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Abstract
Weanalyse the properties of the synchronisation transition in amany-body system consisting of
quantumvan der Pol oscillators with all-to-all coupling using a self-consistentmean-fieldmethod.
Wefind that the synchronised state, which the system can access for oscillator couplings above a
critical value, is characterised not just by a lower phase uncertainty than the corresponding
unsynchronised state, but also a higher number uncertainty. Just below the critical coupling the
system can evolve to the unsynchronised steady state via a long-lived transient synchronised state.We
investigate theway inwhich this transient state eventually decays and show that the critical scaling of
its lifetime is consistent with a simple classicalmodel.

1. Introduction

The spontaneous synchronisation of limit-cycle oscillators [1, 2] is a fascinating example of a phase transition
which occurs far from equilibrium. Limit-cycle oscillators have a non-zero average amplitude, but no preferred
phase, and are extremely common in both the physical and biological sciences. Synchronisation has been
studied in awide range of classical systems [2], as well as in systems such as lasers where semiclassical
descriptions prove accurate [3, 4]. Over the last few years experiments have begun to investigate synchronisation
in smaller-scale oscillator systems, includingmicron-sizedmechanical oscillators [5–8] and lasers operating in
the few-photon regime [9]. Recently, theorists have also started to explore synchronisation in oscillators where a
fully quantummechanical description becomes essential [10–29].

Several different ways of quantifying the synchronisation of quantumoscillators have been proposed
[11, 13, 20, 21, 24] and the connection between synchronisation and entanglement [11, 14, 16, 20, 24, 25, 30]has
been examined in a variety of different systems. Comparisons of synchronisation in quantum and semiclassical
oscillatormodels have revealed significant quantitative and qualitative differences in behaviour [13, 25–27].
Detailed proposals have also beenmade for experiments which could probe synchronisation in the quantum
regime using trapped ions [13, 21], optomechanical systems [12] or superconducting circuits [31].

Synchronisation in quantummodels ofmany coupled limit-cycle oscillators [12, 13, 23, 32] has so far
received rather less attention than few-oscillator systems.However, quantummany-oscillatormodels form a
novel class ofmany-body system and the synchronisation transition they undergomakes an interesting
comparison not just with classical or semiclassical oscillator systems, but alsowith the rich variety of non-
equilibrium transitions which have been studied extensively in other types ofmany-body quantum systems
[33–36], including e.g., the driven dissipative Bose–Hubbardmodel [37–39].

A particularly simplemodel system for studyingmany-body synchronisation consisting of coupled
quantumvan der Pol oscillators was introduced by Lee and Sadeghpour [13]. In their work Lee and Sadeghpour
compared the predictions of quantumand semiclassical versions of themodel, and found that the transition
which the oscillators undergo between unsynchronised and synchronised states consistently occurs at a lower
value of the inter-oscillator coupling strength in the quantum case.Herewe examine the properties of the
synchronised and unsynchronised states of this system togetherwith its critical dynamics.Wefind that the
phase-ordering which occurs when the oscillators synchronise is accompanied by other changes in the state of
the system: a decrease in the average occupation number and an increase in number uncertainty. For coupling
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strengths just below the transition, the systemdisplays critical slowing downwith a long-lived transient
synchronised state emerging and then eventually decaying.We look at exactly how the long-lived transient state
decays and show that the critical scalingfits a simple classicalmodel.

The rest of this paper is organised as follows.We begin by introducing themany van der Pol-oscillatormodel
in section 2 and then go on to describe the synchronisation transition it undergoes in section 3.We compare the
quantumproperties of the synchronised and unsychronised states of the system in section 4.We explore the
dynamics close to the transition in section 5 and then analyse the critical scaling in section 6. Finally, we present
our conclusions in section 7.

2.Model oscillator system

The van der Pol (vdP) oscillator is a simple limit-cycle oscillator and is a popular choice ofmodel to study
synchronisation [1, 2, 40]. In the quantum regime the vdPmodel is described by a harmonic oscillator which
gains individual photons at a rateκ1 (linear anti-damping)whilst also losing two photons at a timewith rateκ2
(nonlinear damping) [13]. Themaster equation in the interaction picture takes the form,

1dr r=˙ ( )

a a aa aa aa a a a a aa a a aa2 2 , 21 2k r r r k r r r= - - + - -( ) ( ) ( )† † † † † † † † †

where a is the oscillator lowering operator.
The ratioR=κ2/κ1 controls the size of the limit cycle in the system [13, 26, 41]. For extremely small values

ofR the average photon number becomes very large, growing as 1/R, and semiclassicalmethods [13] provide an
accurate description. However, for largerR values the behaviour of quantum and semiclassical versions of the
model becomemarkedly different [13] and eventually, in the limit R  ¥ the steady state of the system
becomes entirely confined to just the two lowest number states.

We are interested in the behaviour of an ensemble ofN identical vdP oscillators with all-to-all coherent
couplings of strength ε, for which theHamiltonian is

H
N

a a a a . 3
j

j jint
i

i i åe
= +

<

( ) ( )† †

As is typically the case with quantummany-body problems, the extremely large state space involved precludes an
exact numerical treatment and sowe follow Lee and Sadeghpour [13] in assumingN is large and adopting an
approximate self-consistentmean-field approach [12, 13, 37, 38, 39, 42]: we replace a a a a a aj j ji i i á ñ + á ñ† † † .
This leads to an effective single-oscillatormaster equation for the system

H
i

, 4mf d


r r r= - +˙ [ ] ( )

with theHamiltonian

H a a a a . 5mf e= á ñ + á ñ( ) ( )† †

Themaster equation is solved self-consistently via numerical integration, starting from a chosen state, with the
value of aá ñupdated at each time step [12]. In each case we carried out integrations of themaster equation using a
Runge–Kutta algorithm and generally chose a coherent state as an initial condition.Weworked in the number
state basis, using a cut-off, nmax, chosen to be large enough not to influence the results.

The self-consistentmean-field approach is very commonly used in studies of non-equilibriumquantum
many-body systems [33–39], often as an approximate description for a lattice of optical ormicrowave cavities in
which individual cavities are coupled to a small number of their nearest neighbours. In such situationsmean-
field calculations provide a useful starting point though they are not expected to describe the behaviour faithfully
in low-dimensional systems [33, 43, 44]. In this case we have inmind a large number of individual vdP oscillators
with all-to-all coupling and so expect that themean-field approachwill work increasingly well as that number is
increased. Systems ofmany nonlinear quantumoscillators with all-to-all couplings are of interest in other
contexts and detailed proposals have beenmade for schemeswhich could realise such systems [45].

Note that even after we have assumed a large number of coupled vdP oscillators, the value of the damping
rate ratioR can still be varied. This parameter controls the size of the limit-cycles of the individual oscillators
with R 0 setting the semiclassical limit for an uncoupled oscillator [46].

3. Synchronisation transition

The long-time state of themany-body vdP system given by equation (4)displays either synchronised or
unsynchronised behaviour depending on the coupling strength ε, the ratio of rates of the 2- and 1-photon
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processes,R, and the initial state of the system. The synchronised state is characterised by a clear phase
preference, signalled by a non-zero value of [12, 13] aá ñ, which oscillates periodically in timewith amagnitude
that settles down to a constant value. In contrast, the unsynchronised state has no preferred phase so that
a 0á ñ = , leading to a time-independent state whichmatches the steady state of the corresponding uncoupled
vdP oscillator. The value of aá ñ∣ ∣ therefore provides a natural order parameter for the system.

Initial states always exist which allow the system to reach an unsynchronised state1, but the synchronised
state can only be accessed for couplings beyond a certain critical value εcwhich depends onR. The behaviour of
εc as a function ofRwasmapped out by Lee and Sadeghpour [13]. The value of εc tends towards zero for smallR,
but grows rapidly with increasingR, before apparently diverging at afinite value ofR. The behaviour of the vdP
oscillator becomesmore strongly quantummechanical asR is increased and this is reflected in the value of the
critical coupling [13]which always takes a lower value in the quantummodel compared to its semiclassical
counterpart with the difference between the two growing rapidly withR.

Figure 1 shows examples of the dynamics of aá ñ∣ ∣and aá ñas a function of εwith everything else keptfixed.
For ε>εc, aá ñ rapidly reaches a periodically oscillating state whose amplitude and period depend on ε. For the
smallest values of ε the value of aá ñ∣ ∣decays exponentially, but for values of ε just below εc the character of the
decay is very different and it instead occurs in two distinct stages: a slow part followed by a very rapid part. The
development of a very slow relaxation time in the dynamics is a precursor to the emergence of the synchronised
state at ε=εc andwe investigate its properties in detail in sections 5 and 6 below.However, this is not the only
interesting feature in the dynamics: for fairly weak couplings there is a regime inwhich the decay of the order
parameter actually speeds upwith increasing couplings (see figure 1(a)).

When the coupling exceeds the critical value, ε>εc, the behaviour of the system in the limit of long times is
determined by the initial state of the system.Using an initial coherent state with an eigenvalue, inita , which is
varied, we find a transition fromunsynchronised to synchronised final states at a critical value,αcrit, as shown in
figure 2(a). The critical value ofαinit decreases with increasing ε, mapping out a separatrix between initial
conditions that lead to synchronised and unsynchronised states as shown in figures 2(b) and (c).We note that
although a dependence of the long-time density operator on initial conditions is not usually expected for open
quantum systems, such behaviour does emergewhen they are treated approximately, using e.g. self-consistent
mean-fieldmethods, as we do here [35, 39, 43].

Much of the behaviour of the order parameter seen infigure 2 can be captured using a simple classical
effective-potentialmodel [35],V(r), such as that sketched infigure 3. In such amodel the dynamics of the order
parameter is given by

r V r, 6= -¶ ¶˙ ( )

and hence as soon as the gradient in the potential becomes zero rwill stop changing, giving rise to afixed point in
the dynamics.

Althoughwe don’t have away of deriving the formofV(r), its basic properties are clear. It will always have a
stablefixed-point solution at r=0 (the unsynchronised state), and above a critical value of ε a second stable

Figure 1.Examples of the evolution of (a) aá ñ∣ ∣ and (b) aReá ñwith time for different coupling values ranging from ε=0.5 (dark blue)
up to ε=3.5 (dark green); in each caseR=0.04 and the numerical integrations used an initial coherent statewith eigenvalue
α=2.75. The long-time value of aá ñ∣ ∣ is non-zero for 2.932ce e>  , signifying a synchronised state.We adopt units of time such
thatκ1=1 throughout.

1
For example, if instead of a coherent state, we chose an initial Fock (i.e. number) state, forwhich a 0á ñ = , the coupling termwill start off

being zero.Without this term, off-diagonal terms in the number state basis, which are all zero initially, remain zero and hence aá ñwill be zero
for all later times within themean-field description, so that the systemwill always evolve to the unsynchronised state.
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fixed-point solutionwith r>0 should emerge (seefigure 3(a)), reflecting the coexistence of unsynchronised
and synchronised (r>0) states. Furthermore, a third, unstable fixed point in the formof a peak between the two
minima in the potentialmust emerge at the same time as the r>0 fixed point: the effective potentialmodel
undergoes a saddle-node bifurcation [47] at a critical coupling. The unstable fixed point corresponds to the
separatrix between synchronised and unsynchronised states seen infigure 2. Figure 3(b) shows the potential
close to, but below, the critical value of ε. Here there is only onefixed point, at r=0, but the proximity to the
critical pointmeans that the gradient of the potential becomes very shallow, and correspondingly a bottleneck
appears [47] in the dynamics whichmeans the time taken for r to decay becomes extremely long. As figure 3(c)
illustrates, for small enough ε the long timescale decay is expected to disappear. One example of a potential
which incorporates these features is

V r r
f R

r
g R

r
1

8 3 4
, 72 3 4

e
= - +( ) ( ) ( ) ( )

where the functions ofR, f and g, always take positive values.
This kind of effective potentialmodel predicts the phase structure of the systemby design, but it also predicts

more subtle features of the system such as the scaling behaviour of the slow decay time that emerges for
couplings below the critical value.We look in detail at the scaling behaviour of the relaxation time in the vdP
system in section 6wherewe compare it to the prediction of the classical bifurcationmodel.

Figure 2. (a)Evolution of aá ñ∣ ∣ at ε=3.5 for initial coherent states with a range of eigenvalues,αinit, andR=0.04. (b)Critical values
ofαinit (green points)which lie on the separatrix between synchronised and unsynchronised states as a function of ε. The regionwhere
synchronised states arise is shown schematically (green shading) together with a (dashed) vertical line indicating the value of εc. (c)
Sketch summarising the dependence of the behaviour on initial conditions. For ε>εc a synchronised state (solid curve) emerges
together with a separatrix (dashed curve)marking out the basins of attraction of the synchronised andunsychronised states in terms of
initial values of aá ñ∣ ∣. Arrows indicate the evolution in time for initial states in different regions.

Figure 3.Effective potentialmodel describing the evolution of r a= á ñ∣ ∣ for (a) ε>εc (b) ε just below εc (c) εwell below εc. Each panel
shows a cartoon of the time evolution of the order parameter in the system above a sketch of the corresponding effective potential
which also indicates the initial and final values of r.
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4. Synchronised versus unsynchronised states

Wenow turn to the properties of the synchronised and unsynchronised states which emerge in the limit of long
times, beyond the value of the order parameter r a= á ñ∣ ∣ that we have focussed on so far. The number
distribution, P n n nr= á ñ( ) ∣ ∣ (the diagonal elements of the density operator in the number state basis), shown in
figure 4(a) reveals clear differences between the synchronised and unsynchronised states which emerge in the
limit of long times. The average occupation number, ná ñ, is reduced in the synchronised state compared to the
unsynchronised case, somethingwhich is not surprising as a reduction in the oscillation amplitude is a common
accompaniment to synchronisationwhen classical limit-cycle oscillators are coupled together [2]. However, the
P(n) distribution is clearlymuch broaderwhen the oscillators are synchronised and has amuch larger vacuum
state occupation probability. This suggests an interplay between phase and number fluctuations at the transition
which is somethingwemight expect intuitively. Figure 4(a) also illustrates theway inwhich larger values ofR
push theP(n)distribution down to lower occupation numbers.

To quantify how the number and phase properties of the quantum state of the vdP system change at the
transitionwe need to adopt suitablemeasures of the uncertainty in both of these quantities. There are a number
of different ways of defining phase uncertainty [48], starting from the phase distribution

P
1

2
, 8j

p
j r j= á ñ( ) ∣ ∣ ( )

with

ne 9
n

n

0

iåjñ = ñj

=

¥

∣ ∣ ( )

an eigenstate of the Susskind–Glogower operator n n 1n 0å ñá +=
¥ ∣ ∣ [49]. Here we choose toworkwith an

entropicmeasure of the phase uncertainty

P Pd ln . 10òj j j jD = -
p

p

-
( ) ( ) ( )

This has the advantage that it and the corresponding number uncertainty,

n P n P nln , 11
n 0
åD = -
=

¥

( ) ( ) ( )

together obey an uncertainty relation [48, 50]

n ln 2 . 12j pD + D ( ) ( )

The lower bound of the uncertainty relation is reached for any pure number state (i.e. n m n mr = = ñá =∣ ∣ for
m 0, 1, 2 ...= ) for which the phase distribution isflatP(j)=1/2π so ln 2j pD = ( ) andΔn=0.

Figure 4(b) compares the behaviour of the steady state values of the uncertaintiesΔn andΔj across the
transition alongwith aá ñ∣ ∣, ná ñand n ln 2j pD + D - ( ) [following equation (12)].We know already that the
synchronisation order parameter aá ñ∣ ∣ is zero until the critical value of ε, at which point it takes afinite value (for

Figure 4.Properties of synchronised and unsynchronised states. (a)Diagonal elements of the density operator, P n n nr= á ñ( ) ∣ ∣ , in the
limit of long times for the unsynchronised state (blue curves) and examples of synchronised states (black curves); the full (dashed)
curves are forR=0.02 (R=0.045). The synchronised states are obtained in the limit of long times for ε=1.06 (4.4) forR=0.02
(0.045), just above the transition at εc;1.057 (4.331). (b)Long-time values of some key quantities in the system across the
synchronisation transition. HereR=0.04 and the transition occurs at ε=εc;2.932. For ε<εc the system is always in the
unsynchronised state (which is independent of ε); for ε>εc the system reaches a synchronised state whose properties are weakly
dependent on ε.
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an appropriate choice of initial conditions) indicating (partial) phase synchronisation. The phase uncertainty
naturally drops at the transition point: it ismaximal for the unsynchronised state ln 2f pD = ( ) andmust be
lowerwhen a phase preference emerges. The conjugate variable, the average occupation number ná ñ, drops
significantly at the transition and the uncertainty in n goes up by a small amount. That a rise in number
uncertainty should accompany a drop in phase uncertainty is perhaps not surprising, given their conjugate
relationship, but the combined uncertainty in this case always remainswell above the lower bound for the
entropic uncertainties, ln 2p( ).What is interesting here is that the phase-ordering that occurs at the transition is
accompanied by number-disordering evenwhen the latter is not required to ensure that the uncertainty relation
is satisfied.

5.Dynamics ofmetastable decay

In this sectionwe look at the dynamics of the system just below the critical couplingwhere the system eventually
evolves to a single unsynchronised state, but the time it takes to reach that state can become extremely large.We
focus in particular on the question of how exactly the systemmakes its transition to the final unsychronised state.
Then in the next sectionwewill analyse theway inwhich the lifetime of the transient state scales with the
distance from the critical coupling.

For couplings just below εc, the order parameter exhibits a long period of very slow decay followed by an
abrupt drop in its value. Thefinal drop in r is accompanied by rapid changes in the number distribution of the
oscillator, which are clearly seen in the behaviour of nmp, the n value corresponding to the peak in the P(n)
distribution, as shown infigure 5(a). In contrast to the order parameter, the evolution of nmp is notmonotonic.
Instead it displays a kind of latching behaviour: as the value of r drops abruptly nmpfirst dips before rising again
to a value that is larger than its initial value.

Figure 5(a) also reveals an interesting dependence on the value ofR. As expected fromwhatwe saw of the
long-time steady states of the system (e.g.figure 4), for smaller limit cycles (i.e. larger values ofR)where the
quantumnoise is strong (and semiclassical descriptions provide a less accurate description of the system [13]),
the slow relaxation process involves a substantial readjustment of both the number and phase properties of the
system’s state. Indeed, for smaller limit-cycles the value of nmp goes through very large variations—actually
dropping to zero before growing again to a value larger than before. In contrast, for larger limit-cycles (smallerR
values) there is only amodest dip in nmp.

The drop and subsequent growth of nmp that occurs at the same time that r undergoes rapid decay isn’t
sensitive to the overall length of the decay time. Figure 5(b) shows that the variation of nmp during the final rapid
decay always takes the same form.

Figure 6 provides a detailed illustration of the latching dynamics during the final rapid decay of the transient
synchronised state. As the state decays, the number distribution P(n) initially broadens and its peak drops to zero
(for large enoughR). The distribution then narrows as its peakmoves to higher occupation numbers. The
Wigner function [49] (whichwe calculated numerically usingQuTiP [51]) provides additional information
about the phase during this transition. Throughout the slow decay stage it has a single well-defined peak centred
away from the origin which indicates that the systemhas a preferred phase. During the final rapid decay, the

Figure 5.Number and phase dynamics just below critical coupling. (a)Comparison of the dynamics of the order parameter r a= á ñ∣ ∣
(black curves) andmost probable number state nmp (blue curves)withR=0.045 andR=0.02 shown as full and dashed lines,
respectively (all quantities are normalised to their initial values). The coupling is ε=1.055 (4.325), just below the critical value
εc;1.057 (4.331) forR=0.02 (0.045) (b)Evolution of nmp for a range of couplings (ε=4.3, 4.32, 4.325, 4.329) just below
εc;4.331 forR=0.045. The initial state in each case is a coherent statewith eigenvalueα=5 (2.6) forR=0.02 (0.045).
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Wigner function peak becomes smeared out around a central dip. Finally, theWigner function reaches a limit-
cycle state with no phase preference—matching the steady state of an equivalent uncoupled vdP oscillator [13].

6. Critical scaling

The critical scaling of the relaxation time in a classical dynamical system just below a saddle-node bifurcation
(such as that described by the simple potentialmodel given by (6) and (7)) takes the universal form [35, 47]

t 1 , 13
c

be
e

µ -
⎛
⎝⎜

⎞
⎠⎟ ( )

with b=−0.5. To seewhether thismatches the behaviour of our vdP systemwe looked in detail at theway in
which the relaxation times of the order parameter growswith time as the coupling approaches the critical value.

Asfigure 7 shows, the critical scaling in the relaxation time of the vdP system for different values ofR is
indeed consistent with the predictions of the classical bifurcationmodel. Sincewe had no a priori knowledge of

Figure 6.Dynamics just below critical coupling. (a) Last stages of the decay in the order parameter r a= á ñ∣ ∣ (full line), the oscillating
real part of aá ñ is also shown (dashed line). (b)–(f)Photon number distribution, P(n), andWigner function (inset) for different times in
the decay, indicated in (a). HereR=0.04 and ε=2.9 (εc;2.932). Note that theWigner functions are positive throughoutwith
darker colours indicating larger values.
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the precise value of the critical coupling strengths, we obtained critical exponents by assuming the relation given
by (13).We then carried out linearfits for a range of choices of critical coupling,making no assumption about
the value of the exponent b. The values of εc used infigure 7 are those for which the best fits to the assumed
relationwere obtained and the corresponding critical exponents were almost exactly−0.5 in each case. Since the
relaxation behaviour forweak couplings is very different to that near the critical coupling (the relaxation time
actually decreases with increasing coupling), we carried out ourfits using only couplings for which the relaxation
timewas about at least as long as in theweak-coupling limit (the full circles infigure 7).

One very surprising feature of the dynamics is thewide range of couplingswhich seem to bewell-described
by (13). Typically, one expects critical scaling to apply in a rather narrow range around the critical point, but
figure 7 shows that it can extend over a substantial range of coupling strengths. Furthermore, this range seems to
increase withR, i.e. as the amplitude of the underlying limit-cycle gets smaller.

7. Conclusion anddiscussion

Wehave explored the synchronisation dynamics of amodel describing a large number of quantum vdP
oscillators with all-to-all couplings. Adopting a quantummean-field description, we carried out numerical
integrations of the resulting effective nonlinear quantummaster equation. For couplings above a critical value
the system evolves towards either a synchronised state or an unsynchronised state, depending on initial
conditions.We found that these states differ not just in their phase properties, but also in the properties of their
number distributions. In a sense the synchronisation transition can be thought of as involving both phase-
ordering and number-disordering: the synchronised state has awell-defined phase, but its number distribution
is always broader than that of the corresponding unsynchronised state which has aflat phase distribution.

We found that the dynamics of the system is rather richwith a number of interesting features. Just below the
critical coupling the system always evolves towards the unsynchronised state, but the time taken to reach it can
become extremely large. Looking at the dynamics of the slow relaxation process in detail we find that the system
displays an interesting ‘latching’ behaviour inwhich the average occupation number drops before rapidly rising
again as the system approaches the unsynchronised state. The relaxation time for couplings below the critical
value displays a scalingwhich is consistent with that predicted by a simple classicalmodel describing a system
undergoing a saddle-node bifurcation.However, in the regimewhere the occupation numbers of the system are
relatively small (and the behaviour is not well-described by semiclassicalmodels [13]), the scaling seems to apply
over an unexpectedly broad range of couplings below the critical value.

Althoughwe have focussed on a specific oscillatormodel involving vdP oscillators, we expect our results to
apply rather generally to quantum limit-cycle oscillators coupled via a simple coherent coupling. For example,
very similar results are found [52] formany-body synchronisation in an analogous oscillator systemwhich is
instead based on themicromaser [25].

Our findings also suggest some promising directions for futurework. It would be interesting to explore the
dynamics within the vicinity of phase transitions in other non-equilibriummany-body quantum systemswithin
themean-field approximation. It will also beworth investigating whether the dynamics is qualitatively similar in
models inwhich the quantummean-field approximation is relaxed (e.g. clustermean-field descriptions based
on plaquettes with two ormore oscillators [53]) or indeed in systems containing several rather thanmany

Figure 7.Critical scaling of the relaxation time, t. The results of numerical integrations are shown as filled circles or empty diamonds
for (a)R=0.045 (b)R=0.04. In each case, the line is a best-fit to the filled circles (seemain text for details). ForR=0.045 (0.04)we
obtained b=−0.4961 (−0.4946)with the best-fit provided by εc=4.3311949 (2.9316769). The numerical integrations used an
initial coherent state with eigenvalueα=2.6 (2.75) forR=0.045 (0.04) and twas defined as the time taken for r to drop below 0.005.
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oscillators (perhaps usingmodels based on spin-systemswhich naturally have amuch smaller state space
[30, 54]). Finally, the question of why the behaviour of themany-body vdP system can end up beingwell
described by critical scaling for awide range of parameters is surely worth pursuing.
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