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Abstract 
Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with 
Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a 
substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To 
overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) 
in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This 
shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). 
We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either 
Parkinson’s disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount 
of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic 
correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive 
correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk 
factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants. 
 
Keywords: dementia Lewy bodies, genetic variance, polygenic risk

Introduction 

Recent studies have highlighted the role of genetics in the common, but 

often underappreciated, form of dementia that is dementia with Lewy 

bodies (DLB). Associations with GBA, APOE and SNCA have all been 

reproducibly reported by independent groups (1–3), and a recent genome-

wide association study (GWAS) identified several risk and candidate 

variants associated with the disease (4). However, GWAS significant 

single nucleotide polymorphisms (SNPs) often explain only a small 

proportion of the total heritability estimated (usually from family-based 

studies) for a given trait, which results in the ‘missing heritability’ issue 

(5). One of the possible explanations for this issue is that all common 

SNPs, regardless of their association p-value, contribute to the 

heritability of complex traits (6–8). However, given that each individual 

associated marker explains only a small proportion of the genetic 

variation with little predictive power, methods have been developed to 

test disorder prediction by summarizing variation across many loci 

(regardless of association p-values) into quantitative scores. One such 

approach is the generation of polygenic risk scores (PRSs). PRSs have 

been successfully applied to Parkinson’s (PD) (9) and Alzheimer’s 

diseases (AD) (10) and their usefulness will continue to increase as 

discovery datasets are augmented.  

A separate, but related, concept is that of genetic correlation of traits. 

Here, what is estimated is the genetic covariance between traits that is 

tagged by common genome-wide SNPs (11). This allows us to identify 

pleiotropic effects between traits that might be unrelated by any other 

measurement. We have performed a preliminary study of genetic 

correlation between DLB and both PD and AD (12), however performing 

similar analyses with other (even apparently unrelated) traits might 

provide novel insights for the underlying pathobiology of disease and 

perhaps for treatments across diseases. 

The phenotypic variance of most complex human traits combines the 

genetic with the environmental variance (13). While the effects of the 

environment are difficult to ascertain given their complexity and lack of 

adequate measurements, we are able to determine the genetic variance 

more accurately. Classically, genetic variance has been partitioned into 

sources of variation due to additive, dominance and epistatic effects. 

Additive genetic variance (h2
SNP) relates to an allele’s independent effect 

on a phenotype; dominance variance (δ2
SNP) refers to the effect on a 

phenotype caused by interactions between alternative alleles at a specific 

locus; epistatic variance refers to the interaction between different alleles 

in different loci. Most available cohorts for studies of human biology and 

disease are still underpowered to identify epistatic events, however, 

additive and dominance variance can be estimated from standard 

genome-wide genotyping data (14).  

Here, using data from the first GWAS in DLB that included haplotype 

reference consortium (HRC)-imputed genotypes (15), we have estimated 

the total heritability of this disease. We used a method (GCTA-LDMS) 

that is unbiased regardless of the minor allele frequency (MAF) and 

linkage disequilibrium (LD) properties of variants and thus greatly 

improves on previous estimates (16). Since it has been suggested that 

heritability estimates may be inflated by non-additive variation (17), we 

have also estimated the dominance genetic variation in DLB. 

Additionally, to measure the proportion of variance explained by PRSs 

from PD and AD in a large DLB cohort, we measured the ability of PRS 

to discriminate case from control subjects. Lastly, to attempt to derive 

novel biological insights from unrelated traits, we have performed 
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pairwise genetic correlation analysis of DLB with 235 phenotypes, 

including cognitive, anthropometric and education traits. 

Results 

Quantifying the genetic heritability of DLB 

We applied the GREML-LDMS approach to estimate the proportion of 

phenotypic variance explained by the HRC-imputed variants for DLB. 

Results from this approach showed that imputed variants with R2 greater 

than or equal to 0.3 and frequency above 0.1% explained 59.9% (s.e.= 

2.1%; p=6.8x10-6) of phenotypic variance for DLB. Lower frequency 

variants explained a large proportion of the phenotypic variance in DLB. 

This pattern was maintained for the higher quality imputed variants as 

well (Figure 1, Supplementary Table 1). 

To determine if non-additive variance in DLB would explain a subset of 

the total disease heritability, we calculated the disease dominance 

variance as implemented in the tool GCTA-GREMLd. This method uses 

genome-wide data to estimate the additive and dominance genetic 

relationship matrices (GRMs) and fits both GRMs in a mixed linear 

model to estimate h2
SNP and δ2

SNP simultaneously. Our results suggest that 

DLB does not show significant dominance variance with an overall 

estimate δ2
SNP=-0.05 (s.e. = 0.02). 

Polygenic Prediction of Case-Control Status 

We applied the PRSs derived from AD and PD data to determine if these 

would discriminate between DLB and controls. The AD score explained 

1.33% of the variance (Nagelkerke’s pseudo-R2) and was highly 

significant (p = 5.8x10-31). Performing the same analysis while excluding 

the APOE locus brought the estimate down to 0.14%, while reaching only 

nominal significance. Using the PD polygenic risk score, we obtained an 

estimate of 0.37% of the variance in DLB being explained by that score, 

a result that was also significant (p=6.4x10-10). Interestingly, removing 

the GBA locus resulted in only a small reduction in the variance explained 

by the PD PRS (0.36%; p=1.23x10-9) at the best p-value threshold. 

The bar plots of DLB variance explained by the AD and PD polygenic 

risk scores are presented in Figure 2. As expected given these results, 

DLB cases had on average higher polygenic risk scores than control 

subjects for both PD and AD (Figure 3). 

Unbiased genetic correlation 

To test whether DLB has a shared genetic etiology with any of 235 other 

diseases or biomedical relevant traits, we used LD score regression as 

implemented in LDHub (http://ldsc.broadinstitute.org/ldhub/). This 

method estimates the degree to which genetic risk factors are shared 

between pairs of diseases or traits, although it should be noted that it does 

not inform regarding how this shared genetic etiology arises. We selected 

the correlations with a p-value <0.01 in DLB and tested these in AD and 

PD (Figure 4). 

 

Fig. 1. Estimate of the DLB variance explained by HRC-imputed 
variants by MAF and LD. Segmental LD score increases from the 1st to 
4th quartiles. Negative scores are not shown for simplicity but are present 
in Supplementary Table 1. The estimates of variance explained are from 
the GREML-LDMS analyses of fitting all the 24 genetic components 
simultaneously. 

Fig. 2. Proportion of variance of DLB case-control status explained by 
PRSs from AD (A), AD excluding the APOE locus (B), PD (C) and PD 
excluding the GBA locus (D). The bars represent PRSs calculated for 9 
subsets of markers at different p-value thresholds in the original GWAS 
publications. Best scores for each PRS are presented in (D). R2: 
Nagelkerke’s pseudo-R2; Threshold: P-value threshold in original GWAS. 
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The most significant correlation identified between DLB and each of the 

235 tested traits was with “Years of schooling” (18) reaching a p-value 

of 6.32x10-5 (Bonferroni corrected p-value=0.015) and a correlation 

estimate (rg) of 0.48 (s.e. = 0.12) (Table 1). Interestingly, these scores 

were found to be in the opposite direction in AD, but in the same direction 

in PD (AD: rg=-0.33, p-value=8.87x10-5; PD: rg=0.05, p-value=0.07) 

(Figure 4). A positive correlation was also obtained for “Childhood IQ” 

(19) in DLB and PD, whereas a negative correlation was identified in AD 

(DLB: 0.68, p-value=0.0009; AD: rg=-0.36, p-value=0.0011; PD: 

rg=0.25, p-value=0.0013). Similarly, “Intracranial volume” (20) 

presented a positive correlation with both DLB and PD, but no 

discernible correlation with AD (DLB: 0.69, p-value=0.0052; AD: rg=-

0.003, p-value=0.96; PD: rg=0.34, p-value=0.0005). Conversely, 

“Citrate” (21) was positively correlated with both DLB and AD, but had 

no correlation with PD (DLB: 0.82, p-value=0.0033; AD: rg=-0.21, p-

value=0.25; PD: rg=-0.05, p-value=0.63).  

 

Discussion 

With this study we provide more accurate estimates of genetic heritability 

for DLB, quantify the variance explained by AD and PD polygenic risk 

and estimate pleiotropy between DLB and over 200 diseases and 

biomedical relevant traits. 

Previous heritability estimates for DLB were calculated based on a 

smaller cohort genotyped at a relatively smaller number of sites and using 

GCTA’s GREML-SC (based on a single genetic relationship matrix). 

These earlier studies provided an estimate of 31% heritability for this 

disease (12). It is now recognised that GREML-SC may, under certain 

circumstances (such as causal variants being enriched in regions with 

higher or lower LD than average or if the causal variants had a different 

MAF spectrum than the variants sampled), be biased (16). Because of 

this, we used a recently developed approach that corrects for the LD bias 

in the estimated SNP-based heritability and that is unbiased regardless of 

the properties (e.g. MAF and LD) of the underlying causal variants 

(GCTA GREML-LDMS) (16). We applied this tool to a larger cohort, 

that was imputed with the most recent imputation panel, providing more 

detailed genetic information. Using this approach we estimated that all 

HRC-imputed variants with MAF >0.001 explained 59.9% (s.e= 2.1%) 

of phenotypic variance for DLB, which is nearly double the previous 

estimate (12). Our results also show that a large proportion of the variance 

is explained by variants with lower frequency (MAFs from 0.001 to 

0.01). Given that the current version of HRC allows for imputation of 

variants with frequencies as low as 0.0005 and aggregate R2 above 0.5 

(15), this indicates that performing GWAS in DLB with increased sample 

Fig. 3. Density distribution of polygenic risk scores (PRS) from AD 
and PD in DLB case and control subjects. The curves represent the 
standardized residuals of PRS after adjustment for the first 6 principal 
components. Blue indicates case subjects; orange indicates case 
subjects. 

Fig. 4. Correlation scores with p-value <0.01 in DLB. Shown are also the scores for those same traits in PD and AD. 
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sizes will allow us to identify novel loci involved in conferring risk for 

disease without the need for large-scale whole-genome sequencing. 

One of the explanations for the common issue of “missing heritability” is 

that non-additive heritability (such as dominance variance or epistatic 

variance) represents a substantial component of a trait’s total heritable 

genetic component. Our results suggest that dominance variance has a 

negligible effect on the genetic heritability of DLB, in line with findings 

from 79 unrelated traits (14). However, we cannot exclude that epistatic 

variance plays a role in DLB, given that our cohort is underpowered to 

detect epistatic events. 

Recently, there has been growing interest in the use of PRSs as a way to 

perform risk prediction in various diseases and these have successfully 

been applied to AD (10) and PD (9). To determine how much of the 

phenotypic variance in our DLB cohort can be caused by AD and PD 

known genetic risk factors, we used PRSs from recent GWAS from each 

of these diseases. In both cases scores were predictive of case-control 

status, although explaining only relatively small proportions of variance 

(0.37-1.33%). In AD, excluding the APOE locus greatly reduced the 

amount of variance explained in DLB (0.14%), which is in accordance 

with the strong effect that locus has in the risk of both diseases (4, 22). 

Conversely, excluding the GBA locus in PD had only a modest effect, 

which likely results from the lower frequency in the general population 

of the variants that comprised this signal compared to APOE. Since the 

amount of variance explained by each of the PRS is relatively small, this 

adds to the growing body of evidence that suggests that, genetically, DLB 

is a unique condition and not simply a mix of PD and AD risk factors. 

These data also confirm the polygenic nature of DLB as well as quantify 

the amount of variance that polygenic risk from each of those diseases 

accounts for in DLB. 

Given the large number of pleiotropic events that are being identified for 

a variety of diseases and traits (23, 24), finding correlated conditions 

opens the door to a better understanding of disease pathobiology and 

perhaps may even suggest novel therapeutic targets. Assessing the 

genetic correlation of DLB with over 200 diseases and traits showed 

correlations that were in the same direction of those seen in PD while 

others were in the same direction as in AD. It is interesting to note that 

education scores were positively correlated with DLB, while they have a 

well established negative correlation with AD (25, 26). Similar positive 

correlations have been identified for bipolar disorder and autism 

spectrum disorders (27), as well as for PD in the present data. Also in PD, 

there is evidence for the presence of increased intracranial volumes when 

compared to controls (28). Here, supporting those findings, we identify a 

positive genetic correlation between both PD and DLB with intracranial 

volume, whereas in AD no evidence for genetic correlation was 

identified. Interestingly, the anthropometric characteristics obesity, body 

mass index (BMI) and body fat were negatively correlated with all 3 

diseases. For BMI and PD, recent Mendelian randomization results have 

shown a negative effect (29) which our results replicate and suggest they 

extend to both AD and DLB. A similar finding was obtained for cancer 

traits, where lung cancer showed a general negative correlation with the 

three traits. This agrees with transcriptomic studies that showed that the 

cancer gene expression profile is almost an opposite mirror image to that 

of neurodegenerative disease (30). A positive correlation between both 

DLB and AD with citrate (21) was identified, although this was not the 

case for PD, where no evidence of correlation was found. Increased 

plasma levels of citrate have been shown to be associated with increased 

levels of oxidative stress (31), making it tempting to speculate that in AD 

and DLB oxidative stress may be involved in the neurodegenerative 

processes, while in PD it may be more akin to a consequence. 

Table 1. LDHub correlations with p-value <0.01.  
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We note several limitations in our study. First, the DLB dataset, despite 

being the largest to date, is relatively small when compared to other 

recently published GWAS. This has implications in the statistical power 

to make novel findings and is reflected in the standard errors of the 

analyses performed. We are underpowered to detect rare variants and 

certainly rare variants with small effect sizes. Second, we are unable to 

provide definitive biological mechanisms underlying the genetic 

correlations identified. This means that it is possible that for some of the 

correlations observed, what we are seeing are proxy effects and not direct 

correlations. Lastly, this study focused on individuals of European/North 

American descent. It is likely that studies of populations of different 

ancestries will reveal not only novel loci, but perhaps also novel 

pleiotropic effects, which could improve our understanding of the 

pathobiology of DLB. 

In summary, we provide updated estimates of the genetic heritability of 

DLB and show that dominance variance is not a substantial part of the 

heritability of this disease. We quantify the amount of phenotypic 

variance in DLB that can be attributed to PD and AD polygenic risk 

scores and show that this is relatively small. Lastly, we estimate genetic 

correlations between DLB and over 200 diseases and medically relevant 

traits, shedding light into the complex relationship between DLB and 

both PD and AD. 

 
 
Materials and Methods 

Sample description 

The DLB dataset was previously published (4) and is comprised of 1,216 

cases and 3,791 controls, imputed with HRC v1.1 and includes variants 

with minor allele frequency >= 0.001 and R2>=0.3, for a total number of 

18.4 million variants (median R2=0.92). We used AD summary statistics 

from the International Genomics of Alzheimer's Project (IGAP) (22), 

which is a large two-stage study based upon genome-wide association 

studies (GWAS) on individuals of European ancestry. In stage 1, IGAP 

used genotyped and imputed data on 7,055,881 single nucleotide 

polymorphisms (SNPs) to meta-analyse four previously-published 

GWAS datasets consisting of 17,008 Alzheimer's disease cases and 

37,154 controls (the European Alzheimer's disease Initiative – EADI the 

Alzheimer Disease Genetics Consortium – ADGC, the Cohorts for Heart 

and Aging Research in Genomic Epidemiology consortium – CHARGE, 

the Genetic and Environmental Risk in AD consortium – GERAD). PD 

summary statistics were derived from the International Parkinson’s 

Disease Genomics Consortium (IPDGC) previously published data and 

included 13,708 cases and 95,282 controls (32).  

DLB heritability estimates 

We used the GCTA-LDMS method to estimate heritability based on 

imputed data (16, 33) using an imputation quality above 0.3 and a disease 

prevalence of 0.1%. This method considers the LD-bias that occurs in the 

SNP-based estimates and is unbiased regardless of the properties of the 

underlying variants. We calculated segment-based LD scores using a 

segment length of 200kb (with 100kb overlap between two adjacent 

segments), which were used to stratify the SNPs into quartiles. We then 

estimated the genetic relationship matrix (GRM) for each sample using 

the SNPs in each quartile separately and further stratified by minor allele 

frequency bins (0.001-0.01, 0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5). 

Lastly, we performed restricted maximum likelihood (REML) analysis 

using the multiple GRMs. 

DLB dominance variance estimates 

To estimate the dominance GRM between pairs of individuals, we used 

genome-wide imputed SNPs as implemented in GCTA-GREMLd (14). 

This method calculates the additive and dominance GRMs and fits both 

GRMs in a mixed linear model to estimate additive and dominance 

variance simultaneously. 

PRS analyses 

Determining the polygenic risk of a given phenotype and applying it to 

another trait is an approach that allows to determine shared genetic 

aetiology between traits. We calculated PRSs on the base phenotypes (PD 

and AD), using GWAS summary statistics, and used these as predictors 

of the target phenotype (DLB) in a regression test. To construct and apply 

the PRSs we used PRSice v2.1 (34). We performed clumping on the 

target data by retaining the SNP with the smallest p-value from each LD 

block (excluding SNPs with r2 > 0.1 in 250kb windows). Each allele was 

weighted by its effect-size as estimated in the respective study (for PD 

and AD). Association of PRSs with case-control status was performed 

with logistic regression, and Nagelkerke’s pseudo-R2 was calculated to 

measure the proportion of variance explained. 

Genetic correlation analysis 

To estimate the genetic correlation between DLB and other complex 

traits and diseases, we used a method based on LD score regression and 
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implemented in the online web utility LDHub v1.9.0 (27, 35). The LD 

score regression method uses summary statistics from the DLB GWAS 

and the other available traits, calculates the cross-product of test statistics 

at each SNP, and then regresses the cross-product on the LD score. After 

identifying the most significant correlations for DLB (p<0.01), we 

estimated the correlation of those traits with PD and AD. 
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