
Gelfand-Yaglom formula for functional determinants

in higher dimensions

A. Ossipov

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD,

United Kingdom

E-mail: alexander.ossipov@nottingham.ac.uk

Abstract. The Gelfand-Yaglom formula relates functional determinants of the one-

dimensional second order differential operators to the solutions of the corresponding

initial value problem. In this work we generalise the Gelfand-Yaglom method by

considering discrete and continuum partial second order differential operators in higher

dimensions. To illustrate our main result we apply the generalised formula to the two-

dimensional massive and massless discrete Laplace operators and calculate asymptotic

expressions for their determinants.
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1. Introduction

Functional determinants of the second order differential operators appear naturally in

many different fields ranging from quantum mechanics [1], to quantum field theories

[2], to condensed matter physics [3, 4, 5, 6, 7, 8] and mathematics [9, 10]. Generally,

computation of a functional determinant represents a very non-trivial problem and

requires the knowledge of all eigenvalues of the differential operator. Even when

all eigenvalues are known, calculation of their infinite product might be challenging.

However in one-dimensional case, there is an elegant method developed by Gelfand and

Yaglom (GY) [11], which allows one to calculate a functional determinant by solving

an initial value problem for the corresponding differential operator. Consider a one-

dimensional differential operator

H = − d2

dx2
+ V (x), (1)

where V (x) is an arbitrary potential and the operator acts on functions ψ(x) defined on

the finite interval [0, L] and satisfying the Dirichlet boundary condition ψ(0) = ψ(L) =

0. Suppose that one can solve the corresponding initial value problem

−y′′ + V y = 0, y(0) = 0, y′(0) = 1. (2)

Then the GY formula reads

det

(
− d2

dx2
+ V (x)

)
= y(L). (3)

As the functional determinants usually diverge, this formula should be understood either

in the discrete setting [14] or using some regularisation, for example, by considering

a ratio of two functional determinants with and without V (x) [2, 10, 12, 13, 14].

Thus in one dimension, functional determinants can be computed without knowing

the eigenvalues explicitly.

The aim of this work is to derive the generalisation of the GY formula to the higher

dimensional case. Specifically, we relate the functional determinant of the differential

operator

H = −∆d + V (r), (4)

where ∆d is the d-dimensional Laplacian acting on functions ψ(x,ρ) defined on the d-

dimensional box, r ≡ (x,ρ), x ∈ [0, L], ρk ∈ [0,W ], k = 1, . . . d − 1 and supplemented

with the Dirichlet boundary conditions in all directions, to the matrix solution, Ŷ (x),

of the initial value problem

−Ŷ ′′ + (−∆̂d−1 + V̂ )Ŷ = 0, Ŷ (0) = 0, Ŷ ′ = I, (5)

where Â denotes a matrix of the operator A w.r.t. any complete countable basis of the

functions {ul(ρ)}. The analogue of the GY formula is then given by

det (−∆d + V (r)) = det Ŷ (L). (6)

Similarly to the 1D case, this formula should be either properly regularised or considered

on a discrete lattice. This result enables one to reduce calculation of the d-dimensional
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functional determinant to the computation of the (d − 1)-dimensional determinant,

which can drastically simplify the problem. Even when a solution of the initial value

problem is not known explicitly, the above relation can be useful for developing some

approximations. As it is explained below, it is also very convenient for numerical

calculation of functional determinants. In this work, we apply the generalised GY

formula to the massive and massless two-dimensional Laplace operators, which allows

us to derive asymptotic expressions for their determinants in the discrete case.

The paper is organised as follows. In Section 2 we derive the one-dimensional GY

formula for the discrete and continuum case by a method, which can be easily generalised

to higher dimensions. In Section 3 such a generalisation is obtained. Finally, in Section

4 we apply our generalised GY formula to the two-dimensional massive and massless

Laplace operators and find asymptotic expressions for their determinants.

2. One-dimensional case

In this section we reproduce the Gelfand-Yaglom (GY) formula in the one-dimensional

case.

2.1. Recursion relations for the determinant in the discrete model

Our approach is similar to the original method by Gelfand and Yaglom [11], but in

order to get the recursion relations for the determinants we represent the determinants

in terms of the Gaussian integrals. This enables us to generalise easily our approach to

the higher dimensional case. Consider the discrete one-dimensional Hamiltonian

(Hψ)i = 2ψi − ψi+1 − ψi−1 + Viψi, i = 1, . . . , N − 1, (7)

which is the sum of the Laplace operator and the potential term and we assume the

Dirichlet boundary conditions: ψ0 = ψN = 0.

The determinant of this operator can be calculated with help of the Gaussian

integrals, which can be evaluated recursively using a set of the functions Φn(x) defined

recursively as

Φn+1(x) = e−Vn+1x2
∫ ∞
−∞

dy√
π
e−(x−y)2Φn(y). (8)

It is easy to check that

(det(H))−
1
2 = ΦN(0), (9)

provided that Φ1(x) = e−V1x
2−x2 .

Since the initial function is Gaussian, all Φn(x) are Gaussian as well, so we can

assume that

Φn(x) = cne
−anx2−bnx. (10)
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Substituting this ansatz into Eq.(8) we obtain the following set of the recursion relations:

an+1 = Vn+1 + 1− 1

an + 1
, a0 =∞, (11)

bn+1 =
bn

an + 1
, b1 = 0, (12)

cn+1 =
cn√

(an + 1)
e

b2n
4(an+1) , c1 = 1. (13)

As b1 = 0 it follows from the second relation that bn = 0 and

cn+1 =
n∏
k=1

1√
(ak + 1)

. (14)

Then the formula for the determinant in terms of an reads

detH =
1

c2
N

=
N−1∏
k=1

(ak + 1). (15)

This formula relates the determinant to coefficients an, which can be computed

recursively for an arbitrary potential via Eq.(11).

Introducing new variables yn such that

an + 1 =
yn+1

yn
, y0 = 0, y1 = 1. (16)

we can rewrite the recursion relation for an as

−(yn+2 − 2yn+1 + yn) + Vn+1yn+1 = 0. (17)

Thus yn is a solution of the equation (Hy)n = 0, satisfying the initial condition

y0 = 0, y1 = 1. The expression for the determinant (15) in terms of yn reads

detH =
N−1∏
k=1

(ak + 1) =
N−1∏
k=1

yk+1

yk
= yN . (18)

This is a standard discrete form of the one-dimensional GY formula [14, 15].

2.2. GY formula in the continuum model

In order to rewrite Eq.(11) in the continuum model we set n = x/δL, Vn+1 =

δL
∫ x+δL

x
dx′V (x′), an = znδL = z(nδL)δL = z(x)δL. Substituting these expressions

into Eq.(11) and keeping only the leading terms in δL one finds

zn+1 − zn
δL

= − z2
n +

1

δL

∫ x+δL

x

dx′V (x′) +O(δL). (19)

Taking the limit δL→ 0, N →∞, such that L = NδL is a constant, one obtains

dz

dx
= −z(x)2 + V (x), z(0) =∞. (20)

Eq.(15) is then transformed into

| detH| = det

(
− d2

dx2
+ V (x)

)
= lim

δL→0

N−1∏
k=1

(1 + zkδL) = e
∫ L
0 dxz(x). (21)
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The appearance of the absolute value on the left hand side is due to the fact that if detH

changes its sign, then zn becomes of order of 1/δL for some n and contributions of such

terms, which must be treated separately, compensate the overall sign of the determinant.

This is the first version of the one-dimensional GY formula in the continuum, expressing

detH through the solution of the first-order non-linear Riccati differential equation.

In order to get another formulation of the GY formula we take the continuum limit

of Eq.(18) and find

−y′′ + V y = 0, y(0) = 0, y′(0) = 1, det

(
− d2

dx2
+ V (x)

)
= y(L). (22)

Using this result and the substitution z(x) = y′(x)
y(x)

one can immediately recover (21), as∫
dxz(x) = ln |y|. This is the standard GY formula. As the determinant diverges in the

limit N →∞, it should be regularised in some way.

3. d-dimensional case

3.1. Recursion relations for the determinant in the discrete model

We consider the discrete Hamiltonian

(Hψ)i = −(∆dψ)i + viψi, (23)

defined on a d-dimensional cubic lattice of the dimension (N−1)×(M−1)d−1, where ∆d

is the d-dimensional discrete Laplacian and the Dirichlet boundary condition is imposed

in all directions. It is convenient to separate the transverse and longitudinal directions

in the Hamiltonian by introducing the vectors ψi = (ψi1, ψi2, . . . , ψiK)T and the diagonal

matrices Vi = diag(vi1, vi2, . . . , viK) with K ≡ (M − 1)d−1, then H can be represented

as

(Hψ)i = 2ψi −ψi+1 −ψi−1 + (Vi −∆d−1)ψi, i = 1, . . . , N − 1, (24)

where ∆d−1 is the (d− 1)-dimensional discrete Laplacian.

Similarly to the one-dimensional case, we introduce a set of the functions Φn(x)

defined recursively as

Φn+1(x) = e−(x,(−∆d−1+Vn+1)x)

∫ ∞
−∞

dy e−(x−y)2Φn(y), (25)

where x = (x1, x2, . . . , xK)T , dy =
∏K

k=1
dyk√
π

and (x,y) denotes the standard scalar

product in RK . Then the determinant of H is given by

(detH)−
1
2 = ΦN(0), (26)

provided that Φ1(x) = e−(x,(−∆d−1+V1+I)x).

Since the initial function is Gaussian, Φn(x) must be again Gaussian:

Φn(x) = cne
−(x,Anx)−(x,bn) (27)
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Substituting this ansatz into Eq.(25) we obtain the following set of the recursion

relations:

An+1 = I − (An + I)−1 −∆d−1 + Vn+1, A0 =∞, (28)

bn+1 = (An + I)−1bn, b1 = 0, (29)

cn+1 =
cn√

det(An + I)
e

1
4

(bn,(An+I)−1bn), c1 = 1. (30)

As b1 = 0 it follows from the second relation that bn = 0 and

cn+1 =
n∏
k=1

1√
det(Ak + I)

. (31)

Then the formula for the determinant in terms of the matrices An, which can be

computed recursively for an arbitrary potential via Eq.(28), reads

detH =
1

c2
N

=
N−1∏
k=1

det(Ak + I). (32)

Introducing new set of matrices Yn such that

An + I = Yn+1Y
−1
n , Y0 = 0, Y1 = I. (33)

we can rewrite the recursion relation for An as

− (Yn+2 − 2Yn+1 + Yn) + (−∆d−1 + Vn+1)Yn+1 = 0. (34)

Thus Yn is a matrix solution of the equation (HY )n = 0, satisfying the initial condition

Y0 = 0, Y1 = I. The expression for the determinant (32) in terms of Yn reads

detH =
N−1∏
k=1

det(Ak + I) =
N−1∏
k=1

detYk+1Y
−1
k = detYN . (35)

This is a discrete form of the d-dimensional GY formula.

We note that one of the possible applications of this formula is that it provides an

efficient numerical algorithm for computing the functional determinants. Indeed, the

original matrix of H has the dimension Nd×Nd, for N = M , and hence the running time

of numerical algorithms calculating its determinant directly scales as N3d. At the same

time, the matrices involved in the recursion relations (28) or (34) have the dimension

Nd−1 ×Nd−1 and therefore the time needed to compute the determinant using Eq.(35)

scales as N3d−2.

3.2. Recursion relations in the continuum model

The matrices in the discrete formulation correspond to the position representation,

which is not very convenient if we want to take the continuum limit. Therefore we can

first rewrite all formulas above in any other representation, which admits a countable

basis {|uk〉} in the continuum limit. Any operator C in this representation is represented

by a matrix Ĉ, such that Ĉkl = 〈uk|C|ul〉. For example, Eq.(28) takes the form

Ân+1 = I − (Ân + I)−1 − ∆̂d−1 + V̂n+1, Â0 =∞. (36)
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The most natural choice for the basis functions in the transverse direction is given

by the orthonormal eigenfunctions un(ρ), ρ = (x1, . . . , xd−1), n = (n1, . . . nd−1) of ∆d−1:

un(ρ) =

(
2

W

) d−1
2

d−1∏
i=1

sin
πnixi
W

, ni ∈ N. (37)

Then the matrix elements of V̂ (x) are given by(
V̂ (x)

)
nm

=

∫
dρV (x,ρ)un(ρ)um(ρ). (38)

In order rewrite Eq.(36) in the continuum model we set n = x/δL, ∆̂d−1 = δL2∆̂cont
d−1 ,

where ∆cont
d−1 stands for the continuum Laplacian, V̂n+1 = δL

∫ x+δL

x
dx′V̂ (x′) and Ân =

ẐnδL = Ẑ(nδL)δL = Ẑ(x)δL. Then the recursion relation (36) is transformed into

Ẑn+1 − Ẑn
δL

= − ∆̂cont
d−1 − Ẑ2

n +
1

δL

∫ x+δL

x

dx′V̂ (x′) +O(δL). (39)

Taking the limit δL→ 0, N,M →∞ and keeping the products L = NδL and W = MδL

finite, one obtains

dẐ

dx
= −∆̂d−1 − Ẑ(x)2 + V̂ (x), Ẑ(0) =∞, (40)

where we omitted the superscript ”cont” for the Laplacian. This equation generalises

the one-dimensional result Eq.(20).

The formula (32) for the determinant is transformed into the following form:

| detH| = det (−∆d + V (r)) = lim
δL→0

N−1∏
k=1

det(1 + ẐkδL) = etr
∫ L
0 dxẐ(x).(41)

Thus we derived a relation between the functional determinant of H and the solution

of the matrix Riccati differential equation.

Similarly to the 1D case, the second formulation of the GY formula can be obtained

by taking the continuum limit of Eq.(34)

−Ŷ ′′ + (−∆̂d−1 + V̂ )Ŷ = 0, Ŷ (0) = 0, Ŷ ′ = I, (42)

and the formula for the determinant reads

detH = det (−∆d + V (r)) = det Ŷ (L). (43)

Again, Eq.(41) follows from this formula and the relation Ẑ = Ŷ ′Ŷ −1. This result

represents the d-dimensional generalisation of the GY formula. The determinants in the

continuum limit should be properly regularised. One possible way to do it is to calculate

them first in the discrete formulation and then analyse the asymptotic behaviour of

the obtained result in the continuum limit. It is known, for example, that for the

two-dimensional massless Laplacian the result for the ζ-regularised determinant can be

extracted from the corresponding asymptotic expression for the discrete Laplacian [18].

Equations (40), (41), (42), (43) and their discrete counterparts represent the main

result of this work.
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4. Example: determinants of the two-dimensional massive and massless

Laplace operators

Consider the determinant of the two-dimensional massive Laplace operator H =

−∆2 +m2 corresponding to V (r) = m2. Eq.(34) then reads

Yn+2 + Yn + (∆1 − 2−m2)Yn = 0, Y0 = 0, Y1 = I, (44)

(∆1ψ)i = ψi+1 + ψi−1 − 2ψi. (45)

Since the determinant of H is equal to the determinant of YN , we can compute YN in

a any basis, in particular, we can choose the eigenbasis of ∆1. Then ∆1 = diag({λk}),
with λk = −2(1− cos πk

M
), k = 1, . . . ,M − 1, and Yn is also diagonal Yn ≡ diag({µ(n)

k })
and µ

(n)
k satisfy the relation

µ
(n+2)
k + µ

(n)
k − (m2 + 2− λk)µ(n)

k = 0,

µ
(0)
k = 0, µ

(1)
k = 1, k = 1, . . . ,M − 1 (46)

Once µ
(n)
k are found we obtain the result for detH:

detH =
M−1∏
k=1

µ
(N)
k . (47)

The solution of Eq.(46) can be found as a linear combination of the two solutions e±γkn,

where γk is determined by the condition

eγk + e−γk − (m2 + 2− λk) = 0, (48)

γk = arccosh

(
1 +

m2 − λk
2

)
. (49)

The solution satisfying the initial condition is given by

µ
(n)
k =

sinh γkn

sinh γk
, (50)

and the expression for the determinant reads

det(−∆2 +m2) =
M−1∏
k=1

sinh γkN

sinh γk
. (51)

4.1. Asymptotic behaviour of the determinant of the two-dimensional massive Laplace

operator

In this section we calculate the asymptotic behaviour of the above result for the

determinant for N,M → ∞, at a fixed value of N/M . To this end we first rewrite

the sinh γkN
sinh γk

as follows

sinh γkN

sinh γk
=
eγkN − e−γkN

eγk − e−γk
= ξNk

1− ξ−2N
k

ξk − ξ−1
k

, ξk ≡ eγk . (52)
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Then we find

ln detH = S1 + S2 + S3, S1 ≡ N
M−1∑
k=1

ln ξk, S2 ≡
M−1∑
k=1

ln(1− ξ−2N
k ),

S3 ≡ −
M−1∑
k=1

ln(ξk − ξ−1
k ). (53)

In order to evaluate these sums we write
∑M−1

k=1 f(k) =
∑M

k=0 f(k)− (f(0) + f(M)) and

apply the Euler-MacLaurin formula:

M−1∑
k=1

f(k) =

∫ M

0

dkf(k)− 1

2
(f(M) + f(0))+

∞∑
n=1

B2n

(2n)!

(
f (2n−1)(M)− f (2n−1)(0)

)
, (54)

where B2n are the Bernoulli numbers, B2 = 1/6, B4 = −1/30.

From Eq.(48) one can find an explicit expression for ξk:

ξk = 1 +
m2 − λk +

√
(m2 − λk)2 + 4(m2 − λk)

2
, (55)

and therefore

λ0 = 0, ξ0 = 1 +
m2 +

√
m4 + 4m2

2
,

λM = − 4, ξM = 1 +
m2 + 4 +

√
(m2 + 4)2 + 4(m2 + 4)

2
. (56)

Thus for the first sum f(0) = ln
(

1 + m2+
√
m4+4m2

2

)
= arccosh

(
1 + m2

2

)
, f(M) =

ln

(
1 +

m2+4+
√

(m2+4)2+4(m2+4)

2

)
= arccosh

(
3 + m2

2

)
and f ′(0) = f ′(M) = 0 (this is

true for m 6= 0, the massless case m = 0 will be considered separately below). For the

higher order derivatives we get f ′′(0) = O(M−2) and f ′′(M) = O(M−2) and such terms

will be neglected.

The integral
∫M

0
dkf(k) = M

π

∫ π
0
dxf

(
Mx
π

)
≡MI1(m) with

I1(m) ≡ 1

π

∫ π

0

dx lnφ(x) =
1

π

∫ π

0

dx arccosh

(
1 +

m2 + 2(1− cosx)

2

)
,

(57)

where φ(x) ≡ 1 +
m2+2(1−cosx)+

√
(m2+2(1−cosx))2+4(m2+2(1−cosx))

2
, cannot be calculated

analytically. The expression for S1 reads

S1 = NMI1(m)− N

2
g(m) +O

(
N

M2

)
, (58)

with g(m) ≡ arccosh
(

1 + m2

2

)
+ arccosh

(
3 + m2

2

)
.

The second sum S2 converges exponentially fast to its limiting value, which is
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determined by the behaviour of ξk at small k:

lim
M→∞

S2 = lim
M→∞

M−1∑
k=1

ln

(
1−

(
c0(m) + c1(m)

k2

2M2
+O

(
k4

M4

))−2N
)

= lim
M→∞

M−1∑
k=1

ln

(
1− c0(m)−2Nexp

[
−c1(m)Nk2

c0(m)M2
+O

(
k4N

M4

)])
=

∞∑
k=1

ln

(
1− c0(m)−2Ne

− c1(m)Nk2

c0(m)M2

)
, (59)

where c0(m) = 1
2

(
m2 + 2 +

√
m2(m2 + 4)

)
, c1(m) = π2

2

(
1 + m2+2√

m2(m2+4)

)
. Since this

sum is exponentially small in N it can be neglected.

For the last term S3, we can again apply the Euler-MacLaurin formula with

f(k) = − ln(ξk − ξ−1
k ) = −1

2
ln
(
m4 + 8m2 + 14− 4(m2 + 4) cos

(
πk
M

)
+ 2 cos

(
2πk
M

))
. We

find f(0) = −1
2

ln (m2(m2 + 4)), f(M) = −1
2

ln ((m2 + 4)(m2 + 8)), f ′(0) = f ′(M) = 0,

f ′′(0) = O(M−2), f ′′(M) = O(M−2) and the integral term yields MI2(m) with

I2(m) ≡ − 1

2π

∫ π

0

dx ln
(
m4 + 8m2 + 14− 4(m2 + 4) cosx+ 2 cos 2x

)
.(60)

Therefore we get

S3 = MI2(m) +
1

4
ln
(
m2(m2 + 4)2(m2 + 8)

)
+O

(
NM−2

)
. (61)

Collecting the results for S1, S2 and S3 we obtain

ln det(−∆2 +m2) = NMI1(m)− N

2
g(m) +MI2(m)

+
1

4
ln
(
m2(m2 + 4)2(m2 + 8)

)
+O

(
N

M2

)
. (62)

The above expression must be invariant under the exchange of N and M and one can

check that I2(m) = −1
2

(
arccosh

(
1 + m2

2

)
+ arccosh

(
3 + m2

2

))
and hence

ln det(−∆2 +m2) = NMI1(m)− N +M

2
g(m)

+
1

4
ln
(
m2(m2 + 4)2(m2 + 8)

)
+O

(
N

M2

)
. (63)

4.2. Massless Laplacian

The same strategy can be used in the massless case, m = 0, however more terms in the

Euler-MacLaurin formula give contributions to the final result and some of them should

be treated more carefully.

Our starting point Eq.(53) is the same as in the previous section. Applying the

Euler-MacLaurin formula (54) to the first sum and taking into account that f(0) = 0,
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f(M) = ln(3 + 2
√

2), f ′(0) = π/M , f ′(M) = 0 one obtains

S1 =
NM

π

∫ π

0

dx lnh(x)− 1

2
N ln(3 + 2

√
2)− π

12

N

M
+O

(
N

M2

)
=

4G

π
NM −N ln(1 +

√
2)− π

12

N

M
+O

(
N

M2

)
, (64)

where h(x) ≡ 2− cosx+
√

3− 4 cosx+ cos2 x and G is the Catalan constant.

The second sum S2 converges exponentially fast to its limiting value, which is again

determined by the behaviour of ξk at small k:

lim
M→∞

S2 = lim
M→∞

M−1∑
k=1

ln

(
1−

(
1 +

πk

M
+O

(
k2

M2

))−2N
)

=
∞∑
k=1

ln
(

1− e−
2πkN
M

)
= lnP (q), (65)

where q = e−2πN/M and P (q) =
∏∞

k=1(1− qk).
A direct application of the Euler-MacLaurin formula to S3 is impossible due to the

divergent derivative of the function f(k) at k = 0. In order to over come this problem

we may write

S3 = −
M−1∑
k=1

(
ln
(
ξk − ξ−1

k

)
− ln

πk

M

)
−

M−1∑
k=1

ln
πk

M
≡ S

(1)
3 + S

(2)
3 . (66)

The first sum in the above equation can be now calculated with the help the Euler-

MacLaurin formula with f(0) = ln 2, f(M) = ln(4
√

2/π), f ′(0) = 0, f ′(M) = −1/M :

S
(1)
3 = − M

π

∫ π

0

dx (ln j(x)− lnx) +
1

2
ln

(
8
√

2

π

)
+

1

12M
+ . . .

= −M
(

ln(1 +
√

2)− ln π + 1
)

+
1

2
ln

(
8
√

2

π

)
+

1

12M
+ . . . , (67)

where j(x) ≡ 2
√

3− 4 cosx+ cos2 x and dots denote the terms vanishing in the limit

N,M →∞. The last sum S
(2)
3 can be evaluated using the Stirling’s formula:

S
(1)
3 = −

M∑
k=1

ln
πk

M
+ ln π = −M(ln π − lnM) + ln π − lnM !

= M lnM − (M − 1) lnπ − ln

(
√

2πM

(
M

e

)M (
1 +

1

12M
+ . . .

))

= −M(ln π − 1)− 1

2
lnM − 1

2
ln

(
2

π

)
− 1

12M
+ . . . . (68)

Thus we find for S3

S3 = −M ln(1 +
√

2)− 1

2
lnM +

1

2
ln(4
√

2) +O

(
1

M2

)
. (69)
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Adding all the results we obtain

ln (det ∆2) =
4G

π
NM − (N +M) ln(1 +

√
2)− 1

4
ln(NM)

+
1

2
ln(4
√

2) + ln

(
q

1
24

(
N

M

) 1
4

P (q)

)
+O

(
N

M2

)
. (70)

One can show that the expression in the last logarithm is invariant under exchange of

N and M [18], thus making the whole result to be invariant as well. This formula is

in agreement with Eq.(4.20) of Ref.[18], where the determinant of the two-dimensional

massless Laplace operator was calculated by a different method.

5. Conclusions

We have derived a formula for the determinant of the d-dimensional operator −∆+V (r),

which generalises the Gelfand-Yaglom result in one dimension. The derivation is based

on the Gaussian integral representation of the determinant, which allows us to derive the

recursion relations similar to those found by Gelfand and Yaglom in the one-dimensional

case. It is remarkable, that they have exactly the same structure as in 1D, in spite

of the non-commutativity of the matrices involved in the relations. Similar results

involving non-commutative matrices were derived before for one-dimensional matrix-

valued ordinary differential operators (see [1, 16] and references therein). Our derivation

was applied first to the discrete case, when the operators are defined on a lattice, and

then the corresponding formula in the continuum was obtained in the limit when the

lattice constants goes to zero, while the number of lattice points tends to infinity. We

note that our approach does not require any symmetries of the potential term, in contrast

to previous attempts to generalise the GY formula to higher dimensions [17].

Similarly to the 1D case, we expect that the solution of the corresponding initial

value problem can be found explicitly only for very special types of potential. However,

we believe that our formula can be generally useful for an approximate calculation of

the determinant, provided that there is a small or large parameter in the Hamiltonian.

For example, for H = −∆ + V (r) − E, such a small parameter might be |V (r)/E|,
which is a typical situation in the field of disordered systems [5, 6, 7]. Our method also

provides a very efficient way of calculating the functional determinants numerically.

In order to illustrate our main result, we applied the generalised GY formula to

the determinants of the two-dimensional massive and massles Laplace operators on a

rectangular domain. For the massless case we reproduced the well known result derived

previously by a different method [18]. For the massive Laplace operator on a sphere,

the results are available in the literature [19, 20, 21], however we are not aware of the

corresponding results for a rectangular domain.

In the present work we considered only the Dirichlet boundary condition and

assumed that the differential operator has no zero modes. It would be interesting to

develop a similar approach to other types of the boundary conditions and extend it to

the situation where zero modes are present [10, 12, 16, 22].
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