static and dynamic regressions frameworks. The latter includes

the autoregression framework as a special case.
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Linton and Sancetta (2009) tackled this estimation problem of infinite order regres-

sion in the autoregression context. They established uniform almost sure consistency

for stationary ergodic data but without rates. In the conclusion, they conjectured

that the limiting distribution of nonparametric estimators could be established, and

that the rate of convergence would be logarithmic. Under strict cross-sectional and

temporal i.i.d. assumption, Mas (2012) derived a convergence rate that is consistent

with our results in the particular case they considered.

We make several contributions. First, we establish some theorems which answer

several open questions posed in the literature. Specifically, we show the pointwise

consistency of our estimator under a set of mild regularity conditions. Further, we

establish a central limit theorem for our estimator at a point under stronger conditions

as well as for a feasibly studentized version of the estimator, thereby allowing pointwise

inference to be conducted. Also, uniform consistency of the estimator is shown over a

compact set of logarithmically increasing dimension. We prove that convergence rates

depend on the smoothness of the regression function, the distribution of the marginal

regressors and their dependence structure in a non-trivial way via the Lambert W

function. We elaborate how each of those factors affects the rate of convergence,

and show that the best possible rate is, nonetheless, of logarithmic order in all cases

regardless of the smoothness of the regression function. This reflects the difficulty of

capturing nonparametrically the effect of an infinite number of lags.

Second, using our estimation method we find some new empirical results. We

reveal new evidence on the dynamics of risk-return relation and its link with the

macroeconomy, and add supporting evidence for explaining some major puzzles in

financial economics. To elaborate, applying our methods on the US stock market we

find a positive risk-return relationship over the past 60 years overall − which is what

asset pricing models generally postulate, e.g. Merton (1973). In particular, the relation

turns out to be highly positive and strongly statistically significant in the recent 30

years period. Moreover, we also found that there has been a strong time variation

and counter-cyclicity in risk aversion and in the conditional Sharpe ratio. The time

series of estimated risk aversion tends to move in the opposite direction to the Federal

Funds rate, a proxy for the business cycle, with the sample correlation being −0.5673.

The quarterly Sharpe ratio is also strongly counter-cyclical, rising over most periods of

recessions. By contrast, when a standard nonparametric method is employed instead,

we noticed that these findings are not revealed, and different conclusions are reached.

We believe our new empirical findings suggest an improvement in the econometric

analysis that is attributable to allowing for extended flexibility and the inclusion of
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otherwise neglected information in our method.

1.2 Technical challenges and sketch proposals for remedy

One major hurdle we face in the infinite-dimensional setting is the non-existence of the

usual notion of density p(·) for the regressor X. Since there is no σ-finite Lebesgue

measure in infinite-dimensional spaces, the Lebesgue density (with respect to the

infinite product of probability measures) of the regressor cannot be defined via the

Radon-Nikodym theorem. Consequently, standard asymptotic arguments for kernel

estimators are no longer valid, for example: Bochner’s lemma whereby under suitable

regularity conditions, for j = 1, 2

1

hd
E

[
Kj
(
x−X
h

)]
=

∫
Kj(u)p(x− uh) du

→ p(x)‖K‖jj as h→ 0 (1)

where K is a multivariate kernel (see Section 2.2 below). So classical limiting theories

cannot be readily extended to our setting.

We propose to adopt and apply some ideas from the functional regression litera-

ture. There is a vast statistical literature on functional data (typical examples include

curves and images, which are infinite-dimensional in nature). Ferraty and Vieu (2002)

first studied the case where the regressor was function-valued. Masry (2005) provided

a rigorous treatment of nonparametric regression with dependent functional data in

which X lies in a general semi-metric space, establishing the central limit theorem.

Mas (2012) derived the minimax rate of convergence for nonparametric estimation of

the regression function with strictly independent and identically distributed covari-

ates. Ferraty and Vieu (2006) detailed a number of extensions and gave an overview

of nonparametric approaches in the functional statistics literature. Geenens (2011)

gave an up-to-date accessible summary of the literature on nonparametric functional

regression, and introduced the term curse of infinite dimensionality, which reflects the

evident difficulties in nonparametric estimation of infinite-dimensional objects due to

extreme data sparsity. In the finite dimensional case more smoothness can mitigate

completely the slower rate of convergence caused by dimensionality, but in the infinite

dimensional case, additional smoothness can only mildly improve the convergence rate

of estimators. We discuss in the next section the difference between the functional

data framework and our discrete time framework.

There is another potential problem that may arise specifically in the infinite dimen-
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sional setting. In the dynamic regression framework, the regressor vector Xt includes

the infinite lags of a variable Zt, say the response variable. Consequently, the class

of mixing type assumptions, a popular notion of dependence in the econometrics lit-

erature, is generally not applicable. This is because measurable functions of Xt will

depend upon the infinite time-lags of Zt, and are not mixing in general, see e.g. David-

son (1994). Therefore, in order to establish asymptotic theories, an alternative set of

dependence assumptions should be imposed on the data generating process. We defer

further discussions to Section 2.1 below.

Lastly, for notations, we define an ' bn by an = bn + o(1), and cn ∼ dn by

equivalence of order between the two sequences cn and dn. Also, f � g means there

exists some constant c > 0 such that limn→∞ f(n)/g(n) ≤ c. The term ‘stationarity’

is taken to mean strict stationarity. Throughout, C (or C ′, C ′′) refers to some generic

constant that may take different values in different places unless defined otherwise.

2 Some Preliminaries

Consider the regression model

Y = m(X) + ε, (2)

where the regressor X = (X1, X2, . . . .)
ᵀ

is a random element taking values in some

sequence space S, the response Y is a real-valued variable, and the stochastic error ε

is such that E(ε|X) = 0 a.s. The objective is to estimate the Borel function

m(·) = E(Y |X = ·) (3)

based on n random samples observed from a strictly stationary data generating pro-

cess {(Yt, Xt) ∈ R × S}t∈Z having some weak dependence structure. Details on the

assumptions are given in Section 2.1 below.

This setting is related to the usual framework adopted for functional data, which

has been widely studied by statisticians, see Ramsey and Silverman (2002), Aneiros,

Bongiorno, Cao and Vieu (2017). Recently, successful attempts have been made to

develop theories for nonparametric inference in the functional statistics literature;

Ferraty and Romain (2010) gives a comprehensive review. A major issue in this field

of research lies in extending the statistical theories applicable to Rd to function spaces.

In this literature, attention is usually on smooth functions that are approximated and

reconstructed from finely discretised grids on some compact interval. In contrast, the

setup in our model (2) can be viewed as looking at a countable number of discrete
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observations. Such a difference is reflected by the fact that the observed data is taken

to be a discrete process X = (Xs) with unbounded s ∈ Z+ so that S = {f |f :

N → R}, rather than X = (X(s)) with s ∈ [0, T ]k so that S = {f |f : [0, T ]k ⊂
Rk → R}, e.g. curves if k = 1, images if k ≥ 2. The discrete nature of our setting

has several fundamental distinctive features that allow us to look further into many

specific practical issues.

An immediate consequence of our framework is that the tuning parameter can be

imposed on each and every dimension, allowing one to control the marginal influence

of the regressors. For instance when it is sensible to postulate that the influence of

distant covariates is getting monotonically downweighted, one may set the marginal

bandwidths to increase in the lag horizon so as to impose higher amount of smoothing

at distant lags. Depending on the nature of the regressor, S may be taken as the space

of all infinite real sequences R∞ :=
∏∞

j=1 Rj formed by taking Cartesian products of

the reals, or its various linear subspaces such as `∞, `p, c. We propose to take S = R∞

so as to refrain from imposing any prior restrictions with regard to the choice of the

regressor; for example, taking S to be the space of bounded sequences excludes the

possibility of having regressors with infinite support (e.g. Gaussian process).

2.1 Dependence structure and leading examples

A distinctive characteristic of time series data is temporal dependence between ob-

servations. In the nonparametric time series literature, Rosenblatt (1956)’s α-mixing

has been the de facto standard choice due to it being the weakest among the class of

mixing-type asymptotic independence conditions. Roussas (1990) established point-

wise and uniform consistency of the local constant estimator under this condition,

respectively, while Fan and Masry (1992) established asymptotic normality. The α-

mixing condition has also been widely used in the context of dependent functional

observations, see for instance Ferraty et al. (2010), Masry (2005), and Delsol (2009).

Definition 1. A stochastic process {Zt}∞t=1 defined on some probability space (Ω,F , P )

is called α-mixing (NB. ‘jointly’ α-mixing if Zt is Rd-valued, with d ∈ (1,∞]), if

α(r) := sup
A∈Ft−∞,B∈F∞r+t

|P (A ∩B)− P (A)P (B)|

is asymptotically zero as r → ∞, where F ba is the σ-algebra generated by {Zs; a ≤
s ≤ b}. In particular, we say the process is algebraically (respectively exponentially)

α-mixing with rate k if there exists some c, k > 0 such that α(r) ≤ cr−k (respectively

7



if there exists some γ, ς > 0 such that α(r) ≤ exp(−ςrγ)).

The popularity of the α-mixing condition (note the modifier α- will occasionally be

omitted if no confusion is likely) in the literature stems from the fact that it is easy to

work with, see e.g. Doukhan (1994), Rio (2000) for a comprehensive survey. However,

there are several limitations that have been pointed out in the literature. First, it is a

rather strong technical condition that is hard to verify in practice. Second, some basic

processes are not mixing. e.g. AR(1) with Bernoulli innovations, Andrews (1984).

We turn to our setting. In the static regression case it is appropriate to assume the

mixing condition, but in the dynamic case this condition is not generally applicable as

we now explain. Recall that the object of estimation is the conditional mean E(Yt|F),

cf. (2), where the information set F is determined by the nature of the conditioning

variables. There are two leading cases: the first case is the static regression where

the information set is taken to mean σ(Xjt; j = 1, 2, . . .), the σ-algebra generated

by the exogenous marginal regressors. The second case is the autoregression, where

Xtj = Yt−j for all j, in which case F = Ft−1 represents σ(Ys; s ≤ t− 1), the σ-algebra

generated by the sequence of lags of the response (Ys)s≤t−1. In fact, as for the latter

framework we may consider a more general setup, i.e. a dynamic regression, where

the information set is taken to be F = σ(Xjs, Ys; s ≤ t − 1) for some j. Details are

formally given in Assumptions A below.

In the static regression case the usual joint α-mixing condition can be assumed on

the sample data {Yt, Xt} as is usually done; since marginal regressors are observed at

the same time t: Xt = (X1t, X2t, . . .)
ᵀ
, assuming joint dependence does not require

additional adjustments. Indeed, it can be easily shown that joint mixing implies both

marginal component processes and any measurable function thereof are mixing.1 In

this paper, we do not necessarily require independence between component processes

{Xjt}, j = 1, 2, . . .; later we specify to what extent some dependence can be allowed

(see Assumption C). It will turn out that the requirement is mild and allows sufficient

generality in application.

Moving on to the dynamic regression setting, since the regressors are taken to be

the lags of the response and/or a covariate, measurable functions of Xt depend on

infinite time-lags and hence are not necessarily mixing.2 Therefore an alternative set

of dependence conditions is necessary to establish asymptotic theories for the second

1The converse is not necessarily true unless the marginal processes are independent to each other,
see Bradley (2005, Section 5).

2Except for some very special cases; Davidson (1994, Theorem 14.9) gives a set of technical
conditions under which a process with infinite (linear) temporal dependence is α-mixing.
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framework. We adopt the notion of near epoch dependence due to Ibragimov (1962)

for the dynamic regression setting and deal with two leading cases separately.

Definition 2. A stochastic process {Zt}∞t=1 defined on some probability space (Ω,F , P )

is called near-epoch dependent or stable in L2 with respect to a strictly stationary α-

mixing process {ηt} if the stability coefficients v2(r) := E|Zt−Zt,(r)|2 is asymptotically

zero as r →∞, where Zt,(r) = Ψr(ηt, . . . , ηt−r+1) for some Borel function Ψr : Rr → R.

A process that is near epoch dependent on a mixing sequence is influenced pri-

marily by the “recent past” of the sequence and hence asymptotically resembles its

dependence structure; see e.g. Billingsley (1968), Davidson (1994), or Lu (2001) for

details. Andrews (1995) established uniform consistency of kernel regression estima-

tors under near epoch dependence conditions. Following the usual convention, e.g.

Bierens (1983), we shall take Ψr(ηt, . . . , ηt−r+1) ≡ E(Zt|ηt, . . . , ηt−r+1). In Section 2.3

it will be shown that under suitable conditions similar asymptotic theories can be

derived for both static and dynamic regression frameworks.

2.2 Local Weighting

In this section we fix the notions of local weighting and the measure of closeness

between the data objects. Let K : [0,∞) → [0,∞) =: R+ be a univariate density

function and for an element u of a normed sequence space, let

K(u) := K(‖u‖). (4)

In our setting the properties of K are crucially important. We now group the kernel

functions into three subcategories depending on how they are generated. The first

two, referred to as Type-I and Type-II kernels in Ferraty and Vieu (2006) generalize

the usual ‘window’ kernels and monotonically decreasing kernels in finite dimension,

respectively. Both types of kernels are continuous on a compact support [0, λ].

Definition 3. A function K : [0,∞) → [0,∞) is called a kernel of type−I if it

integrates to 1, and if there exist real constants C1, C2 (with 0 < C1 < C2) for which

C11[0,λ](u) ≤ K(u) ≤ C21[0,λ](u), (5)

where λ is some fixed positive real number. A function K : [0,∞) → [0,∞) is called
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a kernel of type−II if it satisfies (5) with C1 ≡ 0, and is continuous on [0, λ] and

differentiable on (0, λ) with the derivative K ′ that satisfies

C3 ≤ K ′(u) ≤ C4

for some real constants C3, C4 such that −∞ < C3 < C4 < 0.

The definition above suggests that the uniform kernel on [0, λ] is a type-I kernel,

and the Epanechnikov, Biweight and Bartlett kernels belong to the class of Type-II

kernels. Some of those with semi-infinite support, for example (one-sided) Gaussian,

are covered by the last group, which we will call the Type-III kernels.

Definition 4. A function K : [0,∞)→ [0,∞) is a kernel of type−III if it integrates

to 1, and if it is of exponential type; that is, K(r) ∝ exp(Crβ) for some β and C.

2.3 Small deviations

The small ball (or small deviation) probability plays a crucial role in establishing the

asymptotic theory. Let S∗ be a sequence space equipped with some norm ‖.‖; then

the small ball probability of an S∗-valued random element Z is a function defined as

ϕz(h) := P (‖z − Z‖ ≤ h) , (6)

where h ∈ R+. The probability is called centered if z = 0 (in which case we write

ϕ(h)) and shifted (with respect to some fixed point z ∈ S∗\{0}) if otherwise. The

relation between the two quantities cannot be explicitly specified in general, and will

be given in terms of a Radon-Nikodym derivative (See Assumption D2 below).

The name small ball stems from the fact that we are interested in the asymptotic

behaviour of ϕz(h) as h tends to zero. The function can be thought of as a measure

for how much the observations are densely packed or concentrated around the fixed

point z with respect to the associated norm and the reference distance h. From the

definition it is straightforward to see that ϕz(h) → 0 as h → 0, and that nϕz(h)

is an approximate count of the number of observations whose influence is taken into

account in the smoothing procedure. When Z is a continuous random vector of fixed

dimension d with density p(·) > 0, it can be readily shown that the shifted small ball

probability (with respect to the usual Euclidean norm) is given by

ϕz(h) = Vdh
dp(z) = O(hd), (7)
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where Vd = πd/2/Γ(d/2 + 1) is the volume of the d-dimensional unit sphere.

However, when Z takes values in an infinite-dimensional normed space, it is diffi-

cult to specify the exact form of the small ball probability, and its behaviour varies

depending heavily on the nature of the associated space and its topological structure.

Due to the non-equivalence of norms in infinite dimensional spaces, it is intuitively

clear that the “speed” at which ϕz(h) converges to zero is affected by the choice of the

norm ‖.‖. Nonetheless, a rapid decay is expected in general irrespective of the choice

of the norm due to the extreme sparsity of data in infinite-dimensional spaces.

One possible example of S∗ is (`r, ‖.‖r), the space of r-th power summable sequence

equipped with the `r-norm; the centred small ball behaviour of sums of weighted i.i.d.

random variables is widely studied in the literature, see for example Borovkov and

Ruzankin (2008) and references therein. In this work here, we will focus our main

attention on the case of r = 2 (and take ‖.‖ to mean ‖.‖2 unless specified otherwise).

Nevertheless, we note that the results derived in this paper can be extended to the

case of r > 2 as long as the regularity conditions are adjusted appropriately.

Writing the expected value of the kernel in terms of the small ball probability

EK
(
z − Z
h

)
= EK

(
‖z − Z‖

h

)
=

∫
K(u) dP‖z−Z‖/h(u) =

∫
K(u) dϕz(uh), (8)

we are able to bypass the difficulties mentioned in the introduction, and to establish the

convergence of the integrals without requiring the existence of the Lebesgue density.

Lemma 1 Ferraty and Vieu (2006, Lemma 4.3 & 4.4). Suppose ‖.‖ is some semi-

norm defined on a function space. If K is type-I, then it satisfies

Cj
1 ≤

1

ϕz(hλ)

∫ λ

0

Kj(v) dϕz(vh) ≤ Cj
2 , j = 1, 2 (9)

where C1, C2 > 0 are as defined in Definition 3. When the kernel K is type-II, if

∃ ε0 > 0, C5 > 0 s.t. ∀ε < ε0,

∫ ε

0

ϕx(u)du > C5εϕx(ε) (10)

then we have

Cj
6 ≤

1

ϕz(hλ)

∫ λ

0

Kj(v) dϕz(vh) ≤ Cj
7 , j = 1, 2 (11)

where the constants C6 = −C5C4 and C7 = sups∈[0,λ] K(s) are strictly positive.

Under the regularity conditions of Lemma 1, (9) and (11) hold for every h > 0, so

it follows that for any kernels of type-I and II:
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Corollary 1 If the kernel K is either type-I or type-II, then for j = 1, 2 we have

1

ϕz(hλ)
E

[
Kj
(
z − Z
h

)]
−→ ξj as h→ 0+, (12)

where ξ1 and ξ2 are some strictly positive real constants.

This result can be seen as an infinite-dimensional analogue of Bochner’s lemma

(1): i.e., for Z ∈ Rd, h−dEK((z − Z)/h)→ p(z) > 0. It is obvious that ξj is bounded

below and above by Cj
1 and Cj

2 , respectively (or Cj
6 and Cj

7 , depending on the choice of

the kernel). With specific choices of kernels and regressors we may be able to specify

the exact values of the constants in some certain cases. For example, it is straightfor-

ward to see that ξ1 = 1/λ and ξ2 = 1/λ2 when K is uniform kernel supported on [0, λ].

Remarks. (i) Lemma 1 reveals the importance of condition (10) in constructing the

asymptotics when the kernel is of type-II. Whereas the condition is widely assumed

in the functional statistics literature for that reason, Azais and Fort (2013) proved

that it necessarily restricts the variable Z to be of finite dimension. In other words,

whenever (10) is valid, the topology that governs the concentration properties of Z

accounts effectively only for finite dimension. An example includes the case where Z

is associated with the semi-norm ‖y‖ := (y1, . . . , yp, 0, 0, . . .) for some fixed positive

integer p < ∞ and y ∈ R∞, Ferrraty and Vieu (2006, Section 13.3.3). Since this

severely restricts the applicability of our work, we shall not consider the case of Type-

II kernels.

(ii) A natural question one may then ask is whether (12) would hold for kernels with

semi-infinite support such as the Type-III kernels. In the finite Rd-framework, it is well

known that a set of assumptions including ‖u‖dK(u) → 0 as u → ∞ is sufficient for

showing (1), see for instance Parzen (1962, Theorem 1A) and Pagan and Ullah (1999,

Lemma 1). However, in the infinite-dimensional setting the answer is negative in most

usual cases where the kernel is of exponential type (e.g. Gaussian kernel). Whereas

the lower bound of the limit can be easily constructed via Chebyshev’s inequality:

with reference to Definition 4, writing V = ‖z − Z‖β, δ = hβ and letting cδ be some

function of δ we have

(0 <) exp(−cδδ) ≤ [P (V ≤ δ)]−1E exp(−cδV ). (13)

So the upper bound may not exist, and the rate at which the small ball probability
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decays to zero may dominate the speed at which the integral (8) converges to zero.

This claim cannot be formally verified for all general cases because (as aforementioned)

there is no unified result for the asymptotic behaviour of small deviations available.

Nevertheless, the idea can be sketched in the common case where the asymptotics of

the distribution function (i.e. small deviation) is of exponential order: P (V ≤ δ) ∼
exp(−Cδ−θ) as δ → 0 for some constants C and θ > 0. By de Bruijn’s exponential

Tauberian theorem (see Bingham et al. (1987), Li (2012)), a necessary and sufficient

condition for such a case is the following limiting behaviour of the Laplace transform

near infinity:

E[exp(−cδV )] ∼ exp
(
− C ′ · cθ/(1+θ)

δ

)
as cδ →∞

for some constant C ′ > 0. With V = ‖z−Z‖2, δ = h2, cδ = 2−1h−2 (which corresponds

to the case of the Gaussian kernel) the difference in the order of convergence suggests

that the right hand side of (13) is unbounded, and that the limit (12) diverges.

Due to the reasons above we shall confine our attention to Type-I kernels only here

in this work.

2.4 Bandwidth Matrix and covariates

We aim to estimate the regression operator at a point x ∈ R∞ with an R∞-dimensional

regressor X = (X1, X2, . . .)
ᵀ
. Let H := diag(h) = diag(h1, h2, . . .) ∈ R∞×∞ be the

bandwidth matrix. We require that a norm ‖.‖ can be admitted to the weighted

regressor values and the weighted point, and for this the bandwidth sequence must be

chosen appropriately. In particular, we let

H = hD = h× diag(φ1, φ2, . . .), (14)

where D ∈ R∞×∞ and h ∈ R. By Kolmogorov’s three-series theorem, the sequence of

weighted regressors {φ−1
j Xj} is square summable, with probability one, provided that

the marginal regressors X ′j are independent with finite variance and satisfy

∞∑
j=0

E min
{

1, φ−2
j X2

j

}
<∞, (15)

so that (φ−1
1 X1, φ

−1
2 X2, . . .)

ᵀ
=: Z is (`2, ‖.‖2)-valued. In the autoregressive framework,

φj can be interpreted as a weight sequence that represents the “relative influence” of

the marginal regressors, which diminishes as lags get further apart.
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For this purpose we assume from now on that the bandwidth-weighted X and x (i.e.

Z and z := (φ−1
1 x1, φ

−1
2 x2, . . .)

ᵀ
, respectively) are `2-valued3 and normed with ‖.‖ =

‖.‖2. Consequently, (with an abuse of notation) we can extend the usual definition

of shifted small deviation to account for the generalized support [0, λ] and bandwidth

vector h = (h1, h2, . . .)
ᵀ
:

ϕx(hλ) := P
(
‖H−1(x−Xt)‖ ≤ λ

)
= P

(
‖D−1(x−Xt)‖ ≤ hλ

)
. (16)

Equivalently, ϕx(hλ) = P (Xt ∈ E(x, hλ)), where E is the infinite-dimensional hyperel-

lipsoid centred at x ∈ R∞, and λ is as defined in Section 2.2. Clearly, ϕx(hλ) = ϕz(hλ).

For later reference, we also define the joint small ball probability of the regressor vec-

tors observed at different times t and s as the joint distribution

ψx(hλ; t, s) := P
(
(Xt, Xs) ∈ E(x, λh

)
× E(x, λh)

)
. (17)

3 The Estimator

We observe a sample {Yt, Xt}nt=1 with Yt ∈ R and Xt ∈ R∞. With these data, we

propose to estimate m(x) = E(Y |X = x), x ∈ R∞ with the following local constant

type estimator:

m̂(x) :=

∑n
t=1K

(
H−1(x−Xt)

)
Yt∑n

t=1K
(
H−1(x−Xt)

) ≡ ∑n
t=1 K

(
‖H−1(x−Xt)‖

)
Yt∑n

t=1 K
(
‖H−1(x−Xt)‖

) . (18)

In practice, in the autoregression case we essentially observe only {Y1, Y2, . . . , Yn}
rather than the full infinity, so further lags can be regarded as zeros. Similarly,

in the static case, when Xt is in Rτ for large τ we can identify this with Xt =

(X1t, X2t, . . . , Xτt, 0, 0, . . .) ∈ R∞. So for practical applications, one may for exam-

ple employ a truncation argument on the regressor (as will be done in Section 4.4 -

albeit with a different purpose) and let the effective dimension τ of the regressor Xt

to increase in n in the theoretical analysis.

The estimator can be viewed as an infinite-dimensional generalization of the stan-

dard multivariate local linear estimator, and is a special case of the one in Ferraty and

Vieu (2002), Masry (2005) and references therein for functional data. In the following

3This gives a mild restriction on the range of possible points at which the estimation is made; i.e.
x ∈ R∞ is such that

∑
j j
−2px2j <∞.
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section we will examine some asymptotic properties of the estimator.

4 Asymptotic Properties

In this section we introduce the main results of this paper. We derive some large

sample asymptotics of the proposed estimator (18). We establish consistency in both

pointwise and uniform sense, and also the asymptotic normality. All proofs are given

in the appendix.

Consider two different cases: (1) the static regression and (2) the dynamic regres-

sion. Below we specify two sets of temporal dependence conditions, either of which will

be assumed on the data generating process of the sample observations. Assumption

A1 corresponds to the static regression case where we have exogenous regressors that

are jointly observed in time in a weakly dependent manner. No restriction is needed

as regards the dependence structure between the marginal regressors, although certain

additional conditions can be potentially imposed at the later stage (see Assumptions

C below). The second option A2 concerns with the dynamic regression framework.

In this case, the notion of near epoch dependence is adopted to describe the depen-

dence structure of the processes defined as functions of the response variables. The

assumptions below suggest that there is a trade-off between the degree of mixing and

the possible order of moments, we allow on the response variable, i.e. 2 + δ.

Assumptions A

A1. The marginal regressors X1t, X2t, . . . are exogenous variables, and the sample

data {Yt, Xt}nt=1 = {Yt, (X1t, X2t, . . .)}nt=1 is stationary and jointly arithmetically

α-mixing with rate k ≥ 2(δ+2)/δ, where δ is as defined in Assumption B4 below.

A2. Each regressor is either a lag of the response variable Yt or of a covariate Vt, i.e.

Xjt = Yt−j or Xjt = Vt−j, j ∈ N, and {Yt, Vt}nt=1 is stationary and arithmetically

α-mixing with rate k ≥ 2(δ + 2)/δ. Also, the process Kt := K(‖H−1(x−Xt)‖)
is near epoch dependent on (Yt, Vt), and there exists some r = rn →∞ such that

the rate of stability for Kt denoted v2(rn) = v2(r) satisfies

v2(r)1/2[ϕx(hλ)]−(2δ+3)/(2δ+2)n1/(2(δ+1)) → 0 as n→∞. (19)

Remark. Our model under Assumption A2 can be viewed as a generalization of

the NAARX model in Chen and Tsay (1993). The framework nests both the fully
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autoregressive framework in which Xjt = Yt−j for all j, and the case where the regressor

vector consists only of the lags of a covariate Vt. Doukhan and Wintenberger (2008)

studied the autoregressive model of order d =∞ under a notion of weak dependence,

and showed the existence of a stationary solution. This result was further studied in

Wu (2011).

4.1 Pointwise consistency

Pointwise consistency of the local constant estimator was first studied by Watson

(1964) and Nadaraya (1964) for i.i.d data with d = 1. Their result was extended to

the multivariate case (finite d) by Greblicki and Krzyzak (1980) and Devroye (1981).

Robinson (1983) and Bierens (1983) were amongst the earliest papers that worked on

consistency of the estimator with dependent observations (both static regression and

autoregression were allowed in their frameworks), followed by Roussas (1989), Fan

(1990), and Phillips and Park (1998) to name a few out of numerous papers. The case

of the functional regressor was first studied by Ferraty and Vieu (2002).

In this section we establish the pointwise weak consistency of the estimator (18)

with dependent data satisfying either A1 or A2. A set of assumptions required for the

theory is now introduced, and some introductory arguments are briefly sketched.

Assumptions B

B1. The regression operator m : R∞ → R is continuous in some neighbourhood of x

B2. The marginal bandwidths satisfy hj = hj,n → 0 as n → ∞ for all j = 1, 2, . . .,

where diag(h1, h2, . . .) = diag(h) = H is the bandwidth matrix, and the small

ball probability obeys nϕx(hλ) → ∞ for every point x ∈ R∞, where ϕx(hλ) :=

P (‖H−1(x−X)‖ ≤ λ)→ 0 as n→∞.

B3. The kernel K is type−I

B4. The response Yt satisfies E
(
|Yt|2+δ

)
≤ C <∞ for some C, δ > 0.

B5. The joint small ball probability (17) satisfies ψx(hλ; i, j) ≤ Cϕx(λh)2, ∀i 6= j.

B6. The conditional expectation E
(
|YtYs||Xt, Xs

)
≤ C <∞ for all t, s.

Remark. The continuity assumption B1 is necessary for asymptotic unbiasedness

of the estimator. It will be shown that the estimator is unbiased at every point of

continuity, and that the rate of convergence for the bias term can be specified upon
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imposing further smoothness condition on the regression operator, see later. Assump-

tion B2 can be thought of as an extension of the usual bandwidth conditions that

are assumed in finite-dimensional nonparametric literature, cf. (7). As discussed be-

fore, nϕx(hλ) can be understood as an approximate number of observations that are

“close enough” to x. Therefore, it is sensible to postulate that nϕx(hλ) → ∞ as

n → ∞, meaning that the point x is visited many times by the sample of data as

the size of the sample grows to infinity. This is in line with the usual assumption

that nhd → ∞ when X ∈ Rd, in which case the small ball probability is given by

ϕx(h) ∝ hdpX(x) as noted in (7). Conditions B5 and B6 are imposed to control the

asymptotics of the covariance terms. The validity of condition B5 can be easily seen in

the Rd frameworks; for relevant discussions, see Ferraty and Vieu (2006, Remark 11.2).

To sketch the idea, we write Kt := K(‖H−1(x−Xt)‖) for the sake of simplicity of

presentation (note its dependence upon Xt), and express the estimator (18) as

m̂(x) :=

∑n
t=1 K

(
‖H−1(x−Xt)‖

)
Yt∑n

t=1 K
(
‖H−1(x−Xt)‖

) =
1
n

∑n
t=1

Kt
EK1

Yt
1
n

∑n
i=1

Kt
EK1

=
m̂2(x)

m̂1(x)
. (20)

We then employ the following decomposition:

m̂(x)−m(x) =
m̂2(x)

m̂1(x)
−m(x) =

m̂2(x)−m(x)m̂1(x)

m̂1(x)

=
Em̂2(x)−m(x)Em̂1(x)

m̂1(x)
+

[m̂2(x)− Em̂2(x)]−m(x)[m̂1(x)− Em̂1(x)]

m̂1(x)
, (21)

where clearly Em̂1(x) = 1. Below we show consistency by proving that the ‘bias part’

Em̂2(x)−m(x) and the ‘variance part’ [m̂2(x)−Em̂2(x)]−m(x)[m̂1(x)− 1] are both

negligible in large samples. As for the latter term, it suffices to show the mean squared

convergence of m̂2(x)− Em̂2(x) to zero because m̂1(x)→P 1 then readily follows.

Theorem 1 Suppose that Assumptions B1-B5 hold. Then the estimator (18) with

sample observations {Yt, Xt}nt=1 satisfying either A1 or A2 is weakly consistent for the

regression operator m(x) = E(Y |X = x). That is, as n→∞

m̂(x)
P−→ m(x). (22)

In the following section, we present the rates of convergence and asymptotic nor-

mality under additional regularity conditions.
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4.2 Asymptotic Normality

Earlier studies on the limiting distribution of the standard Nadaraya-Watson esti-

mator can be traced back to Schuster (1972) and Bierens (1987), where the case of

univariate and multivariate regressors was considered, respectively. The case of depen-

dent samples was studied in Robinson (1983), Bierens (1983), Masry and Fan (1997),

and by many others under various model setups and different regularity conditions.

Masry (2005, Theorem 4) and Delsol (2009) established general distribution theories

for Nadaraya-Watson type estimators in a semi-metric space. Our results are different

from them in two respects. First, the difference of our framework from the functional

literature discussed in the beginning of Section 2.2 gives us further flexibility, without

which the analysis cannot be done to meet our specific needs. Second, whereas the

final results of many existing papers were given in terms of abstract functions, our

results are presented with an explicit rate of convergence, allowing practical appli-

cations. In this section we outline the main theory and introduce some interesting

consequences thereof.

Our objective is to construct the asymptotic distribution of our estimator. That

is, to find deterministic sequences Vn(x),Bn(x) such that

V−1/2
n (x)

(
m̂(x)−m(x)− Bn(x)

)
=⇒ N (0, 1) . (23)

In fact, under certain conditions4 we can show that the following self-normalized lim-

iting distribution holds

∆−1
n (x)

(
m̂(x)−m(x)− Bn(x)

)
=⇒ N (0, 1) , (24)

where ∆2
n(x) :=

∑n
t=1 (

∑n
s=1Ks)

−2
[Kt

(
Yt − m̂(x)

)
]2, and as defined previously, Kt =

K(‖H−1(x −Xt)‖). The proof of (24) is given within the proof for Theorem 2 later.

This gives pointwise confidence intervals for m̂(x), which can be used as a basis for

conducting standard statistical inference.

null

We now discuss some main assumptions needed for our distribution theory.

4.2.1 The bias and variance components

Regarding the asymptotic ‘bias’, we need to strengthen Assumptions B by impos-

ing additional smoothness conditions and suitable bandwidth adjustments, just like

4Assumptions B7-B10 in section 4.2.1 below
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the continuity assumption is extended for asymptotic normality in standard Rd cases.

These allow the exact upper bound of the asymptotic bias to be specified. Note that

alternatively, a Fréchet differentiability-type condition may be imposed. Here also

we introduce two conditions (Assumptions B9, B10) that we require for studying the

variance component.

Further Assumptions B

B7. The regression operator m : R∞ → R satisfies

∣∣m(x)−m(x′)
∣∣ ≤ ∞∑

j=1

cj
∣∣xj − x′j∣∣β (25)

for every x, x′ ∈ R∞, and some constant β ∈ (0, 1], where {cj} is some sequence

of real constants that satisfies
∑∞

j=1 cj ≤ 1.

B8. The marginal bandwidths satisfy hj = φj · h for some positive real numbers φj,

where h = hn → 0 as n → ∞. We suppose that φj satisfy
∑∞

j=1 φ
−2
j < ∞ and∑∞

j=1 cjφ
β
j <∞.

B9. The conditional variance var[Yt|Xt = u] = σ2(u) is continuous in some neigh-

bourhood of x; i.e. supu∈E(x,hλ)[σ
2(u) − σ2(x)] = o(1). Similarly, the cross-

conditional moment E[(Yt −m(x))(Ys −m(x)|Xt = u,Xs = v] = σ(u, v), t 6= s

is continuous in some neighbourhood of (x, x).

B10. Rnt := (EK1)−1{Kt(Yt − m(x)) − EKt(Yt − m(x))} belongs to the domain of

attraction of a normal distribution.

Remark. The first two assumptions concern with the bias component Bn in

(23). Assumption B8 extends the previous bandwidth condition B2. Obviously, it is

consistent with (and stronger than) what was previously assumed in B2, since h→ 0

implies the coordinate-wise convergence of each marginal bandwidths. With B8 one

can write the asymptotic bias and the order of the bias-variance balancing bandwidth

in terms of the common factor h. It is possible to dispense with this condition at the

cost of imposing minor modifications in B7; the asymptotic bias will then be written

in terms of the infinite sum of a weighted marginal bandwidth hj, whose convergence

needs to be ensured. A further increment condition will be needed on φj later to

elaborate the asymptotics of the variance term.
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Assumption B7 replaces and strengthens B1, and can be thought of as a variant

of Hölder-type continuity; the case of cj = 2−j and β = 1 is implied by the Lipschitz

condition. Another example of cj includes exp(−j). Indeed, under B7 the regression

operator becomes a contraction mapping, and the contribution from each marginal

dimension decreases in j. This ensures summability of the bias and allows the order

of convergence rate to be specified, cf. (28) below.

Note that in the context of autoregression where Xj ≡ Yt−j for all j, the model is

given by

Yt = m(Yt−1, Yt−2, . . .) + εt. (26)

Whether the stationary solution {Yt} indeed exists is an important question. In the

study of a class of general nonlinear AR(d) models, Duflo (1997) and Götze and Hipp

(1994) assumed what is called the Lipschitz mixing condition (or the strong contraction

condition), which is essentially (25) replaced by finite d-sum on the right hand side. In

our context, Assumption B7 plays a similar role; Doukhan and Wintenberger (2008)

showed that (25) with
∑∞

j=1 cj < 1, is sufficient for the existence of a stationary

solution: for some measurable f , Yt = f(εt, εt−1, . . .), where εt is an i.i.d. sequence.

Wu (2011) arrived at the same conclusion under the assumption of
∑∞

j=1 cj = 1; the

specific restrictions on cj are chosen to reflect their findings, despite the fact that we

are not restricting the error process {εt} to be an independent sequence in our model

setup.

The standard conditions B9 are assumed to deal with the asymptotics of the

variance and covariance terms. The last condition B10 is needed only for the self-

normalized CLT (24) without assuming higher moment conditions; relevant discus-

sions can be found for example in de la Peña et al. (2009). The condition is not

affected by the temporal dependence of the DGP as the property is inherited to the

approximated sum in the Bernstein’s blocking procedure; see (77) later for details.

Lastly, before we proceed, we briefly remark that from now on the rate condition (19)

is slightly strengthened as follows (modifying Assumption A2 accordingly):

v2(r)1/2[ϕx(hλ)]−1n1/2 → 0 as n→∞. (27)

With the additional assumptions introduced in this section (B7-B9), the bias and
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variance components can be specified as follows, and the CLT (23) can be constructed:

Bn(x) :=
[
Em̂2(x)−m(x)

]
≤ hβλβ

∞∑
j=1

cjj
pβ (28)

Vn(x) := var [m̂2(x)] ' σ2(x)ξ2

nϕx(hλ)ξ2
1

, (29)

where λ and m̂2(·) are as in (5) and (20), respectively. Formal derivation is done in

Section 7.2 of the appendix within the proof for Theorem 2 we introduce below.

4.2.2 Sufficient conditions for the derivation of convergence rates

Convergence rates are crucial in understanding estimators’ large sample asymptotics

and the evaluation of their performance. Below we introduce a set of conditions under

which the rate for our estimator can be specified. We elaborate how the rate of conver-

gence of our estimator depends crucially on (i) the distribution of marginal regressors

and (ii) their “cross-sectional” dependence structure. It is important to note that

the conditions are sufficient but not necessary ; we leave other possibilities as future

studies, hoping that similar theories would work in a wider range of frameworks.

(i) Dependence across marginal regressors

The way how the marginal regressors are “cross-sectionally” related to each other

(given each fixed time) affects the rate of convergence. We consider and allow for the

following dependence:

Assumption C. For every fixed t, the real-valued stochastic process formed by the

marginal regressors {Xjt}∞j=1 has finite fourth moments, i.e. EX4
jt ≤ C < ∞ ∀j,t,

and is stationary and admits the following causal moving average representation:

Xjt =
∞∑
u=0

auεj−u,t, (30)

where au is square summable, and {εjt}j is an orthogonal sequence.

Remark. The dependence structure described in the assumption above is very

weak and general, and covers a large class of processes. To elaborate, a necessary

and sufficient condition for a stationary sequence to have the representation (30) is
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linear regularity5, a weak notion of dependence. For example, if the stack of marginal

regressors {Xjt}j (with finite second moments) are independent of each other or α-

mixing between themselves, they satisfy the condition because they both imply linearly

regularity. Therefore, Assumption C is consistent with both Assumptions A1 (the

static regression case) whereXj’s are exogenous variables and can have any dependence

structure, and Assumption A2 (the dynamic regression case) whereXj’s are (temporal)

lags of a mixing variable. The special case when X’s are Gaussian is worth noting.

If {Xjt}j is Gaussian and linearly regular, then it has the representation above with

independent and normally distributed ε′js. An equivalent condition for linear regularity

of a Gaussian sequence is simply the existence of a spectral density.

The requirement of finite 4th moment is imposed just to ensure that the squared

marginal regressors have finite second moments; this is related to the distributional

properties of the regressors and will become clear below. Note that obviously, when

a lag of the response is included as in the dynamic regression framework (A2), this

makes the maximum order of moments of Yt (i.e. 2 + δ) ≥ 4due to Assumption B4.

(ii) The distribution of regressors

We can show the rate becomes available when, in addition to Condition C above,

the marginal regressors satisfy some distributional properties (and when also they are

“downweighted” in a certain way via bandwidths). Below we introduce these condi-

tions and discuss them in detail. Note that as defined above, vectors Z and z are

taken to mean (φ−1
1 X1, φ

−1
2 X2, . . .)

ᵀ
and (φ−1

1 x1, φ
−1
2 x2, . . .)

ᵀ
, respectively, where the

vector x = (x1, x2, . . .)
ᵀ

is the point at which estimation is made, and φ′js are the

weight coefficients on bandwidths introduced in Assumption B8 above.

Assumptions D

D1. The distribution F of X2
s , where each Xs is the marginal regressor, is regularly

varying near zero with strictly positive index (−ρ) > 0.

D2. The induced probability measure Pz−Z is dominated by the measure PZ, and its

Radon-Nikodym density dPz−Z/dPZ =: p∗ is continuous and is bounded away

from zero at 0 ∈ R∞; i.e., p∗(0) > 0.

D3. Further to B8, the bandwidth satisfies hj = jph (i.e. φj = jp) with p ∈ Π(c, β),

5See Ibragimov and Linnik (1971, Chapter 17) or Davidson (1994, Part III) for details.
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where

Π(c, β) =

{
p :

∞∑
j=1

cjj
pβ <∞, 1

2
< p

}
.

Remark. Condition D1 concerns with the marginal distributions of the regressor

vector. It is equivalent to saying that

lim
x→∞

F (1/(γx))

F (1/x)
= γρ,

where ρ is the index of variation which is strictly negative. Under this condition,

Dunker, Lifshits and Linde (1998, cf. Conditions I and L) derived the explicit be-

haviour of the small ball probability. We require the function F (1/x) to be regularly

varying in order to ensure that the small ball probability is well-behaved near infinity

in the asymptotic sense. Since only those functions having strictly negative ρ satisfy

the condition, the distribution F of the squared regressor must be such that F (1/x)

decreases (as x→∞) at a reasonable speed. By reasonable we mean that the relative

weight of decrease follows a power law, and the variation should be continuous. A

large class of common distributions satisfies this condition; for example: the Gamma,

Beta, Pareto, Uniform, Exponential, Weibull, and also the Chi-squared distribution

(in which case each marginal regressor Xs is Gaussian).

Assumption D2 is about the transition of the shifted small ball probability to

the centred small deviation (whose asymptotic behaviour is more accessible), see Sec-

tion 2.3 above and Mas (2012). The explicit form of the derivative (and hence of

the relationship between the two probabilities) cannot be easily computed in gen-

eral. Nonetheless, in the special case of the Gaussian process Z with some covariance

operator Σ it is known by Sytaya (1974) and Zolotarev (1986) that

P
(
‖z − Z‖ ≤ ε

)
' P

(
‖Z‖ ≤ ε

)
exp

{
− 1

2
‖Σ−1/2z‖2

}
as ε→ 0. (31)

The reader is directed to Li and Shao (2001) for detailed discussion on this asymptotic

equivalence relation. Note that Σ can be expressed in terms of the aj constants (in

Assumption C), which govern the dependence across the marginal regressors, and of

the bandwidth weights φj:

cov(Z) = Σ = (DA)(A∗D), (32)

where A = (aij) = (ai−j) and D = diag(φ1, φ2, . . .).

Assumption D3 is concerned with how the ordered marginal regressors are down-
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weighted. The specific bandwidth increment condition assumed in D3 is one framework

under which the explicit behaviour of the small ball probability can be specified, (see

e.g. Dunker et al. (1998)). In case the regressors are independent to each other,

the probability can also be derived when the weights are of an exponential type (i.e.

hj = ejh) up to an unknown function, or are non-increasing in a particular manner

(see Gao et al. (2003)) similar to the polynomial decay. In this paper however, we

shall confine our attention to the case of the polynomial law for expositional simplicity

and consistency of presentation, since the asymptotic behaviour of the small ball is

not yet known in the general case for choices other than the polynomial decay as in

Assumption D3.

In practice, we would require some ordering for the marginal regressors in the

static regressions case A1, since the influence of marginals is set to decrease via the

bandwidth adjustments as discussed just above. One practical way of doing this is

to rank them in the order of goodness of fit, or the contribution that each marginal

regressor makes in the estimation. For example, one could evaluate the sample cor-

relations between Yt and Ê(Yt|Xjt), where Xjt is a marginal covariate and Ê(Yt|Xjt)

is a kernel estimate of the univariate marginal regression, and order them according

to the computed correlations. This way one can line up the marginal regressors in

the order of their relative importance. This method is motivated by the Kernel Sure

Independence Screening (KSIS) approach in Chen, Li, Linton and Lu (2017), and the

reader is referred to their paper for further details.

4.2.3 The Central Limit Theorem

We now introduce the general central limit theorem. The theorem below gives the

limiting distribution of the estimator (18) with respect to mixing sample data as

described in either Assumption A1 or A2.

Theorem 2 Suppose that B2-B9 and D1-D3 hold. Let the marginal regressors Xs

satisfy Assumption C. Then the estimator (18) based on the sample observations

{Yt, Xt}nt=1 satisfying either Assumption A1 or A2 is asymptotically normal with the

following limiting distribution:√
nh

1+2ρp
2p−1 exp

(
−κ0h

− 2
2p−1

)[
m̂(x)−m(x)− Bn(x)

]
=⇒ N

(
0, κ1σ

2(x)
)
, (33)

where Bn(x) = O(hβ) is the ‘bias part’ in (28) and σ2(x) = Var(Y |X = x) is the

conditional variance defined in Assumption B9.
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Below we explain the associated constants. Recall Assumption D1; under that

condition, by the characterization theorem of Karamata (1933) (see e.g. Feller (1971)),

there always exists a slowly varying function `(x) satisfying F (1/x) = xρ`(x). Now fix

some p, the order of increment constant for bandwidth in Assumption D3, and denote

by L(t) the Laplace transform of X2. Then we have,

C` = lim
δ→0

[
`−1/2

(
δ−

4p
2p−1

)]
, ζ = −

∫ ∞
0

u−1/2pL′(u)

L(u)
du

C∗ =
(2π)(1+2pρ)(2p− 1)

Γ−1(1− ρ) · (2p)
2p(ρ+2)−1

2p−1

· ζ
2p(1+ρ)
2p−1 , C∗∗ = (2p− 1) ·

(
ζ

2p

)2p/(2p−1)

κ0(K, p, F ) = C∗∗(CAλ
−1)

2
2p−1 and κ1(K, p, F ) =

C∗C`ξ2

p∗(0)ξ2
1(CAλ−1)

1+2ρp
1−2p

,

where Γ(·) is the Gamma function, ξ1 and ξ2 are the constants specified in (12) (which

simplify in case of uniform kernel for example), λ is the upper bound of the support of

the kernel, and p∗(·) is the Radon-Nikodym derivative defined in D2. Recall that for

the uniform (Box) kernel ξ2 = ξ2
1 , so they cancel out in κ2. See Dunker, Lifshits and

Linde (1998) and also Hong, Lifshits and Nazarov (2016) for some discussions on the

underlying arguments for the formulation of these constants. To aid the exposition, we

compute and present the constants for some common, regularly varying distributions

in the table below.

X2
j ∼ F i.i.d. ρ limx→∞ `(x) = C−2

` ζ

Uniform(1,b) −1 1 n/a

Gamma(α, β) −α βαα−1Γ(α)−1 απβ−1/2p

sin(π/2p)

Exponential(η) −1 η πη−1/2p

sin(π/2p)

Weibull(α, β) −α β n/a
Pareto(θ, µ) −1 µ/θ n/a

χ2
1 −1/2 (2/π)1/2 π2(1−2p)/2p

sin(π/2p)

Table 1: Examples of the key constants for some common distributions

For example, when Xj’s are Gaussian, the constants C∗ and C∗∗ denoted C∗G and

C∗∗G respectively, are given by:

C∗G =
(2π)(1−p)(2p− 1)

2 · (2p)
3p−1
2p−1

·
[
π2(1−2p)/2p

sin(π/2p)

] −p
2p−1

, C∗∗G =
2p− 1

2

(
π

2p sin π
2p

) 2p
2p−1

.
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and

κ2(K, p, a) =
C∗GC`ξ2ξ

−2
1

e−
1
2
‖Σ−1/2z‖22(CAλ−1)

p−1
2p−1

where z = (zj) = (j−pxj) = D−1x. The exponential term in the denominator of the

asymptotic variance arises from the asymptotic equivalence relationship between the

shifted and non-shifted small deviation for `2-valued Gaussian variables, cf. (31).

The CA constant represents the dependence across the marginal regressors and

plays an important role. First of all, when the marginal regressors are identically

distributed and independent to each other, then CA = 1. If not independent, the

specific form of this constant is only known in the Gaussian case (by Hong, Lifshits

and Nazarov (2016, Theorem 1.1)). Specifically, when {Xj}j is centred Gaussian and

satisfies Assumption C, then given the square summable sequence aj in (30), we have

CA =

[
1

2π

∫ 2π

0

∣∣∣∣ ∞∑
j=0

aj exp(ijs)

∣∣∣∣1/p ds
]p
. (34)

It is worth noting that CA is a function of the spectral density of the MA(∞) pro-

cess {Xjt}j denoted SX(·). Specifically, some straightforward algebra gives CA =

(2π)p(p−2)/2 · [
∫ 2π

0
SX(s)p/2ds]p.

The implications of the constant CA suggest an interesting finding that allowing for

dependence does not seem to incur much penalty; we conjecture that similar conclusion

would hold for regressors of different distributions than Gaussian, but leave it for future

studies.

4.3 Optimal Bandwidth

We now discuss the issue of bandwidth optimality. As in the finite-dimensional frame-

work, there is a bias-variance trade-off. As the bandwidth goes up, the variance gets

smaller while the bias increases, and vice versa. Therefore we search for the optimal

bandwidth hopt that balances the order of those two quantities.

We first suppose that p ∈ Π(c, β), cf. D3, is given. In the i.i.d. case with Gaussian

regressor we have

hβ ∼

√
exp

(
κ0h−2/(2p−1)

)
nh

1−p
2p−1

, (35)

so that [
2β +

1− p
2p− 1

]
· log h− κ0h

− 2
2p−1 ∼ − log n.
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Taking h ∼ (log n)a for some a < 0 balances the leading terms on both sides:[
2β +

1− p
2p− 1

]
· a · log log n− κ0(log n)−

2
2p−1

·a ∼ − log n. (36)

The explicit order a that solves (36) can be expressed in terms of n, β and p. Writing

ϑ := [2β + (1− p)/(2p− 1)] and χ := 2/(2p− 1) for notational simplicity, and solving

for a we have

aopt =
ϑ · W

(
χ
ϑ
· κ0 · nχ/ϑ

)
− χ log n

ϑχ · log log n
, (37)

where W(y) is the Lambert W function (see e.g. Olver et al. (2010)), which returns

the solution x of y = x ·ex. From (37) the optimal bandwidth hopt ∼ (log n)aopt follows,

in which case the asymptotic root mean squared error is of the order (log n)βaopt .

Remark. We can look for the optimal bandwidth for the cases of non-Gaussian

regressors by following exactly the same procedure as above; tedious details are omit-

ted here. Lower value of ρ makes the rate better in general. Regarding the solution in

(37), since the mapping x 7→ x·ex is not an injection, the solution may be multi-valued

on the negative domain, i.e. y < 0. This does not happen in (37) provided β ≥ 1/4

(however big p is), because (1− p)/(2p− 1) is bounded away from −1/2; in this case,

the coefficient of the double logarithmic term in (36) is strictly smaller or equal to zero.

Since the log terms dominate the double logarithm in (36) as the sample size n

increases, it can be readily expected that the optimal value of a in (37) converges

to a limit in such a way that the leading orders are balanced. Below we introduce

without formal justification a trivial result that gives the lower bound (infimum) of

the optimal bandwidth (and hence of the optimal rate that balances the bias and

variance). We remark that the result below holds for other choices of the distribution

of the regressors, and also for the case of dependent (non-independent) regressors as

allowed in Assumption C (i.e. when CA 6= 1), as the exponent of the leading term

−2/(2p − 1) remains invariant as is clear from Theorem 2. Nonetheless, it is worth

noting that although the order of the convergence rate remains the same, the difference

in associated constants does make the speed at which aopt converge to the limit in (38).

null

Corollary 2 For any fixed choice of p ∈ Π(c, β) and the distribution F of X2 satis-
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fying Assumption D1, the order of the optimal bandwidth aopt satisfies

aopt ↓
(
−2p− 1

2

)
as n→∞, (38)

which suggests that the lower bound of the optimal bandwidth is given by

(log n)−
2p−1

2 � hopt ∼ (log n)aopt . (39)

This result tells us the best possible performance we can expect from the optimal

bandwidth. Higher p and β makes the rate better. But, because nk(log n)−(2p−1)/2 →
∞ for any real k > 0, it follows that we cannot possibly estimate the regression func-

tion at a polynomial rate. This result is consistent with and complements the findings

of Mas (2012, Theorem 3), which were obtained under the assumption of indepen-

dence of regressors. The paper also considered the case where the bandwidth grows

exponentially: φj � exp(jq) for some q > 0. Then for hj = φjh, his result suggests

exp[−(log n)2q/(2q+1)] � hopt ∼ exp[aopt · (log n)bopt ]. Therefore, the performance is bet-

ter in general in this case, although obviously a polynomial rate of convergence still

cannot be attained. It is not clear what will happen when the regressors are allowed

to be dependent in the sense of Assumption C, since the behaviour of the small ball

probability for non-independent (and non-Gaussian) sequence is not known for the

case of exponentially decaying weights.

Returning back to Corollary 3, we emphasize that the arguments are true for any

p ∈ Π(c, β). Let pmax = supp∈Π(c,β) p. Then a lower bound on the optimal bandwidth

(over all p) is (log n)−(pmax− 1
2). For example, when cj = (1/2)j−2 we have pmax = 1/β.

Unfortunately, it is generally the case that pmax /∈ Π(c, β), in which case the lower

bound is not quite achievable by our method.

Remark. Regarding bandwidth selection, one possibility is the Bayesian band-

width selection methods like proposed in Zhang, King, and Hyndman (2006). We

take as prior for h the density proportional to 1/(1 + λh2) and as prior for p − 1/2

the density of a χ2(w) random variable. The hyperparameters λ,w may be chosen by

experimentation. The priors are combined with a Gaussian (least squares) density to

deliver a posterior for the bandwidth. The reader is referred to Section 5 for further

discussions on the issue of bandwidth choice.
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4.4 Uniform consistency

Uniform consistency of the Nadaraya-Watson estimator was first studied by Nadaraya

(1964, 1970) and subsequently by numerous others. To mention few early papers,

Devroye (1978) weakened the regularity conditions required in the previous papers,

and Robinson (1983) proved uniform consistency for dependent sample data. In the

functional statistics literature, uniform consistency of kernel estimators for conditional

mean is established only with respect to i.i.d. sample data so far (see for example

Ferraty et al. (2010), Ferraty et al. (2011), Kudraszow and Vieu (2013), and Kara-

Zäıtri et al. (2017)) as far as the authors are concerned.

In this section, we show uniform consistency of our estimator under the (suitably

modified) regularity conditions assumed in the previous sections. We start by intro-

ducing the notion of Kolmogorov’s entropy below. For some of its earlier discussions

in statistics literature, the reader is referred to Yaracos (1985) and Mammen (1991).

Definition 5. Given some η > 0, let L(S, η) be the smallest number of open balls in

E of radius η needed to cover the set S ⊂ E. Then Kolmogorov’s η-entropy is defined

as logL(S, η).

This quantity will be used in explaining the topological restrictions we adopt to

suitably accommodate infinite dimensionality. The definition implies the dependence

of Kolmogorov’s entropy both on the nature of the space under study and the measure

of proximity. It will be shown later in this section that the entropy is closely related

to the rate of convergence of the estimator, in particular, to the penalty incurred on

the rate in the uniform case. It is well known that the regression function cannot be

estimated uniformly over the entire space, e.g. Bosq (1996). In our infinite dimensional

framework, the infinite sequence spaces, if unrestricted, cannot be covered by a finite

number of balls, and that L(S, η) = ∞. We propose to consider uniform consistency

over a subset of R∞, whose effective dimension is truncated and is increasing in sample

size n. In particular, we define the set

Sτ :=
{
u|(ui)i∈Z+ , uj = 0 for all j > τ, ‖u‖∞ ≤ λ

}
⊂ R∞, (40)

where τ = τn is some increasing sequence and λ is fixed, and consider uniform con-

sistency over this compact set. Then Kolmogorov’s entropy of the set Sτ is given as

follows:
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Lemma 2 Kolmogorov’s η-entropy of Sτ with τ = τn(→∞) and λ > 0 is

logL
(
Sτ , η

)
= log

[(
2λ
√
τ

η
+ 1

)τ ]
. (41)

null

Remark. (41) is in line with common intuition; as the effective dimension τ in-

creases, the number of balls (with some fixed radius) required to cover the set tends

to infinity. Lemma 2 can be shown by exploiting the splitting technique and then by

covering the polyhedron of increasing dimension. See appendix for details. Note that

for λ fixed and η = ηn, Kolmogorov’s entropy logL(Sτ , η) is of order (τ log τ−τ log η).

Considering the definition of the set Sτ , in the sequel (with a slight abuse of nota-

tion) we take X to denote the regressor, but with zeros after its τ th(= τn →∞ as n→
∞) entry; that is, X = (X1, X2, . . . , Xτ , 0, 0, . . .)

ᵀ
(so that the original X is recovered

as n → ∞). Also, the regression operator and the estimator with respect to this

truncated regressor are denoted by mτ (·) and m̂τ (·), respectively. All assumptions,

including the additional one to follow below, are understood to hold under these mod-

ifications.

Assumption E

E. For sufficiently large n, Kolmogorov’s η-entropy logL(Sτ , η) satisfies

(log n)8+2ε

nϕx(h)
≤ logL(Sτ , η) ≤

√
nϕx(h)

(log n)1+ε
for some ε ∈ (0, 1/2). (42)

Furthermore, 0 < ϕx(h) � h <∞ and (log n)2/(nϕx(h)) −→ 0 as n→∞.

Remark. The first part of Assumption E specifies the rate at which Kolmogorov’s en-

tropy should behave with sample size n (hence in dimension τ = τn). From the upper

and lower bound it readily follows that nϕ(h) must be of order larger than (log n)6+2ε.

This assumption is sufficiently general. For example, in view of the bias-variance op-

timal bandwidth suppose h ∼ (log n)−(2p−1)/2 so that nϕ(h) ∼ (log n)(2p−1)β. In this

case, assumption (42) is valid as long as p is moderately large enough relative to β ≤ 1

in such a way that 6 + 2ε ≤ (2p − 1)β. The second part is standard; in particular,

the last condition straightforwardly follows by (42) and only slightly strengthens the

bandwidth condition in Assumption B2.
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For uniform consistency we shall impose a stronger condition on mixing coeffi-

cients. From hereafter, by A1′ and A2′ we mean Assumptions A1 and A2 but with

the arithmetic mixing rate condition strengthened to the following exponential mixing

condition (cf. Definition 1):

α(r) ≤ exp(−ςrγ2) (43)

where ς > 1 and γ2 is a positive constant such that γ := 1/(γ−1
1 + γ−1

2 ) ≥ 1, with

γ1 defined as in Assumption B4′. When the response is assumed to be bounded (i.e.

|Yt| ≤ C), γ1 may be taken to be ∞ so that γ2 = γ ≥ 1. This stronger mixing

condition enables us to obtain exponential bounds that decay fast enough, thereby

accommodating uniformity, see appendix for details. We hope to expect the same

conclusion in this section to hold under the arithmetic mixing condition we previously

assumed, once some suitably sharper exponential inequality becomes available. In

line with the modification on the mixing rate above, we also impose a slightly stricter

condition on the response:

B4′. The response Yt is satisfies the following tail condition: There exists some posi-

tive constant γ1 and C such that P (|Yt| > u) ≤ C exp(1− uγ1) for any u > 0.

For example, a Gaussian random variable satisfies B4′ with γ1 < 2. The condition is

also satisfied by many unbounded variables and all those bounded ones. The main

result of this section now follows.

Theorem 3 Suppose that Assumptions B2, B3, B4′, B5-B9, D1-D3 and E hold. Let

the marginal regressors Xs satisfy Assumption C, and take τ = τn ∼ (log n). Then

the estimator m̂τ (·) with respect to sample observations {Yt, Xt}nt=1 satisfying A1′ is

uniformly consistent for m(x) = m(x1, x2, . . .) over Sτ :

sup
x∈Sτ

∣∣∣m̂τ (x)−mτ (x)
∣∣∣ = OP

(
hβ +

√
(log n)2 exp

(
κ0h

−2/(2p−1)
)

nh
1+2pρ
2p−1

)
. (44)

Remark. We may choose the optimal bandwidth as before; following the same

arguments in the pointwise case, choosing h ∼ (log n)a and solving for n gives

aopt =
ϑ · W

[
χ
ϑ
c exp(−χ

ϑ
2 log log n+ χ log n)

]
+ 2χ log log n− χ log n

ϑχ log log n
. (45)
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And because the order of the leading terms is (log n)−(2p−1)/2 as in the pointwise

case, it is straightforward to see that the lower bound of the optimal bandwidth in

Corollary 3 still continues to hold; that is, hopt � (log n)−(2p−1)/2. This is again

invariant to the choice of distribution F of the squared regressor. It is important to

note that as before, potential cross-sectional dependence between marginal regressors

and also their distributional properties are represented via c, the collection of constants

that appear inside the exponential terms in the asymptotic variance.

The results altogether give the optimal rate of convergence of our estimator as

follows.

Corollary 3 Suppose conditions assumed in Theorem 2.4 hold. Upon choosing h ∼
(log n)aopt, where aopt is as defined in (45), we have

sup
x∈Sτ

∣∣∣m̂τ (x)−mτ (x)
∣∣∣ = OP

(
[log n]β·aopt

)
. (46)

In the pointwise case the same result in Corollary 4 trivially holds, but with the

different optimal aopt; it is as given in (37). In that case this rate of convergence is

minimax optimal in view of Theorem 3 of Mas (2012). Although both aopt converge

to −(2p − 1)/2, the speed at which they converge is different as can be seen in the

example in Figure 1 below.

Figure 1: aopt = aopt(n) for β = 1 and p = 2
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5 Application to the Risk Return Relationship

The relation between the expected excess return on the aggregate stock market -

the so called “equity risk premium” - and its conditional variance has long been the

subject of both theoretical and empirical research in financial economics. The risk-

return relation is an important ingredient in optimal portfolio choice, and is central

to the development of theoretical asset-pricing models aimed at explaining a host of

observed stock market patterns. Asset pricing models generally predict a positive

relationship between the risk premium on the market portfolio and the variance of its

return. In an influential paper, Merton (1973) obtained very simple restrictions albeit

under somewhat drastic assumptions; he showed in the context of a continuous time

partial equilibrium model that

µt = E[(rmt − rft)|Ft−1] = γ × var[(rmt − rft)|Ft−1] = γσ2
t , (47)

where rmt, rft are the returns on the market portfolio and risk-free asset respectively,

while Ft−1 is the market wide information available at time t − 1. The positive

constant γ is the Arrow–Pratt measure of relative risk aversion. The linear functional

form actually only holds when σ2
t is constant; otherwise µt and σ2

t can be nonlinearly

related, Gennotte and Marsh (1993). Further examples with a positive risk return

trade-off include the external habit model of Campbell and Cochrane (1999) and the

Long Run Risks model of Bansal and Yaron (2004). However, a negative risk-return

relation is not inconsistent with (a general enough) equilibrium, Backus and Gregory

(1993). Unfortunately, the empirical evidence on the risk-return relation is mixed and

inconclusive. Ghysels, Santa-Clara, and Valkanov (2005), Lundblad (2005), Bali and

Peng (2006), Pástor, Sinha, and Swaminathan (2008), and Ludvigson and Ng (2007)

find a positive risk-return relation, while Campbell (1987), Glosten, Jagannathan,

and Runkle (1993), Harvey (2001), and Lettau and Ludvigson (2003) find a negative

relation. Still others find mixed and inconclusive evidence like French, Schwert, and

Stambaugh (1987), Nelson (1991), Campbell and Hentschel (1992), Linton and Perron

(2003), and Whitelaw (1994). Scruggs (1998) and Guo and Whitelaw (2006) document

a positive trade-off within specifications that facilitate hedging demands. However,

Scruggs and Glabadanidis (2003) find that this partial relationship is not robust across

alternative volatility specifications.

As already mentioned in the beginning of this paper, the main difficulty in esti-

mating the risk-return relation is that neither the conditional expected return nor the

conditional variance of the market is directly observable. The contradictory findings
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of the above studies are mostly the result of differences in the specifications and ap-

proaches to modelling the conditional mean and variance. Pagan and Ullah (1988),

and Pagan and Hong (1990) initiated the use of nonparametric methods in this set-

ting. The latter paper argued that the risk premium µt and the conditional variance

σ2
t are highly nonlinear functions of the past whose form is not captured by standard

parametric GARCH–M models. They estimated E(rmt − rft|rm,t−1, . . . , rm,t−p) and

var(rmt − rft|rm,t−1, . . . , rm,t−p) nonparametrically, where p ∈ {1, 4}, finding evidence

of considerable nonlinearity. They then estimated δ from the regression

rmt − rft = δσ2
t + ηt, (48)

by OLS and IV methods, finding a negative but insignificant δ. There are a number of

drawbacks with the Pagan and Hong (1990) approach. Firstly, as aforementioned in

the introduction, the conditional moments are calculated using a finite and small con-

ditioning set. This greatly restricts the dynamics for the variance process. Secondly,

they only test for linearity of the relationship between µt and σ2
t ; this seems to be

somewhat restrictive in view of earlier findings. Linton and Perron (2003) considered

the model where σ2
t was a parametrically specified CH process (with dependence on

the infinite past) but µt = ϕ(σ2
t ) for some function ϕ of unknown functional form.

They proposed an estimation algorithm but did not establish any statistical proper-

ties. They found some evidence of a nonlinear relationship. Conrad and Mammen

(2008) develop the theory of estimation and inference for this model. Christensen,

Dahl, and Iglesias (2012) developed the theoretical framework by considering volatil-

ity models that are driven by observable shocks so that a full theory can be given.

Escanciano, Pardo-Fernández and Van Keilegom (2017) consider a more general class

of semiparametric models. Under the semi-strong form of the efficient market hypoth-

esis prices contain all relevant information and so the risk premium and risk themselves

can be expressed in terms of only the past history of prices. We shall use this assump-

tion to obviate the omitted variables/endogeneity issues that have limited previous

applications in this area.

5.1 Empirical study on the US stock market

We apply our methods to the daily risk premium on the value weighted S&P500 index

— the total return on the index minus the returns on T-bills6, denoted Yt — over

the period 04 January 1950 to 30 August 2017, a total of 17,025 observations. The

6Data obtained from Yahoo Finance and Kenneth French’s Data Library.
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whole time period is divided into 5 subperiods: 1950:01:04-1963:02:21, 1963:02:25-

1976:05:04, 1976:05:05-1989:05:24, 1989:05:25-2002:06:24, and 2002:06:25-2017:08:30,

to see if there is any variation in the ex-post risk and return by decades. Except for

the last subperiod where there are 3824 observations, the other five each contains 3300

observations. We suppose that both the conditional mean and variance of Yt, denoted

µt and σ2
t , are unrestricted nonparametric functions of the entire information set. We

estimate them for p = 4 and 12 at the points Xt = (Yt−1, Yt−2, . . . , Y1, 0, 0, . . .). The

uniform kernel K(‖u‖) = 1[0,1](‖u‖) is used, and the bandwidth sequence h of 0.00035

and 0.000125 are used for p = 4 and p = 12, respectively. These bandwidths are in

accordance with the selection methods we propose below in the end of this section.

Table 2 reports some summary statistics of the nonparametric estimates µ̂t and σ̂2
t

for p = 4 over the full period (1950-2017). We present the mean, standard deviation,

skewness, kurtosis and the fitted AR(1) coefficients. The estimated conditional vari-

ance shows high persistence. Table 2 may be compared with Table I of Bali and Peng

(2006), where they report similar descriptive statistics for their realized, GARCH, and

implied volatility estimates computed using 5-minute high frequency dataset. Note

that their time period is different (1982-2002), and they present excess kurtosis.

Table 2: Summary statistics of the estimates (µ̂t, σ̂
2
t )

Full Period (1950-2017)

Mean Std Skewness Kurtosis AR(1)

µ̂t 3.1260×10−4 2.3346×10−3 1.03347 3.4194 0.0190

σ̂2
t 6.5894×10−5 4.8913×10−5 6.6066 76.20624 0.7033

Figure 2 reports the (annualized) estimated values, that is, (
√

252 · σ̂t, 252 · µ̂t),
t = 2, . . . , n(= 17025) when p = 4. The result shows there is no noticeable disparity

over different time periods, although the estimates are more spread out in the more

recent periods, showing higher variability. Having a different number of observations

does not seem to affect the conclusion either, seeing from the last plot. Interestingly,

the number of negative expected excess returns is quite large; such estimates are

not inconsistent with asset pricing theory, Boudoukh et al. (1997), Whitelaw (2000),

Harvey (2001). The plot of estimates evaluated when p = 12 – omitted here – reports

similar findings, except that the estimates are a bit more concentrated.

Note that to focus on the main “chunk” of the fitted values, where almost all

observations are located, the plots in Figure 2 are magnified and truncated on the
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Figure 2: Annualized estimates of conditional mean and standard deviation, p = 4

ranges of [−3, 3] of the y-axis and [0.0225, 0.3] of the x-axis; around 96.1% of the

entire fitted values appear in the plot. In particular, among those not appearing in

the plot are those with zero estimated conditional standard deviation, which constitute

around 3% of the whole estimates. This happens when, at a point of evaluation Xt,

only one kernel in the sums returns a value of 1 and zero otherwise, so that the second

moment equals the squared first moment. One way of reducing the number of such

estimates is to increase the bandwidth. We do not proceed to this direction because

it makes the bandwidth sub-optimal and the number of those observations is rather

negligible.

Figure 3 and 4 show the estimated relationship obtained using local constant

smoothing, with the bandwidth chosen according to Silverman’s rule of thumb. The

smooths are evaluated at the 100 quantiles of the marginal distribution so that the

spacing of the covariate can be shown. The first and last 5 values are taken out, since

they tend to be extreme values in general, and including them may make the graph

look misleading. All subplots suggest that quadratic fits, i.e. including the conditional

variance term, would be appropriate. From Figure 4, we note that when p = 12, i.e.

when the influence of distant lags is “less weighted”, we begin to see some negative

relationships in some subplots (especially in the more recent periods), which is con-

sistent with our findings later in this section.
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Figure 3: Estimated relationship between annualized σ̂t and µ̂t; p = 4

Now we consider some parametric analysis, and suppose the conditional mean

µ(x) = E(Y |X = x) and conditional variance σ2(x) = var(Y |X = x) are related in a

quadratic way, i.e.,

µ(x) = α + γσ(x) + βσ2(x), (49)

where θ = (α, γ, β)
ᵀ

with α, β, γ being unknown constants. Let x1, x2, . . . , xq ∈ R∞

be some given points such that ‖D−1(xj−xk)‖ > 0 for all j, k, and let µ̂(x) and σ̂2(x)

be the estimated moments.

Then we take

θ̂ =
(
α̂, γ̂, β̂

)ᵀ

= Σ̂−1
q Ûq

and

Σ̂q =


1

∑q
i=1 σ̂(xi)

∑q
i=1 σ̂

2(xi)∑q
i=1 σ̂(xi)

∑q
i=1 σ̂

2(xi)
∑q

i=1 σ̂
3(xi)∑q

i=1 σ̂
2(xi)

∑q
i=1 σ̂

3(xi)
∑q

i=1 σ̂
4(xi)

 ; Ûq =


∑q

i=1 µ̂(xi)∑q
i=1 σ̂(xi)µ̂(xi)∑q
i=1 σ̂

2(xi)µ̂(xi)

 ,

where q is finite.

We next derive the limiting distribution of the vector of estimated coefficients

θ̂ := (α̂, γ̂, β̂)
ᵀ
, which can be used for conducting statistical inference. Define:
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Figure 4: Estimated relationship between annualized σ̂t and µ̂t; p = 12

Σq =


1

∑q
i=1 σ(xi)

∑q
i=1 σ

2(xi)∑q
i=1 σ(xi)

∑q
i=1 σ

2(xi)
∑q

i=1 σ
3(xi)∑q

i=1 σ
2(xi)

∑q
i=1 σ

3(xi)
∑q

i=1 σ
4(xi)


Ω(xi) =

(
σ2(xi) skew(Yt|Xt = xi)

skew(Yt|Xt = xi) σ4(xi) (kurt(Yt|Xt = xi) + 2)

)
=:

(
ω1,1(xi) ω1,2(xi)

ω2,1(xi) ω2,2(xi)

)
,

Vq =

q∑
i=1

J(xi)Ω(xi)J(xi)
ᵀ

; J(xi) =


1 0

σ(xi)
µ
2σ

(xi)

σ2(xi) µ(xi)

 .

Here, skew and kurt denote skewness and kurtosis of Yt (conditional on Xt = xi).

The result is a direct consequence of consistency of estimated moments and their

asymptotic independence across i.

Theorem 4 Let Assumptions B2, B3, B5-B9, and D1-D3 hold, and suppose B4 is

strengthened to require E(|Yt|8+δ) ≤ C < ∞ for some C, δ > 0. Suppose the operator

g(·) = E(Y 2|X = ·) satisfies Assumption B7. Suppose further that ωa,b(u) is con-

tinuous in some neighbourhood of xi for all i. Then, given the sample observations
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{Yt, Xt}nt=1 specified in A2, we have the following limiting distribution:√
nh

1−p
2p−1 exp

(
−κ′0h

− 2
2p−1

)(
θ̂ − θ −Bθ

)
=⇒ N

(
0, κ2(K, p, a)Σ−1

q VqΣ
−1
q

)
,

where Bθ is a bias terms of order hβ, κ2 is the constant defined in Section 2.4.2.

The parameters θ are estimated at the same rate as the functions µ(·) and σ2(·).
It may be possible to achieve faster rates of convergence by allowing q → ∞, as is

commonly done in the semiparametric literature, but we have not yet been able to

establish this rate improvement; see Chen and Christensen (2015).

With the same S&P500 data as before and the nonparametric estimates we ob-

tained for p = 4 and reported in Figure 2, we fit the linear regression (49). Note that

those with zero estimated variance we discussed above are removed (around 3% of

whole data), since they can make the fitted estimates misleading and spurious. Also,

the standard deviation term is deliberately removed to allow for a direct comparison

with the results from those in the existing literature, Pagan and Ullah (1988), Pagan

and Hong (1990) and Harvey (2001). We estimate the coefficients α and β, and pro-

vide the results along with the values of t-statistics that α = 0 and β = 0 in Table

3. The first subperiod is omitted because the estimates for earlier periods may be

less reliable due to being evaluated at points with many zeros. Parentheses marked

with asterisks (respectively, double asterisks) mean that the corresponding estimates

are statistically different from zero at 5% level (respectively, 1% level) of significance

based on Newey-West standard errors.

Table 3: Estimated parameters obtained using (252 · µ̂t, 252 · σ̂2
t )

Full (1954-2017) and Sub Periods

Full 1954-1963 1963-1976 1976-1990 1990-2003 2003-2017

α 0.07264 0.10046 0.01672 0.14233 0.09700 0.03761

(t) (9.060)∗∗ (2.2340)∗ (0.4488) (5.0488)∗∗ (6.7565)∗∗ (2.3038)∗

β 0.40830 -1.64391 2.9360 -3.69919 0.44916 2.14394

(t) (1.063) (-0.5213) (1.2656) (-2.9391)∗∗ (0.6707) (2.3265)∗∗

The result reports a positive effect (0.4083, with t = 1.063) of conditional variance

on the risk premium during the period of 1954-2017 overall. For the full period we
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considered a period starting from 1954 here simply because the federal rate series,

which we analyse together with later, is available only from 1954. Including the

period of 1950-1954 does not change the conclusion. Over the periods of 1963-1976

and 2003-2017 the risk-return relationship is strongly positive, and in the later period

the estimate is statistically significant at 1% level. In fact, the estimated risk averse

parameter β is 1.41294 (with t = 2.7317) on the last two subperiods combined (i.e. the

period of around past 30 years), revealing evidence of strongly positive and statistically

significant risk-return relation in the recent time after 1990. We may compare these

results with the findings of Pagan and Hong (1990, page 61), where they reached

a different conclusion with Monthly CRSP data over 1953-1984. They reported the

estimated coefficient for conditional variance of−0.87 (with t = −0.35). The estimated

risk aversion parameter β using our conditional expectations estimates over 1953-1984

is −0.07418 (with t = −0.0790), reporting a negative but much weaker risk-return

relation.

To investigate how the analysis we adopt in our method may have made any

difference, we repeat the same step above by computing nonparametric estimates

with using only one lag as conditioning variable. This is to replicate what was done in

the papers computed fitted means and variances based on nonparametric regression

approaches, e.g. Pagan and Hong (1990). The local constant estimation is done with

the standard Gaussian kernel and the bandwidth chosen via cross-validation. We

denote by those fitted conditional mean and variance (µ̃t, σ̃
2
t ), and report the least

squares estimates for the parameters α and β below in Table 4.

Table 4 reveals a very strong and persistent negative risk-return relation through-

out all time periods. Over the full period, the estimated risk aversion parameter β is

around −3.53, and this is statistically significant at 1% level based on Newey-West

Table 4: Estimated parameters obtained using (252 · µ̃t, 252 · σ̃2
t )

Full (1954-2017) and Sub Periods

Full 1954-1963 1963-1976 1976-1990 1990-2003 2003-2017

α 0.14977 0.15097 0.15647 0.11693 0.10808 0.19830

(t) (4.9068)∗∗ (2.0964)∗ (4.0584)∗∗ (2.6367)∗∗ (2.2444)∗∗ (2.3897)∗∗

β -3.33228 -3.14701 -4.30003 -2.38936 -0.77965 -5.13079

(t) (-2.2834)∗∗ (-0.8642) (-2.0728)∗ (-1.0904) ( -0.3297) (-1.4274)

standard errors. This result implies that the conclusion Pagan and Hong (1990) ob-

tained may have been influenced by the fact that they conditioned only on small, fixed
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lags (when forming the nonparametric estimates). In other words, incorporating fur-

ther information that are neglected in estimating conditional expectations has clearly

led to some new empirical findings. This provides explanations to the conjecture

Pagan and Hong (1990) raised in their paper.

5.2 Time variation and counter-cyclicity in risk aversion

Meanwhile, the results in Table 3 suggest that the risk-return relationship is strongly

time-varying. In particular, over the subperiod 1976-1990 the estimate of β was sig-

nificantly lower than the other periods. To take a closer look, we conducted a rolling

regressions analysis. We set the rolling window to be 4000, roughly a quarter of the

number of whole sample, and start estimating β from 1958:09:18. That is, we use

conditional expectations estimates over 1958:09:18-1974:12:04 to estimate β for date

1974:12:05, and roll forward the window by one every time. The window size is de-

liberately chosen to be different from the size of 5 subperiods; this is to check if our

previous results in Table 2 are driven by a particular choice of sample size. The time

series of estimated parameter β shown below in Figure 5 provides an evidence that

investor’s average risk aversion has been varying over time.

Furthermore, we observe that interestingly, the time series of risk aversion tends

to move in the opposite direction to the federal funds rate7 ft, which is a proxy for

the business cycle fluctuations, see Figure 5. In fact, the sample correlation between

β̂t and ft turns out to be −0.5673, implying that the risk aversion exhibits a counter-

cyclical behaviour. Also, in Figure 6 we plot the time series of quarterly Sharpe ratio

and the designated recession periods by the NBER. The blue line is the ratio computed

using our estimates (µ̂, σ̂2), and the red line is the one computed using the standard

nonparametric method (µ̃, σ̃2). The shadings show that blue line rises over the period

of recession in general, which is a finding that is consistent with Lettau and Ludvigson

(2010). Note that the red line does not behave as expected in most cases and therefore

does not quite capture counter-cyclicity.

7Data taken from Federal Reserve Bank of St. Louis http://fred.stlouisfed.org
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Figure 5: Estimated risk-return tradeoff and the federal funds rate

These findings are consistent with what is suggested and widely discussed in the

finance literature, for example Antell and Vaihekoski (2016), Campbell and Cochrane

(1999), Bliss and Panigirtzoglou (2004), Smith and Whitelaw (2009), Bollerslev, Gib-

son and Zhou (2011), and Guo, Wang and Yang (2013).

As noted in Mehra (2012), empirical evidence for the financial theory suggesting

counter-cyclical risk return tradeoff is rather scarce and limited. Cohn et al. (2015)

wrote, “A key ingredient of many popular asset pricing models is that investors exhibit

countercyclical risk aversion, which helps explain major economic puzzles such as the

strong and systematic variation in risk premiums over time and the high volatility of

asset prices. There is, however, surprisingly little evidence for this ...”

Our findings on the time series dynamics of risk return tradeoff and their link with

the macroeconomy add a supporting empirical evidence to this issue. We reiterate that

when standard nonparametric method is employed, these evidence is not well revealed.

This potential improvements in the econometric analysis are possibly attributable to

the extended flexibility and the inclusion of otherwise neglected information in our

method.
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5.3 Practical methods for choosing bandwidth

Lastly, we discuss some possible ways for selecting the bandwidth in practice. A natu-

ral choice would be direct extensions of two most extensively adopted approaches in the

multivariate nonparametric regression, namely, a rule-of-thumb and cross-validation,

Green and Silverman (1993), Fan and Gijbels (1996).

We first consider a heuristic plug-in method for obtaining a rule-of-thumb band-

width. For simplicity, we suppose that the regressors X are i.i.d. Gaussian distributed.

This way the small ball probability takes a simple form as discussed in previous sec-

tions. Further, this bypasses the need to estimate the CA term, a function of spectral

density representing the degree of dependence between regressors. With the uniform

kernel supported on [0, 1] i.e. λ = 1, the asymptotic mean squared error of our esti-

mator is then given by

AMSE(m̂) = h2β

(
∞∑
j=1

cjj
pβ

)2

+
σ2(x)

nh
1−p
2p−1 exp

(
− κ′0h

− 2
2p−1
) . (50)

Denote by C the squared term in (50), and let β = 1. Now, differentiating (50) with

respect to h and equating it to zero we have

∂{AMSE(m̂)}
∂h

= 2Ch+
σ2(x)

n(2p− 1)
· eκ0h

− 2
2p−1

[
(p− 1)h−

p
2p−1 − 2κ0h

− p+2
2p−1

]
= 0

⇔ 2n(2p− 1)Ch
σ2

= exp
(
κ0h

− 2
2p−1
)
·
[
2κ0h

− p+2
2p−1 − (p− 1)h−

p
2p−1

]
⇔ 14n · C

σ2
= h−1 exp

(
3.605h−2/7

)[
7.21h−6/7 − 3h−4/7

]
(51)

where in the last line we substituted p = 4 and κ0 = C∗∗ ≈ 3.605 (follows from a

straightforward computation; see definitions in Section 4.2.2). As we can substitute

the sample variance σ̂2 into σ2, it now suffices to replace the squared term C with a

suitable estimate.

To proceed, we impose a further model assumption and supposem(x) =
∑∞

j=1 αj|xj|
and |αj| ≤ cj (= Cθj for some 0 < θ < 1 and constant C8). In this case, Assumption

B7 in Section 2.4.2: ∣∣m(x)−m(x′)
∣∣ ≤ ∞∑

j=1

cj
∣∣xj − x′j∣∣

is satisfied via the reverse triangle inequality. A heuristic idea is to choose some C

8This is a reasonable assumption because cov(Yt, Yt−k) = O(k−ck) for some c under Assumption
A2 and by Davydov’s inequality for covariance of mixing sequences.
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and θ in such a way that cj’s bound statistically significant estimates of αj’s. Fitting

the linear model upto lag 15, say: Yt =
∑15

j=1 αj|xj| + εt, the estimates of αj at

lags 1, 2, 9, 15 are given by 0.058, 0.0443, 0.0435 and 0.027, respectively. Therefore, we

could let C = 0.1 and θ = 0.95 for example; substituting these values back into the

first order condition (51) yields

14n

σ̂2

(
1

10

∞∑
j=1

(0.95)jj4

)2

= u7/2e3.605u

[
7.21u3 − 3u2

]
,

where u = h−2/7, σ̂2 ≈ 9.3557 × 10−5 and n = 16820. Numerical approximation via

Matlab yields h = 0.000312.

An alternative approach would be the cross-validation, where we search for the

bandwidth that minimises the mean squared leave-one-out residuals:

g(h) :=
1

n

n∑
t=1

[Yt − m̂h,−t(Xt)]
2, (52)

where m̂h,−t(Xt) is the estimate obtained by ignoring tth sample. The result, as il-

lustrated in Figure 5, suggests h = 0.00035 and h = 0.000125 for p = 4 and p = 12,

respectively. These bandwidths are the ones we used earlier in the example in this

section. Note that Yao and Tong (1998) proposed an different leave-one-out method

for choosing optimal bandwidth for dependent data. When we applied their cross-

validation for the data we considered previously however, we noticed that it suggests

way lower optimal bandwidths, and the standard approach gives a more reasonable

result. This might be because the returns data we consider is almost uncorrelated but

nonlinearly dependent.
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Figure 7: Cross validation choice of bandwidth given p = 4 and p = 12
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6 Some concluding remarks

In this paper we studied the nonparametric estimation problem of the infinite order

regression. While we answered several open questions raised in the literature, there are

some remaining questions that we leave for future studies from a methodological point

of view. First, it is not clear how the conclusions we obtained will be changed when

the marginal bandwidth is set to decay in a way other than polynomially. It is also a

non-trivial question whether the geometric mixing condition in the uniform consistency

result could be relaxed to allow weaker dependence of the data. Furthermore, as Linton

and Sancetta (2009) pointed out, it may be possible to achieve algebraic convergence

rates for some restricted class of functions. For example, we conjecture that given the

additive regression model: E(Y |X = x) = m(x) =
∑∞

j=1mj(xj) where x = (xj)j ∈
R∞, the rate for estimating mj(·) and m(·) would be the same, just as it was proven

to be so in the d-dimensional case (i.e. mj(·) = 0, ∀j > d ∈ Z+) by Stone (1985). In

this paper, we were unable to find an answer to this question, although we found the

existence of the curse of infinite dimensionality under a wide range of frameworks we

considered. We leave the question for future study.

Lastly, it would be interesting to come up with a practical way to choose the pa-

rameter p or more generally the rate at which the bandwidths expand in the order of

the covariates. This should relate to the rate of decay of influence (mixing in the au-

toregression case) that prevails, and perhaps this can be addressed by using tools from

the estimation of memory properties. An alternative approach is to us a penalization

method combined with cross-validation, namely, the Bandwidth-LASSO method that

adds the penalty λ
∑

i |φ
−1
i | to the objective function (52). The positive numbers φi are

the bandwidth weights defined previously in Section 2.4 and in Assumption B8. The

resulting choice of {φ−1
i } will contain many zeros (infinite smoothing of one covariate)

depending on the tuning parameter λ, which would give a much more parsimonious

representation. The properties of this method will be investigated in the sequel.

Other quantities of interest in prediction such as the conditional median or mode

can also be studied. This could be done via nonparametrically estimating the condi-

tional distribution P (Y ≤ y|X = ·) = E(1{−∞, y](Y )|X = ·), but would necessarily

require a slightly different set of assumptions. It is also quite easy to bring finite

dimensional predictors into the theory separately. For example, one may want to

allow for slow time variation whereby t/T becomes an additional covariate and the

regression function is m(x, u) with u ∈ [0, 1] and x ∈ R∞. In this case we modify the

estimator of (18) by introducing a multiplicative kernel of the form kb(u− t/T ), where

b is a bandwidth and k is a symmetric probability density function.
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7 Appendix: Proofs of the main results

7.1 Proof of Theorem 1

Proof. From the decomposition in (21):

m̂(x)−m(x) =
Em̂2(x)−m(x)

m̂1(x)
+
m̂2(x)− Em̂2(x)

m̂1(x)
− m(x)[m̂1(x)− 1]

m̂1(x)
,

we see that it suffices to show Em̂2(x)−m(x)→ 0 and m̂2(x)−Em̂2(x)→P 0, since

m̂1(x)→P 1 will then follow from the latter and complete the proof.

We first consider the “bias component”. It is straightforward to see

Em̂2(x)−m(x) = E

(
1

nEK1

n∑
t=1

KtYt −m(x)

)

=
1

EK1

EK1Y1 −
EK1

EK1

m(x) =
1

EK1

E

[
E

[(
Y1 −m(x)

)
K1

∣∣∣X]]
=

1

EK1

E
[[
m(X)−m(x)

]
K1

]
≤ sup

u∈E(x,λh)

∣∣m(u)−m(x)
∣∣ −→ 0 (53)

as n → ∞, where Kt is the shorthand notation for K(‖H−1(x − Xt)‖) and E(x, λh)

is the infinite dimensional hyperellipsoid centred at x = (xj)j ∈ R∞ with semi-axes

hj in each direction as introduced in the main text before. The second equality is

justified by stationarity that is preserved under measurable transformations, and the

last inequality is due to compact support of the kernel and continuity of the regression

operator at x (Assumption B1).

The next step concerns with the latter ‘variance component’ m̂2−Em̂2. We show

its mean-squared convergence to zero. Writing

m̂2 − Em̂2 =
1

n

n∑
t=1

1

EK1

{
KtYt − E(KtYt)

}
=:

1

n

n∑
t=1

Qnt, (54)

we remark that the arguments to follow depend upon the temporal dependence struc-

ture ofQnt. In the static regression case, Qnt is a measurable function of Yt, X1t, X2t, . . .,

and hence inherits their joint dependence structure. That is, Qnt is arithmetically α-

mixing with the rate specified in A1. In the dynamic regressions case (which covers

the autoregression framework), the dependence of Qnt is defined via Kt which is near

epoch dependent on (Yt, Vt) as specified in Assumption A2; this bypasses the issue of

Qnt being dependent upon infinite past of Yt and/or Vt. We proceed with these two

cases separately.
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Case 1: Static Regression. Clearly, it is sufficient to prove var(m̂2 − Em̂2)→ 0

for the mean squared convergence. Since Qnt is stationary over time we have

var(m̂2 − Em̂2) =
1

n2

n∑
t=1

var(Qnt) +
2

n2

∑∑
1≤i<j≤n

cov
(
Qni, Qnj

)
(55)

=
1

n
var(Qn1) +

2

n2

∑∑
1≤j−i<n

cov
(
Qni, Qnj

)
=

1

n
var(Qn1) +

2

n2

n−1∑
s=1

(n− s) · cov
(
Qn1, Qn,s+1

)
=: A1 + A2. (56)

Now, by (9), (11) and Assumption A it follows that

A1 =
1

nE2K1

var

(
K1Y1 − EY1K1

)
=

var (K1Y1)

nE2K1

≤ EK2
1Y

2
1

nE2K1

=
E(E(Y 2

1 |X1)K2
1)

nE2K1

≤ C

nϕx(λh)
→ 0 as n→∞. (57)

We now move on to the second term A2 and investigate the covariance term. Since

measurable transformations of mixing variables preserve the mixing property, using

Davydov’s inequality, see Davydov (1968, Lemma 2.1) or Bosq (1996, Corollary 1.1),

and stationarity we have

∣∣cov
(
Qn1, Qn,s+1

)∣∣ =

∣∣∣∣∣cov

(
Y1

K1

EK1

, Ys+1
Ks+1

EK1

)∣∣∣∣∣ ≤ C{E|Y1K1|2+δ}
2

2+δ

ϕx(hλ)2 · skδ/(2+δ)
. (58)

In the meantime,

∣∣cov
(
Qn1, Qn,s+1

)∣∣ =

∣∣∣∣∣cov

(
Y1

K1

EK1

, Ys+1
Ks+1

EK1

)∣∣∣∣∣
≤

∣∣∣∣∣E
(
Y1

K1

EK1

Ys+1
Ks+1

EK1

)∣∣∣∣∣+

∣∣∣∣∣E
(
Y1

K1

EK1

)
E

(
Ys+1

Ks+1

EK1

)∣∣∣∣∣
≤ C

ϕx(hλ)2
|E (K1Ks+1)|+ C ′

E2K1

|E (K1)E (Ks+1)|

≤ C

ϕx(hλ)2
· ψx(λh; 1, s+ 1) + C ′ ≤ C ′′ (59)

by stationarity, law of iterated expectation, boundedness of regression function, and

Assumption B6, B5 (along with the upper bound ψ(λh; 1, s+1) of EK1Ks+1 obtained

as a direct consequence of B5 following similar arguments used for Lemma 1).
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With reference to (58) and (59), we take some increasing sequence un → ∞ such

that un = o(n), and write

n−1∑
s=1

∣∣cov
(
Qn1,Qn,s+1

)∣∣ =
un−1∑
s=1

∣∣cov
(
Qn1, Qn,s+1

)∣∣+
n−1∑
s=un

∣∣cov
(
Qn1, Qn,s+1

)∣∣
≤ C ′′

(
un − 1) +

n−1∑
s=un

Cs−kδ/(2+δ)

ϕx(hλ)2
= O

(
un +

u
−kδ/(2+δ)+1
n

ϕx(hλ)2

)
, (60)

which is O
(
ϕx(hλ)−2(2+δ)/(kδ)

)
upon choosing un ∼ ϕx(hλ)−2(2+δ)/(kδ).

Consequently, since k ≥ 2(2 + δ)/δ it follows that

A2 :=
2

n2

n−1∑
s=1

(n− s) · cov
(
Qn1, Qn,s+1

)
=

2

n

n−1∑
s=1

(
1− s

n

)
· cov

(
Qn1, Qn,s+1

)
= O

(
n−1[ϕx(hλ)]−2(2+δ)/(kδ) + n−2[ϕx(hλ)]−2(2+δ)/(kδ)

)
= O

(
n−1[ϕx(hλ)]−2(2+δ)/(kδ)

)
= o(1) (61)

by Assumption B2, and the desired result is obtained.

Case 2: Dynamic Regression.9 We return back to (54):

m̂2 − Em̂2 =
1

n

n∑
t=1

1

EK1

{
KtYt − E(KtYt)

}
=:

1

n

n∑
t=1

Qnt. (62)

In this frameworkKt = K(‖H−1(x−Xt)‖) is a (measurable) function of (Yt−1, Yt−2, . . .).

Despite loosing the mixing property, Kt inherits stationarity of the mixing process

{Yt}. We write Kt,(r) = Ψ(Yt, Yt−1, Yt−2, . . . , Yt−r+1) = E(Kt|Yt, . . . , Yt−r+1) with r as

in Assumption A2, and the measurable map Ψ. Then, Kt,(r) preserves the mixing

dependence structure of Yt with mixing coefficient α(` − (r − 1)) since σ(Ks,(r); s ≥
t+ `) ⊂ σ((Ys, . . . , Ys−r+1); s ≥ t+ `) = σ(Ys; s ≥ t+ `− (r − 1)).

Now write

m̂2 − Em̂2 =
1

n

n∑
t=1

1

EK1

[
Kt,(r)Yt − E

(
Kt,(r)Yt

)]
+

1

n

n∑
t=1

1

EK1

[
KtYt −Kt,(r)Yt

]
+

1

n

n∑
t=1

1

EK1

[
E
(
Kt,(r)Yt

)
− E(KtYt)

]
= R1 +R2 +R3, (63)

9For the sake of notational simplicity, we will write the proofs for the dynamic regression framework
in terms of its autoregressive special case throughout the appendix. That is, some lags of the response
variable Yt here possibly represent lagged covariate Vt.
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and first consider the last term R3. Fix some increasing sequence q = qn → ∞, and

write Yt,L := Yt1{|Yt| ≤ q} and Yt,U = Yt1{|Yt| > q}. Then

EYtKt,(r) = EYtK
(
‖H−1(x−Xt)‖

)
− EYt,UK

(
‖H−1(x−Xt)‖

)
+ EYt,LKt,(r) − EYt,LK

(
‖H−1(x−Xt)‖

)
+ EYt,UKt,(r) = D1 +D2 +D3. (64)

The second part of D1 is given by

EYt,UK
(
‖H−1(x−Xt)‖

)
≤ E|Yt|1{|Yt|>q}K

(
‖H−1(x−Xt)‖

)
≤ q−(δ+1)E|Yt|2+δ1{|Yt|>q}Kt ≤ Cq−(δ+1)E|Yt|2+δ1{|Yt|>q} = o(q−(δ+1)) (65)

because 1{|Yt|>q} = o(1) as n → ∞. Following similar arguments on D3 we have

D1 +D3 = EYtKt + o(q−(δ+1)). So we are now left with the middle term D2:

D2 ≤ E |Yt,L|
∣∣Kt −Kt,(r)

∣∣ = O
(
q
√
v2(rn)

)
(66)

by Hölder’s inequality. Therefore, from (64), (65) and (66) we see that

R3 =
1

nEK1

n∑
t=1

[
EKt,(r)Yt − E(KtYt)

]

= o

(
q−(δ+1)

ϕx(λh)

)
+O

(
q
√
v2(rn)

ϕx(λh)

)
, (67)

and upon choosing q = (ϕx(hλ)/n)−1/(2(δ+1)) we have o(ϕ−1q−(δ+1)) = o(ϕ−1(ϕ/n)1/2) =

o(n−1/2ϕ−1/2) = o(1). Furthermore,

O

(
1

ϕx(hλ)
q
√
v2(rn)

)
= O

(
1

ϕx(hλ)
·
(
ϕx(hλ)

n

)−1/(2(δ+1))√
v2(rn)

)

= O

( √
v2(rn)

[ϕx(hλ)](2δ+3)/(2δ+2)n−1/(2(δ+1))

)
= o(1) (68)

by Assumption A2, yielding R3 = o(1) and consequently R2 = op(1).

50



As for the first term that remains,

R1 =
1

n

n∑
t=1

[
Kt,(r)Yt − E(KtYt)

EK1

]
+

1

n

n∑
t=1

[
E(KtYt)− E(Kt,(r)Yt)

EK1

]
=

1

n

n∑
t=1

E
(
Qnt|Yt, Yt−1, . . . , Yt−r+1

)
−R3

=
1

n

n∑
t=1

Qnt,(r) + o

(
q−(δ+1)

ϕx(hλ)

)
+O

( √
v2(rn)

[ϕx(hλ)](2δ+3)/(2δ+2)n−1/(2(δ+1))

)
. (69)

Since Qnt,(r) is α-mixing, we can work with the first term by following similar argu-

ments in the regression case. Specifically, due to boundedness of the kernel and the

mixing properties, the bound in (58) can be constructed. As for the constant bound

constructed in (59), we rewrite

cov
(
Y1K1,(r), Ys+1Ks+1,(r)

)
ϕx(λh)2

=
cov
(
Y1[K1,(r) −K1], Ys+1[Ks+1,(r) −Ks+1]

)
ϕx(λh)2

+
cov
(
Y1[K1,(r) −K1], Ys+1Ks+1,(r)

)
ϕx(λh)2

+
cov
(
Y1, Ys+1[Ks+1,(r) −Ks+1]

)
ϕx(λh)2

+
cov
(
Y1K1, Ys+1Ks+1

)
ϕx(λh)2

= G1 + G2 + G3 + G4.

The fourth term G4 ≤ C by (59). Further,

G1 ≤
∣∣∣∣E(Y1Ys+1[K1,(r) −K1][Ks+1,(r) −Ks+1])

ϕx(λh)2

∣∣∣∣
+

∣∣∣∣E(Y1[K1,(r) −K1]) · E(Ys+1[Ks+1,(r) −Ks+1])

ϕx(λh)2

∣∣∣∣ ≤ C ′
v2(r)

ϕx(λh)2
→ 0

by Assumption B6 and by the fact that(√
v2(rn)

ϕx(hλ)

)
≤

(√
v2(rn)

ϕx(hλ)

)
· (n/ϕ)1/(2δ+2) −→ 0

by (19) in Assumption A2. Following similar steps it can be shown that G2 and G3

converge to zero.

Now choosing an increasing sequence un ∼ [ϕx(hλ)−2(2+δ)/(kδ) +rn]→∞ such that
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rn/un = o(1), we see that (ignoring the array notation in Qnt,(r) for simplicity)

n−1∑
s=1

∣∣cov
(
Q1,(r), Qs+1,(r)

)∣∣ =
un−1∑
s=1

∣∣cov
(
Q1,(r), Qs+1,(r)

)∣∣+
n−1∑
s=un

∣∣cov
(
Q1,(r), Qs+1,(r)

)∣∣
≤ C

(
ϕx(hλ)−

2(2+δ)
(kδ) + rn

)
+

n−1∑
s=un

C(s− rn + 1)−kδ/(2+δ)

ϕx(hλ)2
= O

(
ϕx(hλ)−

2(2+δ)
(kδ)

)
,

since the mixing coefficient for Qnt,(r) denoted α′(n) is given by α(n−(r−1)) for n ≥ r.

It now follows by the same arguments in (61) that the first term in (69) converges to

zero, yielding R1 = op(1), which is the result we desired.

7.2 Proof of Theorem 2 and 3

Proof of Theorem 2 and 3. We start by recalling the bias component (53).

Additional assumptions B7, B8 and D3 allow us to proceed further as follows:

Bn(x) = Em̂2(x)−m(x) = E

(
1

nEK1

n∑
t=1

KtYt −m(x)

)
=

1

EK1

EK1Y1 −
EK1

EK1

m(x) =
1

EK1

E

[
E

[(
Y1 −m(x)

)
K1

∣∣∣X]]
=

1

EK1

E
[[
m(X)−m(x)

]
K1

]
≤ sup

u∈E(x,λh)

∣∣m(u)−m(x)
∣∣

≤ sup
u∈E(x,λh)

∞∑
j=1

cj
∣∣uj − xj∣∣β =

∞∑
j=1

cj(λhφj)
β = hβ

(
λβ

∞∑
j=1

cjj
pβ

)
<∞. (70)

Now rewriting the decomposition (21) as

m̂(x)−m(x)− Bn(x)

=
Bn(x) ·

[
1− m̂1(x)

]
m̂1(x)

+
m̂2(x)− Em̂2(x)−m(x)

[
m̂1(x)− 1

]
m̂1(x)

,

and noting that m̂1(x) →p 1 (an immediate consequence of Theorem 1), we see that

it suffices to derive the limiting distribution of

m̂2(x)− Em̂2(x)−m(x)[m̂1(x)− 1]

=
1

n

n∑
t=1

1

EK1

[
KtYt −m(x)Kt − E(KtYt) +m(x)EKt

]
=:

1

n

n∑
t=1

Rnt. (71)

In the rest of the proof, the way how we construct the general CLT under Assumption
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A1 is quite similar to the proofs of theorems in Masry (2005), where asymptotic nor-

mality is established in a functional context for mixing data sample. For completeness

of the proof however, we will go over some of the main arguments; some relatively less

important details will only be briefly sketched to prevent being repetitive.

By Assumption B6, B8, D3, and the law of iterated expectations, the asymptotic

variance of the triangular array Rnt is given by

var(Rnt) =
var[Kt(Yt −m(x))]

E2K1

=
1

E2K1

{
E
[
Kt(Yt −m(x))

]2

− E2
[
Kt(Yt −m(x))

]}
' 1

E2K1

{
E
[
σ2(X)K2

1

]
+ E

([
m(X)−m(x)

]2

K2
1

)}

=
1

E2K1

{
σ2(x)EK2

1 + E

([
σ2(X)− σ2(x)

]
K2

1

)
+ o(1)EK2

1

}

=
EK2

1

E2K1

(σ2(x) + o(1)) ' σ2(x)ξ2

ϕx(hλ)ξ2
1

. (72)

Using the latter assumption of B9 and Assumptions B, and following similar arguments

as in the above and those in the proof of Theorem 1, it can be readily shown that the

covariance term is of negligible order, which together with (72) shows (29).

Meanwhile, under Assumption D2 the small ball probability can be written in

terms of the centered small deviation and p∗(·), the Radon-Nikodym derivative of the

induced probability measure Pz−Z with respect to PZ :

ϕx(λh) = P
(
X ∈ E(x, λh)

)
= P

( ∞∑
j=1

j−2p
(
xj −Xj

)2 ≤ h2λ2

)
= P

(
‖z − Z‖ ≤ hλ

)
=

∫
B(0,hλ)

dPz−Z(u) =

∫
B(0,hλ)

p∗(u) dPZ(u)

' p∗(0) · P (‖Z‖ ≤ hλ) = p∗(0)× P

(
n∑
j=1

j−2pX2
j ≤ h2λ2

)
. (73)

Given that the fourth moment of Xj is finite by Assumptions C, the latter probability

in (73) can be explicitly specified by substituting r = h2λ2, A = 2p, and a = 2p/(2p−1)

in Proposition 4.1 of Dunker et al. (1998) for the i.i.d. case. When the marginal

regressors are dependent as in Assumption C, the small ball probability can be specified

(by letting r = h2λ2C−2
A and leaving the others the same) in view of Theorem 1.1 of
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Hong, Lifshits and Nazarov (2016). In the general i.i.d. case (under Assumptions A1

and independence across marginal covariates) we have

σ2(x)ξ2

ϕx(hλ)ξ2
1

=
1

φ(h)
· σ

2(x)ξ2

p∗(0)ξ2
1

· C
∗C`

λ
1+2ρp
2p−1

,

where φ(h) = h(1+2ρp)/(2p−1) exp{−C∗∗(λh)−2/(2p−1)} and

C` = lim
h→0

[
`−1/2

(
h−

4p
2p−1

)]
C∗ =

(2π)(1+2pρ)(2p− 1)

Γ−1(1− ρ) · (2p)
2p(ρ+2)−1

2p−1

· ζ
2p(1+ρ)
2p−1 .

Γ(·) is the Gamma function, ξ1 and ξ2 are the constants specified in (12), and λ is the

upper bound of the support of the kernel. The constants for the dependent case can

be specified similarly.

In constructing the central limit theorem we consider the normalized statistic

R∗nt :=
√
φ(h) · Rnt and derive the limiting distribution of (1/

√
n) · R∗nt. We shall

prove under Assumption A2 as it involves some further arguments, without which the

proof just serves as the proof under Assumption A1. We make use of the standard

Bernstein’s blocking method and partition {1, . . . , n} by 2k(= 2kn → ∞) number

of blocks of two different sizes that alternate (hereafter referred to as the “big” and

“small” blocks) and lastly a single block (the “last block”) that covers the remainder.

The size of the alternating blocks is given by an and bn respectively, where the one for

the “big-blocks” an is set to dominate that for the “small-blocks” bn in large sample,

i.e. bn = o(an). Specifically, take kn = bn/(an + bn)c and an = b
√
nφ(h)/qnc,

where qn → ∞ is a sequence of integer; it then clearly follows that an/n → 0 and

an/
√
nφ(h)→ 0. We also assume (n/an) · α∗(bn) = (n/an) · α(bn − r + 1)→ 0, where

α∗ is the mixing coefficient of R∗nt,(r) = E(R∗nt|F t−1
t−r+1).

By construction above we can write
√
n
−1∑n

t=1R
∗
nt as the sum of the groups of

big-blocks B, small-blocks S and the remainder block R defined as

B :=
1√
n

k−1∑
j=0

Ξ1,j =
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

R∗nt


S :=

1√
n

k−1∑
j=0

Ξ2,j =
1√
n

k−1∑
j=0

 (j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt


R :=

1√
n

Ξ3,j =
1√
n

 n∑
t=k(a+b)+1

R∗nt

 .
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The aim is to show that the contributions from the small and the last remaining

block are negligible, and that the big-blocks are asymptotically independent. Consider

the big blocks B. Given r as in Assumption A2, and R∗nt,(r) = E(R∗nt|Yt, . . . , Yt−r+1),

B =
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

R∗nt,(r)

+
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

[
R∗nt,(r) −R∗nt

] = Q1 +Q2.

As for the second term, consider

1√
n
EQ2 ≤

1√
n

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

E
∣∣R∗nt,(r) −R∗nt∣∣

=
1

EK1

1√
n

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

E
∣∣KtYt − YtE(Kt|Yt, Yt−1, . . . , Yt−r+1)

∣∣
≤ 1√

n

1

ϕx(hλ)

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

E|Yt||Kt −Kt,(r)|

≤ 1√
n

1

ϕx(hλ)

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

(
E|Yt|2

)1/2(
E|Kt −Kt,(r)|2

)1/2

≤ C · 1√
n
knan

√
v2(rn)

ϕx(λh)
= O

(√
n · v2(rn)

ϕx(λh)

)
= o(1),

which implies that
√
n
−1Q2 = op(1).

We now show asymptotic independence of terms in Q1, on noting that Ξ′1,js are

independent if for all real tj∣∣∣∣∣E
[
k−1∑
j=0

exp
(
itjΞ1,j

)]
−

k−1∏
j=0

E
[

exp(itjΞ1,j)
]∣∣∣∣∣ (74)

is zero. Applying the Volkonskii-Rozanov inequality (see Fan and Yao (2003, page 72)

for example), it can be shown that (74) is bounded above by C(n/an)·α(bn−r+1)→ 0,

implying asymptotic independence.
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Moving on to the small blocks, due to stationarity we have

var (S) =
1

n
var

k−1∑
j=0

(j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt


=

1

n

k−1∑
j=0

var

 (j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt

+
1

n

k−1∑∑
j 6=l

cov

 (j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt,

(l+1)(a+b)∑
s=l(a+b)+a+1

R∗ns


=

1

n

k−1∑
j=0

(
bnvar(R∗nt) +

bn∑
t6=l

cov(R∗nt, R
∗
nl)

)
+

1

n

k−1∑∑
j 6=l

bn∑
i,j=1

cov
(
R∗n,i+wj , R

∗
n,r+wl

)
= Q1 +Q2 +Q3.

where wj = j(a+ b) + a.

Regarding the first term, similar arguments used in deriving (72) yield

Q1 =
1

n
knbn

[
ϕx(hλ)1/2

]2
σ2(x)ξ2

ϕx(hλ)ξ2
1

=
knbnσ

2(x)ξ2

nξ2
1

−→ 0 (75)

because knbn/n ∼ bn/(an + bn) → 0. Now moving on to Q2 and Q3, the sum of

covariances can be dealt with in the same manner as we did for the variance using

(72), so Q2 → 0. Similarly for Q3, implying var(S)→ 0 as desired. Convergence result

for the remainder R can be established similarly, and is bounded by C(an+bn)/n→ 0.

The results above suggest that

1√
n

n∑
t=1

R∗nt =
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

R∗nt

+ op(1) =
1√
n

k−1∑
j=0

ηj + op(1), (76)

and the desired result holds in view of (62) and the CLT for triangular array upon

checking the Lindeberg condition (which is omitted here due to its similarity with

Masry (2005, page 174-175)). Corollary 2 now follows because

√
nφ(h)

(
m̂−m− Bn√
nφ(h)∆n

)
=

√
n 1
n

∑n
t=1 R

∗
nt√

1
n

∑
t R̂
∗,2
nt

=

1√
n

∑n
t=1R

∗
nt√

1
n

∑
tR
∗,2
nt + op(1)

=

1√
n

∑k−1
j=0

∑j(a+b)+a
t=j(a+b)+1R

∗
nt + op(1)√

1
n

∑k−1
j=0

(∑j(a+b)+a
t=j(a+b)+1R

∗
nt

)2

+ op(1)

=

1√
n

∑k−1
j=0 ηj + op(1)√

1
n

∑k−1
j=0 η

2
j + op(1)

=⇒ N(0, 1) (77)

by Theorem 4.1 of de la Peña et al. (2009), since the denominator converges in

probability to a strictly positive quantity (σ2(x)ξ2/ξ
−2
1 ), and that ηj belongs to the
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domain of attraction of a normal distribution by definition and (76).

7.3 Proof of Lemmas 1 and 2

Proof. Lemma 1 is a straightforward extension of Lemma 4.3 and 4.4 of Ferraty and

Vieu (2006), and hence is omitted. Lemma 2 can be shown by noting that for each

n the τn-dimensional polyhedron D := {w = (wi)i≤τ ∈ Rτ , |wi| ≤ λ} can be covered

by ([2λ
√
τ/ε + 1])τ number of balls of radius ε, see Chaté and Courbage (1997), and

then following the arguments of the proof of Theorem 2 in Jia et al. (2003).

7.4 Proof of Theorem 4 and 5

Proof of Theorem 4. In the sequel, we omit the subscript τ in the notations for

truncated regressor and its estimator, i.e. mτ (·) and m̂τ (·) for notational simplicity.

As before, we start from the decomposition (21):

m̂(x)−m(x) =
1

m̂1(x)

([
m̂2(x)−Em̂2(x)

]
+
[
Em̂2(x)−m(x)

]
−m(x)

[
m̂1(x)− 1

])
.

We recall from (73) that ϕx(λh) ∼ ϕ(λh). Further, notice that the small deviation for

the truncated regressor X = (X1, . . . , Xτ , 0, 0, . . .) denoted ϕT (λh) satisfies

ϕ(λh) = P

(
∞∑
j=1

j−2pX2
j ≤ h2

)
≤ P

(
τ∑
j=1

j−2pX2
j ≤ h2

)
= ϕT (λh). (78)

Note that as implicitly mentioned in the main text, (42) is meant to hold for ϕT (λh).

In the first step of the proof we show

sup
x∈Sτ

∣∣∣m̂2(x)− Em̂2(x)
∣∣∣ = OP

(√
(log n)2

nϕ(λh)

)
. (79)

We cover the set Sτ defined in (40) with L = L(Sτ , η) number of balls of radius η

denoted by Ik, each of which is centred at xk, k = 1, . . . , L. i.e. Sτ ⊂
⋃Ln
k=1 B(xk, η).
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Then it follows that

sup
x∈Sτ

∣∣∣m̂2(x)− Em̂2(x)
∣∣∣ = max

1≤k≤Ln
sup

x∈Ik∩Sτ

∣∣∣m̂2(x)− Em̂2(x)
∣∣∣

= max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk) + m̂2(xk)− Em̂2(xk) + Em̂2(xk)− Em̂2(x)
∣∣∣

≤ max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣+ max

1≤k≤Ln
sup

x∈Ik∩Sτ

∣∣∣Em̂2(xk)− Em̂2(x)
∣∣∣

+ max
1≤k≤Ln

∣∣∣m̂2(xk)− Em̂2(xk)
∣∣∣ =: R1 +R2 +R3, (80)

where m̂2(xk) = (nEK1)−1
∑n

t=1 YtKt,k and Kt,k = K(‖H−1(xk −Xt)‖).
We first consider R1. By Lemma 1,

R1 = max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣

= max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣∣∣ 1

nEK1

n∑
t=1

YtK
(
‖H−1(x−Xt)‖

)
− YtK

(
‖H−1(xk −Xt)‖

)∣∣∣∣∣
≤ max

1≤k≤Ln
sup

x∈Ik∩Sτ

C

nϕT (λh)

n∑
t=1

∣∣YtKt − YtKt,k

∣∣ · 1E(x,λh)∪E(xk,λh)(Xt).

Now because type-I kernels are Lipschitz continuous on [0, λ], by the triangle inequality

we have

R1 ≤
1

n

n∑
t=1

C ′|Yt|
ϕT (hλ)

ηh−1 · 1E(x,λh)∪E(xk,λh)(Xt) =:
1

n

n∑
t=1

Jt,

where Jt is α-mixing under both assumptions A1′ and A2′ (with a different rate under

A2′: α∗(n) = α(n−τ +1), where α(·) is the mixing rate under A1′). Let η = log n/n2.

Using Assumption B6 and the law of iterated expectations it is straightforward to see

that

E|Jt| ≤
Cη

h
. (81)

Using Lemma 2 we can specify the Kolmogorov’s entropy of Sτ for η = log n/n2:

logL

(
S,

log n

n2

)
= C log

[(
2λn2

√
log n

+ 1

)logn ]
∼ log n× log

[
2λn2

√
log n

]
,

implying that the order of Kolmogorov’s logn
n2 entropy is of order (log n)2.10

We now apply the Fuk-Nagaev inequality (see for example, Fuk and Nagaev (1971),

10Notice that in this case (42) is indeed satisfied with β = 1, p = 4, ε = 1/4, for example.
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or Rio (2000)) for exponentially mixing variables in Merlevède, Peligrad and Rio (2011,

1.7) with ε = ε0[logL
(
S, logn

n2

)
/(nϕ(λh))]1/2 and r = (logL)/ϕ(λh), where ε0 is some

positive constant. Since

s2
n :=

n∑
t=1

n∑
s=1

cov (Jt, Js) = O
(
nϕT (λh)−1 log n

)
and the required tail condition holds, under Assumption A1′ we obtain

P

(∣∣∣∣∣ 1n
n∑
t=1

Jt − EJt

∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣
n∑
t=1

(Jt − EJt)

∣∣∣∣∣ > nε0

√
logL

(
S, logn

n2

)
nϕ(λh)

)

≤ 4

(
1 +

n2ε2
0 logL

(
S, logn

n2

)
16rs2

nnϕ(λh)

)− r
2

+
16C

√
nϕ(λh)

ε0

√
logL

exp

−ς
 1

4
nε0

√
logL
nϕ(λh)

logL/ϕ(λh)

γ


≤ 4

(
1 +

Cε2
0 log n

16r

)− r
2

+
16C

√
nϕ(λh)

ε0 log n
exp

(
−ς

[
ε0

√
nϕ(λh)

4 log n

]γ)

≤ 4

(
1 +

Cε2
0ϕ(λh)

16 log n

)− logL
2ϕ(λh)

+
16C

ε0

(√
nϕ(λh)

log n

)
exp

(
−ςεγ04−γ ·

[√
nϕ(λh)

log n

]γ)

≤ 4 exp

(
− ε2

0C log n

32

)
+

16C

ε0

(√
nϕ(λh)

log n

)
· e−C′(

√
nϕ/ logn) −→ 0, (82)

where ς > 1 and γ ≥ 1 are as defined in Section 2.4.4, by choosing ε0 sufficiently large.

In the last inequality we exploited the fact that log(1 + ε) = ε+ o(ε2) as ε→ 0.

Under Assumption A2′, a penalty of (− log n) is incurred in the squared brackets

in the inequalities above. This does not affect the conclusion (82) because τ = log n ≤
(log n)2 ≤ √nϕ/(log n)1+ε ≤ √nϕ/ log n by (42) in Assumption E.11

Therefore, in view of (81) it now follows that

R1 = max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣ ≤ O

(
η

h

)
+OP

(√
logL

(
S, logn

n2

)
nϕ(λh)

)

= O

(√
(log n)2

nϕ(λh)

)
+OP

(√
(log n)2

nϕ(λh)

)
= OP

(√
(log n)2

nϕ(λh)

)
. (83)

11To elaborate, this is due to the fact that y exp(−(y− g(y)))→ 0 as y →∞, as long as (y− g(y))
tends to +∞ as y →∞ at the speed strictly faster than log y.
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As for the second term R2, we have

R2 ≤ max
1≤k≤Ln

sup
x∈Ik∩Sτ

E
∣∣m̂2(x)− m̂2(xk)

∣∣ = O

(
η

h

)
= O

(√
(log n)2

nϕ(λh)

)
. (84)

Next we move on to the last component:

R3 = max
1≤k≤Ln

∣∣m̂2(xk)− Em̂2(xk)
∣∣ =: max

1≤k≤Ln

∣∣Wn(xk)
∣∣ (85)

where

Wn(x) = m̂2(x)− Em̂2(x) =
1

nEK1

n∑
t=1

[
YtKt − EYtKt

]
≤ C

nϕT (hλ)

n∑
t=1

[
YtKt − EYtKt

]
=

1

n

n∑
t=1

Unt

where Unt = (ϕT (hλ))−1C(YtKt − EYtKt).

By following similar arguments in the proof of Theorem 1, it can be readily seen

that

s2
n =

n∑
t=1

n∑
s=1

cov (Unt, Uns) = O
(
nϕT (hλ)−1

)
.

With the exponential tail condition in B4, we apply the same Fuk-Nagaev inequal-

ity for exponentially mixing sequences we referred to in the above. Writing Ln :=

L
(
S, logn

n2

)
and taking ε = ε0[logL

(
S, logn

n2

)
/(nϕ(λh))]1/2 and r = (log n)2+ε/ϕT (λh),

ε ∈ (0, 1/2) for some ε0 > 0, under Assumption A1′ we have

P

(
max

1≤k≤Ln
|m̂2(xk)− Em̂2(xk)| > ε

)
≤ Ln · sup

x∈S
P

(
|Wn(x)| > ε0

√
logLn
nϕ(λh)

)

≤ Ln · sup
x∈S

P

(∣∣∣∣ n∑
t=1

Unt

∣∣∣∣ > nε0

√
logLn
nϕT (λh)

)

≤ Ln · 4
(

1 +
n2ε2

0 logLn
16rs2

nnϕ
T (λh)

)− r
2

+
16LnCn

√
nϕT (λh)

nε0 log n
exp

(
−ς

{
ε0

√
n log n/

√
ϕT (λh)

4(log n)2+ε/ϕT (λh)

}γ)

≤ Ln · 4
(

1 +
ε2

0C logLn
16(log n)2+ε/ϕT (λh)

)− (logn)2+ε

2ϕT (λh)
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+
16LnC

ε0

√
nϕT (λh)

log n
exp

(
−ς ε

γ
0

4γ

{√
nϕT (λh)

(log n)1+ε

}γ)

≤ Ln · 4 exp

(
−ε

2
0C logLn

32

)
+ CL2

n exp(−ςεγ0/4γ logL)

≤ 4L−Cε
2
0/32

n + CL
− ςε0

4
+2

n . (86)

Here we used the fact that γ ≥ 1 and (42) in Assumption E. Note that in the special

case when the response Yt is assumed to be bounded, the same result continues to

hold with γ1 =∞ (so that γ2 = γ(≥ 1)). Now noting that ς > 1, by choosing ε0 large

enough it follows that

R3 = max
1≤k≤Ln

∣∣∣m̂2(xk)− Em̂2(xk)
∣∣∣ = OP

(√
(log n)2

nϕ(λh)

)
. (87)

Same conclusion holds in the dynamic regression case (i.e. under Assumption

A2′) because of the following reason. The penalty term (due to the penalised mixing

rate) that incurs inside the curly bracket results in an additional multiplicative term

of exp(−c(−τ)) = exp(c log n) = nc in the second term of the final bound in (86),

where c := ς(ε0/4) is fixed, and this diverges to infinity at the slower rate than

L
(c−2)
n = (n2/

√
log n)logn·(c−2).

Returning back to where we started, viewing m̂1(x) as a special case of m̂2(x) with

Yt = 1 ∀t, we can repeat the above procedure, yielding (since Em̂1(x) = 1)

sup
x∈Sτ

∣∣∣m̂1(x)− 1
∣∣∣ = OP

(√
(log n)2

nϕ(λh)

)
. (88)

The proof is now complete in view of (79), (80), (83), (84), (87), (88), contributions

from the bias component, and either Proposition 4.1 of Dunker, Lifshits and Linde

(1998) under independence across marginal covariates, or Theorem 1.1 of Hong, Lif-

shits and Nazarov (2016) under general Assumption C.

Proof of Theorem 5. Given the extended moment condition upto 8 + δ, it is

straightforward to see (from Theorem 1 and 2 & 3) the consistency of σ̂j(xi) for σj(xi)

for j = 1, 2, 3, 4 at every point of continuity xi, and the asymptotic normality of (µ̂, σ̂2)

with limiting variance Ω(xi).

Hence it suffices to show asymptotic independence of m̂(xi)and m̂(x′i) across i,

where xi and x′i are continuity points of m such that ‖D−1(xi − x′i)‖ > 0. Following

the notations of the proof of Theorem 2 and 3, the asymptotic covariance matrix is
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given by Var
[
(
√
φ(h)/

√
n)
∑n

t=1Rnt

]
, and

Var(Rnt) = Var

 1
EK1,x

·Kt,x[Yt −m(x)]
1

EK1,x′
·Kt,x′ [Yt −m(x′)]

 = E

(
A11 A12

A21 A22

)
(89)

We know from Theorem 2 and 3 that as for A11 ' σ2(x) and A22 ' σ2(x′). So we just

consider the off-diagonal terms. Due to stationarity we see that

E
[
Kt,xKt,x′(Yt −m(x))(Yt −m(x′))

]
= E

[
K1,xK1,x′

{
Y1 −m(X1) +m(X1)−m(x)

}{
Y1 −m(X1) +m(X1)−m(x′)

}]
= E

[
K1,xK1,x′(Yt −m(X1))(Yt −m(X1))

]
+ o(1) = E

[
K1,xK1,x′σ

2(X1)
]

+ o(1)

≤ sup
u∈B(x,h)∩B(x′,h)

σ2(u)E[K1,x′K1,x]→ 0

as h→ 0 since the kernels return 0 outside its compact support and ‖D−1(xi−x′i)‖ > 0.

The desired result now directly follows via the delta method.
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dants (in French). Berlin: Springer Verlag.

[104] Robinson, P. M. (1983). Nonparametric estimators for time series. Journal of

Time Series Analysis, 4(3), 185-207.

[105] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition.

Proceedings of the National Academy of Sciences, 42(1), 43-47.

[106] Roussas, G. G. (1989). Consistent regression estimation with fixed design points

under dependence conditions. Statistics & Probability Letters, 8(1), 41-50.

[107] Roussas, G. G. (1990). Nonparametric regression estimation under mixing con-

ditions. Stochastic Processes and Their Applications, 36(1), 107-116.

[108] Schuster, E. F. (1972). Joint asymptotic distribution of the estimated regression

function at a finite number of distinct points. Annals of Mathematical Statistics,

43(1), 84-88.

70



[109] Scruggs, J. (1998). Resolving the Puzzling Intertemporal Relation Between the

Market Risk Premium and the Conditional Market variance: A Two-Factor Ap-

proach. Journal of Finance, 53(2), 575-603.

[110] Scruggs, J. and Glabadanidis, P. (2003). Risk Premia and the Dynamic covari-

ance Between Stock and Bond Returns. Journal of Financial and Quantitative

Analysis, 38(2), 295-316.

[111] Smith, D. R. and Whitelaw, R. (2009). Time-varying risk aver-

sion and the risk-return relation. SSRN Working paper available at

https://papers.ssrn.com/sol3/papers.cfm?abstract id=1663542

[112] Stone, C. (1980). Optimal rates of convergence for nonparametric estimators.

The Annals of Statistics, 8(6), 1348-1360.

[113] Stone, C. (1982). Optimal global rates of convergence for nonparametric regres-

sion. The Annals of Statistics, 10(4), 1040-1053.

[114] Stone, C. J. (1985). Additive Regression and Other Nonparametric Models. The

Annals of Statistics, 13(2), 689-705.

[115] Sytaya, G. N. (1974). On certain asymptotic representations for a Gaussian

measure in Hilbert space (in Russian). Theory of Random Process, 2, 93-104.

[116] Veronesi, P. (2000): “How Does Information Quality Affect Stock Returns?,”

The Journal of Finance, 55(2), 807–837.

[117] Watson, G. S. (1964). Smooth regression analysis. Sankhya Series A, 26(4), 359-

372.

[118] Whitelaw, R. F. (1994). Time variations and covariations in the Expectation

and Volatility of Stock Market Returns, Journal of Finance, 49(2), 515-541.

[119] Whitelaw, R. F. (2000). tock Market Risk and Return: An Equilibrium Approach,

Review of Financial Studies, 13(3), 521-547.

[120] Wu, W. B. (2011). Asymptotic theory for stationary processes. Statistics and Its

Interface, 4, 207-226.

[121] Yao, Q and Tong, H. (1998). Cross-validatory bandwidth selections for regres-

sion estimation based on dependent data. Journal of Statistical Planning and

Inference, 68(2), 387-415.

71



[122] Yaracos, Y. G. (1985). Rates of Convergence of Minimum Distance Estimators

and Kolmogorov’s Entropy. The Annals of Statistics, 13(2), 768-774.

[123] Yu, J. and Yuan, Y. (2011). Investor Sentiment and the Mean-Variance Relation.

Journal of Financial Economics, 100(2), 367-381.

[124] Zhang, X., King, M. L. and Hyndman, R. J. (2006). A Bayesian approach to

bandwidth selection for multivariate kernel density estimation. Computational

Statistics and Data Analysis, 50(11), 3009-3031.

[125] Zolotarev, V. M. (1986). Asymptotic behavior of the Gaussian measure in `2.

Journal of Soviet Mathematics, 35(2), 2330-2334.

72


