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Abstract 

The most common method for Additive Manufacturing (AM) of polymers is melt extrusion, 

which normally requires several pre-processing steps to compound and extrude filament 

feedstock, resulting in an overall long melt residency time. Consequently a typical melt 

extrusion-based AM process is time/cost consuming, and limited in the availability of 

materials that can be processed. Polyvinyl alcohol (PVOH) is one of the heat-sensitive 

polymers demonstrating a thermal decomposition temperature overlapping its processing 

window. This study proposed to use a pellet-fed material extrusion technique to directly 

process PVOH granules without the necessity of using any pre-processing steps. The 

approach essentially combined compounding, extrusion and AM, allowing multi-material 

printing with minimum exposure to heat during the process. The processing parameters were 

determined via thermal and rheological characterisation of PVOH. Effects of processing 

temperature and time on the thermal decomposition of PVOH were demonstrated, which 

further affected the tensile properties and solubility. An increase in Young’s modulus, stress 

at 2% strain, and Ultimate Tensile Stress were 98±4%, 40±5%, and 20±2%, respectively, was 

observed when PVOH residency time was reduced from 25min to 14min. The pellet-fed 
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material extrusion technology demonstrated good 3D printability, multi-material printing 

capability, and great versatility in processing polymer melts. 
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1. Introduction 

Polyvinyl alcohol (PVOH) is a linear synthetic polymer prepared by partial or full hydrolysis 

of polyvinyl acetate (PVA), polymerised from vinyl acetate. Partial hydrolysis essentially 

results in a copolymer of PVOH and PVA (Figure 1). The small amount of residual acetate 

groups weaken the inter- and intra-molecular hydrogen bonding of adjacent hydroxyl groups, 

thus allowing the material to be dissolved in water [1]. Due to its water solubility, non-

toxicity, and biodegradability, PVOH has been used for a wide range of applications, 

including food packaging, medical devices, drug delivery, paper coating and consumer goods 

[2-5]. However, it is often processed using solvent casting instead of a more versatile and 

economically favoured melt-processing method due to a concern over its thermal 

decomposition [6, 7]. The thermal decomposition of PVOH starts with the elimination of 

hydroxyl groups at a temperature close to the melting point (Tm), which is between 180-

240 °C, depending on the hydrolysis level, degree of crystallinity, and additives in the 

compound [6, 8]. The elimination of the hydroxyl pendant group is also time-dependent. A 

33 wt% loss for PVOH was reported after a four-day isothermal experiment at 195 °C [9]. 

Therefore, a short residency time, and ideally minimum manufacturing steps, are necessary to 

melt process PVOH. 

Recently, partially hydrolysed PVOH has also been used as a water-soluble support material 

or a binding additive to facilitate Additive Manufacturing (AM) processes. AM or Three-

Dimensional Printing (3DP) includes a series of manufacturing technologies to build 3D 

objects from a computer-aided design (CAD) model via layer-by-layer fabrication. PVOH 

was used as an efficient additive to bind with aqueous liquid and subsequently provided 
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sufficient binding strength to bioceramic powders [10-12]. It was also used as a removable 

mould for indirect material extrusion fabrication [13]. Direct AM fabrication using PVOH 

has focused on controlled delivery of actives for pharmaceutical and laundry applications 

using either piezoelectric inkjet printing [14, 15] or material extrusion [16-17]. Due to the 

restriction in ink viscosity, piezoelectric inkjet printing is usually used in printing multilayer 

film structures with a thickness in the micrometre range [14]. Material extrusion can be used 

to build a 3D part via extruding a thermoplastic-based filament through a hot printhead and 

subsequently depositing the melt in layer-by-layer. Studies have attempted to control the 

thermal decomposition of PVOH by using a lower liquefier temperature or incorporating 

lubricants to decrease the melt temperature (Tm) [18, 19]. Nevertheless, the material is 

subjected to a three-step melt process including 1) mixing of different compounds, 2) 

extruding filament feedstock and 3) material extrusion. This extended processing results in a 

long residency time and excessive thermal decomposition of PVOH. 

To address this issue, a pellet-fed material extrusion system has been developed and used 

combining AM with a conventional single-screw extrusion [20]. Pellet materials can be 

processed directly using this technology. Therefore, the residual time of polymer melt is 

significantly reduced as pre-processes to compound and extrude filament are not required. It 

is an ideal technology to process heat-sensitive polymers or materials that are difficult to 

extrude into filament with a consistent diameter. Additionally, this technology allows co-

processing of multiple materials at different and variable rates fed into the extruder to 

fabricate a compositionally heterogeneous structure. Commercially available pellet-fed 

material extrusion systems include 3DDiscoveryTM (regenHU, Switzerland) – focused on 

biomaterials, Gigabot X (re:3D Inc., US), ATLASTM (Titan Robotics, US) and BAAM 

(Cincinnati, US). However, these have emerged onto the market within the time-frame of this 

research. The vast majority of material extrusion system are still using filament feedstock. 

The aim of this study is to propose an AM technology that is more appropriate for processing 

heat-sensitive material, in particular PVOH. Four objectives are involved in this study in 

order to reach the aim, including (1) designing and constructing a pellet-fed material 

extrusion that is capable of tuning the processing residency time; (2) determining the 

processing conditions for PVOH via material characterisations using thermal and rheological 

testing; (3) demonstrating 3D printing capability including dimensional accuracy, interface 
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coalescence, and compound mixing; and (4) characterising the effects of residency time on 

the performance of PVOH structures. 

2. Methodology 

2.1. Design and Construction of the Direct-Feed Material Extrusion 

A preliminary study has developed a vertical single-screw extruder with a size that can fit 

inside a typical desktop material extrusion AM machine (shown schematically in Figure 2) 

[20]. It has four feeding ports at different heights along the barrel to provide a wide range of 

residency times. Two heaters are located inside the barrel to raise the processing temperature. 

Polymer melt is sheared by the screw, conveyed through the nozzle into a hot printhead, and 

eventually deposited onto a substrate or previously printed structure. Screw rotational speed 

is controlled by the stepper motor, which determines the depositional speed of the material. 

The extruder is integrated with a commercial 3D printing platform (Touch 3D, Cubify, US) to 

enable controlled 3D movement and controlled deposition to generate 3D objects according 

to the CAD design. 

The Touch 3D platform was modified to replace the printing unit with the new extruder to 

enable pellet-fed material extrusion (Figure 3). The printbed integrated into the equipment 

was capable of heating up to 110°C to allow better adhesion of the first layer of material. A 

temperature controller receives an input from a thermocouple located close to the nozzle, and 

an output to cartridge heaters. Ceramic insulating plates were used to reduce thermal 

radiation and conduction to heat-sensitive components, such as the stepper motor and 

bearings, by creating gaps between them and the heated barrel. A titanium screw was 

manufactured using laser-Powder Bed Fusion (EOS M270, EOS GmbH, Germany) with the 

following configuration: shaft diameter = 12 mm, shaft length = 206.24 mm, flight depth = 

1.5 mm, flight thickness = 1 mm, and flight distance = 14.93 mm. A small flight depth and a 

large flight distance was designed to (1) minimise the amount of materials required to fill the 

free space in the barrel; and also to (2) avoid extensive heat generated during the process due 

to shearing. In this study, PVOH was fed into the extruder using the lowest port to reduce 

thermal residence time. The effective area on the screw was polished using SiC paper to 

minimise material adhesion to the screw during melt processing.  

2.2. Thermal and Rheological Characterisation 
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Thermal and rheological properties of a commercial PVOH compound used in this study 

were characterised to determine the extruder and liquefier temperatures. The compound was 

based on a partially hydrolysed PVOH grade with a hydrolysis level of 86.5-89.0%. The 

number average molecular weight (Mn) of PVOH was 23,810 and the polydispersity was 

1.75, determined by gel permeation chromatography (GPC). The PVOH compound was in 

powder form. Differential Scanning Calorimetry (DSC) analysis of PVOH was made using a 

DSC1 Star System (Mettler Toledo, Switzerland) under flowing N2. A sample of 

approximately 6 mg was sealed in an aluminium pan and heated from 25 °C to 225 °C at a 

heating rate of 10 °C/min. The DSC measurements were repeated three times. 

Thermo-Gravimetric Analysis (TGA) was carried out using Mettler Toledo TGA1-STARe 

(Mettler Toledo, Switzerland). Each PVOH sample of approximately 10 mg was loaded in an 

aluminium pan and heated from 25 °C to 450 °C at a heating rate of 10 °C/min under flowing 

N2. The onset thermal decomposition temperature was determined from the mass loss curve. 

Samples were also tested under isothermal conditions for 15 min heating at 200, 225, and 

250 °C in order to assess the effect of time on the thermal decomposition of PVOH at various 

temperatures, and providing insight into residency-related thermal decomposition. 

Oscillatory melt rheology was carried out using a Thermo-Haake MARS III rotational 

rheometer (Thermo Fisher Scientific, United State). Measurements were performed in an 

oscillatory shear mode using a parallel plate geometer (15 mm ) with 1 mm gap. Frequency 

sweeps from 0.1 Hz to 100 Hz were carried out at temperatures ranging from 180 °C to 210 

°C. Shear stress was set at 2 Pa, predetermined from the linear viscoelastic limit of the 

material under test.  

2.3. Additive Manufacturing and Characterisation 

A complex 3D structure was designed to combine a variety of feature types including walls, 

holes, incremented stairs, and spherical surfaces, and similar to a structure used in a 

benchmark report [21]. The structure was manufactured from PVOH using the pellet-fed 

material extrusion system. Based on the thermal and rheological results, the extrusion and 

liquefier temperatures were set at 178 °C and 200 °C, respectively. Extrusion motor speed 

(70 rpm) was determined after preliminary trial runs to ensure that the deposition speed 

coincided with the head movement speed to provide consistent deposited polymer tracks of 
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0.5 mm height (layer thickness). Printing accuracy was determined by evaluating and 

comparing the feature size with the CAD design. 

The ability to print multi-material was demonstrated via co-feeding and subsequently printing 

PVOH with a fluorescent whitening agent (FWA), which can be characterised quantitatively 

to reveal the compositional distribution [22]. FWA was at 1wt.% and without any pre-mixing. 

A simple rod-shaped sample (4 mm  x 20 mm height) was printed using the above-

mentioned processing parameters. The printed sample was sectioned longitudinally into small 

samples, each of which was subsequently dissolved in deionised water at 0.63 x 10-2 g/ml. 

Each prepared sample was characterised using UV-vis (Cary 60, Agilent Technologies, US) 

and fluorescence spectroscopy at an excitation wavelength of 312 nm (FP-6500, Jasco, UK). 

The same processing and characterisation was performed on PVOH without incorporation of 

FWA additive. 

Sample morphology was imaged using a Zeiss Sigma Field Emission Scanning Electron 

Microscopy (SEM) (Carl Zeiss AG, Germany), operating with a 5-10 kV accelerating 

voltage. The imaged structure was mounted on an aluminium stub using a cold cure resin 

(Extec Corp, Enfield, CT 06083-1258, US), allowed to cure for 24±2 h and subsequently 

gold-coated using a sputter chamber prior to SEM examination. 

The effects of melt residency time on the chemical groups, tensile properties, and solubility 

was investigated by feeding PVOH at the two lowest ports on the extruder, resulting in two 

different melt residency times of 14 min and 25 min when a sample was printed at a 0.5mm 

layer thickness (70 rpm extruder motor speed). The melt residency time was determined 

based on the volume within the conveyance system from the feeding port to the liquefier 

nozzle, and the volumetric depositional speed.  

Tensile testing of PVOH samples processed under different residency times was carried out 

using an Instron 4465 tensile machine (Instron, United State) with a 5kN load cell, according 

to ISO 527-1:1996. Five samples were tested for each residency time. Samples were printed 

with a total length of 75 mm, a gauge length of 25 mm, and a thickness of 2 mm and tested 

using a 2 mm/min crosshead speed until failure. Young’s modulus was determined from the 

slope of the initial linear region of the stress-strain curve up to 2 % strain. Stress at 2 % 

strain, strain at break and ultimate tensile strength were also determined from the stress-strain 

curve.  
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Fourier-transform infrared spectroscopy (FTIR) spectra were obtained on a Perkin-Elmer 

Paragon 1000PC spectrometer (Perkin-Elmer, United State) using a 800-3800 cm-1 

wavenumber range, with 4 cm-1 resolution and each spectrum averaged over 16 scans. The 

spectra of three specimens were collected for each sample pre-processed under different 

residency times and using the PVOH raw material as the control sample. 

Rectangular samples (35mm x 20mm x 1mm) were also printed with different melt residency 

times and subsequently immersed in 20 ml of deionised/distilled water at room temperature 

(20±2 °C) with magnetic stirring applied at 3500 rpm. The times at which each specimen 

initially started to distort and when completely dissolved were recorded. Five specimens were 

tested for each residency time. 

2.4. Statistical Analysis 

SPSS13.0 software (SPSS, USA) was used to analyse the data. One-way Analysis of 

Variance (ANOVA) with post-hoc Bonferroni correction was used to calculate statistical 

significance between tested groups, based on normal probability tests. A p-value less than 

0.05 denoted significance.  

3. Results and Discussion 

3.1. Processing Parameter Determination 

It is well documented that at 240°C PVOH starts to eliminate acetaldehyde, unsaturated 

aldehydes and ketones, benzene and benzene derivatives as products of decomposition [23]. 

However, water is pre-released below 240°C as a result of elimination of hydroxyl pendant 

group, which overlaps the processing temperature of PVOH, making this material highly 

sensitive to thermal processing. Therefore, a comprehensive investigation of its thermal and 

rheological properties was carried out to determine appropriate parameters to process PVOH 

in the pellet-fed material extrusion system. 

The PVOH used in this study was found to have a crystalline melting point, Tm, of 178±1 °C 

and a glass transition, Tg, of 56±1 °C (Figure 4). The area of the crystalline melting peak was 

used to deduce the degree of crystallinity based on a heat of fusion value (ΔHf = 6.87 kJ/mol) 

from literature [24]. It was then calculated that the degree of crystallinity was 17±2 %. The 

DSC result suggested a processing temperature above 178°C was necessary to melt the 

PVOH. 
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Both non-isothermal and isothermal TGA were carried out to reveal effects of temperature 

and time on the thermal decomposition of PVOH. The non-isothermal TGA demonstrated a 

major mass loss occurring at an extrapolated onset temperature of 286 °C, which can be 

related to the breakdown of the polymer backbone (Figure 5 a). Additionally, a 7.8 % mass 

loss was observed prior to the major decomposition, consistent with previous studies 

indicating that pendant groups were eliminated at a lower temperature. Samples subjected to 

isothermal TGA at different temperatures demonstrated different degrees of decomposition. 

Following first order kinetics, samples decomposed up to 0.56 %, 1.63 %, and 7.23 %, 

respectively, for 15 min heat treatment at 200 °C, 225 °C, and 250 °C (Figure 5 b). A yellow 

residual was received after isothermal TGA at 250 °C, which did not occur for the other 

residuals, suggesting no backbone breakdown occurring at 200 °C and 225 °C. Therefore, all 

the mass loss found at lower temperatures was solely related to hydroxyl group elimination. 

Degradation was therefore found to be both temperature and time dependent. Therefore, 

processing PVOH using a lower temperature and short residency time would be required to 

minimise thermal decomposition.  

An oscillatory rheological analysis was carried out to further investigate the rheological 

behaviour of PVOH at different temperatures. The complex viscosity decreased when the 

frequency or the temperature increased (Figure 6 a). This was due to the disentanglement 

and increased mobility of molecular chains at higher shear rates and temperatures. A 

significant decrease in the viscosity was observed at 200 °C and 210 °C. The viscoelastic 

behaviour of the polymer was indicated by the change in storage modulus G’ and loss 

modulus G’’. Both G’ and G’’ increased with the increase in shear frequency up to 60Hz and 

then G’’ decreased (Figure 6 b). PVOH exhibited a more liquid-like (viscous) behaviour at 

lower shear frequencies with G’’ higher than G’; at higher shear frequencies it became more 

solid-like (elastic). Viscosity of polymers is both temperature and shear rate dependent. For a 

typical material extrusion process, polymer melt is subjected initially to relatively low shear 

rates, followed by high shear rates (100-200 s-1) when extruded through the nozzle [25]. 

However, high shear rate should also be expected in the extrusion for the pellet-fed material 

extrusion process. PVOH demonstrated a shear-thinning behaviour as the complex viscosity 

reduced significant at high shear rate favouring the process. 

Based on the thermal and rheological results, the extrusion temperature was determined to be 

178 °C. This extrusion temperature will ensure PVOH being highly molten whilst without 
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being exposed extensively to heat. Despite a relatively high melt viscosity at 178 °C, screw 

shearing provided by the stepper motor should be sufficient to convey PVOH melt towards 

the liquefier. However, a higher temperature (200 °C) was selected in the liquefier due to (1) 

no screw shearing force applied to this region; and (2) a high pressure drop at the nozzle. 

Rheology results demonstrated a significant drop in the melt viscosity at 200 °C, which 

would facilitate depositing PVOH out of the nozzle.  

3.2. 3D Printing Capability 

Following the determination of the processing temperatures, the printing speed was calibrated 

to correlate with the screw rotational speed so as to ensure a precise control of the material 

deposition. The 3D printability was demonstrated by printing out a complex structure 

designed to comprise different features (Figure 7). The printed structure accurately 

represented its CAD design including details such as thin walls, holes with different 

diameters, a ball structure and incremented steps both horizontally and vertically layered on 

the side of the structure. Slight increases in the dimensions of wall thickness and step distance 

compared to the design specification were observed due to die swell. This is a normal 

phenomenon found when processing polymer melt from a small die orifice. Due to the same 

reason, the diameters of the holes were smaller than the design specification. Note that the 

structure was printed using 0.5mm layer thickness to minimise the melt residency time. 

Printing accuracy can be improved by using smaller layer thickness. Following this trial 

printing, different structures were designed and all had been successfully manufactured from 

PVOH using the pellet-fed material extrusion. The pellet-fed material extrusion demonstrated 

an excellent 3D printing capability to manufacture various structures in heat sensitive PVOH 

without a pre-processing step to produce thermoplastic filament.  

Another advantage of pellet-fed material extrusion is to co-process and mix multiple 

materials with a controlled ratio during the process. This was demonstrated by co-processing 

PVOH with FWA and subsequently characterising the fluorescence effects of different 

segments of the printed samples.  A strong UV-vis absorption peak between 300 nm and 450 

nm was observed for all the segments from the sample containing 1 wt.% FWA additive 

(Figure 8 a), corresponding to the π- π* transition in planar conjugated system [26]. 

Additionally, the fluorescence emission spectrum showed a strong peak at 439 nm for the 

PVOH sample with FWA additive (Figure 8 b). The light absorption in the UV region and 

re-emission at a higher wavelength demonstrated a fluorescence effect as a result of co-
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feeding FWA with PVOH into the printer. The fluorescence effect was observed by eye when 

the sample was exposed to UV light. This effect was exhibited on all fragments acquired 

from the printed sample. The absorption and emission peak intensity for different fragments 

was 1.35±0.08 and 190±10, respectively. The peak intensity was quantitatively affected by 

the amount of FWA in each fragment [22]. Small deviation of the data demonstrated 

homogeneous mixing of multiple materials during the printing process. Therefore, an 

additional process to pre-mix compounds was therefore unnecessary. The PVOH sample 

without FWA did not show the same peaks on either the absorption or emission spectra 

(Figures 8a and 8b).  

The SEM images demonstrated a good inter-filament coalescence due to a deep penetration 

of polymer melt into the interface (Figure 9). The interface thickness and strength was 

determined by the extent of molecular chain penetration and the subsequent re-entanglement. 

However, one of the main drawbacks of hot-melt material extrusion AM is that structures are 

mechanically weak in the interfaces (1) between layers and (2) between neighbouring 

filaments within a layer due to the layer-by-layer printing pattern. Therefore, a deep interface 

penetration demonstrated in this study was beneficial to improve the overall quality of the 

printed structure. Further improvement in interlayered coalescence may be achieved by using 

a higher liquefier temperature or a lower molecular weight PVOH [27]. However, it is 

beyond the scope of this study. 

3.3. Effects of Residency Time on PVOH 

The material processed using pellet-fed material extrusion can have different residency time 

via feeding through different ports (or through using a different extrusion motor rpm to obtain 

different layer thicknesses). The decrease in peak intensity of the infrared band at 3450 cm-1 

(O-H) demonstrated a more significant thermal decomposition of PVOH when the residency 

time increased from 14 min to 25 min (Figure 10). This confirms that the elimination of the 

hydroxyl group was affected by the duration of PVOH thermal exposure. The loss in the 

intensity of the O-H infrared peak has been reported to follow a first order rate in response to 

the residency time [9]. 

Thermal decomposition also resulted in significant (p<0.05) decrease in tensile properties 

when the residency time increased from 14 min to 25 min (Figure 11). It is postulated that 

the elimination of pendant groups reduced the rigidity of molecular chains, allowing 
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disentanglement to occur more easily under external forces. Additionally, there was no 

significant difference (p>0.05) in the strain at break, indicating no breakdown in the 

backbone chain for samples heated under 25 min residency time. No distinct necking was 

observed from the tensile curves indicating the decrease in the cross-sectional area of PVOH 

samples was not by a greater proportion than the material strain hardened. 

Due to the presence of the hydroxyl pendant group, most PVOH grades are soluble in water 

via the hydrogen bond formation between polymer and water molecules. Therefore, excessive 

elimination of the hydroxyl group may result in a loss in water solubility. PVOH processed 

under short residency time started to disintegrate from 4 min of immersion in the water bath, 

slightly earlier than the sample processed under long residency time (approx. 6 min). 

Nevertheless, both samples dissolved completely before 9 min of immersion, demonstrating 

good water solubility (Figure 12).  

There may be a lack of direct comparison between this one-step melt process and the multi-

step melt process as the material was not processed using traditional extrusion-based 3D 

printing. Notwithstanding this limitation, this study has showed the benefits of using a one-

step melt process to manufacture PVOH, ensuring minimum loss in its mechanical properties 

and water solubility. The pellet-fed material extrusion combines compounding, filament 

extrusion, and 3D printing, and therefore, is an ideal AM technique to manufacture PVOH 

components. Multi-material printing with controlled feeding rates allows precise 

incorporation of laundry, agricultural, pharmaceutical, or medical active ingredients into 

PVOH with a pre-designed structure. The outcome of this study contributes to the continuous 

development of AM demonstrating a robust technique to improve the functionality of 

formulations and increase their potential applications. 

4. Conclusion 

This study has proposed to use a pellet-fed material extrusion technique to process heat-

sensitive materials. This technique successfully requires only one melt processing techniques 

and therefore elegantly solves several major limitations of the current hot-melt AM 

techniques, such as found in traditional material extrusion. A great variety and combination 

of materials can be processed using this technique, creating more application opportunities 

using AM as the manufacturing tool. Multi-material printing was demonstrated by feeding 

PVOH with an additive at different rates and building a structure with composition 
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homogeneously distributed. PVOH materials used in this study demonstrated Tm of 178°C, 

thermal decomposition temperature over 225°C, and a significant reduction in viscosity from 

200°C. Based on the thermal properties, the extrusion and liquefier temperatures were set at 

178°C and 200°C, respectively. The pellet-fed material extrusion allowed PVOH to be 

processed with reduced exposure to heat and therefore retain most of its functionality. 

Young’s modulus, stress at 2 % strain, and stress at break increased significantly when 

PVOH was subjected to a short residency time (14 min) compared to a long residency time 

(25 min). Additionally, this technique demonstrated good 3D printing capability allowing 

formulations to be fabricated to well-designed structures with highly complex functionality to 

meet with the requirements of various applications. Potential future work is recommended to 

investigate the capability of using the screw-based extrusion to construct 3D geometries with 

a variable and controllable composition, which has always been a major limitation of 

extrusion-based 3D printing.  
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Figure 1: Structure of patially hydrolysed PVOH. 
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Figure 2: Schematic of the pellet-fed material extrusion system developed in this study. Barrel, 

liquefier and their connecting tube were displaced in section view to expose their interior 

construction. 
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Figure 3: Modification of a FDM machine: (a) the original 3D Touch FDM machine; (b) pellet-

fed material extrusion machine, modified from the 3D Touch; (c) the barrel and multiple 

feeding ports; (d) a stepper motor controlling the rotational speed of screw; (e) the printhead 

connected to the extruder; and (f) the single screw.   
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Figure 4: DSC thermogram for a heating curve of PVOH in nitrogen atmosphere from 25°C 

to 225°C at a heating rate of 10°C/min. 
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Figure 5: TGA curves for PVOH in nitrogen atmosphere under dynamic and isothermal 

conditions: (a) from 25°C to 450°C at a heating rate of 10°C/min; and (b) 15min heating at 

200, 225, and 250°C. 
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Figure 6: Oscillatory rheology for PVOH: (a) plots of complex viscosity versus log frequency 

at different temperatures; and (b) plots of storage modulus (G’) and loss modulus (G’’) versus 

log frequency at 200°C.  
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Figure 7. (a) Front and (b) side views of a printed PVOH structure comprising different 

features to demonstrate the 3D printability of the direct-feed FDM. Scale bar = 10mm. 
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Figure 8: (a) UV-vis absorption spectra and (b) fluorescence emission spectra of different 

segments from the structure co-printed from PVOH and 1wt.% FWA. Spectra of PVOH 

without addition of FWA are also presented. The absorption and emission peak intensity for 

different segments of a structure containing FWA and PVOH was listed with mean±SD, 

compared with that for a structure containing only PVOH. 
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Figure 9: SEM images of PVOH surface manufactured using pellet-feed material extrusion at 

low magnification of x100 and magnified view of the black rectangular (x1000). 
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Figure 10: FTIR spectrum of PVOH subjected to residency times of 14 minutes and 25 minutes 

under the AM process of pellet-feed material extrusion, compared to the control sample (0 

residency time). 
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 Value at 14 min residency 

time (mean±SD) 

Value at 25 min residency 

time (mean±SD) 

Decrease in 

mean value (%) 

Young’s modulus 1.8±0.2 GPa *** 0.9±0.2 GPa 49 

Stress at 2% strain 18±1 MPa ** 13±3MPa 29 

Stress at break 21.3±0.3 MPa ** 18±3 MPa 16 

Strain at break 5±1 % 6±2 % -17 

Figure 11: Tensile properties of the PVOH (mean ± SD) and difference in mean values (%) 

when subjected to residency times of 14 minutes and 25 minutes. ** p<0.05 and *** p<0.001, 

indicating a significant difference between 14min and 25min residency time. The stress-vs.-

strain curves of one sample from each residency time were plotted as examples. 
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Figure 12: Water solubility tests of PVOH subjected to residency times of 14 minutes and 25 

minutes under the AM process of pellet-feed material extrusion. 
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