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Abstract — Precise actuation of continuum surfaces in 

combination with continuum robotic arms that undergo large 
deformation is of high interest in soft robotics but of limited 
model-based study to date. This work develops this area towards 
enabling the robust design and control of large deformation 
continuum surfaces (LDCS) across multiple industrial 
applications in the healthcare, aerospace, manufacturing, and 
automotive domains. It introduces an actuation based dynamic 
model of LDCSs to accurately determine their deflection due to 
application of concentrated external forces while maintaining 
many physical characteristics and constraints on actuation 
elements and surface structure such as gravity, inertia, 
damping, elasticity, and interactive forces between actuators 
and LDCS. Using the lumped-mass methodology, a 3D 
integrated surface-arm model is developed, simulated and then 
validated experimentally where a pair of parallel arms are 
attached to the surface to actuate and deform it. The surface is 
then simultaneously subjected to a concentrated constant 
external force at its top center between the two arms. 
Comparing measured displacements between the experimental 
and modelling results over actuation time yielded the maximum 
error is less than 1% of the length of the surface’s side at its final 
deflected profile despite the limited number of nodes (masses) 
used in the LDCS model while it is exposed to a significant 
external force. 

I.    INTRODUCTION  

Soft and compliant robotics is a rapidly emerging area 
within robotics. Research in the area is stimulating increasing 
interest in studying its more challenging aspects including 
development of kinematic and dynamic models and 
compliant control approaches for, and the design and 
manufacturing of, soft and compliant structures. There have 
been some significant developments in the field, particularly 
for continuum arms and manipulators as reported in the 
literature ( [1], [2], [3], [4], [5]). These compliant robots are 
commonly employed in a wide range of applications in 
healthcare [6] and other areas such as inspection [7].    

One potentially highly versatile structure in soft robotics 
of developing interest is that of large deformation continuum 
surfaces (LDCS) actuated by continuum arms. In this case a 
flexible surface is actuated into multiple curvature profiles by 
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integrated continuum arms as shown in Fig. 1. Such surfaces 
have the potential to be used for industrial purposes, for 
example as alternatives to conventional, reconfigurable 
moulding surfaces used in shaping relatively soft composite 
or alloy sheets. They can be also used as healthcare systems 
such as controllable exoskeletons [6].  

 

Figure 1. Representation of a large deformation continuum surface (LDCS) 
actuated by a parallel pair of integrated actuators while undergoing external 

forces 

To date, the main loads analyzed for LDCSs in simulated 
environments are from the interactive forces applied by their 
actuation elements. However, actuated LDCSs are also 
subject to external and ambient forces in almost any projected 
application including healthcare, manufacturing, and food 
processing. The failure to account for these forces can 
significantly affect the performance of such surfaces in terms 
of controllability.  

Examples of work in robotics focusing on external forces 
applied to mechanical flexible systems can be readily found 
in the literature ( [8], [9], [10]). Typically, the first step to 
predict or control external forces in robotics is having a 
dynamic model that accurately simulates the effects of these 
forces applied to the flexible system. The focus of this paper 
is to develop a dynamic model for actuated LDCSs 
undergoing forces considered strong in comparison to their 
own weight and size characteristics. In future, such a model 
could be utilized to formulate control methods to enhance 
performance.  
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In comparison to the fairly extensive studies on 
development of continuum arms and manipulators, there have 
been very limited studies to date carried out for LDCSs that 
investigate and simulate their deformation into a precise, 
desired profile. As a result, realizations of LDCSs have been 
mainly achieved through ‘trial and error’ based approaches 
that leads to increase in production cost and operation time 
while decreasing the resolution of their performance. One 
challenge in modelling these surfaces using classic plate and 
shell theories is that most of the existing techniques are only 
applicable to thin surfaces of small or negligible thickness 
(such as Kirchhoff–Love plate theory) without considering 
bending shear effects. Other theories that consider of thick 
plates (such as Mindlin–Reissner theory of plates) cannot be 
analytically employed for the large scale of deflection caused 
by robotic actuators. Hence, numerical solutions are sought 
to model actuation of LDCSs and determine their 
deformation with high resolution under a variety of 
conditions, e.g. when they are subjected to significant 
external forces. 

In a study by Kano et al [11], a planar discretised model 
was developed for a sheet-like robot. The surface model 
underwent relatively large bending but some influential 
factors such as gravity, thickness and the moment of inertia 
effects along the planar coordinates were not included in the 
model. Another approach named as phantom muscle method 
is presented by Merino et al [12] which details a kinematic 
model for LDCSs by interpolating an infinite number of 
curves parallel to a single actuator attached to one edge of the 
surface when bent. This mathematical model is relatively 
computationally efficient, but does not present a high-
resolution dynamic model as some important parameters such 
as material properties, elastic characteristics, external forces 
and gravitational effects have not been considered in its 
development.  

In contrast, the model presented in this work to simulate 
actuation of LDCSs accounts for physical properties such as 
mass, material damping and elasticity, interactive forces 
between actuating arm and the surface, gravitational and 
external loading as well as the bending shear effects 
considered for thick plates. This work builds upon previous 
work [13] to apply a lumped-mass model for such actuated 
continuum surface robots by considering the feasibility and 
effect of applying external loading to these surfaces. 

The paper is organized as follows. Section II describes the 
development of a lumped mass LDCS model actuated by a 
previously developed continuum arm model. In Section III, 
simulation results for the developed LDCS model actuated by 
two parallel continuum arm and subjected to an external force 
are presented. Section IV describes a test rig and 
experimental testing, while comparing empirical and 
modelling results to evaluate validity and dynamic 
performance of the developed model under external forces. 
Finally, the paper ends with a summary of the work, 
conclusions and further comments in Section V.  

II.   MODELLING LDCS USING LUMPED MASS-SPRING-DAMPER 

ARRAYS 

A lumped-mass approach has been utilized in this work to 
model LDCSs based on mass-spring-damper arrays. The 

general modelling technique has been used previously in 
different studies particularly for its adaptability with large 
deflections [14], computational efficiency despite reliable 
accuracy ( [15] and [16]), and its ability to represent an 
extensive range of robotic systems and structures whether 
they have obviously lumped characteristics, such as 
segmented manipulators ( [16] and [17]), or they are more 
distributed systems, e.g. beams and surfaces ( [18], [19] and 
[14]).  

This paper presents a new development in a 3D, lumped-
mass approach to model actuated two-layer LDCSs that can 
be deformed into curvatures resulting from a combination of 
loads applied by continuum arms, gravity and external forces. 
The general concept of the model is depicted in Figure 2. 
Despite the lumped-mass method being used for a wide range 
of applications, no research has been reported to date on 
development of a three-dimensional, multi-layer surface 
model that account for in-depth bending shear effects of thick 
flexible plates. Previous research has either modelled a single 
layer with negligible thickness or multi-layer, solid-like 
objects that cannot comply with the large deformations 
caused by continuum surface robots.  

 

Figure 2. General concept of the developed 3D, lumped mass model 
composed of a 2-layer lattice of mass-spring-damper while subjected to 

different types of loading 

The model is composed of masses considered as nodes in 
two joint lattices that are connected together through linear 
springs and dampers. Each mass is subjected to the linear 
momentum applied by gravity and the motion of 
neighbouring masses exerted through springs, while some 
also undergo direct external loads, boundary conditions such 
as clamped support reaction forces, or the interactive forces 
and moments applied directly by the actuators embedded in 
the surface.  

As seen in Figure 2, each mass in the developed model is 
connected to 8 neighboring masses through 8 linear springs 
in the layer it is located in. The mass is also linked to 9 other 
masses positioned on the opposite layer. This means that a 
typical mass in one of the two layers is surrounded by 17 
masses in total, among which 8 masses from the opposite 
layer are linked by diagonally-oriented springs which enables 
the model to take thickness bending shear effects into 
account. Although not noted elsewhere in this work, any 
spring depicted or mentioned is collocated with a linear 

A typical mass i,j 



damper of damping coefficient c which are used to absorb 
vibrations due to movement and deformation of the surface.  

In this work, the surface is assumed not to be constrained 
in any particular axis while the actuator model is confined to 
move in the XZ plane as shown in Fig. 3. Before actuation, 
the sides of LDCS model are flat and their main axes are 
straight. However the planes of the surface that are 
perpendicular to the neutral plane at rest do not remain 
perpendicular after deformation, as would be anticipated in 
the surface models and plate theories that account for in-
depth shear effects [20]. The surface’s material is considered 
isotropic and uniformly distributed across its rectangular, 2-
layer geometry.  

To characterize the dynamic behavior of the flexible 
LDCS, the equation of motion and consequently the 
displacement of a typical mass in the model indexed by ‘i,j’ 
(indicated in Figure 2) that moves in the direction q from its 
origin at time t1 to another point in the space at time t2 is 
yielded via combination and direct application of Newton’s 
second law and Hooke’s law as follows  
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where q = x, y, z are Cartesian coordinates. Likewise, kq and 
cq are the stiffness of the spring and damping coefficient in 
direction q respectively. Note that the value of parameters kq 
and cq in (1) have been assumed constant and the same is true 
for all springs and dampers between any two masses in any 
direction throughout the LDCS model in this particular case 
which makes the surface uniform in terms of stiffness. So the 

variable 
qU  is determined as the following 
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(2) 

In (2), the surrounding masses are indexed by i,j to 
identify positions and directions in the plane, where i stands 
for the x-direction and j for the y-direction. The mass indexed 
by i,j in (1) is on the bottom layer of the model. Hence the 
index T in (2) represents the masses located in the top layer 
of the model. As seen in (2), there are 17 terms included in

qU which correlates to the 17 masses positioned in the two 

layers of the model that surround the typical mass i,j. Note 
that the number of surrounding masses and consequently the 
number of terms in (2) for the masses located on the edges 
and corners are reduced to 11 and 7 respectively. The number 
of equations to be solved is then equal to the total number of 
masses included in the model multiplied by 3 (the number of 
coordinates) which were solved for through a simulation 
implemented in the commercial software MATLAB R2016a. 

The resultant of all forces acting on the typical mass i,j 
including those applied by the neighbouring masses through 
linear springs and dampers is represented by Fq(t) in (1). The 
two parameters F(ext)q and W represent the external forces 
acting on the mass in the direction q and gravity applied in 
the direction –Z respectively. In our previous work on 
actuated LDCSs [13], the assumption F(ext)q=0 was 
considered in the model development. In this work the term 
F(ext)q in (1) is explicitly included to account for external 
loading of the surface. We note that the term including cq i.e. 
the damping force is actively effective in suppressing 
oscillations in the transient state before the flexible surface 
has settled into its final deformed shape. This term is then 
eliminated in steady-state conditions. 

For the masses linked to actuators, the amount of 
displacement in the surface is initially dictated by the motion 
of the actuator attached at that point. The general concept of 
the arm model used here to actuate and deform the surface 
into desired curvatures has been previously developed and 
experimentally validated by Giri and Walker [21] wherein a 
section of a pneumatic continuum arm is modelled using 
lumped model elements and application of Lagrangian and 
virtual work principles. Then some minor changes and 
adjustments were made to the developed arm model in [21] 
to match it for integration with the developed LDCS model 
as seen in Figure 3. The main change is that, instead of input 
forces representing pneumatic muscles in the original model, 
input torques are applied to the links to rotate each link as 

i

and consequently bend the whole arm.  

 

Figure 3. Schematic illustration of the LDCS model integrated with a 
continuum arm model linking together in five sections as indicated by the 

transparent ovals. 

Note that for clarity and simplicity, only a few connecting 
links and their masses in the LDCS model have been depicted 
in Figure 3, far fewer than the actual number implemented in 
the model. An actual configuration between the links and 
masses is partially displayed in Figure 2. 

As shown in Figure 3, the arm model adopted and adapted 
here consists of 4 main links of mass ma and moment of 
inertia I which are joined together through torsional springs 
of stiffness coefficients kt. Perpendicular to each main link, a 
massless link indicated by AiAi+1 (i=1, 2, …) in Figure 3, is 
rigidly connected which transfers the motion of the central 
backbone of the arm model to the LDCS model. The links 
AiAi+1 in the arm model, which simulate the continuum 



actuators used in the experiments described in section IV,  are 
attached to the top and bottom borderlines of the LDCS 
model i.e. the mass-spring links SiSi+1 (i=1, 2, …), as shown in 
Figure 3, through springs stiffer than those used in the surface 
itself. So the length of each link AiAi+1 are equal to the 
thickness of the surface or the free length of springs SiSi+1. 
The arm used in this study is assumed to move only in a plane, 
which for the current case shown in Figure 3 results in 
movement in the XZ plane, but further planar movement is 
possible through additional manipulation of the terms. 

III. SIMULATING THE INTEGRATED LDCS-ARM MODEL 

UNDER EXTERNAL LOADING AND GRAVITY 

As mentioned previously, the main goal for the modeling 
of the actuated surface herein was to evaluate against external 
loading. For this reason the configuration shown 
schematically in Figure 4 was developed wherein an 
additional mass representing a concentrated, constant 
external force (F0) is applied to the top, centre of the surface 
at point P1 while the pair of arm models illustrated in Figure 
3 are linked to two parallel edges of the LDCS model to 
simulate the embedded actuators. The surface in this 
configuration is clamped along the indicated edge to hold the 
surface up from the ground. Two points indicated as P0 and 
P1, both located on the central, longitudinal axis of the 
surface, were specified to be measured for displacement due 
to actuation. Point P0 is located at the centre of the surface on 
both X and Y axes.  

 
Figure 4. Schematic configuration of the test to simulate integrated LDCS-
continuum arms model undergoing a significant statically-applied external 

force (F0). 

For the tested model in this configuration, the surface was 
composed of two lattices of 9x9 masses, or 162 masses in 
total across the surface. The value of each mass was chosen 
as m=9.87*10-4 g to match the total mass of the fabricated 
surface (e.g. M=160 g) for the experimental test described in 
the following section. The additional mass was the selected 
as m0=40 g (i.e. a quarter of the total mass of the surface) to 
determine the external load as F0=0.39 N. The spring stiffness 
used in the LDCS model demonstrated in the previous section 
was uniformly chosen as kq=80 N/m in all three directions 
q=x, y, z which conforms to the elasticity characteristics of 
the experimental surface model in the next section. Also a 
damping coefficient of c=5 N.s/m was allotted to the model 
as the result of a compromise between the computational 
efficiency of the model and its oscillatory behaviour given 
other parameters. The two modelled and fabricated surfaces 
had identical geometrical dimensions as 140x140x10 mm.  

The simulation results of this test are presented in Figure 
5 wherein the 2-layer LDCS model has been bent up by two 
parallel continuum arms of identical physical properties 
embedded in the surface. The actuating arms are shown as 
black lines in the lateral side(s) of the LDCS model where 
they have displaced the surface by the curvature determined 
by the arm. In this test, actuating and gravity forces were 
applied simultaneously at the beginning. The surface is 
shown from two different views at its final static position 
after being actuated into a curvature of radius r=0.115 m 
(k=8.69 m-1) at the actuated edges. It can be seen that the top 
centre of the surface where the additional mass is attached 
sags down due to the concentrated external force applied to 
this point.  

 

Figure 5. Simulation results from two different views (a, b) for the lumped 
mass LDCS model undergoing a concentrated external force displayed at 

its final static deformed shape after actuation by two continuum arms 
embedded in its two parallel edges. 

IV. EXPERIMENTAL TESTS AND COMPARISON WITH 

SIMULATION RESULTS 

This section provides details on the testing procedure 
wherein experimental testing was conducted to validate 
simulation results for the developed actuated LDCS model.  

A. Test rig setup  

The experimental test was implemented through the test 
rig shown in Figure 6 which includes a support frame, sensor 

X 

Y 
Z 

Continuum arms 
  

Clamped edge 
  

External load 
  

(a) 

LDCS original position  

External load 
  

(b) 



system, data acquisition computer, and a pneumatic system 
to pressurise and operate the continuum actuators. The 
pneumatic arms, as illustrated in Figures 6 and 7, are located 
horizontally on two rigid plates of one-third of the surface’s 
length as partial support for the integrated surface-arm before 
actuation. To apply the concentrated external force, an 
additional weight of mass m0=40 g was hooked to the top 
centre of the surface as indicated in Figures 6 and 7. 

 
Figure 6. Experimental test rig setup. 

The sensor used is a 3D Guidance trakSTAR (Ascension 
Corp., USA, 0.1 mm accuracy). It also has three sensor 
probes that can be attached to the surface at any desired 
position for further measuring displacement. Both the flexible 
surface and continuum arms were fabricated from silicon 
rubber poured and formed into designed moulds. An 
inextensible layer was then used for the arm to be adapted and 
integrated with the surface. Further details on manufacturing, 
operation, and controlling of this arm can be found in [22]. In 
this experiment, an air pressure of 1.4 bar was applied to bend 
the surface carrying the additional mass into a curvature of 
radius r=0.115 m as resulted in the simulation. To 
approximate Young’s modulus (E) of the manufactured 
surface, a simple tensile test was carried out that yielded it as 
E=75.35 kPa. Also, the Poison’s ratio of the surface, made 
from the incompressible material, silicon rubber, was chosen 
as 0.5 [23]. 

 

Figure 7. Image of the experimental test of the actuated flexible surface 
undergoing an additional weight positioned between two embedded 

continuum arms. 

B. Experimental results and comparisons 

Once the two arms were embedded on the surface as a pair 
of parallel actuators, they were operated by gradually 
increasing air pressure to bend the surface upwards while 
undergoing an external load into the desired curvature as 
resulted in the simulation test. Figure 7 shows the final 

deformation of the integrated actuator-surface after the 
transient operation of actuation ended. During the test, two 
sensors were attached to the points P0 and P1 (as indicated in 
Figure 4) to measure and record their displacement over the 
entire actuation period. This was done to evaluate the 
dynamic performance of the developed LDCS model when it 
was exposed to both gravity and significant concentrated 
external forces simultaneously. Figure 8(a, b) show the 
displacement of point P0 and P1 versus time in the three 
directions x, y and z for both the modelling and experimental 
tests.  

 

As seen, the points undergo tiny fluctuations in 
displacement in the transient initial period, due to the sudden 
addition of the mass. Differences in this transient region are 
small and likely due to material property differences in the 
model. After the transient dies out the two results converge 
and settle very close together in the X and Z directions, 
indicating a reliable static performance for the developed 
model. The results in direction Y remain zero as expected due 
to symmetry in geometry, loading, and boundary conditions 
applied by the two parallel arms positioned equally apart on 
its two sides. For further clarity, the steady state 
displacements of these two points in the three directions for 
both modelling and experimental tests along with their 
absolute errors are presented in Table I.  

As seen in Table I, the measured points P1 i.e. the point to 
which the additional mass is attached, as expected, undergoes 
the largest displacement of the surface in direction Z with an 
absolute error of 1.2 mm which is less than 1% of the length 
of the surface’s side at its final reshaped profile. 

V.  CONCLUDING REMARKS 

In this study, a 3D, lumped-mass model consisting of two 
interconnected mass-spring-damper lattices subjected to 

(a) 

  

(b) 

  Figure 8. Comparing the dynamic behaviour of the modelled LDCS 
and the empirical surface through recording the displacement of the 
points a) P0, and b) P1 as indicated in Figure 4 over time in the three 

direction X, Y, and Z. 



external forces while actuated by integrated continuum 
robotic arms was developed and validated experimentally. 
The configuration of the surface model enabled deformation 
resulting from a combination of loads applied by the 
actuation arms, gravity and external forces while accounting 
for in-depth bending shear effects of thick flexible plates. The 
model successfully demonstrated the dynamical performance 
of actuated surfaces undergoing large deformation while they 
experienced concentrated external loading that significantly 
affected their dynamics. The conformity between modelling 
and experimental results, whether dynamically over the 
transient actuation time or statically after the end of motion, 
was considerable with a maximum error less than 1% of the 
length of the surface’s side at the final deflected position. This 
development is of high interest in the field of soft and 
continuum robotics, particularly where undesirable external 
forces are of major concern. Important potential applications 
of this work include the manipulation of parts in 
manufacturing environments, soft/flexible exoskeleton 
systems in healthcare, and deformable surface control in the 
aerospace, automotive, energy and food processing 
industries.  
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TABLE I 
Comparison of the final displacement results between the 
LDCS model and the experimental surface (Figure 5 and 

Figure 7) measured at 2 central points of the surface.  

Measured 
Points 

Displacement (mm) 

Modelling Experimental |Error| 

P0 

𝑢𝑥 -1.3 -2.0 0.7 

𝑢𝑦 0 0 0 

𝑢𝑧 18.8 18.2 0.6 

P1 

𝑢𝑥 -21.8 -22.9 1.1 

𝑢𝑦 0 0 0 

𝑢𝑧 69.9 68.7 1.2 


