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Abstract 

Plant roots have major roles in plant anchorage, resource acquisition and offer environmental 

benefits including carbon sequestration and soil erosion mitigation. As such, the study of root 

system architecture, anatomy and functional properties is of crucial interest to plant breeding, 

with the aim of sustainable yield production and environmental stewardship.  

Due to  the importance of the root system studies, there is a  need for clarification of terms and 

concepts in the root phenotyping community. In particular in this contribution, we advocate for 

the use of a reference naming system (ontologies) for roots and root phenes. Such uniformity 

would not only allow better understanding of research results, but would also enable a better 

sharing of data. In addition, we highlight the need to incorporate the concept of plasticity in 

breeding programs, as it is an essential component of root system development in 

heterogeneous environments.  

Graphical abstract 

 

3 



Root phenotyping - IPPS 2016 

1. Definitions 

The study of root system morphology, anatomy and spatial distribution (root architecture) is 

challenging due the “hidden” nature of these organs and their complexity. Recent interest in root 

phenotyping and genetics has enabled the creation of new terminology that describes root 

phenotypes, structures, and functions.  For instance, the Planteome website 

http://planteome.org/) [1] is a useful tool for plant scientists to unify terminology. This integrative 

initiative aims to bring together common annotations or standards and a group of reference 

ontologies for plants, with the desire that they will be used by researchers as a common 

language and will facilitate the integrated analysis of large data sets from different data 

repositories. Plant Trait Ontology is one of the reference ontologies that can be found at 

Planteome site, and describes specific measurable phenes, although the list of root traits 

focuses on architectural features is so far omitting any physiological root traits.  

 

It would be advantageous to use tools like the previous-mentioned ones in publications and at 

conferences to standardise the use of root nomenclature, in order to speak the same language 

within the root phenotyping community. Despite the obvious gain that a systematized 

nomenclature can bring to the scientific community, a consistent application of standard root 

terminology has not yet been achieved. For instance, discrepancies in the name of root types 

can even be found in the same plant species between publications. Efforts have been made in 

this regard, leading to a root system architectural taxonomy that defines the main roots classes 

present in nature: taproots, lateral roots, shoot-borne roots and basal roots; considering the 

origin of the root type [2]. There are also studies that aim to establish the definition of specific 
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root phenes, such as root insertion angle and its components, along with different methods for 

analysing their plastic response under different environmental conditions [3,4].  

 

The lack of adoption of common terminology might be due to an unawareness of such 

resources by researchers, or an inadequacy between the existing terms and researchers needs. 

With the ever-increasing use of phenotypic techniques that enable imaging, quantification and 

modelling of complex root systems by studying phenes at macro and micro scale, the need to 

integrate biology and computational methodologies is increasingly apparent [5]. Therefore, there 

is a demand (and a need) to create a common language where these two disciplines can start a 

successful dialogue, leading to a better understanding of plant morphology and development 

[6]. Efforts and discussions throughout the entire community are needed to achieve such a goal.  

2. Plasticity 

Successful crop varieties are often selected in a specific soil type, climate, and agricultural 

management practice, a static environment where a specific root ideotype can be effective for 

crop yield. However, decreasing freshwater availability, rising costs of fuel and nitrogen fertilizer 

and unpredictable growing environments due to climate change require the development of crop 

varieties that are increasingly adaptable in order to maintain high and stable yields [7–10]. 

Phenotypic plasticity and Genotype and Environment (G x E) interaction have often been 

considered a challenge in phenotyping and breeding programs [11,12]. Modern breeding 

programs and agricultural productivity have typically been focused on selecting varieties with 

greater stability and uniformity rather than highly plastic genotypes, but perspectives on that are 

changing [13,14]. The identification of environmental sensing genes may enable targeted 
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breeding for phenotypic plasticity [15].The development of new crop varieties can take years, 

and therefore selection of performance in the current environment may not hold-up in future 

environments and climates. Crop varieties able to adapt their growth in response to 

environmental cues may be a breeding target for addressing the growing world food demand, 

particularly in low input agriculture areas [16].  

 

Phenotypic plasticity is the ability of an organism to change its phenotype in response to 

environmental cues [15]  and does not explicitly improve plant performance or survival. Plastic 

responses may be of short or long duration. For example, the final diameter of a root is 

established after tissue growth, and while growing tissues may respond to the local 

environment, mature tissue does not. In contrast, expression of nitrate transporters may change 

to track environmental signals that fluctuate on short time scales. Phenotypic plasticity may be 

allocational, morphological, anatomical, or developmental [17], is under genetic control (e.g. [7]), 

and encompasses components of the interaction between genotype and environment, 

adaptation, and acclimation.  

 

G x E interaction, or the differential response of genotypes to different environmental signals, is 

a type of plasticity. However, plasticity does not always imply a G x E interaction. Acclimation 

and adaptation are also types of plasticity that can have a G x E response as well, (Fig. 1) but 

are usually considered to be a plastic response that enhances plant fitness and survival. 

Adaptation is the shift in genotypes and/or phenotypes over generations that facilitates 

enhanced fitness in a specific environment. Acclimation, is the physiological, biochemical, or 

morphological modifications to a phenotype that results from environmental challenges. 
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However, these terms are not exclusive, for example, phenotypic plasticity can be adaptive and 

also have a G x E component [18,19]. 

 

Depending on the environment, plants with a greater plasticity may have an advantage over 

plants with low plasticity (e.g. [20]). Root system architecture has been demonstrated to have 

large implications in plant stress tolerance and performance, and specific components of this 

architecture may have a plastic response to the environment [21]. In drought conditions, 

plasticity in root length density, total root length [22,23] and lateral root length and density 

[24,25] improve shoot biomass, water uptake, and photosynthesis in rice. In legumes, symbiotic 

interactions with different rhizobium species resulted in a plastic response of root length and 

lateral root density [26]. In soybean, metaxylem number increased under drought conditions 

improved root hydraulic conductivity, which reduces the metabolic cost of exploring water in 

deeper soil domains and enhanced water transport [27]. High yield stability has been shown to 

correlate with high root plasticity in drought and low phosphorus environments in rice [7] and 

phenological plasticity in wheat, sunflower, and grapevine [28]. In variable phosphorus supply, 

tap and fibrous root systems had different physiological (exudates) and morphological (surface 

area) plasticity responses [29]. Phenotypic plasticity may improve plant performance in variable 

environments and be an effective future breeding target. 

 

In certain scenarios, phenotypic plasticity may also be maladaptive. For example, proliferation of 

lateral branches in response to localized patches of nutrients [30,31] may be beneficial for 

nitrogen capture [32], but potentially also maladaptive if mobile resources (such as nitrogen) 

move through the soil profile faster than roots can proliferate. It is also interesting to note that a 

recent meta analysis on invasive species has shown that under high resource environments, an 
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increased plasticity was not correlated with increased fitness [33].  Understanding phenotypic 

plasticity and its genetic control may enable the selection of lines with greater or reduced 

plasticity to enhance plant productivity in specific environments.  

 

Previous research has brought to light the idea of root system ideotypes, often meant as 

specific architectural traits suitable for the capture of specific soil resources in specific 

environments. Root architectural phenes have been demonstrated to be successful in specific 

environments, but can be functionally maladaptive in variable or non-target environments 

[34,35]. In the field, the plants may be exposed to multiple, simultaneous stresses. In 

environments with multiple, dynamic stresses that vary year-to-year, a phenotypically plastic 

root system may be the ideal ideotype for stable and high yielding crops. Immense untapped 

potential exists for exploiting phenotypic plasticity to enhance productivity of agricultural crops. 

The knowledge of the molecular mechanisms and the genes underlying root plasticity can 

contribute as tools for breeders to develop varieties better adapted to a wide range of 

environments. However, this requires the measurement of roots (and shoots) under contrasting 

and dynamic environments and even future climate scenarios. This, in turn, is based on 

respective technological developments for climatization in plant growth rooms and for root 

imaging and analyses. 

 

8 

https://paperpile.com/c/P0sme4/TXcz
https://paperpile.com/c/P0sme4/fxEo+Ir1r


Root phenotyping - IPPS 2016 

 

Figure 1. Schematic of plastic responses. Plasticity can be adaptive, neutral, or maladaptive, may fluctuate 

temporally, and may have a G x E component. Phenotypic plasticity may be allocational, morphological, anatomical, 

or developmental.  
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