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This work examines the potential drug delivery barrier of the basement membrane (BM) by
assessing the permeability of select macromolecules and nanoparticles. The study further extends
to probing the effect of BM on intestinal epithelial cell attachment and monolayer characteristics,
including cell morphology. Serum-free cultured Caco-2 cells were grown on BM-containing
porous supports, which were obtained by prior culture of airway epithelial cells (Calu-3), shown
to assemble and deposit a BM on the growth substrate, followed by decellularisation. Data overall

show that the attachment capacity of Caco-2 cells, which is completely lost in serum-free culture,
is fully restored when the cells are grown on BM-coated substrates, with cells forming intact
monolayers with high electrical resistance and low permeability to macromolecules. Caco-2 cells
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cultured on BM-coated substrates displayed strikingly different morphological characteristics,
suggestive of a higher level of differentiation and closer resemblance to the native intestinal
epithelium. BM was found to notably hinder the diffusion of macromolecules and nanoparticles
in a size dependent manner. This suggests that the specialised network of extracellular matrix

Laminin-5
proteins may have a significant impact on transmucosal delivery of certain therapeutics or drug
delivery systems.
© 2014 Published by Elsevier Inc.
Introduction including controlled conditions and reduced animal experiments,

Cell culture-based in vitro intestinal epithelial models are used in
a wide variety of research disciplines ranging from study of oral
drug delivery [1-3] and nutrient transport [4,5] to investigations
into entry mechanisms of infectious agents [6,7] and intestinal
disease processes [8,9]. Whilst these models offer advantages,
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current epithelial models fail to accurately represent the native
intestinal epithelium. Intestinal epithelial models are currently
based on culture of a suitable cell type, predominantly Caco-2,
directly on flat, porous supports. However, such culture condi-
tions fail to accurately reflect the environment of the native
intestinal epithelium, where epithelial cells are supported by the
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basement membrane (BM) as a specialised form of extracellular
matrix (ECM).

The intestinal BM is a thin network of ECM, composed of a
number of proteins, particularly laminins, type IV collagen and
fibronectin [10-12]. These proteins play an important role in
biological processes of intestinal cell migration, proliferation, and
differentiation [13,14]. The response and behaviour of intestinal
epithelial cells following direct culture on flat, polymer-based
supports may therefore not be reproduced due to the lack of the
natural interaction between the cells with the natural microen-
vironment in the form of the BM. Consequently, the resulting
in vitro model may fail to achieve appropriate characteristics,
including cell morphology, expression of relevant proteins and
barrier properties, which clearly presents reliability issues for the
model. Employing more biologically relevant conditions for
culture of intestinal epithelial cells is therefore desirable as the
resulting model may express a more relevant phenotype and
characteristics.

At the same time, the extent to which the BM contributes to the
overall mucosal barrier in terms of mucosal absorption of material
is unclear, in contrast to the drug delivery barrier of the
components of the mucosa other than the BM, including mucus
and the epithelial cell layer, which have been relatively well
researched [15,16]. This is particularly important considering the
increasing efforts to enable effective non-invasive, mucosal deliv-
ery of macromolecular biotherapeutics as BMs have been shown
to hinder the diffusion of macromolecules as small as 5000 Da in
the non-keratinized oral mucosal epithelium [17]. With an
increasing proliferation of biotherapeutics and nanomedicines,
coupled with the desire to achieve oral delivery in particular,
there is a need to study the drug delivery barrier of the intestinal
mucosal BM.

Here we set out to investigate the barrier property of the BM
with respect to the movement of macromolecules and nanopar-
ticles as increasingly relevant carriers of therapeutics [18-20].
In doing so, we employed a simple method to obtain BM coated
supports on which we cultured Caco-2 cells. This modification
resulted in a significant difference on cell attachment, morphol-
ogy and barrier characteristics of these epithelial monolayers.
In this paper we report both the characterisation of these effects
on the intestinal epithelial Caco-2 cells and also on the barrier
characteristics of both the BM and the epithelial monolayer.

Materials and methods
Materials

Calu-3 bronchial adenocarcinoma cells (used between passages
19-48) and Eagle's Minimal Essential Medium (EMEM) were
obtained from the American Type Culture Collection (ATCC)-LGC
Promochem (USA). Caco-2 colorectal adenocarcinoma cells
(passages 44-58) were obtained from European Collection of Cell
Cultures (ECACC). Ham's F-12 medium, Dulbecco's Modified
Eagle's Medium (DMEM), Hank's Balanced Salt Solution (HBSS,
with sodium bicarbonate and without phenol red), non-essential
amino acids, L-glutamine, antibiotic/antimycotic solution (10-
12,000 U/ml penicillin, 10-12 mg/ml streptomycin, 25-30 pg/ml
amphotericin B), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid solution (HEPES), non-animal recombinant trypsin solution

(TrypZean®™), soybean trypsin inhibitor, and fluorescein isothio-
cyanate (FITC)-labelled dextran of approximate molecular weight
of 4 and 10 kDa (FD4 and FD10, respectively) were all supplied by
Sigma-Aldrich (UK). Transwell® permeable inserts of 12 mm
diameter and 0.4 um pore size (referred to as ‘porous supports’
or simply, ‘substrates’) were purchased from Corning (USA).
Mouse, anti-human laminin «3/laminin-5 («3Ap3y2) antibody
(monoclonal mouse IgG1), derived from an established in vitro
hybridoma, was obtained from R&D Systems (USA). Mouse, anti-
human zonula occludens-1 (ZO-1, tight junction protein) and
Epilife® Calu-3 serum free (and chemically defined) medium
were purchased from Life Technologies Corp. (UK). Goat, anti-
mouse IgG-Atto 488 (secondary antibody) was obtained from
Sigma-Aldrich (UK). FITC-labelled human serum albumin was
supplied by Abcam (UK). Recombinant human insulin solution,
human transferrin, sodium selenite, human serum albumin
(HSA) were all purchased from Sigma-Aldrich (UK). Fluorescent,
carboxylate-modified polystyrene nanoparticles of 20 nm (Fluo-
Spheres®™; 505 nm excitation, 515 nm emission) and 50 nm dia-
meters (Fluoresbrite™; 441 nm excitation, 486 nm emission) were
purchased from Life Technologies Corp. (UK) and PolySciences Inc.
(Germany). Collagenase from Clostridium histolyticum, Quanti-
Pro™ high sensitivity BCA (bicinchoninic acid assay) kit, IgG-
FITC from human serum, human placenta type IV collagen, human
plasma fibronectin and all other chemicals were supplied by
Sigma-Aldrich (UK).

Cell culture

Calu-3 and Caco-2 cells were gradually transferred from serum-
containing media to serum-free, chemically defined media by
reducing the proportion of serum-containing medium and
increasing that of the serum-free medium at each subculture
point. Caco-2 cells were eventually transferred from 10% v/v
DMEM to serum-free and chemically defined Ham's F-12, whilst
Calu-3 cells were gradually converted from EMEM to serum free,
chemically-defined Epilife® (with added supplement S7). Ham's
F-12 was supplemented with 6.25 pig/ml human recombinant
insulin, 6.25 pg/ml human transferrin, 1.25 mg/ml human recom-
binant albumin, 6.25ng/ml selenium and 5.35 pg/ml linoleic
acid, which is a slightly modified culture medium ‘recipe’ to
that previously reported to allow serum-free culture of Caco-2
cells [21].

Unless otherwise stated, culture on permeable supports was
conducted using serum-free media for both airway Calu-3 and
intestinal Caco-2 cell lines. Both cell lines were seeded on
permeable supports at 10° cells/cm?. For Calu-3 cells, air-
interface culture (AIC) conditions were created on day 2 post-
seeding (culture medium removed from the apical side) and cells
were thereafter cultured using AIC conditions. Culture medium
was replaced every 2-3 days for both cultures.

Expression of laminin-5 by Calu-3 cells

Calu-3 cells were cultured on permeable supports as described
above. Prior to the immunostaining procedure, the resulting
cultures were tested for formation of confluent and polarised
layers by measurement of transepithelial electrical resistance
(TEER). Only cells displaying a TEER of >500 Qcm? were included
in the immunostaining studies. Culture medium was removed and
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cells washed with PBS. Cells were then fixed with 4% (w/v)
paraformaldehyde (in PBS; 10 min incubation) and permeabilised
using Triton X-100 (0.1% v/v in PBS; 10 min incubation). Cells
were then incubated with human serum albumin in PBS (1% w/v)
for 1 h, followed by incubation with mouse, anti-human laminin
a3/laminin-5 antibody (10 pg/ml in 1% HSA/PBS) for another hour.
Following extensive washing, cells were incubated with goat,
anti-mouse IgG-Atto 488 at 5 pg/ml for 1 h. Cell samples were
then washed and Transwell™ membranes excised and mounted
on glass slides using a DAPI-containing mounting medium. Cells
were imaged using a Leica TCS SP2 system mounted on a Leica
DMIRE2 inverted microscope (Germany).

Substrate deposition of basement membrane proteins by
Calu-3 cells

Protein deposition. Calu-3 cells were cultured on Transwell®
permeable supports (in AIC conditions) for 5 or 19 days.
A decellularisation step was then conducted by washing the cells
with PBS, followed by 10-15 min incubation with 0.02 M ammo-
nium hydroxide. Transwell® supports were then washed exten-
sively with PBS to ensure complete cell removal. To desorb protein
for quantitation, the permeable supports were incubated with
8 M Nadl, for 1-2 h followed by protein quantitation using a high
sensitivity BCA kit. Calibration curves, employing a series
of known concentrations of human serum albumin were
used to convert the absorbance readings of the samples into
concentrations.

Immunofluorescence. Calu-3 cells were cultured on permeable
supports for 5 days and decellularisation carried out as before.
The supports were then washed extensively with PBS, followed by
a 1-h incubation with 1% w/v HSA/PBS. Thereafter, mouse, anti-
human laminin «3/laminin-5 IgG was applied at 10 pg/ml for 1 h.
The primary antibody was then removed and the plastic support
washed extensively with PBS. Goat, anti-mouse IgG-Atto 488 was
then applied at 5 pg/ml and the supports incubated at room
temperature for 1 h. The substrates were washed again with PBS,
fixed with paraformaldehyde, excised and finally mounted on
glass slides for confocal imaging. Cells were imaged using a Leica
TCS SP2 system mounted on a Leica DMIRE2 inverted microscope.

Caco-2 culture on decellularised substrates

Calu-3 cells were seeded and cultured on Transwell® permeable
supports using the AIC conditions, described above (‘Cell culture’
section), for 5-7 days. Supports were then decellularised using
0.02 M ammonium hydroxide, as described above (section ‘Sub-
strate deposition of basement membrane proteins by Calu-3
cells’). Permeable supports were then washed extensively with
PBS, and Caco-2 growth medium (Ham's F-12, with supplements)
applied on both donor and acceptor compartments of the Trans-
well® system. Caco-2 cells were then seeded at 10° cells/cm? and
cultured for 21 days. Caco-2 cell medium was changed at regular
intervals (2-3 times weekly). A control experiment was conducted
in parallel where Caco-2 cells were seeded on permeable supports
previously exposed to Calu-3 culture medium (Epilife®) and
treated with 0.02 M ammonium hydroxide to replicate the condi-
tions used for Caco-2 culture on decellularised substrates. This was
done to test any effects that the culture medium or the decellular-
isation step may have on Caco-2 attachment/growth.

Caco-2 culture on type IV collagen and fibronectin-coated
supports

Permeable supports were coated with ECM/BM proteins known to
enhance cell attachment, namely human type IV collagen and
human fibronectin. Coating with type IV collagen was conducted
following the supplier's instructions, using 10 pg collagen (dis-
solved in 0.25% v/v acetic acid) per support (equivalent to 9.1 ug/
cm?). Transwell® permeable supports were incubated overnight
at 2-8 °C to allow surface adsorption. Dried, coated dishes were
then sterilized by rinsing with 70% v/v ethanol. Supports were
then washed with PBS before cell seeding. Human fibronectin
coating was achieved following the manufacturer's protocol, by
treating the Transwell® supports with a solution providing
2.5 pg/cm? fibronectin and incubating at room temperature for
1 h. The solution was then aspirated and supports rinsed with cell
culture grade water, whilst avoiding scraping the support surface.
Seeding and culture of Caco-2 cells on these supports was
conducted in the same way as seeding/culture on decellularised
supports (i.e. 10° cellsjem? and Ham's F-12 medium with
supplements).

Chemical and enzymatic treatment of decellularised
substrates

Calu-3 culture on permeable supports and decellularisation was
performed as described previously (see section ‘Caco-2 culture on
decellularised substrates’). Following the decellularisation step,
permeable supports were subjected to a 1-h treatment with the
following chemicals and enzymes: 4 M guanidine hydrochloride,
0.05M NaOH, 1 mg/ml collagenase and trypsin (non-animal
recombinant trypsin, TrypZean®™).

Characterisation of Caco-2 monolayer cultured
on decellularised substrates

TEER

Caco-2 cells were cultured on permeable Transwell supports
previously used for Calu-3 culture, followed by a decellularisation
step, as described in the preceding section. TEER measurements
were conducted periodically, at times when culture medium
was replaced (measurements were taken prior to medium
replacement).

In a control experiment, Caco-2 cells were seeded on permeable
supports that were previously exposed to Epilife medium only
(i.e. Calu-3 cells were not cultured on the supports). Furthermore,
to test the effect of cell attachment-mediating proteins collagen
and fibronectin (ECM proteins) or serum, Caco-2 cells were
cultured on transwells treated with these components under
the same conditions (10° cells/cm? seeding density and Ham’s
F-12 chemically-defined medium).

TEER is expressed as Qcm? in all cases, with the reported values
accounting for background TEER resulting from the Transwell
plastic.

Permeability

Caco-2 cells were cultured on decellularised permeable supports
for a period of 21 days. Prior to the permeability experiment, cell
monolayer TEER was measured to ensure monolayer intactness.
Cell medium (Ham’s F-12) was then replaced with HBSS;
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cells were subsequently incubated with HBSS for approximately
45 min. FITC-dextrans of approximately 4 kDa and 10 kDa (FD4
and FD10, respectively), dissolved in HBSS at 500 pul/ml were then
applied to the apical side of the cell monolayers. FD4 permeability
was determined by sampling the basolateral solution periodically
(every 30 min) for 3 h, whilst replacing the sampled volume with
fresh HBSS at each interval. FD4 was quantified by fluorescence
(using calibration curves) and apparent permeability coefficient
(Pgpp) calculated using the following equation:

o () )
wp = \ At A x Co

where P, is the apparent permeability in cm/s, AQ/At is the
permeability rate (amount FD4 or FITC-insulin traversing the cell
layers over time, as determined from the steady state accumula-
tion of the solute in the receiver chamber over time), A is the
surface area of the cell layer (1.1 cm?) and C is the initial FD or
FITC-insulin concentration in the donor chamber.

Scanning electron microscopy (SEM)

Caco-2 cells were cultured on permeable supports for 21 days,
following Calu-3 decellularisation, as described in section ‘Caco-2
culture on decellularised substrates’. Cells were fixed initially with
a 1:1 mixture of culture medium and fixing solution, which
comprised 2.5% v/v glutaraldehyde in 0.1 M sodium cacodylate
buffer (pH 7.2) on both apical and basolateral sides of the
Transwell. Following an incubation interval of 5 min, this solution
was removed and replaced with 100% of the fixing solution. The
fixing solution was then removed and replaced with 1% w/v
osmium tetroxide in water; cell samples were incubated with this
solution at room temperature for 90 min. Osmium tetroxide
solution was then removed and samples dehydrated in progres-
sively increasing concentrations of ethanol in water (25%, 50%,
75%, 95% and 100% v/v). Samples were dried using a critical point
dryer before filters were removed and mounted on aluminium
stubs with adhesive double-sided carbon tape. The samples were
gold coated for 3 min under an argon atmosphere in a Blazers
Union SCDO030 sputter coater unit (Blazers Ltd, UK). Coated
samples were examined with a JEOL 6060LV (JEOL, Welwyn,
UK) variable pressure scanning electron microscope operating at
an accelerating voltage of 10 kV. Image analysis was carried out
using the in-built SEM control user interface software (version
6.57) and digital imaging system.

Tight junction immunostaining

Caco-2 cells were cultured on porous supports for 21 days after
Calu-3 growth and decellularisation. Tight junction staining was
performed by initially fixing the cells with paraformaldehyde,
followed by washing with PBS and permeabilisation with Triton
X-100 (0.1% v/v in PBS). Cells were then washed with PBS,
followed by the application of 1% w/v human serum albumin
(HSA)/PBS for 1 h. Thereafter, HSA [PBS solution was replaced
with mouse, anti-human ZO-1 (primary) antibody, diluted in 1%
w/v HSA/PBS to a final concentration of 10 pg/ml. Cell samples
were incubated with the primary antibody for 1 h. The primary
antibody solution was then removed and cells washed with PBS
(5 times). Atto 488-labelled goat, anti-mouse IgG, diluted accord-
ing to manufacturer’s instructions in 1% HSA/PBS, was then
applied to the cells for 1h. This was then aspirated and cells

washed with PBS extensively. The Transwell® filter was excised
and mounted on glass slides for confocal imaging as above.

Permeability characteristics of decellularised substrates

Decellularisation of permeable supports following Calu-3 culture
was performed as described previously (section ‘Caco-2 culture
on decellularised substrates’). Material translocation across decel-
lularised substrates was assessed by applying macromolecules
and nanoparticles in HBSS on the donor chamber and sampling
the basolateral solution periodically (every 30 min) for 3 h, whilst
replacing the sampled volume. FD4 and FITC-labelled HSA were
applied at 500 pg/ml, whilst FITC-labelled IgG was used at
80 pg/ml. Fluorescently-labelled, carboxy-functionalised polystyr-
ene nanoparticles of 20 and 50 nm diameter were applied at
200 pg/ml. Hydrodynamic diameters of dextran, HSA and IgG
were determined by DLS.

Results
Expression of laminin-5 by Calu-3 cells

Fig. 1 shows confocal micrographs of polarised Calu-3 cells
cultured using serum-free conditions and immunostained for
laminin-5 («3Ap3y2) as a BM marker. The presence of fluores-
cence signal (appearing in green), indicative of protein expression,
is apparent in cell samples incubated with both primary and
secondary antibodies (Fig. 1A and B). The distribution pattern of
fluorescence across the depth of the polarised cell layer, as shown
in the ‘gallery’ series of micrographs reflecting the apical-to-
basolateral serial imaging on the cell monolayer (Fig. 1A), as well
as in the ‘three dimensional’ image (Fig. 1B, reconstituted from
multiple vertical plane sections) reveals a predominantly baso-
lateral localisation of fluorescence. A control experiment whereby
cells were treated with the secondary antibody only was con-
ducted to ensure that the fluorescence is not an experimental
artefact; in this instance fluorescence signal was largely absent
(Fig. 1C).

Substrate protein deposition by Calu-3 cells

Following the observation that Calu-3 cells express laminin-5 as
BM marker, further experiments probed whether this protein is
deposited by the cells on the culture plastic surface. Initial
experiments determined protein deposition on the filters arising
after culture of Calu-3 cells as polarised layers for different time
periods followed by decellularisation. Quantitation of substrate
deposited proteins was possible after protein desorption via
substrate incubation and washing with high ionic strength
sodium chloride. The data in Fig. 2A shows that Calu-3 cells
deposit approximately 150-300 ng protein/cm? following their
culture as polarised layers. Surprisingly, a lower amount of
deposited protein (150 ng/cm?) was detected following a longer
culture period (19 days) relative to that associated with a shorter
culture time (300 ng/cm? following a 5 day culture).
Immunostaining of decellularised filter plastic for laminin-5
shows a positive fluorescence signal for this protein (Fig. 2B i),
unlike a control experiment where no notable fluorescence was
observed following a laminin-5 immunostaining step of plastic
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Basolateral

Fig. 1 - Expression of laminin-5 by Calu-3 cells. Cells were cultured as polarised layers in air interface culture and were treated
with mouse anti-human laminin «3/Laminin-5 primary antibody, followed by goat, anti-mouse IgG-Atto 488 secondary antibody
(green). (A) ‘Gallery’ series of images (‘slices’), starting from the apical side of the cell layer and terminating at the basolateral side.
(B) Orthogonal slices view showing the cell layer in ‘3D’, reconstructed from a series of vertical sections. (C) Immunostaining,
where incubation with the primary antibody was omitted. Cell nuclei (blue) were labelled with Hoechst 33342.

filter supports exposed to the Calu-3 culture medium only,
without cells (Fig. 2B ii).

Caco-2 culture on decellularised substrates

Cell attachment

To determine whether BM deposited on substrates influences
epithelial cell behaviour, we employed Caco-2 cells and assessed
their attachment and growth, in addition to barrier characteristics
and morphology. This was possible as the serum-free conditions
used in this work were found to severely inhibit these cells’
capacity to attach to surfaces. This is evident from Fig. 3, where
poor cell attachment is apparent from images. A largely bare
porous plastic support with limited areas of patchy cell growth
(white circle) can be seen in Fig. 3A. This pattern is further
confirmed when imaging the cells by SEM (Fig. 3B) and confocal
microscopy (Fig. 3C). Furthermore, the expression of laminin-5, as

a BM component that regulates cell anchorage [22] and is clearly
present in Calu-3-deposited BM, by Caco-2 cells is reported to be
either very low or non-existent [23,24],

Serum-free culture of Caco-2 cells on Calu-3 decellularised
supports (having BM proteins produced by Calu-3 cell layers)
produced an entirely opposite outcome in terms of cell attach-
ment. In this instance Caco-2 cells completely covered the
substrate, such that the cell-covered porous support appears
opaque rather than clear (Fig. 3D). Fully cell populated areas were
also observed when imaging the cells by microscopy (SEM and
confocal, Fig. 3E and F, respectively).

Electrical resistance properties

Since Caco-2 cells cultured on decellularised substrates demon-
strated good cell attachment (Fig. 3), the current experiment
determined the monolayers’ barrier in terms of TEER. An incom-
plete coverage of the growth area when cells were cultured on
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Fig. 2 - Deposition of basement membrane protein on growth substrates by Calu-3 cells. (A) Quantitation of Calu-3 surface
deposited protein by bicinchoninic acid (BCA) assay following cell culture as polarised layers for 5 or 19 days and decellularisation.
Adsorbed protein was desorbed by incubation with 8 M NaCl. (B) Immunofluorescence of Transwell® porous support following
Calu-3 culture as polarised layers and decellularisation. (i) Decellularised supports were treated with mouse, anti-human laminin
o3/Laminin-5 primary antibody, followed by goat, anti-mouse IgG-Atto 488 secondary antibody (pseudocoloured red). (ii)
Treatment of decellularised supports with the secondary antibody (incubation with the primary antibody was omitted).

unmodified filters is reflected in low TEER values, which do not
increase beyond 30 Qcm? even after allowing a 22-day culture
period (Fig. 4A). Culture of Caco-2 cells under serum-free condi-
tions on collagen coated filters improved the TEER profile, with
values peaking at 700 Q/cm? on day 11, but high TEER was not
sustainable and dropped rapidly after this point (Fig. 4B).
Fibronectin-coated supports did not improve the TEER of
serum-free Caco-2 cells. When cultured on Calu-3 decellularised
substrates, Caco-2 cells displayed a typical TEER profile of
increasing values with time in culture, followed by a plateau
(Fig. 4C). Cells expressed a high maximal TEER value, reaching up
to 2200 ©/cm? on day 15 of culture. TEER thereafter slightly
decreased, though still remained at > 1700 Q/cm? until the last
measurement time point (day 22).

Effect of BM protein inactivation on cell attachment

Caco-2 cells clearly display a remarkably improved attachment on
decellularised substrates and this is most likely due to the surface-
adsorbed, Calu-3-derived BM. To confirm that it is indeed a BM
protein component that is responsible for this effect, decellularised
substrates were treated with protein-damaging chemicals or BM
protein digesting enzymes prior to Caco-2 cell seeding. The data in
Fig. 5 shows that treatment of decellularised supports with trypsin
did not markedly affect cell attachment, as indicated by a non-

remarkable ( <20%) reduction of TEER—employed as an indication of
cell attachment (Fig. 5A). However, exposure of decellularised plastic
filters to 4 M guanidine hydrochloride, a chemical that extracts BM
components [25-27], significantly impaired the ability of Caco-2
cells to attach to filters, as noted by their TEER value of only 2.3% of
control decellularised filters (treated with PBS). A similar outcome
(TEER amounting to 2.8% of control) was apparent with treatment
using 0.05 M NaOH, which was previously shown to inhibit the
proliferation of endothelial cells when employed to treat BM-coated
dishes [28]. Treatment of decellularised substrates with collagenase
also notably affected the capacity of Caco-2 cells to form ‘electrically-
tight’ monolayers, indicated by a low TEER of 5.3% relative to control
and attach to decellularised substrates, as indicated by incomplete
coverage of the growth area by the cell monolayer (Fig. 5B).

Morphological characteristics

Fig. 6 compares the morphology of conventionally cultured
Caco-2 cells (unmodified supports and using serum-containing
media) with cells of the same passage number, but cultured on
decellularised supports. Scanning electron micrographs (Fig. 6A)
show notably larger abundance of microvilli in the latter condi-
tions (Fig. 6A i) compared to conventionally-cultured Caco-2 cells
(Fig. 6A ii). Confocal micrographs also reveal differences in cell
appearance between the tested conditions, with prominent
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Fig. 3 - Effect of basement membrane on Caco-2 culture. (A)—(C) Serum-free culture of Caco-2 cells on unmodified porous
supports. (D)-(F) Serum-free culture of Caco-2 cells on basement membrane-deposited supports, obtained via Calu-3 culture and
decellularisation. (A) and (D) Photograph of Transwell® insert, (B) and (E) Scanning electron micrographs, (C) and (F) Confocal
microscopy images. Caco-2 cells were cultured for 21 days in all cases. Culture conditions (e.g. medium and medium exchange rate)
were kept the same for both conditions. Cell nuclei (blue) were labelled with Hoechst 33342.

differences in ZO-1 tight junction protein distribution (Fig. 6B).
More specifically, the differences lie in the location of the tight
junctions within the vertical plane of polarised cells, depicted on
the bottom and right side of the micrographs, as well as their
‘belt-like’ distribution around the cells. Caco-2 cells cultured on
BM-coated porous supports display a more prominently columnar
morphology, with micrographs clearly depicting ZO-1 distribution
considerably above the level of cell nuclei and appearance of the
protein largely as smooth/linear connection between the cells
(Fig. 6B i). On the other hand, cells cultured under conventional
culture display a flatter morphology, with tight junctions appear-
ing at the level of cell nuclei and having a largely convoluted
arrangement (arrows) at cell-cell contacts (Fig. 6B ii).

Staining of Caco-2 monolayers for laminin-5 following their
culture on decellularised supports is shown in Fig. 6C. Under these
conditions, the cell monolayers stained positive for laminin-5, with
prominent staining displayed on the basolateral side of the cells and
at the level of the plastic porous support (Fig. 6C i). This is in contrast
to staining of cells cultured on unmodified supports in the presence
of serum (Fig. 6C ii), where the fluorescence signal is largely absent
in the micrograph, suggesting lack of laminin-5 expression in Caco-2
monolayer growth using conventional culture.

Permeability characteristics of decellularised substrates

Decellularised substrate-cultured Caco-2 monolayers displayed a
low and molecular weight-dependent permeability to two model

macromolecules (Fig. 7A). The permeability of two dextrans, FD4
(~4 kDa) and FD10 (~ 10 kDa), amounted to 9.7 and 7.6 x 10~ cm/s.
As the BM may contribute to this barrier, we carried out further
experiments to examine whether Calu-3-originating BM coating the
filter plastic hinders the movement of materials. A series of experi-
ments assessed the diffusion of macromolecules and nanoparticles
across decellularised porous supports. FD4, HSA and IgG were
employed as macromolecules having a range of molecular mass,
from ~4 kDa (FD4) to 66 kDa (FITC-HSA) to ~ 150 kDa (IgG). These
results are presented as a graph of material movement (flux) against
hydrodynamic molecular or nanoparticle size, determined by
dynamic light scattering, in Fig. 7B. A significant pattern emerged
from the data. Diffusion across decellularised supports was lower
compared to unmodified supports for all of the tested materials
and the extent of this difference increased with the size of the
macromolecule or nanoparticle. For example, FD4 flux amounted to
031 and 0.23 pug/min/cm? across unmodified and decellularised
supports, respectively, and the translocation of HSA across unmodi-
fied supports was 1.6-fold higher compared to decellularised sup-
ports (0138 and 0.085 pg/min/cm?, respectively). Decellularised
porous supports were especially restrictive to the transport of FITC-
IgG, with fluxes of 0.029 versus 0.007 pg/min/cm? in unmodified
and decellularised Transwell® supports, corresponding to a 4.1-fold
difference. Polystyrene nanoparticles of 20 nm traversed the unmo-
dified supports at a rate that was 9.5-fold higher relative to
decellularised supports (0.052 and 0.006 jig/min/cm?, respectively).
For 50 nm nanoparticles a larger effect was apparent, with
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Fig. 4 - Transepithelial electrical resistance (TEER) of Caco-2
cells cultured on differently modified Transwell® supports
using a serum-free medium. (A) Unmodified supports, exposed
to Calu-3 medium (no cells) and 0.02 M ammonium hydroxide
before cell seeding. (B) Human collagen IV and human
fibronectin-coated supports. (C) Decellularised supports
coated with basement membrane originating from Calu-3
cells. Caco-2 cells were seeded and maintained in culture using
the same conditions in all instances (10° cells/cm? seeding
density and using the same medium, which was replenished at
the same time intervals in all cases).

unmodified supports showing a 31-fold higher nanoparticle translo-
cation compared to decellularised counterparts.

Discussion

The BM is a dynamic structure that not only physically supports
the epithelium but is essential in orchestrating and controlling a

variety of biological phenomena, including migration, prolifera-
tion, and differentiation of intestinal cells [13]. Epithelial cell-BM
interactions in the intestinal epithelium are complex and this
complexity is necessary considering its physiological function. The
phenotype and function of small intestinal epithelial cells varies
with position relative to crypt-villus structure and the cell-BM
interaction plays an important role in influencing this function.
For example, at the villus tip, intestinal epithelial cells are
repeatedly exposed to a variety of foreign bodies, undergoing
exhaustion and/or injury. Within this region, the shedding of
epithelial cells into the lumen [29,30] is therefore important for
maintaining continual epithelial renewal and hence epithelium
function and integrity [31]. This renewal is achieved by migration
of the epithelium along the BM from the proliferative undiffer-
entiated segments in the crypts to the tips of the villi. Epithelial
cell migration is in turn thought to be possible due to changes in
BM-integrin interactions, which may also reinforce E-cadherin-
dependent cell-cell adhesion [32], along the crypt-to-villus axis,
reflecting the changing BM composition along this axis (which
parallels the differentiation process of epithelial cells).

The Caco-2 cell line is currently the ‘gold standard’ in vitro
intestinal epithelial model. These cells are typically cultured on
flat, porous supports and after a certain culture period can
spontaneously differentiate into polarised small intestinal epithe-
lial cell-like phenotype. Whilst the Caco-2 model plays an
important role in in vitro research related to the intestinal
epithelium, including drug absorption studies, this model lacks
the expression of some proteins such as drug metabolizing
enzymes [33,34] and fails to express late markers of differentia-
tion, such as apolipoproteins and proteins involved in lipid
metabolism [35-37]. Employing flat, porous supports as sub-
strates for Caco-2 culture is a convenient approach avoiding the
need to reproduce the complex biological environment with the
folded crypt-villi architecture and the BM micro-milieu. However,
such flat substrates that lack the BM do not represent the
physicochemical situation of the human intestine and may
compromise the physiological relevance and performance of the
in vitro model. Furthermore, the lack of more sophisticated
substrates that represent the growth environment of the intest-
inal epithelium explains the so far unsuccessful attempts to
routinely maintain primary enterocytes in culture for prolonged
intervals [38].

This study employed a simple approach to obtain a biologically
derived, epithelially-sourced BM deposited on cell culture sub-
strates. In this respect an airway epithelial cell line was used to
produce the BM, with these cells cultured and allowed to
assemble a BM, followed by their lysis. This set up was adopted
upon the observation that these (Calu-3) cells prominently
express laminin-5 (Fig. 1A), used here as a BM marker, with
evidence that this protein was in fact deposited on filter sub-
strates (Fig. 1A and Fig. 2). Indeed, the approach of obtaining BM
coated substrates that are naturally assembled by cells in vitro has
been reported before. BM deposited by Madin-Darby canine
kidney (MDCK) epithelial cells, which was obtained in a similar
manner as our work (by decellularisation), was used in work
determining the glomerular permeability to macromolecules [39].

We selected laminin-5 as a marker for the BM in the view of its
wide distribution in the BMs of epithelial tissues, including its
presence in the villus cells of the normal human small intestinal
epithelium [40,41] and its role in migration and differentiation of
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Fig. 5 - Effect of chemical and enzymatic treatment of decellularised supports on Caco-2 transepithelial electrical resistance (TEER)
(A) and cell attachment (B). Transwell® porous supports were initially used for culture of Calu-3 cells, which were then
decellularised. Following decellularisation and washing with PBS, supports were treated with PBS (control), 4 M guanidine
hydrochloride, 0.05 M NaOH, 1 mg/ml collagenase or trypsin for 1 h. Supports were then washed multiple times with PBS before
Caco-2 seeding. Caco-2 cells were maintained thereafter in the same serum-free medium in all cases. TEER measurements and
photographs were taken after a 21-day culture on permeable supports.

intestinal epithelial cells [41]. Laminins (more specifically, their «
chains) are recognised by cell surface receptors, such as integrins
[22], and it is thought that the different extents of adhesion
displayed by various laminin isoforms reflect the integrin reper-
toire of the cells [42]. Laminin-5 specifically is present in the
human intestine, displaying a pattern of an increasing gradient
from the upper crypt to the villus tip in the human small intestine
[41,43], which suggests a possible role in differentiation and/or
migration of intestinal cells [24]. This laminin subtype is thought
to regulate the anchorage and motility of epithelial cells through
various integrins [22]. However, the expression of laminin-5 by
Caco-2 cells is reported to be either very low or non-existent
[23,24], which is also confirmed following conventional culture
(serum-containing medium and growth on unmodified porous
supports) in our work (Fig. 6¢ ii).

Conversely, our data suggests that the airway epithelial Calu-3
cells clearly express laminin-5 and its presence in BMs of
stratified epithelia, such as those of the airways, has also been
shown previously [23]. Assembly and growth substrate deposition
of BM by bronchial epithelial cells was also demonstrated
previously with BEAS-2B cells [44].

In experiments examining substrate deposition of BM by Calu-3
cells, we cultured these cells for different time periods, followed
by decellularisation, desorption of surface-adsorbed BM proteins
and, finally, quantitation. Presence of protein on the supports was
evident, with the amount of the deposited protein amounting
between 150 and 300 ng/cm? depending on the point when
decellularisation was performed (Fig. 2). This is similar to the
protein density of 150 ng/cm?, used previously for coating of
substrates with reconstituted EHS matrix and shown to provide
maximal hepatocyte attachment [45,46]. Interestingly, it was
noted that a larger amount of deposited protein was apparent
with an earlier Calu-3 decellularisation (day 5 of culture), which is
a practical advantage.

Serum-free cultured Caco-2 cells used in the work demon-
strated a greatly diminished ability to attach to plastic substrates
compared to the same cells (same batch/passage of cells) when
cultured under typically used, culture conditions with serum. The

data clearly demonstrated impaired Caco-2 cell attachment when
plated on unmodified supports in serum-free medium, a phe-
nomenon that is apparent to the naked eye (Fig. 3A), on
examination by microscopy (Fig. 3B and C) and when measuring
TEER (Fig. 4A). Monolayer culture of Caco-2 cells under these
conditions was not successful (cells did not display a high and
sustainable TEER) even after coating the substrates with collagen
or fibronectin (Fig. 4B). On the other hand, presence of BM as a
cell substrate produced a remarkable effect on Caco-2 attachment.
Indeed, Fig. 3D and E show a complete substrate surface coverage
by cells, indicating that the markedly impaired cell attachment
(due to the lack of serum) is reversed on decellularised substrates.
In addition to the micrographs, further experiments confirmed
the cell attachment and cell monolayer integrity by way of TEER
measurement and permeability to model macromolecules. Caco-2
cells cultured on decellularised, BM-coated filters displayed a
TEER profile that is typical for conventional Caco-2 culture, with
TEER increasing with time in culture until it reaches high values
(up to >2200 Q/cm? in our experiments) (Fig. 4C). These mono-
layers also displayed a molecular weight dependent barrier to the
permeability of two dextrans (Fig. 7A). Interestingly, the TEER and
barrier characteristics of cells cultured under these conditions
were similar to those of Caco-2 cells cultured with serum on
unmodified supports, previously reported by our group [15].
The attachment and growth behaviour of serum-free cultured
Caco-2 cells when plated on decellularised substrates is drama-
tically different to culture on unmodified supports and we
attribute these effects to the surface adsorbed-BM (or BM
components) previously assembled by airway epithelial cells, as
shown with laminin-5 immunostaining. Indeed, this was probed
in a series of experiments where decellularised porous supports
were treated with different chemicals, having various effects on
BM proteins, prior to Caco-2 cell seeding. Whilst trypsin did not
affect cell attachment, Caco-2 cell attachment was remarkably
suppressed (cells failed to develop a high TEER) by a range of
other treatments. These were BM protein-extracting guanidine, a
chaotropic agent which denatures and extracts proteins [25-27],
sodium hydroxide used at a concentration to hydrolyse glycosidic
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Fig. 6 - Effect of basement membrane on Caco-2 cell morphology. (A) Scanning electron micrographs of (i) cells cultured on
decellularised Transwell® porous supports and (ii) cells cultured on unmodified supports. (B) Zonula Occludens-1 (Z0O-1) tight
junction protein immunostaining of (i) cells cultured on decellularised supports and (ii) cells cultured on unmodified supports.
Z0-1 immunostaining conducted by cell treatment with mouse, anti-human Z0O-1 (primary) antibody, followed by goat, anti-
mouse Atto 488-IgG. C) Laminin-5 immunostaining of (i) cells cultured on decellularised porous supports (serum-free), and (ii)
cells cultured on unmodified supports (serum-containing medium). Immunostaining conducted using mouse, anti-human
laminin a3/Laminin-5 primary antibody, followed by goat, anti-mouse IgG-Atto 488 secondary antibody (green). Cell nuclei (blue)

were labelled with Hoechst 33342.

linkages to sugars and the extracellular matrix-degrading enzyme
collagenase. Although full characterization of the Calu-3-
deposited BM was not conducted in this work, our data suggest
a rich laminin-5 presence. This is a key BM protein that displays
intestinal localization that is variable according to the crypt-to-
villus positioning [41,43,47,48] and has a role in differentiation
and/or migration of intestinal cells [24]. An earlier publication
comparing cell attachment to different laminin isoforms revealed

that Caco-2/TC7 cells bound more avidly to laminin-5 and
laminin-10 compared to laminin-1 or laminin-2 [42].

The effect of BM substrates on Caco-2 cells was not limited to
cell attachment. Examining the morphology of cells cultured on
decellularised supports and drawing a comparison with Caco-2
cells cultured on untreated surfaces in the presence of serum, a
striking difference between the two conditions was apparent in
terms of cellular architecture and the abundance of microvilli



228 EXPERIMENTAL CELL RESEARCH 323 (2014) 218-231

>

15

Papp (X1 08) cm/s

B

FD4
T o] 2
S 0.100 \g\:gﬁ
c
= O NP50nm
£ 2
B‘) \ IgG
=
= 0.010
E 06 wmm\
@NP5Om
0'001 I T T T T T 1

0 10 20 30 40 50 60
Molecule/particle size (nm)

Fig. 7 - Permeability of macromolecules and nanoparticles
across different barriers. (A) Permeability of FITC-dextrans of 4
and 10 kDa (FD4 and FD10, respectively) across Caco-2
monolayers cultured on decellularised substrates. Substrate
decellularisation was conducted by treating Calu-3 cells with
0.02 M ammonium hydroxide and washing with PBS. FD4 and
FD10 were applied in Hank’s Balanced Salt Solution at

500 pg/ml. Permeability is expressed as apparent permeability
coefficient (P,p). (B) Diffusion of macromolecules and
nanoparticles across Calu-3-deposited basement membranes.
Transwell® porous supports were used to culture Calu-3 cells
as polarised layers, followed by decellularisation. The supports
were washed thoroughly with PBS before the permeability
study. Hank’s Balanced Salt Solution was used as the transport
solution. FD4 and Human Serum Albumin (HAS) were applied
at 500 pg/ml, whilst human serum FITC-labelled IgG was used
at 80 pg/ml. 20 and 50 nm nanoparticles were applied at

200 pg/ml in HBSS. Material diffusion is expressed as flux.
Material transport was measured by applying the samples on
the apical chamber and sampling the basolateral solution
every 30 min for 3 h and quantitation of samples by
fluorescence (through calibration curves) in all cases.

(Fig. 6A). The significantly more abundant microvilli on the apical
membranes of Caco-2 cells cultured on decellularised filters
suggest a well-developed brush border and a higher level of
differentiation [49-51].

Another morphological aspect that was clearly influenced by
growth on BM-deposited substrates was the tight junction. Both
the localisation along the apical-to-basal axis of polarity and the
‘belt-like’ appearance of the tight junction protein, ZO-1, were
notably different in Caco-2 cells grown on decellularised filters

(Fig. 6B). The increased height of the tight junctions gave rise to a
prominently columnar appearance of cells under these conditions,
as compared to a flatter monolayer appearance of Caco-2 cells
cultured on untreated substrates (with serum). Columnar appear-
ance of Caco-2 cells suggests a higher level of differentiation. This
morphological criterion was in fact used previously as a marker of
differentiation whereby the x-y (lateral) surface area measure-
ments were used (indicating how columnar the cells are) as a
measure of differentiation [51]. An epithelial monolayer having a
more prominent columnarity also more closely resembles the
native human small intestinal epithelium [52]. Equally, the
smooth almost linear distribution of the tight junctions achieved
with Caco-2 cells cultured on BM-deposited substrates is also a
closer representation of natural intestinal epithelium than the
convoluted appearance noted with conventional culture reported
in our earlier work [15] and also in publications by others
[53-55]).

The effect of BM on Caco-2 morphology is perhaps under-
standable considering that epithelial cell-BM (as well as cell-cell)
adhesion systems are linked to the cytoskeleton, which controls
cell polarization and the interaction between BM/ECM and
integrin induced cytoskeletal rearrangements [56,57]. Cell adhe-
sion to the BM therefore contributes to the apical-to-basal axis of
polarity, in vivo as well as in vitro [32]. Staining of Caco-2
monolayers for laminin-5 following culture on decellularised
filters signalled its presence on the basolateral plane of the cells
(Fig. 6C ii), unlike the staining of cells cultured on unmodified
supports (Fig. 6C i).

The positive effect of BM on Caco-2 differentiation was also
demonstrated previously. A study by Le Beyec et al. showed Caco-
2 differentiation was boosted by the presence of basal lamina of
mesodermal origin [58]. The influence of exogenous laminin
substrates on the differentiation state of Caco-2 cells has also
been shown [13,47], with Basson et al. reporting that laminin
stimulates Caco-2 expression of four different brush border
enzymes (alkaline phosphatase, dipeptidyl peptidase, isomaltase
and lactase) and these effects were greater for laminin (for all four
brush border enzymes) than for type IV collagen. However, other
work in the area tends to employ individual ECM components for
substrate coating [59,60] rather than the biologically-important
heterogenous BM.

The data overall show that BM-deposited substrates, assembled
by an airway epithelial cell line, showed a remarkable effect on
Caco-2 attachment and morphology, with the latter suggesting a
higher level of differentiation. Whether the culture of Caco-2 cells
on decellularised supports induced the synthesis and assembly of
some of their own BM or Caco-2 cells merely used the Calu-3-
assembled/deposited BM to interact with is not clear. In any case,
the work shows that the presence of BM on substrates not only
completely reverses the ability of Caco-2 cells to adhere to the
surface, which is lost upon serum free culture, but also promotes a
higher level of differentiation. Both these points are important in
terms of in vitro Caco-2 culture. The use of serum-free media is
advantageous as it potentially removes a major source of Caco-2
model variability (serum of undefined composition can vary
markedly from batch to batch) and it provides a more appropriate
environment for drug transport studies due to the absence of
apical serum in the intestinal epithelium. However, the culture of
Caco-2 cells as polarised/differentiated monolayers in the absence
of serum is challenging and, as a result, not widely reported.
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A few studies that have described this have used highly complex
and expensive media recipes [61,62] or commercially available
preparations such as MITO+ serum extender [63]. The culture
conditions in our study allowed us to use a relatively simple and
inexpensive serum-free (and animal component free) medium.
The differentiation aspect is of significance as achieving a higher
level of cell differentiation in vitro would enhance the relevance
of the model due to a closer resemblance to the native tissue.

Importantly, our work considered the potential drug delivery
barrier of the BM. From the drug delivery perspective this is a
valuable investigation as it is an unexplored area. This part of the
work assessed the translocation of macromolecules of a range of
molecular weights, as well as model nanoparticles of two sizes,
across decellularised supports (with airway epithelium-deposited
BM). The data demonstrated that the movement of both macro-
molecules and nanoparticles across the decellularised porous
supports was hindered, with dramatic effects observed for larger
macromolecules, as exemplified by the lower permeability of IgG,
the lower level of translocation for 20 nm nanoparticles and a
dramatic reduction in transport for 50 nm-sized particles. This is
particularly important result in relation to biotherapeutics and
nanomedicines, which are becoming increasingly important and
where delivery via the oral route (i.e. non-invasively) is of high
interest. It is clear therefore that the BM needs to be taken into
consideration in the transport of a variety of materials across
epithelia. The presence of a similar barrier at endothelia suggests
that similar considerations will apply to transport of macromole-
cules and particles across this barrier.

Our results on the barrier effect of BM support a range of
observations reported in the literature. The BM of nonkeratinized
oral mucosal epithelium has been shown to limit the movement
of a bacterial endotoxin [64] and 2',3'-dideoxycytidine [65], a
relatively small mass (211 g/mol) ionic compound. BM hydrogels
were also shown to suppress the diffusive motion of HPV-16
pseudovirions by as much as ~10,000 times compared to
pseudovirion diffusion in buffer control [66]. The latter study also
reported that the lining of a HeLa monolayer with BM followed by
exposure to HPV-16 pseudoviruses reduced the percentage of
infected HeLa cells by about 6-fold, highlighting the extent of the
barrier that the BM presents to the movement of a 50 nm virus.
The ECM has been shown to drastically suppress the diffusion of
both positively and negatively charged particles, even when the
particles are significantly smaller than the mesh size of the ECM
[67]. The same may therefore apply to the BM. A major con-
tributor to this barrier property of the ECM was shown to be the
heparan sulfate, a strongly anionic linear polymer of uronic acid
and glucosamine disaccharide units as the barrier function of the
ECM is lost following enzymatic digestion of this component.

Our findings may have wider implications in the field of
epithelial cell culture in general, potentially enabling growth of
‘difficult to culture’ cells, such as weekly adherent cells and
primary cells, in addition to improving the existing in vitro
intestinal epithelial models. This improved serum-free culture of
Caco-2 cells, which produces a model of closer morphological
resemblance to the native epithelium is also convenient. The BM
in this work is naturally assembled by an epithelial cell line
following a short (5-day) culture and is an inexpensive approach
to obtain more biorelevant substrates compared to commercially
available alternatives such as the BD Biocoat™ inserts (coated
with a single BM component, fibrillar collagen) and BM extracts,

which are animal-derived and contain non-BM components such
as growth factors and enzymes [68]. Caco-2 culture on a BM
‘blanket’ left behind by a different epithelial cell source is also
advantageous as it provides a physiologically relevant, hetero-
genous BM as compared to the use of individual BM components,
which may not be able to support serum-free Caco-2 culture, as
shown for type IV collagen and fibronectin (Fig. 4B), or mixtures
of BM components in non-physiological proportions. When
compared to commercially available BM extracts, we anticipate
that the microporous substrates in our work contain a BM of
physiological thickness (based on the amount of adsorbed protein,
Fig. 2A), which is important for epithelial cell growth. BM extracts
such as Matrigel are typically used as physiologically irrelevant
thick layers [69], which is inappropriate for drug transport
studies.

Conclusion

This study overall shows that the cell attachment capacity of
Caco-2 cells, which is completely lost upon serum-free culture, is
fully restored when the cells are grown on a BM and that cells
cultured in this manner more closely resemble the native
intestinal epithelium. Whilst the BM plays a significant role on
cell attachment and morphology, we present evidence that this
protein network also notably affects the movement of macro-
molecules and nanoparticles.
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