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Abstract
We study non-negative travelling wave solutions, u ≡ U(x − ct) with con-
stant wavespeed c > 0, of the cubic nonlocal Fisher-KPP equation in one spa-
tial dimension, namely, ∂u

∂t = ∂2u
∂x2 + u2

{
1 − 1

λ

∫∞
−∞φ

( y−x
λ

)
u(y, t)dy

}
, for (x, t) ∈

R× R+, where u(x, t) is the population density. Here φ(y) is a prescribed,
piecewise continuous, symmetric, nonnegative and nontrivial, integrable ker-
nel, which is nonincreasing for y > 0, has a finite derivative as y → 0+ and is
normalised so that

∫∞
−∞φ(y)dy = 1. The parameter λ is the ratio of the length-

scale of the kernel to the diffusion lengthscale. The quadratic version of the
equation, with reaction term u(1 − φ∗u), has a unique travelling wave solution
(up to translation) for all c � cmin = 2. This minimum wavespeed is deter-
mined locally in the region where u � 1, (Berestycki et al 2009 Nonlinearity
22 2813–44). For the cubic equation, we find that a minimum wavespeed also
exists, but that the numerical value of the minimum wavespeed is determined
globally, just as it is for the local version of the equation, (Billingham and
Needham 1991 Dynam. Stabil. Syst. 6 33–49). We also consider the asymp-
totic solution in the limit of a spatially-localised kernel, λ � 1, for which the
travelling wave solutions are close to those of the cubic Fisher-KPP equation,
ut = uxx + u2(1 − u). We find that when φ = o(y−3) as y →∞, the minimum
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wavespeed is 1√
2
+ O(λ4), but that when φ = O(y−n) with 1 < n � 3, the min-

imum wavespeed is 1√
2
+ O(λ2(n−1)). In each case we determine the correction

terms. We also compare these asymptotic solutions to numerical solutions and
find excellent agreement for some specific choices of kernel.

Keywords: nonlocal reaction diffusion equation, travelling wave solution,
asymptotic solution

Mathematics Subject Classification numbers: 35K57, 35B40, 35G20, 35C07,
65M06.

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlocal reaction–diffusion equations arise in many different scientific areas (see, for
example, [3, 4]). The most studied of these is the nonlocal Fisher-KPP equation (NLFKPP)

∂u
∂t

=
∂2u
∂x2

+ u

{
1 − 1

λ

∫ ∞

−∞
φ

(
y − x
λ

)
u(y, t)dy

}
. (1)

As shown in [1], this has permanent form travelling wave solutions for all wavespeeds greater
than or equal to two, with this minimum wavespeed fixed by the behaviour of the solution
when u � 1. The linearisation of (1) when u � 1 is the same as that of the local Fisher-KPP
equation,

∂u
∂t

=
∂2u
∂x2

+ u(1 − u), (2)

and the minimum wavespeed exists for the same reason, namely that no strictly positive trav-
elling wave solutions exist for wavespeed less than two. A more general form of nonlocal
reaction diffusion equation is

∂u
∂t

=
∂2u
∂x2

+ uα

{
1 − 1

λ

∫ ∞

−∞
φ

(
y − x
λ

)
uβ(y, t)dy

}
− γu, (3)

withα � 1, β � 1 and γ > 0, which is discussed in detail in [3], and a derivation for population
modelling is given based on a kinetic transport formulation. The same equation can be used to
model other phenomena, such as cell migration and cancer growth, see [5] wherein there is an
extensive discussion of the use of nonlocal models in biology (for example [6–8]). It is clear
from the discussion given in [3] that when γ = 0, the choice of α, β and the kernel φ(y) all
strongly affect both the form and speed of travelling waves generated in initial value problems,
as well as the existence of solutions that blow up in finite time.

In this paper, we study travelling wave solutions of the cubic NLFKPP ((3) with α = 2,
β = 1, γ = 0), which combines generic reaction degeneracy at low concentration with classical
nonlocal effects, namely

∂u
∂t

=
∂2u
∂x2

+ u2

{
1 − 1

λ

∫ ∞

−∞
φ

(
y − x
λ

)
u(y, t)dy

}
, (4)

for (x, t) ∈ R× R+. This is the simplest and most natural example to study from the family
of equations given by (3) with a source term that is nonlinear when u � 1. A variant of this
system, actually (3) with α = 2 and β = 1, is studied in [9], where some results related to
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(4) are discussed. We study (4) with a prescribed kernel φ(y) that is piecewise continuous,
symmetric, nonnegative and nontrivial, integrable and nonincreasing for y > 0, has a finite
derivative as y → 0+ and is normalised so that∫ ∞

−∞
φ(y)dy = 1. (5)

The parameter λ is the ratio of the nonlocal lengthscale associated with the kernel to the dif-
fusive lengthscale. Since we will mainly be interested in the limit λ→ 0, it is useful to make
the simple change of variable y 	→ x + λy, so that (4) becomes

∂u
∂t

=
∂2u
∂x2

+ u2

{
1 −

∫ ∞

−∞
φ(y) u (x + λy, t) dy

}
. (6)

In this form it is clear that when λ = 0, (6) reduces to the local cubic Fisher-KPP equation,

∂u
∂t

=
∂2u
∂x2

+ u2(1 − u). (7)

Apart from the applications described above, this equation arises naturally in chemical reaction
theory in modelling cubic autocatalysis, in which two molecules of a substance are required
to catalyse its production through A + 2B → 3B and the law of mass action applies, [2].
Equation (6) is a natural nonlocal extension.

Since the reaction terms in equations (4) to (7) have a nonlinear dependence on u, there is a
sense in which they are all degenerate, since a linear perturbation would fundamentally affect
the form of their solutions, or from another point of view, they represent bifurcation points in
an extended system of equations. An example of this is the bistable nonlocal system

∂u
∂t

=
∂2u
∂x2

+ u (u − θ)

{
1 −

∫ ∞

−∞
φ(y) u (x + λy, t) dy

}
, (8)

which is studied in [10] for 0 < θ < 1. In this case there is a unique (up to translation)
wavespeed and travelling wave solution. When θ = 0, we recover (6) for which there is a unique
exponentially-decaying travelling wave solution along with a family of algebraically-decaying
travelling wave solutions, as discussed below. For θ < 0, we would expect a one-parameter
family of exponentially-decaying travelling wave solutions with wavespeed c � 2

√
−θ, since

the reaction term is qualitatively-similar to the quadratic NLFKPP equation, (1), although this
has not to our knowledge been studied. A different unfolding, at least of the local equation (7),
is provided by various versions of the Allen–Cahn equation, for example,

∂u
∂t

=
∂2u
∂x2

+ μ− bu + au3 − u5, (9)

[11]. Through the addition of more structure to the reaction term, this allows an even wider
range of wavefront solutions to exist, with (7) as a bifurcation point. Including nonlocal effects
in (9) would be an interesting extension.

We consider general kernels as described above, and for which, in addition, the decay at
long range satisfies the weak restriction,

φ(y) � Ay−n as y →∞, (10)

for some n > 1 and A > 0. The theory presented in sections 2 and 3 addresses the situation for
such kernels in considerable generality. Typical kernels in this class are, for example, φ(y) =
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Φ1(y) ≡ 1
2 e−|y| and φ(y) = Φ∞(y) ≡ 1

2
√
π

e−
1
4 y2

([12] gives a rationale for this notation) and
φ(y) = χn(y), with

χn(y) ≡ Γ
(

1
2 n
)

√
2nπΓ

(
1
2 n − 1

2

)(1 +
y2

2n

)− 1
2 n

for n > 1. (11)

Note that χn(y) ∼ Φ∞(y) as n →∞ when |y| = o(
√

n). This family of algebraically-decaying
kernels is of particular interest, because we will find that the rate of decay of the kernel as
y →∞ determines the size of the correction to the minimum wavespeed of the cubic local
Fisher-KPP equation (corresponding to λ = 0) when 0 < λ � 1. This correction is of O(λ4)
for n � 3 and of O(λ2(n−1)) for 1 < n � 3. Another kernel of interest is the top hat kernel,

φ(y) = ΦH(y) ≡

⎧⎨
⎩1 for |y| � 1

2
,

0 otherwise,
(12)

which has been discussed in [13]. Unlike the other kernels mentioned above, this kernel leads
to the uniform steady state u = 1 of (6) being unstable, and we will discuss this further below.

To study permanent form travelling wave solutions of (6) we define a travelling wave coor-
dinate z = x − ct, where c > 0 is a constant wavespeed to be determined. We seek a solution
u(x, t) = U(z), so that

U′′ + cU′ + U2

{
1 −

∫ ∞

−∞
φ(y) U (z + λy) dy

}
= 0, (13)

with z ∈ R and where a prime denotes d/dz. This nonlocal ordinary differential equation is to
be solved subject to the conditions

U � 0, z ∈ R, (14)

U → 1 as z →−∞, (15)

U → 0 as z →∞. (16)

When λ = 0, (13) becomes the ordinary differential equation

U′′ + cU′ + U2(1 − U) = 0, (17)

which was the subject of [2]. In [2] we showed that there is a minimum wavespeed cmin = 1√
2

such that a unique (up to translation) solution of (17) exists for all c � cmin. Moreover, the
minimum speed travelling wave is given analytically by

U = Umin(z) ≡ 1
1 + ecminz

, (18)

which decays exponentially fast as z →∞. For c > cmin the permanent form travelling wave
solution has U ∼ c/z as z →∞. The existence of these two possible types of behaviour ahead
of the wavefront, where 0 < U � 1, can be deduced from a local analysis, but the minimum
wavespeed is determined by the global behaviour of the solutions of (17) in the phase plane.
This is in contrast to the quadratic Fisher-KPP equation, for which the minimum wavespeed
is determined by the local behaviour of the solution as z →∞, where 0 < U � 1. We also
note that all travelling wave solutions of the quadratic and cubic Fisher-KPP equations are
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monotonically decreasing for c > 0. This is not the case for the nonlocal versions of these
equations (see [1, 12] and below).

In section 2 we will show that, consistent with the above result for λ = 0, there exists a
minimum wavespeed cmin(λ) > 0 for each λ > 0. Specifically, we establish that the positive
quadrant of the (λ, c) parameter space contains the open region A = {(λ, c) ∈ R+ × R+ : c >
cmin(λ)} where, at each point (λ, c), there exists a travelling wave solution (and its translates)
with U(z; c,λ) ∼ c/z as z →∞, whilst for each (λ, c) ∈ A\A there exists a unique travelling
wave solution (up to translation) with U(z; c,λ) = O(e−cz) as z →∞. We have not seen any
numerical evidence which indicates that there are any travelling wave solutions at any other
points (λ, c) ∈ R+ × R+ other than those identified above, as is the case for the local problem,
λ = 0.

In section 3 we examine the asymptotic solution of (13) to (16) when λ � 1, in other words,
when the nonlocal interaction occurs over a small lengthscale and the travelling wave solutions
are close to those of the local cubic Fisher-KPP equation. This confirms that an exponentially-
decaying travelling wave solution only exists at c = cmin(λ) forλ sufficiently small. In section 4
we describe a numerical method to find the exponentially-decaying travelling wave solution of
(13) to (16) and compare this with the asymptotic solution for λ � 1.

2. General theory

In this section we consider, for a given D > 0, at which wavespeeds c > 0 there exists a per-
manent form travelling wave. The approach will be focused in the phase plane of the nonlocal
equation (13). We note that, although the phase plane does not have all the key properties that
the corresponding phase plane for a similar local equation would have, it remains a useful set-
ting to study this nonlocal variant. We begin with some preliminary results, which establish
qualitative features, and, moreover, then combine to enable us to establish the main result,
given in (R11). For this purpose it is convenient to introduce into equation (13) the scaled
coordinate

ξ =
√

Dz, (19)

with
√

D ≡ 1/λ. Equation (13) then becomes, with now U = U(ξ)

DUξξ + vUξ + U2

{
1 −

∫ ∞

−∞
φ(y) U (ξ + y) dy

}
= 0, ξ ∈ R, (20)

and v now being the scaled wavespeed,

v =
√

Dc. (21)

As discussed in the introduction, we will restrict attention in this section to symmetric ker-
nels that are piecewise differentiable (and so bounded), integrable, nonincreasing on (0,∞)
and nontrivial. Our intention is to focus on kernels characterised by a single lengthscale that
represent intraspecies competition (by being nonnegative) for which the degree of competition
decreases with separation. Other choices of kernel, for example, kernel functions that increase
with separation for some ranges of separation, kernels that become negative (representing
cooperation instead of competition) and asymmetric kernels (representing some asymmetry
in the underlying system being modelled) may have a significant effect on the nature of the
solutions, even for λ � 1. Our intention in the present paper is to focus on, in our view, the
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simplest possible family of kernels that extend the quadratic and cubic Fisher-KPP equations
to have nonlocal competition.

A permanent form travelling wave solution with wavespeed v > 0, which we henceforth
refer to as a PTW, is a solution to (20) that satisfies the conditions

U(ξ) →
{

1 as ξ →−∞,

0 as ξ →∞
(22)

U(ξ) � 0 ∀ ξ ∈ R. (23)

To begin with, we first consider solutions to the nonlinear, nonlocal ordinary differential
equation (NLODE) (20) that have |U|, |Uξ | � 1 with ξ  1. This is most readily achieved
by examining the form of (20) in the (U, Uξ) phase plane, local to the equilibrium point at
(U, Uξ) = (0, 0). The form of (20) close to (0, 0) is

DUξξ + vUξ + U2 = 0 for ξ  1, (24)

and we remark that this leading order form has reduced to a local, nonlinear form that is the
same as that which characterises the behaviour for U � 1 in the local form of the equation (7).
The structure of solutions to (24), in an open disc centred at (0, 0) with sufficiently small radius,
can be achieved rigorously via the centre manifold theorem (see for example [14, p 154]). The
analysis of (24) establishes the existence of a stable manifold at (0, 0) (corresponding to local
eigenvalue μ = −v) which has structure

Uξ(U) ∼ −vU (SM) (25)

with |U| � min(1, v−1), and a centre manifold at (0, 0) (corresponding to local eigenvalue
μ = 0) which has structure

Uξ(U) ∼ −U2

v
(CM) (26)

with |U| � min(1, v). The local phase portrait is then constructed in the form illustrated in
figures 1(a)–(c). Figure 1(a) shows the phase portrait when v = 0, a degenerate case in which
no phase paths with U > 0 asymptote to (0, 0) as ξ →∞. In figure 1(b) v is small enough that
the stable manifold of (0, 0), shown as a broken line, enters the region Uξ > 0. In figure 1(c) v
is large enough that the stable manifold of (0, 0) has Uξ < 0 globally.

We are now able to make the following observations.

(R1) There exists δ > 0 (and small) such that, when v ∈ [0, δ], then every solution
(U(ξ), Uξ(ξ)) of ODE (24), and hence of NLODE (20), that has (U(ξ), Uξ(ξ)) → (0, 0)
as ξ →∞, corresponds to a phase path in figures 1(a) or (b), when v = 0 or v ∈ (0, δ]
respectively, and so cannot remain non-negative.

(R2) At each v = v0 > 0, each solution (U(ξ, v0), Uξ(ξ, v0)) of NLODE (20) that remains
bounded away from (0, 0) as ξ →∞, also remains bounded away from (0, 0) as ξ →∞
for each v in a sufficiently small neighbourhood of v = v0. This is a consequence of
continuous dependence of solutions to (20) on v at v = v0, together with the structure
of the phase portraits shown in figure 1.

(R3) At each v = v0 > 0, any solution (U(ξ, v0), Uξ(ξ, v0)) that has ξ0 ∈ R such that
U(ξ0, v0) < 0 has a corresponding ξv ∈ R such that U(ξv , v) < 0 for each v in a suf-
ficiently small neighbourhood of v = v0. This, again, is a consequence of continuous
dependence of solutions to (20) on v at v = v0.
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Figure 1. The local phase portrait for (20) in the (U, Uξ) phase plane when D = 1, cal-
culated from (24) using ‘ode45’ in Matlab for (a) v = 0, (b) v = 1 and (c) v = 5. The
stable and centre manifolds of (0, 0) are shown as broken blue and dot-dashed green
lines, respectively.

It is now straightforward to establish that solutions to NLODE (20) with v > 0, say
(U(ξ, v), Uξ(ξ, v)) that have (U(ξ, v), Uξ(ξ, v)) → (0, 0) as ξ →∞ are (via the linearisation and
centre manifold theorems) given by, via (25) and (26),

(U(ξ, v), Uξ(ξ, v)) ∼
(

Av
(Aξ + 1)

+ B e−vξ,− A2v

(Aξ + 1)2
− Bv e−vξ

)
(27)

as ξ →∞. Here A and B are two free, real constants, with

A � 0 (28)

and

B �= 0 when A = 0. (29)
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There are three possibilities, namely:

• A = 0, B �= 0—gives the solution (and its translations in ξ) corresponding to the local
stable manifold at (0, 0).

• A > 0, B = 0—gives the solution (and its translations in ξ) corresponding to the local
centre manifold at (0, 0).

• A > 0, B �= 0—gives the solutions (and their translations in ξ) corresponding to phase
paths that enter (0, 0) asymptotic to the local centre manifold (in the half plane U > 0) at
(0, 0).

The next preliminary is to consider solutions to NLODE (20) that, in the (U, Uξ) phase
plane, have (U(ξ, v), Uξ(ξ, v)) → (1, 0) as ξ →−∞. The local solutions satisfy the linearised
approximation

DŪξξ + vŪξ −
∫ ∞

−∞
φ(y)Ū(ξ + y)dy = 0 for (−ξ)  1, (30)

with Ū = U − 1. This is justified by the linearisation theorem (see, for example, [15]). We
observe that here the local behaviour is linear, but retains a nonlocal term, unlike the corre-
sponding approximation local to (0, 0). The existence and nature of solutions to (30) that have

Ū(ξ), Ūξ(ξ) → 0 as ξ →−∞, (31)

can be examined by considering solutions to the global, linear, nonlocal problem

DŪξξ + vŪξ −
∫ ∞

−∞
φ(y)Ū(ξ + y)dy = δ(ξ), for ξ ∈ R, (32)

Ū(ξ), Ūξ(ξ) → 0 as |ξ| →∞, (33)

with δ : R→ R being the usual Dirac delta function, and

Ū ∈ C2
(
R\{0}

)
∩ C(R) ∩ L1(R). (34)

The problem (32) to (34) can be analysed directly via Fourier theory. With φ : R→ R as dis-
cussed earlier, it is readily established that the solution to (32) to (34) is uniquely determined
as

Ū(ξ, v) = − 1
2π

∫ ∞

−∞

(
Dk2 + ikv + φ̂(k)

)−1
e−ikξ dk (35)

for all (ξ, v) ∈ R× R+. Here φ̂ : Ω→ C, with Ω ⊆ C being a suitable complex domain, is the
Fourier transform of φ : R→ R, given by

φ̂(k) =
∫ ∞

−∞
φ(s)eiks ds, (36)

for all k ∈ Ω. We remark that R ⊆ Ω. In addition, we observe that

φ̂∗(k) = φ̂(−k∗) ∀ k ∈ Ω, (37)

φ̂(k) = φ̂(−k) ∀ k ∈ R, (38)

using the properties of φ. It follows from (38) that

φ̂(k) ∈ R ∀ k ∈ R, (39)
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with

φ̂(0) = 1 (40)

and

φ̂(k) = o(k−1) as |k| →∞ in R. (41)

Moreover, φ̂ ∈ C(Ω) ∩ L∞(Ω). On using (36) to (41) in (35) it is readily established that

Ū ∈ C2,0(R− × R
+), (42)

as required. It is a direct consequence of the Riemann–Lebesgue lemma, with (36) to (41),
that, as required,

Ū(ξ, v), Ūξ(ξ, v) → 0 as ξ →−∞ (43)

at each v ∈ R+. We write

Ū(ξ, v) ∼ Ū−∞(ξ, v) as ξ →−∞ (44)

at each v ∈ R+, noting that Ū−∞(·, v) will depend continuously on v ∈ R+. We observe
directly from (35) with (36) to (41) that we may take

Ū−∞(ξ, v) ∼ −v−1 ev
−1ξ as v →∞, (45)

with (−ξ)  v. In general, when v = O(1)+, the structural form of Ū−∞(ξ, v) will depend
upon the decay rate and regularity of φ(ξ). We are able to conclude that, for each v > 0, there
exists an unstable manifold for NLODE (20) at the equilibrium point (1, 0) (not necessarily
the only one), which has the parametric form, in the (U, Uξ) phase plane,

(U, Uξ) ∼
(
1 + Ū−∞(ξ, v), Ū′

−∞(ξ, v)
)

as ξ →−∞, (46)

with v ∈ R+ fixed. This unstable manifold deforms continuously with v ∈ R+ and, in partic-
ular, has the form

Uξ ∼ v−1(U − 1) as U → 1, (47)

with v  1, via (45).
The question we now wish to address is, for which values of v > 0 (if any) does the specific

unstable manifold at (1, 0) identified above in (46) (we note that the nonlocal term may give
rise to further stable manifolds at the equilibrium point (1, 0), and possibly a countably infinite
number; however, for the specific argument we develop below, we choose only to focus on
that stable manifold which has been identified above) connect to the stable manifold or is
asymptotic to the centre manifold, at (0, 0), with the corresponding phase path remaining in the
right half plane, in the (U, Uξ) phase plane. For convenience, we now introduce the following
terminology. We denote the phase path of NLODE (20) that leaves the equilibrium point (1, 0)
on the unstable manifold (46) as S(v). When S(v) remains in the right half plane and connects
with the stable manifold at (0, 0), we refer to this as a PTW of type E. Alternatively, when S(v)
remains in the right half plane and connects to a phase path asymptotic to the centre manifold
at (0, 0), we refer to this as a PTW of type A. When neither of these two cases pertain, we
say that S(v) is a non PTW path. Roughly speaking, in what follows we will use continuous
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dependence of the specific stable manifold S(v) on v to establish that if a PTW connection
exists at a given v, then this connection persists in an interval containing this value of v. We can
then examine the nature of this interval. Finally, the existence of such an interval is established
by demonstrating constructively that indeed, for all v sufficiently large, the stable manifold
S(v) does indeed form a PTW connection.

We now have the following results:

(R4) There is a δ > 0 (which may depend upon D > 0) such that no PTW exists for
wavespeeds v ∈ (0, δ].

Proof. This follows directly from (R1), in relation to non-negativity.
We now restrict attention to the existence of PTW of type A or type E.

(R5) Suppose that no PTW of type A or type E exists at v = v∗ > 0. Then there exists δ′ > 0
(which may depend upon v∗ and D) such that no PTW of type A or type E exists at each
v ∈ (v∗ − δ′, v∗ + δ′).

Proof. Under the conditions in the statement, S(v∗) ∩ {(U, Uξ) : U � 0} must remain
bounded away from (0, 0) in figure 1. The continuous dependence of S(v) on v at v = v∗

then guarantees that there is a δ′ > 0 (which may depend upon v∗ and D) such that S(v) ∩
{(U, Uξ) : U � 0} remains bounded away from (0, 0) for each v ∈ (v∗ − δ′, v∗ + δ′), and the
result follows.

(R6) Let U = UT : R→ R be a PTW, then UT ∈ Cω(R).

Proof. U = UT ∈ Cω(R) follows from UT ∈ C2(R) and then induction on equation (20),
using the chain rule and observing that f (X, Y) = X2(1 − Y) is analytic in R

2.

(R7) Let U = UT : R→ R be a PTW with wavespeed v > 0. Then UT(ξ) > 0 for all ξ ∈ R.

Proof. Suppose that there is ξ0 ∈ R such that UT(ξ0) = 0, then, via (23), U′
T(ξ0) = 0, and

so, using (20), (R6) and induction, we have U(n)
T (ξ0) = 0 for n = 2, 3, 4 . . .. Therefore, as

UT ∈ Cω(R), then UT(ξ) = 0 for all ξ ∈ R, which contradicts (22), and the result follows.
We are now able to establish the following.

(R8) Suppose there is a PTW of type A with wavespeed v = vA > 0. Then there is δA > 0
(which may depend on both vA and D) such that a PTW of type A exists for each
wavespeed v ∈ (vA − δA, vA + δA).

Proof. At v = vA, then S(v) enters (0, 0) asymptotic to the centre manifold with, in partic-
ular, S(vA) remaining in {(U, Uξ) : U > 0} for all ξ ∈ R via (R7). Specifically, as S(vA) is a
smooth curve in the (U, Uξ) phase plane connecting (1, 0) to (0, 0) in {(U, Uξ) : U > 0}, then
S(vA) is bounded away from {(0, Uξ) : |Uξ | > l} for each fixed l > 0. This, together with the
structure at (0, 0) in figure 1(c), and the continuous dependence of S(v) on v at v = vA, guar-
antees that there is a δA > 0 (which may depend on vA and D) such that S(v) connects (1, 0)
to (0, 0) at each v ∈ (vA − δA, vA + δA) with, moreover, S(v) in {(U, Uξ) : U > 0}. Thus there
is a PTW of type A at each v ∈ (vA − δA, vA + δA) as required.
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We next consider PTWs for fixed D > 0, when v is large. Thus we move directly to problem
(20), (22) and (23), with fixed D, as v →∞. In this limit, a balance of terms in NLODE (20)
requires a scaling of the independent variable, introducing ζ so that,

ξ = vζ. (48)

In terms of ζ, (20) becomes

D̄Uζζ + Uζ + U2

(
1 −

∫ ∞

−∞
φ(y)U

(
ζ +

y
v

)
dy

)
= 0 for ζ ∈ R, (49)

with

D̄ = Dv−2. (50)

We now estimate the nonlocal term in (49) with v  1. We write∫ ∞

−∞
φ(y)U

(
ζ +

y
v

)
dy =

∫ √
v

−
√
v

φ(y)U
(
ζ +

y
v

)
dy + o(1)

∼ U(ζ)
∫ √

v

−
√
v

φ(y)dy ∼ U(ζ) as v →∞. (51)

On using (51) and (50) in (49), we obtain, when

v  max(1,
√

D), (52)

that

Uζ ∼ −U2(1 − U). (53)

On replacing ζ with the original variable, ξ, we immediately obtain an approximation to S(v)
in the (U, Uξ) phase plane, when v satisfies (52), as

Uξ ∼ v−1U2(1 − U) with 0 � U � 1. (54)

We remark that (54) satisfies (45) (as it should) and also satisfies (26), which ensures that for
each v satisfying (52), the correspondingS(v) is a PTW of type A. Thus, we have established

(R9) For each D > 0 there is a v∞ > 0 (which may depend upon D) such that a PTW of type
A exists for each v ∈ (v∞,∞).

Proof. This follows from the preceding argument.
We now introduce, for each fixed D > 0, the set A(D) ⊂ R+ (via (R1)), where

A(D) = {V ∈ R
+ : ∃ a (PTW) of type A for each v � V}. (55)

We observe from (R1) thatA(D) ⊆ (δ,∞), with δ > 0 as given in (R1) (and which may depend
upon D). Moreover, it follows from (R9) that

A(D) �= ∅. (56)

Now let

α(D) = inf A(D). (57)
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As a consequence of (R1), we have

α(D) � δ, (58)

and, by definition,

A(D) = (α(D),∞), (59)

or

A(D) = [α(D),∞). (60)

Now, suppose α(D) ∈ A(D), then there is a PTW of type A at wavespeed v = α(D). However,
it then follows from (R8) that α(D) �= inf A(D). This contradiction establishes that α(D) /∈
A(D), and so A(D) is given by (59). Now suppose that no PTW of type E exists at v = α(D),
then it follows from (R5) that no PTW of type A exists for v in a neighbourhood of v = α(D),
which contradicts (59). We can conclude that there exists a PTW of type E at wavespeed v =
α(D). We have established,

(R10) For each D > 0, there exists a PTW (corresponding to a connection on S(v) in the
phase plane) for each propagation speed v ∈ [α(D),∞). This is a PTW of type A for
v ∈ (α(D),∞) and a PTW of type E for v = α(D).

We now introduce the set N (D), which, for fixed D > 0, is defined as

N (D) = {V ∈ R
+ : No (PTW) exists for wavespeeds v ∈ (0, V]}. (61)

As a consequence of (R1),

N (D) �= ∅, (62)

whilst N (D) is bounded above, via (R10). We set

β(D) = sup N (D), (63)

and observe from (R10) that

β(D) � α(D). (64)

Now, if β(D) ∈ N (D), then no PTW exists at wavespeed v = β(D). However it then follows
from either of (R2) or (R3) that no PTW exists for wavespeeds v in a neighbourhood of v =
β(D), which contradicts (63). We can conclude that

β(D) /∈ N (D), (65)

and so,

N (D) = (0, β(D)). (66)

We note from (65) that a PTW must exist at wavespeed v = β(D). If this PTW corresponds to
a phase plane connection on S(v), then it follows from (66) and (R8) that this must be a PTW
of type E. We have established
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(R11) For each D > 0 there exists α(D) and β(D), with 0 < β(D) � α(D) such that

1. No PTW exists at each wavespeed v ∈ (0, β(D)).
2. A PTW of type E exists at wavespeeds v = β(D) and v = α(D).
3. A PTW of type A exists at each wavespeed v ∈ (α(D),∞).

We remark that a detailed numerical exploration, at least for the kernels discussed
in the introduction, leads us to the following conjectures,

(C1) α(D) = β(D)
(C2) The PTWs identified in (R11), on the connection S(v) in the phase plane, are (up to

translations in ξ) the only PTWs.

These conjectures are further supported by the analysis in the next section, relating to PTWs
when D  1 (λ � 1).

To complete the analysis, let U = U(A)
T (ξ, v) be a PTW of type A with wavespeed v; it

follows from (27) that

U(A)
T (ξ, v) ∼ v

ξ
as ξ →∞. (67)

However, when U = U(E)
T (ξ, v) is a PTW of type E, then,

U(E)
T (ξ, v) ∼ C∞(v)e−vξ as ξ →∞, (68)

with C∞(v) > 0 being a globally-determined constant (depending, in general, on v). The
quantitative details of the behaviour of a PTW as ξ →−∞ depend upon the kernel under con-
sideration. However, there are just two possibilities for the kernels under consideration here,
namely for a PTW at (D, v) ∈ R+ × R+, then either

(a) UT(ξ, v) has purely exponential decay to unity as ξ →−∞,
(b) UT(ξ, v) has harmonic oscillatory decay to unity as ξ →−∞.

As an example, we make the calculation for the top hat kernel of unit base. We can establish
whether (a) or (b) occurs at a given (D, v) ∈ R+ × R+ via the earlier linearised analysis in (30)
to (45). In this case, we have

φ̂(k) =

⎧⎨
⎩

2
k

sin
1
2

k for k ∈ C\{0},

1 for k = 0.
(69)

After some detailed, but straightforward calculations, we establish that case (a) occurs for
(D, v) ∈ F and case (b) occurs for (D, v) ∈ G, where F , G ⊂ R+ × R+, which are separated
by the finite curve C, which is a monotone curve from the point (0, v0) to the point (0, D0),
where

D0 =
1
λ2

cosh
1
2
λ− 4

λ3
sinh λ, (70)

tanh
1
2
λ =

1
6
λ, λ > 0, (71)

which gives D0 ≈ 9.28 × 10−2, and

v0 =
6
λ2

sinh
1
2
λ− 1

λ
cosh

1
2
λ, (72)
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Figure 2. The regions F , G, separated by the curve C in the (v, D)-plane.

tanh
1
2
λ =

1
4
λ, (73)

which gives v0 ≈ 0.453. The dividing curve is given parametrically by

D =
1
λ2

cosh
1
2
λ− 4

λ3
sinh λ, (74)

v =
6
λ2

sinh
1
2
λ− 1

λ
cosh

1
2
λ, (75)

for 0 < λ− � λ � λ+, whereλ− ≈ 3.830 is the solution to (71) andλ+ ≈ 5.970 is the solution
to (73). The region G is that which has finite area. The regions F and G and the curve C are
shown in figure 2.

3. Asymptotic solution for λ � 1

As we have seen, when λ = 0 (13) becomes (17), whose solutions have minimum wavespeed
cmin = 1/

√
2. In this section we will construct the asymptotic minimum wavespeed solution

when λ � 1.

3.1. Case 1: φ(y) = o(y−3) as y →∞

When λ � 1 it is natural to Taylor expand the convolution term in (13),

φ∗U(z) ≡
∫ ∞

−∞
φ(y) U (z + λy) dy, (76)

as

φ∗U(z) = U(z) + λ2k2U′′′(z) + λ4k4U′′′(z) + O(λ6), (77)
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where

kn ≡ 1
n!

∫ ∞

−∞
ynφ(y)dy.

Note that, by the symmetry of φ(y), kn is zero when n is odd. The asymptotic expansion (77)
is valid provided that the kernel is sufficiently small when y = O(λ−1). This is the case for
exponentially-decayingkernels, but for algebrically-decaying kernels we need to be more care-
ful in our treatment of (76) as λ→ 0, which is described in section 3.2. In this section we use
(77) to construct the minimum wavespeed asymptotic solution.

We begin by expanding

U(z) = U0(z) + λ2U1(z) + λ4U2(z) + O(λ6), c = c0 + λ2c1 + λ4c2 + O(λ6),

and proceed by substituting into (13) to be solved subject to (15), the minimum wavespeed
condition

U = O(e−cz) as z →∞, (78)

and also

U =
1
2

at z = 0, (79)

to fix the phase of the solution.
At leading order we obtain c0 = 1/

√
2 and U0 = Umin(z). At O(λ2),

U′′
1 + c0U′

1 + U0(2 − 3U0)U1 = −c1U′
0 + k2U2

0U′′
0 , (80)

to be solved subject to

U1 → 0 as z →−∞, U1 = O(z e−c0z) as z →∞, U1(0) = 0. (81)

Since the homogeneous part of (80) is satisfied by U′
0(z), we can solve (80) using variation of

parameters to obtain

U1 = A1U′
0(z)

∫ z

0

e−c0q

U′
0(q)2

dq + B1U′
0(z)

− U′
0(z)

∫ z

0

e−c0q

U′
0(q)2

∫ q

0
ec0sU′

0(s)
{

c1U′
0(s) − k2U0(s)2U′′

0 (s)
}

ds dq,

with A1 and B1 constants to be determined. The phase condition, (81) (c), shows that B1 = 0,
and the far field condition (81) (a) shows that A1 must be chosen so that

U1 = −U′
0(z)

∫ z

0

e−c0q

U′
0(q)2

∫ q

−∞
ec0sU′

0(s)
{

c1U′
0(s) − k2U0(s)2U′′

0 (s)
}

ds dq.

Finally, the far field condition (81) (b) requires that∫ ∞

−∞
ec0sU′

0(s)
{

c1U′
0(s) − k2U0(s)2U′′

0 (s)
}

ds = 0, (82)
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Figure 3. The correction to the leading order solution, U1, given by (83) with k2 = 1.

which determines c1. The symmetry properties of U0 show that ec0sU′
0(s)U0(s)2U′′

0 (s) is an odd
function so that its integral vanishes, and hence that c1 = 0. In fact, all of the integrals can be
evaluated analytically using computer algebra, and we find that

U1 =
1

24
k2 sech2

(
z

2
√

2

)[
tanh

(
z

2
√

2

)
+ 2 log

{
1
2

(
1 + e−z/

√
2
)}]

, (83)

which is plotted in figure 3. The asymmetry of U1 leads, for λ sufficiently large, to a solution
with an incipient local maximum behind the wavefront.

In order to determine c2, which we now see gives the correction to c at O(λ4), we note that,
at that order,

U′′
2 + c0U′

2 + U0(2 − 3U0)U2 = −c2U′
0 + F(z), (84)

with

F(z) ≡ −U2
1 + 3U0U2

1 + k2

(
U2

0U′′
1 + 2U0U1U′′

0

)
+ k4U2

0U′′′′
0 .

Strictly speaking, we need φ(y) = o(y−5) as y →∞ for k4 ≡ 1
24

∫∞
−∞y4φ(y)dy to exist, but we

shall show in section 3.2 that the results below follow provided that φ(y) = o(y−3) as y →∞.
Solving (84) leads to a condition analogous to (82), namely∫ ∞

−∞
ec0sU′

0(s){c2U′
0(s) − F(s)}ds = 0,

and hence

c2 =

∫ ∞

−∞
ec0sU′

0(s)F(s)ds

/∫ ∞

−∞
ec0sU′

0(s)2ds. (85)
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Since ec0sU2
0U′

0U′′′′
0 is antisymmetric, the coefficient of k4 in the numerator is zero. The remain-

ing integrals can be calculated using symbolic algebra, and we find that

c2 =
√

2

{
83 − 140 log 2

58 800
+ k2

(
−319 + 420 log 2

176 400

)}

≈ −3.38 × 10−4 − 2.24 × 10−4k2 < 0. (86)

Note that k2 = 1 for both φ = 1
2 e−|y| and φ = 1

2
√
π

e−
1
4 y2

, so that c2 is typically numerically

very small, making the correction c − 1√
2
= c2λ

4 + O(λ6) numerically small and negative even
for moderately small values of λ for these rapidly-decaying kernels. For the algebraically-
decaying kernels given by (11), k2 = n/(n − 3), consistent with the fact that, as we shall see
in section 3.2, the order of the correction changes as n → 3+.

3.2. Case 2: φ(y)  y−3 as y →∞

In order to approximate the convolution term (76) when the kernel decays slowly as y →∞, it
is helpful to rewrite it as

φ∗U(z) = U(z) +
∫ ∞

0
φ(ȳ)G(U, z,λȳ)dȳ, (87)

where

G(U, z, y) ≡ U(z + y) − 2U(z) + U(z − y).

Observe that G(U, z, y) ∼ y2U′′(z) as y → 0. We will also assume that

φ(y) ∼ a0y−n, as y →∞,

with a0 > 0. In order to make careful use of these approximations in (87), we rewrite it as

φ∗U(z) = U(z) +
∫ ψ(λ)

0
φ(ȳ)G(U, z,λȳ)dȳ +

1
λ

∫ ∞

λψ(λ)
φ
( y
λ

)
G(U, z, y)dy, (88)

whereψ(λ) is chosen so that 1 � ψ � λ−1 and hence λ � λψ � 1. By ensuring that λȳ � 1
in the first integral and that y/λ  1 in the second, we can approximate the convolution for
λ � 1 as

φ∗U(z) ∼ U(z) + λ2U′′(z)
∫ ψ

0
ȳ2φ(ȳ)dȳ

+
1
12

λ4U′′′(z)
∫ ψ

0
ȳ4φ(ȳ)dȳ + a0λ

n−1
∫ ∞

λψ

y−nG(U, z, y)dy. (89)

In order to deal with the obvious problems of convergence in the first and second integrals if
we extend the range to infinity and in the third if we extend it to zero, we must deal separately
with the cases 3 < n < 5 and 1 < n < 3.
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3.2.1. Case 2(a): 3 < n < 5. .In this case
∫∞

0 ȳ2φ(ȳ)dȳ exists, but neither
∫∞

0 ȳ4φ(ȳ)dȳ nor∫∞
0 y−nG(U, z, y)dy exist. By carefully dealing with the relevant singularities, we can show

that

φ∗U(z) ∼ U(z) + λ2k2U′′(z) +
1

12
λ4U′′′(z)

∫ ∞

0

{
ȳ4φ(ȳ) − a0ȳ4−n

}
dȳ

+ a0λ
n−1

[∫ ∞

1
y−nG(U, z, y)dy +

∫ 1

0

{
y−nG(U, z, y)

− y2−nU′′(z)
}

dy

]
. (90)

By comparing with the expansion (77) that we used in case 1, we can see that the asymptotic
analysis proceeds in the same way up to O(λ2). The term of order λn−1 is antisymmetric in z
when U = Umin, and so generates a correction to U but not to the wavespeed, and finally, the
correction to the wavespeed occurs at O(λ4), with the U′′′ term in (90) not making a contri-
bution. In other words, the leading order corrections to U and cmin are given by the analysis
presented in section 3.1.

3.2.2. Case 2(b): 1 < n < 3. .In this case,
∫∞

0 y−nG(U, z, y)dy exists, but
∫∞

0 ȳ2φ(ȳ)dȳ does not.
By again carefully dealing with the relevant singularities, we find that

φ∗U(z) ∼ U(z) + a0λ
n−1

∫ ∞

0
y−nG(U, z, y)dy + λ2U′′(z)

×
[∫ 1

0
ȳ2φ(ȳ)dȳ − a0

(3 − n)
+

∫ ∞

1

{
ȳ2φ(ȳ) − a0ȳ2−n

}
dȳ

]
. (91)

The asymptotic analysis proceeds in the same way as it did in case 1, with a correction to U,
but not to cmin, at O(λn−1). The correction to the minimum wavespeed comes at O(λ2(n−1)),
with the O(λ2) term in (91) having no effect because it is antisymmetric in z when U = Umin.

Although we were able to find the correction terms for U and cmin analytically in case 1,
the combination of algebraic and exponential terms in y−nG(Umin, z, y) means that this is not
possible in this case. Finding simple expressions for them is however straightforward based on
the analysis presented in section 3.1. We find that U ∼ U0 + λn−1U1, with U0 = Umin(z) and

U1 = a0U′
0(z)

∫ z

0

e−c0q

U′
0(q)2

∫ q

−∞
ec0sU′

0(s)U0(s)2
∫ ∞

0
y−nG(U0, s, y)dy ds dq, (92)

and c ∼ 1√
2
+ λ2(n−1)c2, with c2 given by (85), but with

F(z) ≡ −U2
1(z) + 3U0(z)U2

1(z) + a0U0(z)

×
{

U0(z)
∫ ∞

0
y−nG(U1, z, y)dy + 2U1(z)

∫ ∞

0
y−nG(U0, z, y)dy

}
. (93)

Moreover, it is possible to find the q and s integrals in (92) analytically using symbolic alge-
bra. However, the resulting expressions are very badly conditioned for large and small y. It is
therefore more straightforward to find U1 numerically by solving the linear boundary value
problem satisfied by Ū1 ≡ U1/a0, namely
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Figure 4. The scaled correction to the leading order solution, Ū1 for various values
of n.

Ū′′
1 + c0Ū′

1 + U0(2 − 3U0)Ū1 = U2
0

∫ ∞

0
y−nG(U0, z, y)dy, (94)

to be solved subject to

Ū1 → 0 as z →±∞. (95)

We truncate (94) to a finite domain and solve using bvp5c in MATLAB. Since U′
0 is a solution of

the homogeneous version of (94), we can add an appropriate multiple to the numerical solution
to satisfy the phase condition, Ū1(0) = 0. Note that it is straightforward to show from (94)
that Ū1 ∼ 1

(n−1) (−z)−(n−1) as z →−∞, and we use this in our numerical solution to improve
convergence.This also shows that the travelling wave solution approaches its equilibrium value
only algebraically fast as z →−∞, and indicates how the solution breaks down as n → 1+.
Some typical solutions are shown in figure 4. As we should expect, the solution approaches
the same functional form as in case 1, shown in figure 3, as n → 3−. As n decreases towards
unity, the rate of decay of the correction becomes slower as z →−∞.

The correction to the wavespeed is given, after evaluating the denominator of (85) analyti-
cally, by

c2 = a2
0c̄2, c̄2(n) = 3

√
2
∫ ∞

−∞
ec0sU′

0(s)F̄(s)ds, (96)
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Figure 5. The scaled wavespeed, c̄2 as a function of n, the algebraic rate of decay of the
kernel as y →∞.

with

F̄(z) ≡ −Ū2
1(z) + 3U0(z)Ū2

1(z) + U0(z)

×
{

U0(z)
∫ ∞

0
y−nG(Ū1, z, y)dy + 2Ū1(z)

∫ ∞

0
y−nG(U0, z, y)dy

}
. (97)

Figure 5 shows the computed value of c̄2. Consistent with the behaviour that we found in
case 1, the correction to the wavespeed is negative and, since we would expect a correction
logarithmic in λ when n = 3, c̄2 appears to be singular as n → 3−. In contrast, c̄2 appears to be
regular as n → 1+. In this limit, however, the problem becomes ill-posed, as the kernel cannot
be normalised to have unit area.

4. Numerical solutions

In order to solve (13) to (15) numerically, we begin by truncating to a finite domain, −L �
z � L, and discretise using a uniform grid of N points. We use central finite differences to eval-
uate the derivatives and assume a linear variation of U on each element, between the nodes.
The convolution integral is evaluated using 16 point Gaussian quadrature to accurately cap-
ture the variation of the kernel across each element, collocating at each interior node. This
accurate resolution of the kernel is important for convergence in extreme cases when the
kernel is algebraic and n close to one. We apply the discrete version of the boundary con-
dition U′ + cU = 0 at z = L in order to select the exponentially-decaying travelling wave
solution, and also enforce U = 1

2 at z = z0 to fix the phase of the solution. In the solutions
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Figure 6. Comparison between the correction to the minimum wavespeed calculated
numerically (solid lines) and asymptotically for λ � 1 (broken lines). Note that the cor-
rection is swamped by numerical error once the size of the correction falls below about
10−7. For larger values of the correction, there is encouraging agreement between the
numerical and asymptotic solutions.

presented below, we used N = 24 000, L = 20 and z0 = 5. At z = −L we apply the bound-
ary condition U = 1 for the exponential kernels φ = Φ1 and φ = Φ∞. The contribution to
the convolution from z < −L is approximated by assuming that U = 1 for z < −L, and the
integral evaluated analytically. For algebraic kernels, φ = χn, we use the farfield condition
U = 1 + a0

n−1

(
− z−z0

λ

)−(n−1)
. The contribution to the convolution from z < −L is approximated

by assuming that U = 1 + a0
n−1

(
− z−z0

λ

)−(n−1)
for z < −L, and the integral calculated using

‘integral’ in Matlab. The resulting set of algebraic equations was solved in Matlab using
‘fsolve’, with the Jacobian supplied analytically to speed up the algorithm.

Figure 6 shows the numerical and asymptotic approximations to the correction to the
wavespeed as a function of λ for various kernels. In most cases there is reasonable agreement
between the asymptotic and numerical values, until the size of the correction becomes compa-
rable to the numerical error, around 10−7. For φ = χ5/2, although the numerically-calculated
value approaches the asymptotic value as λ decreases, it has not reached good agreement
before numerical error invalidates the comparison. This effect becomes more pronounced as
n approaches the edge case, n = 3, for the algebraic kernels φ = χn. We also note that the
corrections to both the wavespeed and the travelling wave profile become larger as the rate of
decay of the kernel decreases, which seems reasonable since this models an increasing rate
of intraspecies competition. In each case, the numerically-calculated correction to U is indis-
tinguishable from the asymptotic forms shown in figure 4 for sufficiently small λ. Note that
we have not included results from the top-hat kernel, since k2 = 1/24, and we were unable to
calculate sufficiently accurate solutions to resolve the tiny correction to the wavespeed.
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Figure 7. The minimum wavespeed as a function of λ for some of the kernels defined in
the text.

Although the quantitative part of this paper has been mainly concerned with the details of
PTW solutions of type E when λ � 1, we would also like to present some PTW solutions of
type E for larger values of λ. We are currently studying the asymptotic solution for λ  1
but, as we would expect from the analysis presented in [12], this is significantly more difficult
to unravel than the solution for λ � 1, and is strongly dependent on the functional form of
the kernel. Figures 7 and 8 show some results for φ = Φ1, Φ∞, ΦH and χ3/2. As illustrated in
figure 7, the wavespeed decreases monotonically as λ increases up to λ = 100. For large values
of λ, an adaptive regridding method is needed, which will be described in part II of this series
of papers. Figure 8 shows the solution when λ = 100 for these four kernels. In each case, U is
maximum just behind the wavefront, and there is a decaying oscillation as z →−∞. It appears
that the more slowly the amplitude of the oscillation behind the wavefront decays, the slower
the solution propagates, and we will address this observation in more detail in part II. The solu-
tion for the continuous kernels, φ = Φ1, Φ∞ and χ3/2 are qualitatively similar to the equivalent
solutions for the NLFKPP, as described in [12], but with some quantitative differences, which
are currently under investigation. For φ = ΦH ([12] did not consider discontinuous kernels),
the solution has oscillations of shorter wavelength and greater amplitude than those for the
three continuous kernels. The asymptotic solution for λ  1 (D � 1) and φ = ΦH remains to
be constructed for both the quadratic and cubic NLFKPP equations.

Finally, we would also like to briefly consider the initial value problem given by (4) with
localised initial conditions

u(x, 0) =

⎧⎪⎨
⎪⎩

1
10

(1 − 4x2) for |x| � 1
2

,

0 for |x| � 1
2
.

This can be obtained numerically using a simple finite difference method with adaptive time
stepping (see [13] for details). When the kernel and parameters are such that the steady state
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Figure 8. The travelling wave solution with minimum wavespeed when λ = 100 for
some of the kernels defined in the text. Note that all solutions are computed on a domain
large enough to capture the decaying oscillations for z large and negative, but has been
truncated in this figure for comparison.

u = 1 is temporally stable we find, in every simulation we performed, that a pair of mini-
mum speed PTW travelling waves of type E, propagating in opposite directions, is generated.
However, when the steady state u = 1 is temporally unstable (for the kernels considered in
this paper this means the top hat kernel, φ = φH, with λ > λ0, where λ0 ≈ 18.26, see [13]
for details of the stability analysis), we find that a static, stable, periodic pattern forms behind
the wavefront, with now the wavefront moving at a speed close to, but not exactly equal to,
the minimum travelling wavespeed for PTWs of type E. Figure 9 shows the evolutionary solu-
tion when λ = 100. By comparing with the associated minimum speed PTW travelling wave
solution shown in figure 8, it can be seen that there is little similarity in spatially propagat-
ing structure. However, figure 10 shows the position of the evolving wavefront (defined to be
the largest value of x at which u = 1

2 ), which moves slightly more slowly than the minimum
speed PTW travelling wave, but is surprisingly close to this speed given the lack of detailed
similarity of these two structures. A similar phenomenon occurs with the quadratic NLFKPP
equation, but the agreement in evolving propagation speeds is much closer, since, in this case,
this speed is generically determined locally, ahead of the wavefront. For the cubic problem that
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Figure 9. The development of a stationary spatial pattern from a localised initial distur-
bance to u = 0 with the top hat kernel, φ = φH and λ = 100.

Figure 10. The position of the wavefront for the solution shown in figure 9. The dashed
line shows the speed of the minimum speed travelling wave (see figure 8).

we study here, the wavespeed for PTWs is no longer determined locally, but now globally, so
the agreement shown in figure 10 is not necessarily expected, and quite surprising.
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5. Conclusion

In this paper we have studied the permanent form travelling wave solutions of the cubic,
NLFKPP, (4). We showed that there exists a minimum wavespeed cmin(λ). We also showed that
the (λ, c) parameter space contains the open region A, defined in the introduction, where there
exists a travelling wave solution with U(z; c,λ) ∼ c/z as z →∞, and at the closure of which
there exists a unique (up to translation) travelling wave solution with U(z; c,λ) = O(e−cz) as
z →∞. Numerical searches suggest that these travelling waves are the only ones available
in the (λ, c) parameter space. We also constructed the asymptotic form of the exponentially-
decaying permanent form travelling wave when λ � 1, which we found to be unique, con-
sistent with there being a minimum wavespeed cmin(λ) such that there is a unique (up to
translation) algebraically-decaying solution for each c > cmin(λ), and a unique (up to transla-
tion) exponentially-decaying solution when c = cmin(λ) for λ sufficiently small (the near local
limit). We also found that the rate of decay of the kernel φ(y) as y →∞ affects the order of
magnitude of the correction to the wavespeed, with c = 1√

2
+ O(λ2(n−1)) for φ(y) = O(y−n) as

y →∞ and 1 < n � 3 and c = 1√
2
+ O(λ4) otherwise.

By numerically solving an initial value problem with localised initial conditions, we were
able to observe that the travelling wave solution with minimum wavespeed emerges as the
long time solution in all the cases that we studied where the kernel was such that the steady
state u = 1 is stable. Strictly speaking, by ‘minimum wavespeed’ we mean that branch of
exponentially-decaying travelling wave solutions that originates at c = 1/

√
2 when λ = 0 and

can be continued numerically for λ > 0 (see figure 7). In all cases that we studied, the emerg-
ing travelling wave solution appeared to be stable. It would be interesting to perform a linear
stability analysis on the travelling wave solutions to confirm this, but this is beyond the scope
of the present paper.

For the top hat kernel, with λ large enough that the steady state u = 1 is unstable, we found
that a travelling wavefront emerges, ahead of a region where a stationary pattern is created.
Surprisingly, the speed of this wavefront is close to that of the minimum speed permanent
form travelling wave solution, even though u � 1 in the wavefront and the wavespeed of the
travelling wave solution is determined globally.

In future work, we hope to be able to construct the asymptotic solution when λ  1 (equiv-
alently, D � 1) using the methods described in [12] that were successful for the quadratic
NLFKPP (this will be part II of this series of papers). The additional factor of u in the source
term will affect how the solution is constructed, but, as we saw in figure 8, the qualitative nature
of the solution appears to be similar.
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