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Abstract

Based on the theory of L-series associated with weakly holomorphic modular forms in
Diamantis et al. (L-series of harmonic Maass forms and a summation formula for
harmonic lifts. arXiv:2107.12366), we derive explicit formulas for central values of
derivatives of L-series as integrals with limits inside the upper half-plane. This has
computational advantages, already in the case of classical holomorphic cusp forms and,
in the last section, we discuss computational aspects and explicit examples.

1 Introduction
As evidenced by the prominence of conjectures such as those of Birch–Swinnerton-Dyer,
Beilinson, etc., central values of derivatives of L-series are key invariants of modular
forms. Explicit forms of their values are therefore desirable, since they can lead to either
theoretical or numerical insight about their nature.
On the other hand, an extension of classical modular forms that allowed for poles at

the cusps, the weakly holomorphic modular forms, has, more recently, been the focus of
intense research, with Borcherd’s work [1] representing an important highlight followed
by further applications to arithmetic, combinatorial and other aspects, e.g. in [4,7,13,21],
etc. A comprehensive overview of the foundations of the theory as well as a variety of
important applications is provided in [2].
Up until relatively recently, L-series of weakly holomorphic modular forms had not

been studied systematically. In fact, to our knowledge, a first definition was given in [3]
in 2014. In work by the first author and his collaborators [11], a systematic approach
for all harmonic Maass forms was proposed which led to functional equations, converse
theorems, etc.
A first application to special values of the L-series defined in [11] was given in [10],

where results of [6] on cycle integrals were streamlined and generalised. Part of the work
in [6] was based on an explicit formula of what could be thought of as the (at the time
of writing of [6], not yet defined) central L-value of a weight 0 weakly holomorphic form.
That formula had been suggested, in the case of the Hauptmodul, by Zagier. In [10] we
interpreted those cycle integrals as values of the L-series defined in [11] and this allowed
us to generalise the formulas of [6].
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Here, we extend that study to values of derivatives of L-series of weakly holomorphic
forms. To state the main theorem, we will briefly introduce the terms involved, but we
will discuss them in more detail in the next section.
Let k ∈ 2N. We consider the action |k of SL2(R) on smooth functions f : H → C on the

complex upper half-plane H, given by

(f |kγ )(z) := j(γ , z)−k f (γ z), for γ =
(
a b
c d

)
∈ SL2(R),

where j(γ , z) := cz + d. We further recall the defining formula for the Laplace transform
L of a piecewise smooth complex-valued function ϕ on R. It is given by

(Lϕ)(s) :=
∫ ∞

0
e−stϕ(t)dt (1.1)

for each s ∈ C for which the integral converges absolutely. We use the same notation Lϕ

for its analytic continuation to a larger domain, if such a continuation exists. Finally, if
N ∈ N,

WN :=
(

0 −1/
√
N√

N 0

)
.

Let now f be a weakly holomorphic cusp form of weight k for�0(N ), i.e. a meromorphic
modular form whose poles may only lie at the cusps and its Fourier expansion at each
cusp has a vanishing constant term. Assume that its Fourier expansion at infinity is given
by

f (z) =
∑

n≥−n0
n �=0

af (n)e2π inz. (1.2)

Then, the L-series of f is defined in [11] as the map �f given by

�f (ϕ) =
∑

n≥−n0
n �=0

af (n)(Lϕ)(2πn) (1.3)

for each ϕ in a certain family of functions on R which will be defined in the next section.
The main object of concern in this note will be the specialisation of this L-series to a

specific family of test functions: For (s, w) ∈ C × H we denote

ϕw
s (t) := 1[1/√N,∞)(t)N

s/2e−wtts−1, for t > 0, (1.4)

where 1X denotes the characteristic function of X ⊂ R.We then set

�(f, s) := �f (ϕ0
s ) (1.5)

With this notation, we have

Theorem 1.1 Let k ∈ 2N and m ∈ N. For each weakly holomorphic cusp form of weight k
for �0(N ) such that f |kWN = f , we have

�(m)(f, k/2) = i2m− k
2N k

4

m∑
j=0

(m
j

)
logj

( i√
N

)∫ i√
N +1

i√
N

f (z)ζ (m−j)
(
1 − k

2
, z

)
dz

where ζ (s, z) stands for the classical Hurwitz zeta function and ζ (r)(s, z) = ∂r
∂sr ζ (s, z).

Our approach yields new expressions for derivatives of L-series of classical cusp forms
too. Specifically, classical L-series can be expressed in terms of the L-series associated
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with weakly holomorphic forms in [11] in the following way: For a classical cusp form f
of weight k and level N with L-series Lf (s), we consider its completed L-function

L∗
f (s) :=

(√
N

2π

)s

�(s)Lf (s).

Then, as verified in Sect. 4, we have

L∗
f (s) = lim

x→0+ Lf (ϕix
s − ϕix

k−s)

for ϕix
s as in (1.4). Because of this, we can apply the method that led to Theorem 1.1, to

deduce Theorem 4.2, a special case of which is the following:

Theorem 1.2 For each weight 2 cusp form f of level N , such that f |2WN = f we have

(L∗
f )

′(1) = 2
√
Ni

∫ i√
N +1

i√
N

f (z)
(
log(�(z)) + (log(

√
N ) − π i/2)z

)
dz.

In particular, this formula interprets the central value of the first derivative as an integral
with limits inside the upper half-plane. After providing the theoretical background in
Sect. 2 and provide proofs of Theorems 1.1 and 1.2 in Sects. 3 and 4, we will present some
remarks regarding computational aspects, potential applications and numerical examples
of Theorems 1.1 and 1.2 in the final section.

2 L-series evaluated at test functions
In [11], a new type of L-series was associated with general harmonic Maass forms and
some basic theorems about it were proved. In this section, we will provide relevant results
in the special case which we need here, namely weight k weakly holomorphic cusp forms
for �0(N ). We require some additional definitions to describe the set-up.
Let C(R,C) be the space of piecewise smooth complex-valued functions on R. For each

function f given by an absolutely convergent series of the form

f (z) =
∑

n≥−n0
n �=0

af (n)e2π inz, (2.1)

we let Gf be the space of functions ϕ ∈ C(R,C) such that

(i) the integral defining Lϕ converges absolutely if �(s) ≥ 2πN for some N ∈ N,
(ii) the function Lϕ has an analytic continuation to {s ∈ H,�(s) > −2πn0 − ε} and can

be continuously extended to {s �= 0; s ≥ −2πn0}
(iii) the following series converges:∑

n≥N
n �=0

|a(n)|(L|ϕ|) (2πn) . (2.2)

We are now able to define the L-series and recall some results from [11].

Definition 2.1 Let f be a function onH given by the Fourier expansion (2.1). The L-series
of f is defined to be the map �f : Gf → C such that, for ϕ ∈ Gf ,

�f (ϕ) =
∑
n≥N
n �=0

af (n)(Lϕ)(2πn). (2.3)
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Furthermore, for Re(z) > 0, we recall the generalised exponential integral by

Ep(z) := zp−1�(1 − p, z) =
∫ ∞

1

e−zt

tp dt (2.4)

The function Ep(z) has an analytic continuation to C\(−∞, 0] as a function of z to give
the principal branch of Ep(z). Specifically, from now on we will always consider the prin-
cipal branch of the logarithm, so that −π < arg(z) ≤ π . Then, we define the analytic
continuation of Ep(z) as in (8.19.8) and (8.19.10) of [17] to be:

Ep(z) =

⎧⎪⎪⎨
⎪⎪⎩
zp−1�(1 − p) − ∑

0≤k

(−z)k
k !(1−p+k) for p ∈ C − N,

(−z)p−1

(p−1)! (ψ(p) − log(z)) − ∑
0≤k �=p−1

(−z)k
k !(1−p+k) for p ∈ N.

(2.5)

Since the two series on the right hand side of (2.5) give entire functions, we can continu-
ously extend Ep(z) to R<0. By (8.11.2) of [17], we also have the bound

Ep(z) = O(e−z), as z → ∞in the wedge arg(z) < 3π/2. (2.6)

A lemma that will be crucial is the sequel is:

Lemma 2.2 [11] If Im(w) > 0, then we have

iaE1−a(w) =
∫ i+∞

i
eiwzza−1dz. (2.7)

for all a ∈ R. If Im(w) = 0 and Re(w) > 0, then (2.7) holds for all a < 0.

Let S!k (N ) denote the space of weakly holomorphic cusp forms of weight k for �0(N ).
Suppose that f ∈ S!k (N ) has Fourier expansion (2.1) with respect to the cusp at ∞. By [5,
Lemma 3.4], there exists a constant Cf > 0 such that

af (n) = O
(
eCf

√n
)
, as n → ∞. (2.8)

The L-series of f is then defined to be the map �f : Gf → C given in Definition 2.1.
To describe the L-values and derivatives which we are interested in, we consider the

family of test functions given by (1.4) and then set

�(f, s) := �f (ϕ0
s ) =

∞∑
n=−n0
n �=0

af (n)E1−s

(
2πn√
N

)
. (2.9)

Remark 2.3 Though more similar in appearance to the usual L-series than (2.3), we do
not consider �(f, s) as the “canonical” L-series of f , because, in contrast to �f (ϕ) (see Th.
3.5 of [10]), it does not satisfy a functional equation with respect to s. We formulate our
results in terms of �(f, s) to incorporate it into the setting of [6] and Zagier’s formula
mentioned in the introduction. The choice of �, rather than L in the notation hints at
the analogy with the “completed” version of the classical L-series, rather than with the
L-series itself.

By the proof of Lemma 4.1 of [10], or directly, we see that, for Re(w) > −ε, ϕw
s ∈ Gf and

�f (ϕw
s ) = N s

2
∑

n≥−n0
n �=0

af (n)
∫ ∞

1√
N

e−2πnt−wtts−1dt =
∑

n≥−n0
n �=0

af (n)E1−s

(
2πn + w√

N

)
.

(2.10)
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Because of (2.6) and the trivial bound for af (n), the series
∑

n>0 af (n)E1−s((2πn+w)/
√
N )

converges absolutely and uniformly in compact subsets of {w ∈ H; Re(w) > −ε}, for each
fixed s ∈ C. Since, in addition, E1−s(z) is continuous from above at each z ∈ R<0, we
deduce, by comparing with (2.9), that

lim
x→0+ �f (ϕix

s ) = �(f, s).

Let now s ∈ R and x > 0. By Lemma 2.2, followed by a change of variables and (2.1), the
sum (2.10) becomes

i−s ∑
n≥−n0
n �=0

af (n)
∫ i+∞

i
e
(2πn+ix)iz√

N zs−1dz

= i−sN s/2
∫ i√

N +∞
i√
N

e−xzf (z)zs−1dz. (2.11)

With the periodicity of f , we see that the last integral equals
∞∑
n=0

∫ i√
N +n+1

i√
N +n

e−xzf (z)zs−1dz =
∫ i√

N +1

i√
N

e−xzf (z)ζ
(
1 − s, ix

2π
, z

)
dz,

where

ζ (s, a, z) :=
∞∑

m=0
e2π ima(z + m)−s

is the Lerch zeta function, which is well defined since x > 0. Therefore, we have the
following:

Proposition 2.4 For each f ∈ S!k (N ) and for each x > 0 and s ∈ R, we have

�f (ϕix
s ) = i−sN s

2

∫ i√
N +1

i√
N

e−xzf (z)ζ
(
1 − s, ix

2π
, z

)
dz.

3 Derivatives of�(f, s)
Let m be a positive integer. By �

(m)
f (ϕw

s ), we denote the mth derivative with respect to s.
Equation (2.10) implies that

�
(m)
f (ϕw

s )|s= k
2

=
∑

n≥−n0
n �=0

af (n)
dm

dsm
(
E1−s

(
2πn + w√

N

)) ∣∣∣
s= k

2
. (3.1)

By the absolute and uniform, in w with Re(w) > −ε, convergence of the piece of this
series with n > 0, we deduce that the limit as w → 0 (from above) exists and, with (2.9),
we have

lim
x→0+

(
�

(m)
f (ϕix

s )|s= k
2

)
=

∑
n≥−n0
n �=0

af (n)
dm

dsm
(
E1−s

(
2πn√
N

)) ∣∣∣
s= k

2
= �(m)(f, k/2). (3.2)

On the other hand, we have
dm

dsm
(
(i/

√
N )−sζ

(
1 − s, ix

2π
, z

)) ∣∣∣
s= k

2

= (−1)m
(√

N
i

) k
2 m∑
j=0

(−1)j
(m
j

)
log

(√
N
i

)j

ζ (m−j)
(
1 − k

2
, ix
2π

, z
)
.
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Using (3.2) and Prop. 2.4, we deduce that

�(m)(f, k/2) = (−1)m
(√

N
i

) k
2 m∑
j=0

(m
j

)
log

( i√
N

)j

× lim
x→0+

∫ i√
N +1

i√
N

e−xzf (z)ζ (m−j)
(
1 − k

2
, ix
2π

, z
)
dz. (3.3)

We now use (8) of Sect. 1.11 of [14] according to which, for z ∈ H, s /∈ N and x > 0 small
enough, we have

e−xzζ
(
s, ix
2π

, z
)

= �(1 − s)xs−1 +
∞∑
r=0

ζ (s − r, z) (−x)r
r! , (3.4)

where ζ (s, w) is the Hurwitz zeta function. This gives, for every � ∈ N,

e−xzζ (�)
(
s, ix
2π

, z
)

=
�∑

j=0
(−1)j�(j)(1 − s)xs−1 logj x +

∞∑
r=0

ζ (�)(s − r, z) (−x)r
r! (3.5)

and thus,

e−xzζ (�)
(
1 − k

2
, ix
2π

, z
)

=
�∑

j=0
(−1)jx−k/2�(j)(

k
2
) logj x+

∞∑
r=0

ζ (�)(1 − k
2

− r, z) (−x)r
r! .

This implies that, for each j ∈ N, we have∫ i√
N +1

i√
N

e−xzf (z)ζ (�)
(
1 − k

2
, ix
2π

, z
)
dz

=
⎛
⎝ �∑

j=0
(−1)j�(j)

(k
2

)
x− k

2 logj x

⎞
⎠∫ i√

N +1

i√
N

f (z)dz

+
∞∑
r=0

(−x)r
r!

∫ i√
N +1

i√
N

f (z)ζ (�)
(
1 − k

2
− r, z

)
dz.

Since f has a zero constant term in its Fourier expansion, it follows that∫ i/
√
N+1

i/
√
N

f (z)dz = 0. (3.6)

Therefore,

lim
x→0+

∫ i√
N +1

i√
N

e−xzf (z)ζ (�)
(
1 − k

2
, ix
2π

, z
)
dz =

∫ i√
N +1

i√
N

f (z)ζ (�)
(
1 − k

2
, z

)
dz.

(3.7)

This, combined with (4.5), proves Theorem 1.1. In the case of weight 2, it simplifies to

Corollary 3.1 For each f ∈ S!2(N ) such that f |2WN = f , we have

�′(f, 1) = √
Ni

∫ i√
N +1

i√
N

f (z)
(
log(�(z)) + (log(

√
N ) − π i/2)z

)
dz.

Proof If k = 2 andm = 1, the formula of the theorem becomes

�′(f, 1) = √
Ni

(
log(i/

√
N )

∫ i√
N +1

i√
N

f (z)ζ (0, z)dz +
∫ i√

N +1

i√
N

f (z)ζ ′(0, z)dz
)
. (3.8)
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The well-known identity ζ (0, z) = 1/2 − z and (3.6) imply that the first integral equals

−
∫ i√

N +1

i√
N

f (z)zdz.

For the second integral, we combine (3.6) with the identity (see, e.g. (10) of 1.10 of [14])

ζ ′(0, z) = log(�(z)) − 1
2
log(2π ).

From those formulas for the two integrals, we deduce the corollary. �
Finally, we comment on the relation between Theorem 1.2 (applying to holomorphic cusp
forms) and Corollary 3.1 (applying to weakly holomorphic ones). Since a holomorphic
cusp form is, of course, weakly holomorphic, Corollary 3.1 applies to it too and one might
expect the two formulas to agree completely. However, the subject of Theorem 1.2 is
a different L-series from the �(f, s) appearing in Corollary 3.1, namely L∗

f (s). They both
originate in the more general �f (ϕ) but they are not quite the same, L∗

f (s) being simply a
“symmetrised” version of �(f, s). This explains why the formulas are identical except for
the factor of 2 in the formula for the central derivative of L∗

f (s).

4 L-functions associated with cusp forms and their derivatives
The case of classical cusp forms and their L-functions can be accounted for by the same
approach. However, the settingmust be slightly adjusted, ultimately because of the lack of
a functional equation for�(f, s) when f is weakly holomorphic, as discussed in Remark 2.3.
Specifically, we let f be a holomorphic cusp form of weight k for �0(N ) with a Fourier

expansion

f (z) =
∑
n>0

af (n)e2π inz, (4.1)

and such that

f |kWN = f, forWN =
(

0 −1/
√
N√

N 0

)
.

We recall the classical integral expression for the completed L-function of f :

L∗
f (s) :=

(√
N

2π

)s

�(s)Lf (s)

= N s
2

∫ ∞

1/
√
N
f (it)ts−1dt + ikN k−s

2

∫ ∞

1/
√
N
f (it)tk−1−sdt

=
∑
n>0

af (n)E1−s(2πn/
√
N ) + ik

∑
n>0

af (n)Es−k+1(2πn/
√
N )

(4.2)

We observe that, thanks to (2.6), this converges for all s ∈ C. The completed L-function
can be recast in terms of the L-series formalism of [10] and the family of test functions
given in (1.4). Indeed, if Re(w) > −ε, we have,

Lf (ϕw
s + ikϕw

k−s) = N s
2
∑
n>0

af (n)
∫ ∞

1√
N

e−2πnt−wtts−1dt

+ikN k−s
2

∑
n>0

af (n)
∫ ∞

1√
N

e−2πnt−wttk−1−sdt

=
∑
n>0

af (n)
∫ ∞

1
e−

(2πn+w)t√
N ts−1dt

+ik
∑
n>0

af (n)
∫ ∞

1
e−

(2πn+w)t√
N tk−1−sdt (4.3)
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As in the previous section (but more easily, since we do not have any terms with n < 0),
the series converges absolutely and uniformly in compact subsets of {w ∈ H; Re(w) > −ε},
for each fixed s ∈ C. Hence, comparing with (4.2), we see that

lim
x→0+ Lf (ϕix

s + ikϕix
k−s) = L∗

f (s).

Let now s ∈ R and w ∈ H with Re(w) > −ε. By Lemma 2.2, followed by a change of
variables and (4.1), the sum (4.3) becomes

i−s ∑
n>0

af (n)
∫ i+∞

i
e
(2πn+w)iz√

N zs−1dz + ik is−k ∑
n>0

af (n)
∫ i+∞

i
e
(2πn+w)t√

N tk−1−sdz

= i−sN s/2
∫ i/

√
N+∞

i/
√
N

eiwzf (z)zs−1dz + isN (k−s)/2
∫ i/

√
N+∞

i/
√
N

eiwzf (z)zk−1−sdz. (4.4)

This is a “symmetrised” analogue of (2.11), and therefore, working similarly to the last
section, we can deduce the following analogue of Prop. 2.4:

Proposition 4.1 Let f ∈ Sk (N ) such that f |kWN = f . For each w ∈ H with Re(w) > −ε

and each s ∈ R, we have

Lf (ϕw
s + ikϕw

2−s) =
∫ i√

N +1

i√
N

eiwzf (z)
(
i−sN s

2 ζ
(
1 − s, w

2π
, z

)

+isN k−s
2 ζ

(
s − k + 1, w

2π
, z

))
dz.

To pass to derivatives, we letm be a positive integer. Equation (4.3) implies that

L(m)
f (ϕw

s + ikϕw
2−s)|s= k

2
= (1 + i2m+k )

∑
n>0

af (n)
∫ ∞

1
e−

(2πn+w)t√
N t k

2−1 logm tdt.

which is the analogue of (3.1) and thus, we can work in an entirely analogous way to the
last section to obtain

(L∗
f )

(m)
(k
2

)
= (i2m + ik )

(√
N
i

) k
2 m∑
j=0

(m
j

)
log

( i√
N

)j

× lim
x→0+

∫ i√
N +1

i√
N

e−xzf (z)ζ (m−j)
(
1 − k

2
, ix
2π

, z
)
dz. (4.5)

Applying (8) of Sect. 1.11 of [14] as in the last section implies that this equals

(ik + i2m)
(√

N
i

) k
2 m∑
j=0

(m
j

)
logj

( i√
N

)∫ i√
N +1

i√
N

f (z)ζ (m−j)
(
1 − k

2
, z

)
dz.

Since L∗
f (s) = (

√
N/(2π ))s�(s)Lf (s), this gives:

Theorem 4.2 Let m be a positive integer. For each f ∈ Sk (N ) such that f |kWN = f and
L(j)f (k/2) = 0 for j < m, we have

L(m)
f

(k
2

)
= ik + i2m(

k
2 − 1

)
!
(−2π i) k2

m∑
j=0

(m
j

)
logj

( i√
N

)

×
∫ i√

N +1

i√
N

f (z)ζ (m−j)
(
1 − k

2
, z

)
dz.
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Theorem 1.2 follows from this exactly as in Corollary 3.1 once we take into account that,
if k = 2 and f |2WN = f , we automatically have Lf (1) = 0 by the classical functional
equation for f ∈ S2(N ).

5 Computational and algorithmic aspects
Consider first the special case of a holomorphic cusp form f of weight k = 2 and level N ,
which is invariant under the Fricke involutionWN . Suppose that f has a Fourier expansion
of the form (4.1). It is clear from (4.2) and symmetry that the central value L∗

f (1) is zero
and the rth central derivative is zero, if r is even, and

(L∗
f )

(r)(1) = 2r!
∑
n>0

af (n)Er
0

(
2πn√
N

)
,

if r is odd. Here

Er
s (z) = 1

r!

∫ ∞

1
e−zt (log t)r t−sdt

is (−1)r/r! times the rth derivative of Es(z) with respect to s. It is initially defined for
�(z) > 0 and can be extended to H ∪ R<0 via (5.4) and (5.2) below. Using integration by
parts, it can be shown that Er

0(z) = 1
z E

r−1
1 (z), which leads to the expression

(L∗
f )

(r)(1) =
√
N

π
r!

∑
n>0

a(n) 1nE
r−1
1

(
2πn√
N

)
. (5.1)

This expression was first obtained by Buhler, Gross and Zagier in [8], where the authors
used the following expression to evaluate Em

1 (z) for anym ≥ 1 and z > 0

Em
1 (z) = Gm+1 = Pm+1(− log z) +

∑
n≥1

(−1)n−m−1

nm+1n! zn. (5.2)

Here, Pr(x) is a polynomial of degree r and if we write �(1 + z) = ∑
n≥0 γnzn then

Pr(t) =
r∑

j=0
γr−j

tj
j! .

Extending this method to weights k ≥ 4 and weakly holomorphic modular forms is
immediate. If f ∈ S!k (N ) has Fourier expansion at infinity of the form (2.1) then the
analogue of (4.2) is (2.9). Upon differentiating (2.9) r times with respect to s and setting
s = k/2 leads to

�(r)(f, k/2) = r!
∑

n≥−n0
n �=0

af (n)Er
1−k/2

(
2πn√
N

)
, (5.3)

where we note that for a holomorphic f we have (L∗
f )

(m)(k/2) = (1 + ik+2m)�(m)(f, k/2).
It follows that we need to evaluate Er−n where n = k/2− 1. To compare the complexity of
these computations with the weight 2 case, we note that Milgram [16, (2.22)] showed that

Em−n(z) = �(n + 1)
zn+1

[
e−z

n−m∑
l=0

zl
l! ξ

m
l,n +

m∑
l=1

ξ l−1
0,n Em−l

1 (z)
]
, (5.4)

where ξ
j
l,n are constants independent of z and can be precomputed. Using this together

with (5.2), it follows that the computation essentially reduces to that of a finite sum of
polynomials and an infinite rapidly convergent sum.
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It is also worth to mention here that the general algorithm to compute values and
derivatives of Motivic L-functions introduced by Dokchitser in [12] and implemented in
PARI/GP [19], essentially reduces to that described above in the case of holomorphic
modular forms. Furthermore, in both [8] and [12] the authors make additional use of
asymptotic expansions to speed up computations of Em−n(z) for large z.

5.1 The new integral formula

Let f ∈ S!k (�0(N )) be a weakly holomorphic cusp form of even integral weight k and that
satisfies f |kWN = f . Then, Theorem 1.1 implies that

�(m)(f, k/2) = i2m−k/2Nk/4
m∑
j=0

(m
j

)
logj

( i√
N

)

×
∫ i/

√
N+1

i/
√
N

f (z)ζ (m−j)
(
1 − k

2
, z

)
dz,

where �(f, s) is defined in (1.5). When computing these values, it is clear that the main
CPU time is spent on computing integrals of the form

Ir(f ) =
∫ 1

0
f (x + i/

√
N )ζ (r)

(
1 − k/2, x + i/

√
N

)
dx, 0 ≤ r ≤ m.

The cusp form f is given in terms of the Fourier expansion (2.1) for some n0 ≥ 0. To
evaluate f (x + i/

√
N ) up to a precision of ε = 10−D for all x ∈ [0, 1], we can truncate the

Fourier series at some integer M > 0. The precise choice of M depends on the available
coefficient bounds. In case f is holomorphic then Deligne’s bound can be used to show
that we can chooseM such that

M > c1k
√
N logM + √

N (c2D + c3 log(
√
N (k/2)!)) + c4

for some explicit positive constants c1, c2, c3 and c4, independent of N,D and k . However,
if f is not holomorphic then we only have the non-explicit bound (2.8) andM must satisfy

M > c′1
√
N

√
M + c′2

√
ND + c′3

√
N logN,

where c′1, c′2, c′3 and c′4 are positive constants that depend on f and can be computed in
special cases using Poincaré series. In both cases we From both inequalities above it is
clear that as the level or weight increases we need a larger number of coefficients, which
increases the number of arithmetic operations needed. Note that the working precision
might also need to be increased due to cancellation errors. To evaluate the Hurwitz zeta
function and its derivatives, it is possible to use, for instance, the Euler–Maclaurin formula

ζ (s, z) =
M−1∑
n=0

1
(n + z)s + (z + M)1−s

s − 1

+ 1
(z + M)s

(
1
2

+
L∑

l=1

B2l
(2l!)

(s)2l−1
(z + M)2l−1

)
+ Err(M,L),

where M,L ≥ 1 and where the error term Err(M,L) can be explicitly bounded. For more
details, including proof and analysis of rigorous error bounds and choice of parameters,
see [15], where the generalisation to derivatives ζ (r)(s, z) is also included. In our case,
s = 1− k/2 and z = x+ i/

√
N with 0 ≤ x ≤ 1. It is easy to use Theorem 1 of [15] to show

that ifM > 1 and L > k/4 then∣∣Err(M,L)
∣∣ ≤ 2M2k

(2πM)2L
|(1 − k/2)2L|

L − k/4
,
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where (s)m = s(s + 1) · · · (s + m − 1) is the usual Pochhammer symbol. Furthermore,
if the right-hand side above is denoted by B then it can be shown that the error in the
Euler–Maclaurin formula for the rth derivative can be bounded by B · r! log(8(M + 1))r .
In [15], it is observed that to obtain D digits of precision we should choose M ∼ L ∼ D,
meaning that the number of terms in both sums is proportional to D. It is also clear that
as k or r increases we will need larger values ofM and L.

Example 5.1 Consider f ∈ S2 (37) and standard double precision, i.e. 53 bits or 15 (deci-
mal) digits. Then, a single evaluation of f (x+ i/

√
37) takes 271μs while ζ (r)(0, x+ i/

√
37)

takes 2μs, 114μs, 124μs, 171μs for r = 1, 2, 3 and 20, respectively.

5.2 Comments on the implementation

There are a few simple optimisations that can be applied immediately to decrease the
number of necessary function evaluations.

• Replace the sum of integrals by
∫ 1
0 f (x + i/

√
N )Zm(x + i/

√
N )dx, where

Zm(z) =
m∑
j=0

(m
j

)
logj

( i√
N

)
ζ (m−j)

(
1 − k

2
, z

)
.

• If f (z) has real Fourier coefficients then f (1 − x + i/
√
N ) = f (x + i/

√
N ), which is

very useful as we can choose the numerical integration method with nodes that are
symmetric with respect to x = 1/2.

• If we need to compute �(r)(f, k/2) for a sequence of rs, then function values of f and
lower derivatives ζ (j) can be cached in each step provided that the we use the same
nodes for the numerical integration.

As the main goal of this paper is to present a new formula and not to present an opti-
mised efficient algorithm as such, we have implemented all algorithms in SageMath using
the mpmath Python library for the Hurwitz zeta function evaluations as well as for the
numerical integration using Gauss–Legendre quadrature. The implementation used to
calculate the examples below can be found in a Jupyter notebook which is available from
[20].

5.3 Examples of holomorphic forms

To demonstrate the veracity of the formulas in this paper, we first present a comparison
of results and indicative timings between the new formula in this paper and Dokchitser’s
algorithm in PARI (interfaced through SageMath).
Table 1 includes threeholomorphic cusp forms37.2.a.a, 127.4.a.a and5077.2.a.a, labelled

according to the LMFDB [18]. These are all invariant under the Fricke involution and
it is known that the analytic ranks are 1, 2 and 3, respectively. The last column gives
the difference between the values computed by Dokchitser’s algorithm and the integral
formula.
As the level increases, we find that f (x + i/

√
N ) oscillates more and more and it is

necessary to increase the degree of the Legendre polynomials used in theGauss–Legendre
quadrature. The comparison of timings in Table 1 indicates that our new formula is slower
than Dokchitser’s algorithm but it is important to keep in mind the latter is implemented
in the PARI C library and is compiled while our formula is simply implemented directly in
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Table 1 Central derivatives (L∗f )
(r)(k/2) for f ∈ Sk (�0(N))

N k Label r Dokchitser/PARI Time (ms) Integral formula Time (ms) Error

37 2 37.2.a.a 1 0.296238908699801 18 0.2962389086998011 49 6 × 10−17

127 4 127.4.a.a 2 7.83323138624802 42 7.8332313863855996+ 186 1 × 10−10

5077 4 5077.2.a.a 3 117.837959237940 212 117.83795923792273+ 2000 2 × 10−11

SageMath using the mpmath Python library. All CPU times presented below are obtained
on a 2GHz Intel Xeon Quad Core and we stress that the times should not be taken as
absolute performance measures but simply to provide comparisons between different
input and parameter values.

5.4 Examples of weakly holomorphic modular forms

To construct weakly modular cusp forms, we use the Dedekind eta functions

η(τ ) = q 1
24

∏
n≥1

(1 − qn) .

If we define

�+
2 (τ ) = (η(τ )η(2τ ))8 = q − 8q2 + 12q3 + 64q4 + O(q5)

and

j+2 (τ ) = (η(τ )/η(2τ ))24 + 24 + 212(η(2τ )/η(τ ))24

= q−1 + 4372q + 96256q2 + 1240002q3 + O(q4)
then it can be shown that�+

2 ∈ S8(�0(2)) and j+2 ∈ S!0(�0(2)) are both invariant under the
Fricke involutionW2.The followingholomorphic andweakly holomorphicmodular forms
of weight 16 on �0(2) were introduced by Choi and Kim [9] to study weakly holomorphic
Hecke eigenforms.

f16,−2(τ ) = �+
2 (τ )

2 = q2 − 16q3 + O(q4)
f16,−1(τ ) = �+

2 (τ )
2(j+2 (τ ) + 16) = q + 4204q3 + O(q4)

f16,0(τ ) = �+
2 (τ )

2(j+2 (τ )2 + 16j+2 (τ ) − 8576) = 1 + 261120q3 + O(q4)
f16,1(τ ) = �+

2 (τ )
2(j+2 (τ )3 + 16j+2 (τ )2 − 12948j+2 (τ ) − 427328)

= q−1 + 7525650q3 + O(q4)
f16,2(τ ) = �+

2 (τ )
2(j+2 (τ )4 + 16j+2 (τ )3 − 17320j+2 (τ )2 − 593536j+2 (τ ) − 27188524)

= q−2 + 140479808q3 + O(q4)

and it is easy to see that all of these functions are also invariant under W2. Furthermore,
f16,−2, f16,−1 ∈ S16(�0(2)) and f16,1, f16,2 ∈ S!16(�0(2)) while f16,0 is not cuspidal.
To check the accuracy of our formula in this setting, we first consider the holomorphic

cusp forms. Observe that the unique newform of level 2 and weight 16 is

f (τ ) = q − 128q2 + 6252q3 + 16384q4 + 90510q5 + O(q6) = f16,−1 − 128f16,−2.
Using Dokchitser’s algorithm, we find that L∗

f (8) = 0.0526855929956408, while using the
integral formula with 53 bits precision, we obtain

L∗
f16,−2

(8) = 0.00008045589767063483 + 6 · 10−20i,

L∗
f16,−1

(8) = 0.06298394789748197609 + 3 · 10−17i,
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Table 2 �(r)(f16,i , 8) computed using the integral formula with
103 bits precision

i r �(r)(f16,i , 8) T /ms Err.

1 0 −0.2035186511755524285671725692737 + 1 × 10−31 204 6 × 10−30

1 1 1.1597162067012225517004253561026 − 0.104294509255933530762675132394i 975 9 × 10−30

1 2 −0.3329012203856171470128799683152 − 0.109371149169408369683239573058i 1790 7 × 10−30

2 0 −1.8934024663352144735029014555039 + 1 × 10−30 209 1 × 10−27

2 1 55.394013302380372465449909213930 − 0.000407400426780990354541699709i 996 2 × 10−28

2 2 −0.1484917546377626240694524994979 + 0.000137545862921322355701592298i 1880 1 × 10−28

Table 3 �(r)(f16,i , 8) computed using the sum with 103 bits
precision

i r �(r)(f16,i , 8) T /ms Err.

1 0 −0.20351865117555238 10 4 × 10−17

1 1 1.15971620670121522423 − 0.104294509255934i 11 × 103 8 × 10−15

1 2 −0.33290122038562486306 − 0.109371149169408i 21 × 103 8 × 10−15

2 0 −1.89340246633520092878 11 2 × 10−14

2 1 55.3940133023803440437 − 0.000407400426780990i 14 × 103 4 × 10−14

2 2 −0.14849175463777442019 + 0.000137545862921322i 26 × 103 2 × 10−14

and

L∗
f16,−1

(8) − 128L∗
f16,−2

(8) = 0.05268559299564071785 + 2 · 10−17i,

which agrees with the value of L∗
f (8) above.

Table 2 gives the values of �(r)(f16,i , 8) for the weakly holomorphic modular forms
f16,1 and f16,2, computed using the integral formula with 103 bits working precision. The
table contains an indication of timings as well as a heuristic error estimate based on a
comparison with the same value computed using 203 bits precision.
To provide some independent verification of the algorithm in the case of weakly mod-

ular forms, we also implemented the generalisation of the algorithm from [8] using (5.3)
directly with Er

1−k/2 evaluated using (5.4) and (5.2). The main obstacle with the algorithm
modelled on [8] is that the infinite sum in (5.2) suffers from catastrophic cancellation
for large z unless the working precision is temporarily increased within the sum. The
corresponding values of �(r)(f16,i , 8) computed using the algorithm with 103 bits starting
precision are given in Table 3 where we also give the corresponding timings as well as an
error estimate based on comparison with values in Table 2.
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