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Abstract

We present Atacama Large Millimeter/submillimeter Array observations of an intrinsically radio-bright (L1.4 GHz=
(1.7± 0.1)×1025WHz−1) and infrared luminous (LIR≈ 1013 Le) galaxy at z=2.6. The infrared-to-radio luminosity
ratio, q=1.8, indicates the presence of a radio-loud active galactic nucleus (AGN). Gravitational lensing by two
foreground galaxies at z≈0.2 provides access to physical scales of approximately 360 pc, and we resolve a 2.5 kpc
radius ring of star-forming molecular gas, traced by atomic carbon C I (1→ 0) and carbon monoxide CO (J= 4→ 3).
We also detect emission from the cyanide radical, CN (N= 4→ 3). With a velocity width of 680 km s−1, this traces
dense molecular gas traveling at velocities nearly a factor of two larger than the rotation speed of the molecular ring.
While this could indicate the presence of a dynamical and photochemical interaction between the AGN and molecular
interstellar medium on scales of a few 100 pc, ongoing feedback is unlikely to have a significant impact on the
assembly of stellar mass in the molecular ring, given the ∼10 sMyr depletion timescale due to star formation.

Key words: galaxies: active – galaxies: evolution – galaxies: individual (9io9) – galaxies: nuclei – radio continuum:
galaxies – submillimeter: galaxies

1. Introduction

As they accrete mass, supermassive black holes (SMBHs) at the
centers of galaxies, radiating as active galactic nuclei (AGNs), are
thought to regulate the growth of the surrounding stellar bulge
through energy and momentum return into the interstellar medium
(ISM; see Fabian 2012 for a review). Even early models recognized
that this could be an important feature of galaxy evolution (Silk &
Rees 1998), and now AGN feedback is an established component
of the paradigm (Granato et al. 2004; Di Matteo et al. 2005; Bower
et al. 2006; Croton et al. 2006; Hopkins & Elvis 2010; Faucher-
Giguére & Quataert 2012; King & Pounds 2015).

Observations have shown that an AGN can drive significant
outflows of gas, including the dense molecular phase, over
kiloparsec scales (Feruglio et al. 2010; Rupke & Veilleux 2011;
Sturm et al. 2011; Cicone et al. 2014, 2015; Tombesi et al.
2015; Veilleux et al. 2017; Biernacki & Teyssier 2018).
Although the canonical theoretical model for the formation and
propagation of AGN-driven outflows is well understood, we
still lack a detailed empirical understanding of the astrophysics
of how an AGN actually couples to, and affects, the dense ISM
on the sub-kiloparsec scales where circumnuclear star forma-
tion occurs. The problem is exacerbated at the cosmic peak of
stellar mass and SMBH growth, z≈2–3 (Madau & Dickinson
2014), as the relevant physical scales are generally inaccessible.
Gravitational lensing of high-z galaxies currently provides the
only route to studying this phenomenon in the early universe.

“9io9”5 was first discovered as part of the citizen science
project SpaceWarps (Marshall et al. 2016; More et al. 2016) that
aimed to discover new lensing systems in tens of thousands of
deep iJKs color-composite images covering the Sloan Digital

Sky Survey Stripe 82 (Erben et al. 2013; Annis et al. 2014;
Geach et al. 2017). Volunteers identified a spectacular red
(in i–Ks) partial Einstein ring (rE≈ 3″) around a luminous red
galaxy at z≈0.2 (Geach et al. 2015). By cross-matching with
archival and existing data from Herschel and the Very Large
Array, and through a series of follow-up observations, 9io9 was
revealed to be a submm- and radio-bright galaxy at z=2.553,
with the dust emission approaching an astonishing 1 Jy at the
peak of the spectral energy distribution. Indeed, its prominence
in millimeter maps was noted by others, who identified 9io9 as a
lens candidate by virtue of its extreme submm flux density (e.g.,
Negrello et al. 2010) independently of the SpaceWarps optical/
near-infrared selection (Harrington et al. 2016, from the
combination of the Planck Catalog of Compact Sources, Planck
Collaboration 2014, and the Herschel-Stripe 82 Survey, Viero
et al. 2014, as well as the Atacama Cosmology Telescope, Su
et al. 2017).
Even taking into account the μ≈10 lensing magnification

(Geach et al. 2015), 9io9 is a hyperluminous infrared (LIR≈
1013 Le) and radio luminous (L1.4 GHz≈1025WHz−1) galaxy.
The galaxy’s radio-to-infrared luminosity ratio, qIR=1.8,
betrays a radio-loud AGN (Ivison et al. 2010), but with
copious amounts of ongoing star formation—of the order
103Me yr−1

—contributing to LIR. With its remarkable bright-
ness in the millimeter, 9io9 offers a unique opportunity to study
the resolved properties of the cold and dense ISM on sub-
kiloparsec scales around the central engine of a growing
SMBH, less than 3 Gyr after the Big Bang.
In this Letter we present new observations of 9io9 with the

Atacama Large Millimeter/submillimeter Array (ALMA) to
study the resolved properties of molecular gas in the galaxy
across a range of densities. When calculating luminosities and
physical scales we assume a “Planck 2015” cosmology (Planck
Collaboration 2016).
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5 Note—the name “9io9” originates from the original SpaceWarps image
identifier. Despite being IAU non-compliant, it has a pleasing brevity and so
we continue to use the moniker here.
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2. Observations

9io9 (02h09m41 3, +00◦15′58 5) was observed with the
ALMA 12 m array on 2017 December 11 and 14 in two
53 minute execution blocks as part of project 2017.1.00814.S.
The representative frequency of the tuning was 139.2 GHz in
Band 4, with central frequencies of the four spectral windows
127.196, 129.071, 139.196, 141.071 GHz. The correlator was
set up in Frequency Division Mode with 480 channels per
1.875 GHz wide baseband with a total bandwidth of 3.6 GHz,
recording dual linear polarizations. Calibrators included
J0238+1636 and J0208−0047. Observations were designed
to cover the redshifted emission lines of the atomic carbon
P P3

1
3

0 fine-structure line C I (1→ 0) (νrest= 492 GHz)
and carbon monoxide CO (J= 4→ 3) (νrest=461 GHz), but
the bandwidth also covers hydrogen isocyanide, HNC
(J= 5→ 4) (νrest= 453.270 GHz) and the cyanide radical,
CN (N= 4→ 3). The latter comprises 19 hyperfine structure
components, distributed in the three main fine-structure spin
groups: J=7/2→7/2, J=7/2→5/2, J=9/2→7/2
(at νrest≈ 452.628, 453.389, and 453.606 GHz, respectively).
The relative intensities of these three groups is approximately
0.08:0.9:1, thus the J=7/2→7/2 component has a
negligible contribution.

After two executions that built up 1.8 hr on-source
integration, we reached a 1σ (rms) sensitivity of 150 μJy per
23MHz (50 km s−1) channel. The array was in configuration
C43–6 with maximum baselines ∼3000 m, giving a synthe-
sized beam 0 27×0 21 at a position angle of 88°. We make
use of the ALMA Science Pipeline produced calibrated
measurement set, and image the visibilities using the CASA
(v.5.1.0-74.el7) clean task, employing multiscale (scales of 0″,
0 5 and 1 25) and cleaning in frequency mode. We clean
down to a stopping threshold of 1σ, and use natural weighting
in the imaging.

Figure 1 presents the observations. We detect thermal dust
continuum emission, the C I (1→ 0) and CO (J= 4→ 3)

emission lines, and a weaker broad emission feature at
νobs≈127.6 GHz, which is a blend of HNC (J= 5→ 4) and
CN (N= 4→ 3) that we show in Section 4.2 is dominated by
the latter. The C I (1→ 0) and CO (J= 4→ 3) lines exhibit a
classic double-horn profile indicative of a rotational ring or disk
(e.g., Downes & Solomon 1998), and with a distinctive shear in
the velocity fields, we can spatially resolve the kinematics of
the molecular gas.

3. Analysis

3.1. Basic Properties

The sharp truncation of the CO (J= 4→ 3) and C I (1→ 0)
lines characteristic of the double-horn profile allow us to revise
the redshift of 9io9. We find the best-fitting redshift that puts the
midpoint of the full width at zero intensity (FWZI=800 km s−1)
of the continuum-subtracted lines at zero relative velocity, with
z=2.5543±0.0002. This is slightly higher than the value of
z=2.553 reported by Geach et al. (2015) and Harrington et al.
(2016), but we note that the coarse velocity resolution of these
previous observations might have slightly biased the redshift
estimate given the asymmetric nature of the CO (J= 4→ 3) and
C I (1→ 0) lines.
We evaluate total line luminosities of a particular species,

x in standard radio units as
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where Dl is the luminosity distance, νx,rest is the rest-frame
frequency of the line, and S dVò n is the velocity-integrated line

flux. To evaluate S dVò n for a transition x we sum over the

Figure 1. ALMA observations of 9io9. Panels (a)–(c) show the velocity-averaged continuum-subtracted C I (1→ 0), CO (J = 4 → 3) and CN (N = 4→ 3) maps,
respectively, and panel (d) shows the 2.1 mm continuum. In panels (a)–(d) contours start at 100 μJy beam−1 and increase in steps of 200 μJy beam−1. Panels (e)–(g)
show the C I (1→ 0), CO (J = 4→ 3), and CN (N = 4→ 3) velocity fields derived from the first moment maps, where the blue-to-red color scale spans
−400<ΔV<400 km s−1 (black contours are the flux density contours in (a)–(c). The yellow ellipse indicates the size and shape of the synthesized beam. Panel (h)
shows the archival Hubble Space Telescope 1600 nm (WFC3/F160W) image of the target (data acquired from The Mikulski Archive for Space Telescopes, proposal
ID 14653), showing the partial Einstein ring of the background galaxy and the two foreground lensing galaxies: a z≈0.2 elliptical and a smaller northern companion,
which has similar color and is assumed to be at the same redshift. All images are orientated north up, east left. The plot on the right shows the galaxy-integrated C I
(1→ 0), CO (J = 4→ 3) and CN (N = 4 → 3) spectra, including continuum contribution. The asymmetric double-horned profile of C I (1→ 0) and CO (J = 4 → 3)
are consistent with the lower spectral resolution observations of CO (J = 3→ 2) in 9io9 by Harrington et al. (2016).
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solid angle subtended by the region defined by the �3σ contour
in the velocity-averaged line maps, integrated over VD <∣ ∣
500 km s−1. The uncertainty on integrated flux (and luminosity)
values is determined by adding Gaussian noise to each channel,
randomly drawn from off-line frequency ranges of the datacube
(after continuum subtraction), where the scale is determined
from the standard deviation of the flux density in equivalent
contiguous solid angles in randomly chosen source-free parts of
the datacube. By repeating this process 1000 times we asses the
standard deviation in S dVò n and derived luminosity, which we
take as the 1σ uncertainty. The source integrated flux of the
CO (J= 4→ 3) and C I (1→ 0) lines are SΔV=25.9±
0.2 Jy km s−1 and SΔV=9.5±0.1 Jy km s−1, corresponding
to luminosities of μL′=(50.9± 0.3)×1010 K km s−1 pc2 and
μL′=(16.4± 0.2)×1010 K km s−1 pc2, where μ is the lensing
magnification. We discuss the lens model in the next section, and
the HNC (J= 5→ 4)/CN (N= 4→ 3) blend in Section 4.2.

3.2. Lens Modeling

The lens model accommodates the gravitational potential of
both the primary lensing galaxy (z≈ 0.2) and its smaller
northern companion (Geach et al. 2015, Figure 1). We use a
semi-linear inversion method (Warren & Dye 2003; Dye
et al. 2018) to reconstruct a pixelized map of source surface
brightness that best fits the observed lensed image for a given
lens model. The lens model is iterated, reconstructing the
source with each iteration, until the global best fit has been
obtained according to the Bayesian evidence (Suyu et al. 2006).
The lens mass model is motivated by the observed lens galaxy
light; for the primary lens we use an elliptical power-law
surface mass density profile of the form

r 1 kpc , 20
1k k= a-( ˜ ) ( )

where κ0 is the normalization surface mass density, and α is the
power-law index of the volume mass density profile. Here, the
elliptical radius r̃ is defined by r x y2 2 2 2= ¢ + ¢˜ , where ò is
the lens elongation (i.e., the ratio of semimajor to semiminor
axis length) and the coordinate (x, y) is measured with respect
to the lens center of mass located at (xc, yc). The orientation of
the semimajor axis measured counter-clockwise from north is
described by the parameter θ. Because the lensing effect by the
secondary galaxy on the observed image is expected to be
relatively minor (because, for realistic mass-to-light ratios, its
lower observed flux implies low mass and because the
influence of the secondary mass is largely where there is no
observed Einstein ring flux) and to avoid overcomplicating the
lens model, for the companion lensing galaxy we assume a
singular isothermal sphere profile fixed at the observed galaxy
light centroid with a surface mass density of the form

r
r

r
. 3s0

0k k=( ) ( )

Here, s0k is the normalization surface mass density and r0 is a
constant set to 1 kpc. The lens model also includes an external
shear field characterized by the shear strength, γ, and the shear
direction angle θγ.

The set of parameters is optimized using the Markov Chain
Monte Carlo method (Suyu et al. 2006) using as input the
velocity-integrated, cleaned CO (J= 4→ 3) emission. To
eliminate possible biases in the optimization, we apply the
random Voronoi source plane pixelization method (Dye
et al. 2018). This optimal lens model is then subsequently
used to reconstruct the source plane emission on a regular pixel
grid in each observed channel to produce a source plane
datacube covering the full observed frequency range.
We find a best-fitting density profile for the primary lens that

is nearly isothermal with α=2.03, an ellipticity of ò=0.12,
and semimajor axis orientation of θ=93° east of north, which
aligns closely with the observed lens galaxy light. The model
returns a total mass-to-light ratio for the secondary lens that is
0.65×that of the primary, assuming that both lie at the same
redshift. Our lens model also includes external shear to
accommodate weaker deflections caused by the combination
of possible mass external to the primary and secondary lens
system. The fit is improved significantly with a shear of
γ=0.05 orientated such that the direction of stretch is
θγ=20° west of north. The FWHM of the minor axis of the
effective beam in the source plane is 45 mas, corresponding to
a physical (projected) scale of 360 pc. Figure 2 shows the
source plane reconstructions of the velocity-integrated emission
line maps and velocity fields. The total magnification is
μ=14.7±0.3, and generally the lens model is similar to the
one presented in Geach et al. (2015). In the following, all
derived physical properties are in the z=2.6 source plane, and
we perform the analysis in the source plane-reconstructed
datacubes, thus taking into account differential lensing.

3.3. Dynamical Modeling

We use the code galpak3d (version 1.8.8; Bouché et al.
2015) to fit the source plane CO (J= 4→ 3) datacube with a
rotating ring/disk model. We make a slight modification to the
publicly available code to allow an additional definition for the
density distribution, observed in local ultraluminous infrared
galaxies (Downes & Solomon 1998):

n R n A
R R

R
n Rexp 4 ln 2 , 40

min
2

0=
-
D

+ a⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )

where n0 and A are normalization constants, Rmin is the inner
edge of the ring (with Rmin= 0 defining a disk), and Rmax is the
outer edge (with n(R>Rmax)=0). As in previous works, we
fix α=0, but A is allowed as a free parameter, as are n0, Rmin,
Rmax, and ΔR. Perpendicular to the disk we assume a Gaussian
flux profile (Bouché et al. 2015) The total velocity dispersion of
the disk is assumed to be a quadrature sum of (a) the local
isotropic velocity dispersion from self-gravity, (b) a term due to
mixing of velocities along the line of sight, and (c) an intrinsic
dispersion term (a free parameter) that accounts for (e.g.,)
turbulent gas motions. Finally, we adopt a hyperbolic tangent
rotation curve

V R V R Rtanh , 5Vmax=( ) ( ) ( )

where RV is the turnover radius, with Vmax and RV free
parameters (Andersen & Bershady 2013). As the effective
beam size varies over the field of view in the reconstructed
datacube, we convolve each channel in the input CO
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(J= 4→ 3) cube with a circular Gaussian point-spread
function (PSF) with a width that aims to homogenize the
angular resolution across the source plane. We fix the FWHM
of this kernel as the θ=135 mas, which is the effective beam
size at the center of the source plane.

We experiment with a set of several different starting
parameter values and maximum iterations to determine a “first-
guess” solution that reasonably fits the data. To refine the fit, and
to explore the sensitivity of chain convergence to starting values,
we take this first set of parameters as nominal starting values, and
run 1000 independent chains, each with a maximum of 5000
iterations. In each run, we perturb each parameter by sampling
from a Gaussian distribution centered at the nominal value with a
standard deviation set at 10% of the magnitude of the central
value. We find consistent chain convergence, with a median
reduced χ2=1.08. Taking the distribution of converged χ2

values over all 1000 chains, the 1st and 99th percentiles are
χ2=0.99 and χ2=1.23, respectively. We take the 50th
percentile of the converged parameters over the 1000 chains as
the final estimate of the best-fitting model parameters, and the
16th and 84th percentiles as the 1σ uncertainty bounds. The
best-fitting model has R 20min 2

12= -
+ mas (161 pc18

102
-
+ ), Rmax =

322 20
11

-
+ mas (2647 pc160

88
-
+ ), i 50 8

3= -
+ degrees, R 75 13

14D = -
+ mas

(613 pc110
111

-
+ ), θ= 5± 4 degrees, V 360max 11

49= -
+ km s−1, σdisk=

73±4 km s−1. Figure 3 compares this model to the data.

3.4. Molecular Gas Mass

We measure the intrinsic (i.e., source plane) line luminosities
as L 8.7 0.1 10C

9
I

¢ =  ´( ) K km s−1 pc2 and L 32.3CO¢ = (
0.2 109´) K km s−1 pc2. To evaluate the molecular hydrogen
mass from the atomic carbon line luminosity we follow
previous works (Weiß et al. 2003; Papadopoulos et al. 2004;

Papadopoulos & Greve 2004; Wagg et al. 2006; Alaghband-
Zadeh et al. 2013; Bothwell et al. 2017)
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where XC I is the atomic carbon to molecular hydrogen
abundance ratio, A10 is the Einstein A-coefficient for the C I

(1→ 0) transition (A10= 7.93× 10−8 s−1), and Q10 is the
excitation factor defined by the ratio of the column density of
the upper excited level P3

1( ) to the ground state (3P0). This
depends on the density and kinetic temperature of the gas,
which are not well constrained, but as in other works we
assume a C I/H2 abundance XC I=3×10−5 and excitation
Q10=0.5 (Papadopoulos & Greve 2004). This gives
M M7.5 0.1 10H

10
2 =  ´ ( ) . Recently, Rivera et al. (2018)

presented an analysis of the CO (J= 3→ 2) map of 9io9 at
approximately 1″ resolution, deriving a slightly lower MH2 =

M3.5 0.2 1010 ´ ( ) ; however, systematic uncertainties on
αCO and lensing magnification could easily bring the values
into parity.

4. Interpretation

4.1. The Molecular Ring

The total mass within Rmax can be estimated from the
dynamical mass, M V R Gdyn max

2
max= , with the model giving

M M8.1 10dyn 0.8
1.5 10= ´-

+
( ) . This indicates that the potential

within 2.5 kpc of the SMBH is molecular-gas-dominated. The

Figure 2. Source plane reconstruction of C I (1 → 0), CO (J = 4→ 3) and CN (N = 4→ 3) line emission in 9io9. Panels (a)–(g) show the equivalent maps as those
displayed in Figure 1 for the image plan, with identical flux density contours. In panels (e) and (f) we show the velocity field from our rotating ring model (Section 3.2)
as contours, spanning −350–350 km s−1 in steps of 50 km s−1. CN (N = 4→ 3) does not exhibit a coherent velocity field and is largely unresolved. Red solid lines
show the lensing caustic from our best-fitting lens model (Section 3.2).
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line ratio L LCO 4 3 C I
¢ ¢-( ) can further inform us about the

conditions of the gas in the ring, as it is sensitive to the the
dense-to-total molecular gas ratio fd/t, in turn thought to be a
reliable indicator of the star formation efficiency (Papadopoulos
& Geach 2012). For example, L LCO 4 3 C I

¢ ¢-( ) can vary by an
order of magnitude between different star-forming environments,
with values of ∼0.5 for quiescent disks and clouds in the
Milky Way and local universe, up to ∼5 for galactic nuclei,
ultraluminous infrared galaxies, and quasars (e.g., Israel et al.
1995, 1998; Barvainis et al. 1997; Petitpas & Wilson 1998;
Israel & Baas 2001, 2003; Papadopoulos & Greve 2004;
Papadopoulos et al. 2004).

We measure L L 3.7 0.1CO 4 3 C I
¢ ¢ = -( ) , indicating fd/t∼0.5

(Papadopoulos & Geach 2012). From this we can estimate the total
star formation rate by assuming that the total molecular gas mass is
related to ongoing star formation as f Md t H2y = . The factor ò
describes the star formation efficiency of dense molecular gas, with
compelling observational evidence that ò is roughly constant,
possibly reflecting a local efficiency at the fundamental scale
of star formation (Thompson et al. 2005). Expressed in terms of
the emergent infrared luminosity, ò=500(Le/Me) (Shirley
et al. 2003; Scoville & Wilson 2004), we estimate the total star
formation rate in the molecular ring as ψå≈2800Me yr−1,

modulo systematic uncertainties on the form of the stellar initial
mass function (e.g., Zhang et al. 2018).

4.2. A Possible Dense Molecular Outflow

The broad emission feature at νobs=127.6 GHz is a blend of
HNC (J= 5→ 4) and CN (N= 4→ 3). The velocity-integrated
emission is more compact than the CO (J= 4→ 3) and C I
(1→ 0) in the source plane (Figure 2), with approximately 80%
of the integrated flux unresolved, corresponding to emission on
scales below 360 pc. To model this feature we assume that both
HNC (J= 5→ 4) and CN (N= 4→ 3) contribute to the
observed emission line, and, because they trace similar gas
densities (n∼105–6 cm−3), we also assume that both lines are
kinematically broadened by the same Gaussian σdense.
For the CN (N= 4→ 3) line, with its various fine and

hyperfine structure components, we assume local thermody-
namic equilibrium and optically thin emission, adopting the
relative line intensities from the Cologne Database for
Molecular Spectroscopy (Müller et al. 2005), calculated at
300 K (as we have no reliable estimate of the temperature). We
fit the spectrum allowing the HNC (J= 5→ 4) and CN
(N= 4→ 3) amplitudes, σdense and redshift (assuming the same
for both species) to vary as free parameters. We also allow for a

Figure 3. Dynamical modeling of 9io9. We show the source plane CO (J = 4→ 3) emission averaged over 88 km s−1-wide channels spanning −350–350 km s−1.
The color scale saturates at 4 mJy. Contours show the equivalent line emission extracted from the best-fitting model datacube, describing a rotating ring with inner
radius 160 pc, outer radius approximately 2.5 kpc, and maximum deprojected velocity 360 km s−1. Contours show the corresponding emission in the model cube,
starting at 0.5 mJy and increasing in steps of 0.5 mJy.
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constant amplitude continuum. The best-fitting redshift is
z=2.5543±0.0005, consistent with the value reported in
Section 3.1.

The data and best-fitting model are shown in Figure 4, where
we find that the observed emission is dominated by CN
(N= 4→ 3) with a statistically insignificant HNC (J= 5→ 4)
contribution. Interestingly, the opposite was found for
APM 08279+5255 (z= 4) by Guélin et al. (2007), who found
a line blend dominated by HNC (J= 5→ 4), with
L L 2HNC CN¢ ¢ » , although CN (N= 4→ 3) is only tentatively
detected in that system. However, we caution the reader that the
deblending is highly dependent on redshift. For example, fixing
z=2.5534 (e.g., Harrington et al. 2016) results in a more
substantial HNC (J= 5→ 4) contribution to the blend. Internal
motions/offsets of order 100 km s−1 (relative to the molecular
ring) for the dense gas traced by HNC (J= 5→ 4) and CN
(N= 4→ 3) are possible, therefore we are reticent in drawing
any conclusions regarding the relative strengths of these lines;
deeper observations will be required to properly model the
complex, ideally with coverage of other dense gas tracers to
properly constrain the physical conditions. Regardless of this, it
is clear that one, or both, of the lines must be very broad, and
this might provide clues as to the nature of the very dense gas
in 9io9 compared to the molecular ring.

The model line width is σdense=(289± 48) km s−1,
corresponding to a FWHM≈680 km s−1, nearly a factor of

two larger than the deprojected maximum rotation speed of the
molecular ring. Note that fixing the velocity width of the HNC
(J= 5→ 4) and CN (N= 4→ 3) components to the σdisk=
73 km s−1 dispersion of the molecular ring does not result in a
sensible fit to the data. The compact nature of the CN
(N= 4→ 3) emission compared to C I (1→ 0) and CO
(J= 4→ 3), coupled with its large velocity width compared
to the deprojected rotation speed of the ring, suggests that the
gas traced by CN (N= 4→ 3) does not trace the bulk of the gas
reservoir and could be dynamically decoupled from the ring.

5. Conclusion

One interpretation of these observations is that the gas traced
by CN (N= 4→ 3) is outflowing, potentially indicating an
interaction between the AGN and the inner part of the
molecular ring or smaller-scale circumnuclear disk. However,
we note that the high star formation rate density of the ring
could also be conducive to the formation and excitation of CN
(although in that case the broad line would likely have to be
produced by a supernova-driven wind; this is not implausible
given the high ψå). With the current data (i.e., the lack of a
broader range of tracers) we cannot unambiguously distinguish
between an AGN versus “star formation” origin of the CN
(N= 4→ 3) emission; indeed, the interpretation of this species
in general is rather complex (Meijerink & Spaans 2005;
Wilson 2018). Nevertheless, CN can be produced through the
photodissociation of species such as HCN and its isomers in
environments with intense ultraviolet or X-ray radiation fields
(Fuente et al. 1993; Rodriguez-Franco et al. 1998; Meijerink &
Spaans 2005; Meijerink et al. 2007) as exist around AGN
(Aalto et al. 2002; Chung et al. 2011).
Given the prevalence of molecular outflows on similar scales

in local ultraluminous infrared galaxies (e.g., Feruglio et al.
2010; Sturm et al. 2011; Cicone et al. 2014), the presence of a
dense molecular outflow in 9io9 is not surprising. Perhaps more
surprising is the realization that AGN feedback will do little to
curtail the ongoing rapid stellar mass assembly in the
surrounding ring, given the short gas consumption timescale
due to star formation, M 10s MyrH2 y ~ . We cannot yet
estimate the mass outflow rate in the putative molecular wind,
but it is clear that it cannot represent a significant fraction of the
total gas reservoir. Thus, gas exhaustion, rather than quenching,
will result in 9io9 transitioning into a passive elliptical galaxy.
This is not to say that the AGN will not play a regulatory role
in future stellar mass growth, but these observations suggest
that co-eval radio-mode AGN feedback could be extraneous to
the rapid assembly of stellar bulges at the peak epoch of galaxy
formation.
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Figure 4. Detection of CN (N = 4 → 3). The observed spectrum at
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CN (N = 4 → 3) Gaussian emission lines with fixed redshift and velocity
dispersion, plus a constant continuum component. CN (N = 4 → 3) comprises
19 hyperfine components in three spin groups, with the J=7/2→5/2 and
J=9/2→7/2 components dominating the CN (N = 4 → 3) total emission
for relative intensities calculated assuming optically thin conditions and local
thermodynamic equilibrium (Müller et al. 2005). Our best-fitting model shows
a negligible contribution from HNC (J = 5→ 4) (although we caution against
drawing any conclusions regarding the relative strength of the lines, see
Section 4.2), and supports a broad velocity width of FWHM=680 km s−1.
Note that, for presentation, the data has been binned to a channel width of
100 MHz or 240 km s−1, but the fit was done on the full-resolution spectrum.
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