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ABSTRACT

Plasmonic enhancement in organic photovoltaics (OPVs) has been extensively studied in the past

decade.   However,  the  improvements  in  power  conversion  efficiency  (PCE)  is  highly

inconsistent  in  literature  findings  due  to  poor  understanding  of  the  limitations  of  plasmonic

approach in OPVs. In this  work,  we address these long-standing uncharted questions  with a

model system consisting of PCPDTBT:PC61BM polymer active layer with silver nanostructures

embedded in the PEDOT: PSS hole transport layer. Our study demonstrates that  (i) plasmonic

enhancement is highly shape-dependent where Ag nanosphere incorporated OPVs show higher

PCE  than  Ag  nanocubes,  (ii)  plasmonic  enhancement is strongly  localized  within  the  hole

transport layer where PCE is primarily enhanced due to an increase in the exciton generation and

carrier collection efficiency, (iii) unlike common belief light absorption efficiency in the active

layer  has  minimal  impact  on  PCE  due  to  the  detrimental  light  blocking  effect  of  metal

nanostructures, and (iv) plasmonic enhancements are most pronounced when the charge carrier

mobility  of  the  electron  donor and electron  acceptor  materials  are  unbalanced  but  results  in

losses in OPVs with balanced charge transport.  The findings of our work provides a generalized

framework  to  guide  researchers  on  the  parameters  that  can  be  systematically  optimized  to

maximize plasmonic enhancement in OPVs as well as other solar devices.
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INTRODUCTION

Organic photovoltaics (OPVs) are an exciting solar technology due to their low cost of

solution processing, and amenability to large scale production enabled by their lightweight, small

footprint, and flexible architectures.1-3  Nonetheless, power conversion efficiency (PCE) of OPVs

remain  modest  relative  to  other  classes  of  emerging  PVs  such  as  perovskite  solar  cells

attributable  to  both  limited  spectral  absorption  and  poor  charge  transport.4-6  The  bulk

heterojunction (BHJ) architecture of OPVs is most effective for achieving high performance due

to the bicontinuous interpenetrating network between the donor the acceptor molecules in the

active  layers  driving  exciton  dissociation  and  carrier  transport.7-9 However  the  active  layer

thicknesses in BHJ OPVs is limited to ~150 nm to facilitate charge transport which inherently

limits  the total  light harvested in the layer.  In the past decade, the integration of plasmonic

nanostructures  both in  the active  layer  and the hole transport  layer (HTL) has demonstrated

tremendous improvements in OPVs.10-13  This has been primarily correlated to improved light

harvesting  via  radiative  enhancement  mechanisms  which  include  light  scattering  and

concentrated local electromagnetic fields.3,  10,  14  A few studies have also attributed plasmonic

enhancement to hot carrier injection,15 and coupling of plasmons with excitons in the organic

semiconductors.16-17  In our recent  work we showed increased light  absorption and enhanced

carrier generation in OPVs when shape-controlled metal nanostructures were positioned at the

interface of the active layer and HTL.18 These carriers localized at the interface allowed shorter

carrier diffusion length and rapid carrier collection in the plasmon enhanced OPVs.  Whereas a

range of morphological- and compositional-tunable metal nanostructures have been employed in

OPVs,11, 19-20 the improvements in PCE reported in the literature are often inconsistent from one

study  to  another.   This  is  attributed  to  the  lack  of  our  understanding  of  the  limitations  of
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plasmonic approach which includes the regimes where metallic nanostructures are ineffective or

result in losses in OPVs.  Further, the properties of the organic polymers, specifically the charge

mobilities, also play a role towards overall enhancements in presence of metal nanostructures. 

In  this  work,  we  address  these  uncharted  questions  by  investigating  the  optical  and

electronic effects of OPVs consisting of PCPDTBT:PC61BM (poly[2,6-(4,4-bis-(2-ethylhexyl)-

4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]:[6,6]-phenyl   C61

butyric acid methyl ester) active layer with either silver nanospheres (AgNS) or silver nanocubes

(AgNC)  integrated  into  the  PEDOT:PSS  (poly(3,4-ethylenedioxythiophene):  polystyrene

sulfonate)  HTL.   Plasmonic  enhancement  of  PCPDTBT:PCBM  based  OPVs  has  shown

improvement in PCE of devices and has been correlated to enhanced light capture in the visible

(450-650  nm)  where  PCPDTBT  has  poor  light  absorption.3,  21  The  objective  of  our

computational study is to use this model OPV system and establish a mechanistic understanding

that will guide experimentalists on the parameters that can be carefully optimized to achieve

plasmon  enhanced  OPVs  and  examine  the  regimes  where  metal  nanostructures  will  be

detrimental to device performance.  Here, we first studied how the shape of the Ag nanostructure

and the corresponding optical properties contribute to absorption enhancements. And second we

also studied how the carrier  mobilities  of PCPDTBT:PCBM active layer  directly  impact  the

efficiencies of plasmonic OPVs.10, 22-25  To demonstrate the impact of both optical and electronic

effects that arise in the presence of metal nanostructures, we combined two simulation regimes.

We first solved for the optical enhancements via plasmonic effects using finite difference time

domain (FDTD) electromagnetic simulations which numerically solves Maxwell’s Equations to

examine absorption profiles of the photovoltaic material.  We then used these electrodynamic

simulations  to  solve  for  the  electrical  behavior  of  the  solar  cell  using  the  general-purpose
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photovoltaic  device  model  (GPVDM)  which  solves  both  electron  and  hole  drift-diffusion

equations in position space to describe the movement of charge within a device.  The GPVDM

allows the carrier population to be resolved in both position and energy space which allows us to

examine recombination with balanced or unbalanced charge carriers. 

Whereas we chose to study a model OPV system here, this work provides simple design

rules that can be generalized to understand plasmonic enhancement in other polymer solar cells,

and broadly in a number of emerging thin-film PVs such as planar perovskite solar cells and

tandem solar cells.  This is leveraged by the use of both FDTD and GPVDM models which have

successfully  characterized  optical  and  electronic  behavior  in  a  range  of  organic  and

semiconductor devices.26-28  Further the carrier population characteristics investigated here can be

applied to other classes of optoelectronic devices such as photodetectors, field effect transistors,

and sensors where plasmonic nanostructures have improved detection limits.29-32  We anticipate

this work will allow researchers to manipulate and modulate various factors, such as the choice

of  the  semiconductor  material  and  the  plasmonic  nanostructure  morphology,  to  achieve  the

maximum possible PCE in OPVs and other optoelectronic devices.

Figure 1: (a)  Schematic of plasmon enhanced organic photovoltaics with Ag nanostructures
incorporated in the PEDOT:PSS hole transport layer.  (b) Simulation schematic of device where
perfectly  matched  layer  (PML)  boundary  conditions  (BC)  are  used  in  the  z-dimension  to
simulate an unbounded medium, and periodic BCs are used in the x and y dimensions.  
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RESULTS AND DISCUSSION 

In this study, we incorporated 50 nm diameter Ag nanospheres (AgNS) and 50 nm edge

length nanocubes (AgNC) in the PEDOT:PSS layer of OPVs with PCPDTBT:PCBM active layer

accompanied with a thin ZnO electron transport later and Al charge collector (Fig. 1a).  The

device structure consists of 150 nm ITO/60 nm PEDOT:PSS/100 nm PCPDTBT:PCBM/10 nm

ZnO/100 nm Al, which was chosen to match experimental device architecture reported in the

literature.10, 33  The simulation schematic is shown in figure 1b and a detailed description of the

simulation methods is provided in the Methods section. The utility of Ag nanostructures are ideal

for light  harvesting in OPVs due to  the low optical  losses of Ag in the visible,  the ease of

colloidal  synthesis  resulting  in  shape  and  size-  controlled  nanostructures,  and  Ag  plasmon

resonance  compliments  the  absorbance  of  PCPDTBT  enabling  broadband  light  absorption

(Figure  2).  By  comparing  two  different  Ag  nanostructure  morphologies,  we  studied  the

contributions of the absorption and scattering properties of each geometry (Fig. 2a) towards the

performance of the OPVs.  Note that  the scattering  cross section of both AgNS and AgNC

spectrally  overlaps with the region of poor absorption of PCPDTBT (Fig.  2b) and serves to

enhance the carrier generation in the active layer of the OPVs specifically in the vicinity of the

nanostructure.  The  different  morphologies  also  controls  the  ratio  of  light  scattered  to  light

absorbed.  Whereas AgNC have 1:1 ratio of scattering to absorption, AgNS have ~3:1 ratio; the

contribution  of  scattering  to  absorption directly  governs the light  absorbed in  the device.  In

addition to light harvesting, the exciton generation efficiency as well as the charge collection

efficiency are equally important towards overall PCE.  This can be understood by examining the

equation for the wavelength dependent external quantum efficiency (EQE) given by: 

EQE ( λ )=η|¿|×ηgen× ηcoll ¿ (1)
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where ηabs  is  the ratio  of absorbed light  to incident  light,  ηgen  is  the ratio  of photoexcited

excitons that are converted to free carriers, and ηcoll  is the ratio of the generated free carriers

that reach the electrode prior to recombination, and are collected after the final interface between

the active layer and the electrodes.3, 34-35  

Figure 2. a) Absorption and scattering profiles of 50 nm diameter AgNS and 50 nm edge length
AgNC which overlap with the low absorption area of the PCPDTBT polymer system. b) The
absorption spectrum of the active layer polymer PCPDTBT.

Therefore, to understand the impact of AgNS and AgNC on ηabs,  ηgen and ηcoll, we
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conducted  FDTD  optical  simulations  of  reference  and  nanostructure  embedded

PCDPTBT:PCBM OPVs.  Optical coefficients for the polymers and charge transport layers were

adapted from the literature.21, 36-37 We calculated the power absorbed (Pabs) by the active layer

using both AgNCs and AgNSs given by the equation, 

P
|¿|=ω E2 ε2¿

(2)

where  ω is the frequency,  E is the electric field calculated via FDTD, and ε2 is the imaginary

part of the dielectric constant of the polymer active layer.  We examined the fraction of light

absorbed by the active layer as a function of wavelength for the reference and plasmon enhanced

devices (Fig. 3a).  Our calculations show that the improvement in absorption via light harvesting

by the Ag nanostructures is both shape-dependent and wavelength-dependent.  The fraction of

light absorbed in the active layer improves for the AgNS in the 450-600 nm range where only a

small amount of light is being absorbed by the AgNS and significant amount of light is scattered

and harvested by the active layer.  The AgNS gives rise to a 4.6% improvement in light absorbed

in the visible (Fig.3a) relative to the reference device when integrated over the AM 1.5G solar

spectrum.   Whereas  we expected  that  AgNC would  result  in  a  larger  enhancement  in  light

absorption given the strong local electric fields in the edges and corners of AgNC, to our surprise

AgNC compromises light harvesting in the active layer by 16.6% throughout the visible region.

This is attributable to the high absorption cross section of AgNC relative to scattering implying

that incident photons are absorbed by the metal before reaching the active layer.  
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Figure 3: (a) The fraction of incident light that is absorbed as a function of wavelength for the 
reference and plasmon enhanced devices. Spatially varying exciton generation rate at the (b) 
maximum and (c) minimum for devices incorporating AgNS and AgNC. The x-axis represents 
the location in the active layer where 0 being close to the hole transport layer and 100 being 
close to the electron transport layer. 
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Whereas it is counter-intuitive that an overall reduction in ηabs through the active layer

can result in improved device performance, the high electric field concentrations surrounding the

metal  nanostructures  enhance ηgen and ηcoll as shown in figure 3b-c.  The incorporation  of

plasmonic nanostructures into the HTL of an OPV creates a distortion of the active layer in three

dimensions  i.e.  light  absorption  rate  is  not  homogeneous  in  the  planar  dimension.   This

nonhomogeneous absorption rate gives rise to spatially variable exciton generation rate which

peaks  near  the  nanostructure  surface  where  local  field  effects  are  strongest.   In  order  to

investigate the effect of field concentration on the performance of our OPV system near the

interface of active layer/HTL, we considered the photon absorption in discrete spatial regions.

Using the assumption that each absorbed photon translated to a single exciton, we calculated the

generation rate by dividing the power absorbed (Pabs) by the energy per photon and integrating

over the AM 1.5G solar spectrum.  The resulting carrier generation rates in figure 3b-c are given

as a function of the depth of the active layer where 0 nm corresponds to the bottom of the active

layer near the HTL, and 100 nm corresponds to the top of the active layer far from the embedded

nanostructures.  The maximum generation rates (Fig. 3b) are localized within 25 nm distance

near the HTL where the nanostructures are embedded, and are clearly shape-dependent.  Due to

the intense electric fields localized at the edges and corners of AgNC, ηgen is high within the

electric  field decay length,  but beyond 25 nm AgNCs have a  detrimental  effect.  AgNS also

improve  generate  rate  within  ~20  nm  and  have  minimal  impact  on  the  overall  device

performance beyond that.  The minimum generation rates (Fig. 3c) indicates that away from the

HTL/active  layer  interface,  the  presence  of  the  nanostructures  decreases  exciton  generation

through the bulk of the active layer when compared to the reference device.  
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To further understand the localized effect of the plasmonic nanostructures, we examined

the spatially dependent electric field enhancement in the devices at  a wavelength of 500 nm

using FDTD simulations (Figure 4).  The cross sections of the active layer where the electric

field is normalized to the reference device bisecting the nanostructures is shown in Figure 4a-b.

The AgNS and AgNC are in the HTL and the active layer is  discretized into three sections

labeled “close,” “mid,”, and “far,” in reference to their distance from the nanostructures.  The E-

field profiles show that both nanostructures have forward scattering into the active layer, which

is more pronounced for the AgNS relative to AgNC.  Further, the spatially dependent average

electric field intensity of the nanostructures is up to 20× the incident field but localized within 20

nm of the active layer/HTL interface.  Next we calculated the absorption enhancement in the

active layer (Figure 4c-d) for the plasmon enhanced devices normalized to the reference device

for the spatial sections of the active layer.  Whereas AgNS significantly improves the absorption

in the region of the active layer closest to the HTL, farther away from the HTL interface the

presence of AgNS has detrimental  effect  on light  absorbed by the active  layer.   The AgNC

results in overall decreased absorption (absorption enhancement < 1) for all spatial sections of

the active layer since much of the light is absorbed by the AgNC with minimal light scattered

into the active layer.  
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Figure 4: Field profiles in the hole transfer layer and active layer for devices containing a) 
AgNS and b) AgNC normalized to the reference device at λ = 500 nm. The corresponding 
absorption enhancement normalized to the reference device for the spatial sections of the active 
layer illustrated in (a) – (b) for devices with c) AgNS and d) AgNC.

Next, to understand the effect of ηabs and ηgen in the active layer and how that

impacts the device efficiencies of OPVs, we performed electrical simulations and calculated the

spatially  variant  PCE  through  the  active  layer  normalized  to  the  reference  device  with

GPVDM.38-39  We  simulated  two  scenarios:  PCDPTBT:PCBM  OPV  with  balanced  charge

carriers (hole mobility = electron mobility) and an OPV with unbalanced charge carrier that is

“hole-limited” (hole mobility << electron mobility).21, 24,  40-41  When a generation rate profile is

input into GPVDM, the model uses the finite difference method to solve electron and hole drift

diffusion  equations  as  well  as  the  carrier  continuity  equations  to  describe  the  movement  of

charges in the device in one dimension. Recombination is taken into account by Langevin (free

carrier)  recombination,  as  well  as  Shockley-Read-Hall  (free-to-trap)  recombination.42-43  The
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overall  current-potential  scans for the balanced and unbalanced charge mobilities  (Fig.  5a,b)

shows that  hole-limited reference OPVs perform poorly (2.60%) relative to those with balanced

carriers  (4.83%).   Interestingly,  a  significant  improvement  in  PCE  is  observed  when  the

plasmonic nanostructures are integrated in hole-limited OPVs resulting in 9.9% increase in PCE

with AgNS and 9.1% increase with AgNC.  However, devices with balanced charge carriers

show minimal improvements in PCE with plasmonic nanostructures.  AgNS resulted in a 2.9%

increase in PCE whereas AgNC decreased the PCE by -7.9% relative to reference OPVs. The

drop in  PCE calculated  in  the  AgNC device  is  correlated  to  the  drastic  decrease  in  exciton

generation rate in the bulk of the active layer (see Figure 3c).  We also simulated a spatial map of

the PCE in the vicinity of the nanostructures (Fig. 5c-f) which show the localization of high PCE

overlaps with the areas of strong electric field concentration and reflects the trends observed in

the J-V curves.  Note that the spatial profile shown for AgNS is a nanosphere viewed from the

top with near-field enhancements concentrated within a localized area. 

Overall  this  study  provides  a  simplistic  overview  of  how  the  choice  of  the  metal

nanostructure employed and the properties of the active material can considerably impact the

observed  increase  or  decrease  in  solar  cell  performance.    First  we  observe  that  plasmonic

enhancement  is  shape-dependent,  and  whereas  non-spherical  geometries  have  shown  higher

enhancements  in  OPVs, our  simulations  show the stronger scattering  cross-section of  AgNS

compliments the spectral region where PCPDTBT:PCBM poorly absorbs and improves fraction

of  light  absorbed  in  the  active  layer  relative  to  AgNC.   Second  our  simulations  show the

detrimental light blocking effect of metal nanostructures diminishes the overall ηabs in the active

layer where the presence of AgNS and AgNC decreases the overall  absorption by 2.3% and

16.6% respectively.  Third our electric field profiles shows that the intense  light concentration
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near the HTL/active layer interface where the plasmonic nanostructures are localized improves

ηgen and ηcoll since majority of the excitons in the plasmon enhanced OPVs now have a short

carrier diffusion length enabling carrier to be collected before the detrimental effect of charge

trapping in BHJ OPVs.44-45  And fourth, plasmonic enhancement is most effective in OPVs where

the polymer system has unbalanced charge carriers such as hole-limited or electron-limited (not

shown here).  During experiments, unbalanced carriers may arise from human errors during the

fabrication and processing techniques, or use of low molecular weight polymers which can result

in poor-performing reference OPVs.  OPVs with balanced carrier mobilities will have minimal

impact or even undesirable losses from plasmonic nansotructures. 

Figure 5. Current-Voltage scans of reference and plasmonic devices with polymer systems that
have  a)  balanced  carrier  mobilities  and  b)  unbalanced  charge  carriers  with  a  hole  carrier
minority.  Power  conversion  efficiency  map  normalized  to  the  reference  PCE  for  balanced
carriers with c) AgNS, and d) AgNC, and for hole minority carrier with e) AgNS and f) AgNC. 
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CONCLUSIONS 

In summary,  in  this  work we show that  improved power conversion  efficiency of  plasmon-

enhanced organic photovoltaics is strongly dependent on the metal nanostructure geometry and

the  resulting  scattering  cross-section.   Further,  we  emphasize  that  when  plasmonic

nanostructures are embedded in the hole transport layer, the observed optical enhancement may

not necessarily result from improved light capture in the active layer, but rather comes from field

intensity  modulation  near  the  interface  of  active  layer/hole  transport  layer.  In  addition,

incorporation of plasmonic nanostructures is effectively only useful in OPVs with unbalanced

charge carrier mobility, for example when hole mobility << electron mobility, a phenomenon

that has not been previously understood in the literature.  Our study provides simple design rules

that researchers can straightforwardly apply to fabricate plasmonic OPVs by designing metal

nanostructures with strong forward scattering optimized for the spectral regions where the active

layer organic polymer poorly absorbs, and understand the regimes where metal nanostructures

will be ineffective or will result in losses.  Our simulation approach can ultimately be scaled to

enable broad screening of polymers and nanostructure geometries for efficient device design.

This  work  can  also  be  extended  to  plasmonic  enhancement  in  a  range  of  thin-film  and

mesoporous solar cells,46-48 as well as other solar energy conversion devices,49-50 and localized

plasmon resonance sensors.51

SIMULATION METHODS

Optical Simulations: Absorption and scattering are calculated in Lumerical FDTD solutions

using the total-field scattered-field (TFSF) incident light source. The function of the TFSF source
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is to inject a source frequency (in this case a pulse spanning the 350-800 nm frequency range)

into a specific simulation volume where it interacts with a nanostructure. The injected incident

field is then removed outside the TFSF boundaries, allowing a simple energy balance to measure

the absorption and scattering cross sections. Periodic boundary conditions are used in the lateral

direction, as they provide a feasible route to realistic large scale simulations of thin film PVs. It

has  been shown in other  thin  film systems  that  periodic  results  approximate  the  real  world

system  where  more  disorder  is  often  present.52-53 Perfectly  matched  layer  (PML)  absorbing

boundary conditions are used in the z-dimension to simulate dissipation into free space (i.e. to

avoid  internal  reflections  which  introduce  error  into  the  simulation).  Upon  simulation

convergence, the electric field concentration in the active layer is recorded - this can be used to

compute the spatially variant generation rate which can then be imported into an electrical solver

to simulate solar cell performance under real world conditions.  

Electrical  Simulations: Electrical  simulations  were  carried  out  using  the  General  Purpose

Photovoltaic Device Model (GPVDM).39 GPVDM uses a finite difference approach to solve both

electron and hole drift-diffusion equations to describe the movement of charge within the device.

At each mesh point in position space, a set of carrier trapping and escape equations are solved in

energy  space  where  excitonic  recombination  can  occur  via  a  free-to-free  Langevin  type

recombination or by free-to-trap Shockley-Read-Hall type recombination. Therefore, GPVDM

allows the carrier population to be resolved in both position and energy space. Generation rates

from FDTD optical simulation were imported directly into GPVDM. For balanced devices, the

electron  and  hole  mobility  were  set  to  110-5  m2V-1s-1,  and  for  the  unbalanced  devices  the

electron and hole mobilities were set to 110-5  m2V-1s-1 and 110-8  m2V-1s-1, respectively. For

plasmonics devices, individual simulations were conducted for different carrier generation rates
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associated with various spatial positioning, the results were spatially averaged to compute the

electrical properties.
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