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Abstract: The Golden ratio is an irrational number that has a tendency to appear in many different
scientific and artistic fields. It may be found in natural phenomena across a vast range of length
scales; from galactic to atomic. In this review, the mathematical properties of the Golden ratio are
discussed before exploring where in nature it is claimed to appear; beginning at astronomical scales
and progressing to smaller lengths, until reaching those of atomic and quantum physics. For each
phenomenon discussed, the evidence for the presence of the Golden ratio is assessed. In making
such a tour across length scales, it is illustrated just how prevalent this single number is within the
natural universe.
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1. Introduction

The Golden ratio, ¢ = 1.61803 ... has fascinated people of multiple disciplines, sciences
and arts alike, for centuries [1-8]. The earliest known definition for ¢ appeared in Euclid’s
Elements in approximately 300 BC. The definition involves dividing a line segment into two
parts, of lengths A and B as shown in Figure 1, such that the ratio of the larger part, A, to
the smaller part, B, equals the ratio of the whole segment to the larger part,

A A+B
BT A M
This definition is an example of self-similarity. This means that the line segment is
similar to parts of itself, with A being to A + B what B is to A. If a similar division was to
be made to length A, then the larger part of that cut would have length B. The common
ratio is the Golden ratio, the exact value of which can be found by setting A/ B equal to ¢
in Equation (1) to give a quadratic equation,

¢*—¢p—1=0. 2)

The positive solution of this quadratic is the Golden ratio,

1
¢ = 2*5 = 1.618033988 7498949 ... . 3)

The other solution gives,

1-+/5
¢ = 2‘[ — —0.6180339887498949 ... . (4)

The second solution has the same decimal expansion as the first. An interesting
property of the Golden ratio is that its reciprocal can be obtained by subtracting one, i.e.,

l:4)—1:0.6180339887498949.... (5)
¢
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A+B

Figure 1. The Golden ratio may be defined as a cut to a line (dashed) into lengths A and B such that
the ratio A/ B is equal to the ratio (A + B)/A.

The Golden ratio seems to possess an almost mythical reputation compared to other
numbers, as can be intuited from its name. Another name given to this number is the Divine
Proportion, going back to the work of Italian mathematician Luca Pacioli, Divina proportione,
in 1509. This reputation is fuelled by claims (often with dubious evidence) that ¢ explicitly
occurs in certain famous architectural and artistic works, ranging from the Great Pyramid
in Egypt and the Parthenon in Greece, to the paintings of Renaissance polymath Leonardo
da Vinci (who illustrated Pacioli’s work) [9].

Despite these misconceptions, ¢ has been found to legitimately occur in a diverse
range of natural phenomena, at length scales varying from the atomic to those of galaxies.
The purpose of this paper is to discuss a selection of these phenomena and to assess the
evidence suggesting a link to the Golden ratio. For the purposes of this study, a natural
phenomenon is considered to be linked to the Golden ratio if two conditions are satisfied:
the existence of observational or experimental evidence of ¢, and a rigorous theoretical
justification explaining its presence. Where one exists without the other, any evidence shall
be considered to be inconclusive.

In Section 2, the mathematical properties of ¢ are explored further in the context of
its irrationality. This is followed in Section 3 by a discussion of the various occurrences of
¢ in science, starting at the galactic length scale and proceeding to smaller lengths until
reaching the atomic scale. Where appropriate, some of these occurrences of ¢ are explained
in terms of the properties discussed in Section 2. Each subsection ends by summarising the
evidence for a link to the Golden ratio, concluding for each case whether such a link exists
according to the criteria given above.

2. The ‘Most Irrational’ Number

The decimal expansion of ¢ never ends, and it never repeats. This is a consequence of
the fact that ¢ is an irrational number, which means it cannot be expressed as a ratio of two
integers. ¢ is sometimes referred to as the ‘most irrational’ number, a statement that strictly
speaking makes no sense, as a number can either be rational (i.e., can be expressed as a
ratio of two integers) or irrational (i.e., not rational). The reason for saying that ¢ is ‘more
irrational” than any other irrational number lies in the attempt to approximate it using
rational numbers.

The approximation of irrational numbers using rational numbers is the subject of
a branch of mathematics known as Diophantine approximation. Any irrational number
can be approximated using a ratio of integers, for example, 7t = 3.14159265 ... ., the ratio
of a circle’s diameter to its radius, can be approximated to two decimal places by the
simple fraction 22/7. Any real number (rational or irrational) may be expressed using a
continued fraction,

ap + . (6)
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For a rational number, there are a finite number of integers, 4;, and so the continued
fraction eventually ends. On the other hand, an irrational number has a never ending
continued fraction expansion. An approximation to an irrational number can be found by
finding a finite number of its a; values. In the case of the Golden ratio, each of the a; values
are equal to one. The resulting approximations from this are ratios of numbers from the
Fibonacci sequence. This famous sequence is defined by setting the first two terms both
equal to one, and then each subsequent term is equal to the sum of the previous two. The
first few Fibonacci numbers are,

1,1,2,3,5,8,13,21,34,55, 89, ... . 7)

If a particular number from this sequence is divided by the previous term, the result is
an approximation to ¢. As the chosen Fibonacci number grows larger, the approximation
to ¢ improves, as shown in Figure 2. For any irrational number, x, the continued fraction
expansion may be used to obtain a sequence of rational approximations p/g (where p and g
are, respectively, the numerator and denominator of the approximation). As ¢ increases, the
approximation becomes closer to the irrational number. To account for this when measuring
how well the irrational number is approximated, one can multiply the difference between
x and p/q by g?. A result known as Dirichlet’s approximation theorem shows that there
exist infinitely many rational approximations that satisfy the inequality,

x— p‘ < 12 ®)
q q

This provides an upper bound on how good the approximation can be. For any choice

of x, the smallest possible value for this upper bound is given by Hurwitz’s theorem [10],

3/2

—e I q1=2
1.0 05 ¢ 2.0
1 >3 1
} -* 7=3
1.0 05 ¢ 2.0

1.0 05 ¢ 2.0

Figure 2. Approximation of the Golden ratio (gold) by ratios of successive Fibonacci numbers (black),
for denominators g = 2 (top), g = 3 (middle) and g = 5 (bottom). As the denominator, g, increases,
the more accurate the approximation. The vertical lines in each case shows the upper bound for the
deviation (from ¢), as given by the right-hand side of Equation 9.

X — P‘ < ! .
’ a1~ V5q? )

In addition, equality holds only if x = ¢ (or any other number whose continued
fraction expansion contains infinitely many 1’s). Figure 3 shows how ¢%|¢ — p/q]| (this may
be interpreted as a relative error) varies as more terms in the continued fraction expansion
are included. There is a rapid convergence towards 1/v/5 ~ 0.4472. In other words,
for most rational approximants of ¢, the relative error term is close to the upper bound.
Since for any other (non-equivalent) number, the upper bound is smaller, the rational
approximants of the Golden ratio and its equivalents are worse than for any other number.
It is for this reason that ¢ is often referred to as the ‘most irrational’ number.
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Figure 3. Relative error, 4%|¢ — p/q|, between the Golden ratio and its rational approximants, for the
first 18 successive ratios of the Fibonacci sequence. There is rapid convergence to 1/+/5 ~ 0.4472.

3. The Golden Ratio in Nature

A wide variety of natural phenomena can be linked to the Golden ratio, and these occur
on length scales ranging from the atomic to the astronomical. Here, some such phenomena
shall be explored, starting at the astronomical scale and progressing to smaller scales.

3.1. Spiral Galaxies

The largest length scale on which ¢ has been observed is that of galaxies, which
comprise of billions of stars bound by gravity. Many galaxies are characterised by their
visually striking spiral arms [11]. A commonly used mathematical model for these arms
is the logarithmic spiral, shown in Figure 4, for which the shape remains the same as size
increases due to a constant pitch angle. The equation for the logarithmic spiral is,

r=aek, (10)

where r and 6 are plane polar coordinates, a is a constant parametrising size, and k is
given by,
1

k=tan(x) = an(g)’ (11)

where pitch angles x and ¢ = 71/2 — ) are defined by Figure 4.
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Figure 4. A point, p, on any spiral can be described by its distance r from the centre point, pg, and
a turn angle, 6. The tightness of a spiral at p is given by the pitch angle, x, the angle between the
centre-to-point vector (dashed line) and the normal to the spiral at p (dash-dotted line). Equivalently,
the angle, 1, to the tangent (dotted line) can be used instead, with ¢ + x = 7r/2. For a logarithmic
spiral, the pitch angle is constant over the whole spiral.

In studying a sample of 350 galaxies, it was found by Block and Fairall [12] that the
pitch angle (in their paper, defined as the i angle) for galactic spiral arms averages at
approximately ¢ = 73°. The following year, Oldershaw [13] pointed out that this pitch
angle yields a special logarithmic spiral known as the Golden spiral, whose radius grows
by a factor of ¢ every time the turn angle, 6, increases by 7r/2. To show this, one can take
Equation (10) for two points on the spiral, at radii r; and r,, separated by a turn angle of
7t/2, to give,

rn= ae? (12)

and

ry = ¢ry = aeO+7/2), (13)

Dividing Equation (13) by Equation (12) gives,

k(0+m/2)
_ae _ km/2 14
o=y = (14)
Taking the natural logarithm of both sides and rearranging gives,
k= 2n¢ (15)
s
Substitution of this into Equation 11 gives,
21
X = arctan(jTup) =0.29727--- =17.03239...° (16)
and therefore,
Yp=m/2—x=12735---=729676...° . (17)

Using galactic pitch angle data of 50 spiral galaxies, as measured by Savchenko and
Reshetnikov [14], the pitch angle distribution shown in Figure 5 was generated. As can be
seen, the peak appears close to 17.03239°. The mean for this sample is ¥ = 15.1520° with a
standard deviation of 3.6879, which is just under a quarter of .
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Figure 5. Distribution of pitch angles, x (left) and corresponding turn factors over 90° (right), for a
sample of 50 spiral galaxies. The gold solid line corresponds to the Golden spiral (y = 17.03239...°),
while the dotted black line shows the mean of 15.1520° £ 3.6879 (with turn factor 1.5423 4 0.1728).
The dotted black lines indicate the range within one standard deviation from the mean. The galactic
pitch angle data was taken from Table 1 in Reference [14]. The bin widths (3.5 and 0.16, respectively)
were chosen based on Scott’s rule [15].

It should be noted that real spiral galaxies are not perfect logarithmic spirals. For
real galaxies, the pitch angle can vary as radius increases. The work of Savchenko and
Reshetnikov shows that galactic pitch angles (x) decrease as r increases (the values used to
plot the distribution are averages) [14]. Nevertheless, it is interesting that by approximating
spiral galaxies using a simple geometric shape in the logarithmic spiral, the single parameter
used to describe the shape appears to peak close to a value associated with the Golden spiral.

Due to the small sample size considered here, the bin widths in Figure 5 are wide
(comparable with the standard deviation of the sample). As a result, it is unclear whether
the distribution really peaks at the Golden pitch angle. Combined with the lack of a
theoretical justification, one may conclude that there is insufficient evidence for the Golden
ratio in spiral galaxies.

The Logarithmic Spiral

Other than galaxies, there exist a number of natural phenomena that can be described
by logarithmic spirals. Examples include the flight paths of insects [16] and birds [17],
nautilus shells and tropical cyclones [18]. Such examples are often mentioned in connection
with the Golden ratio (see for example, Reference [5]). Quite often however, the spirals in
question are not necessarily Golden [19]. The logarithmic spiral is so often connected with
the Golden ratio because the Golden rectangle (i.e., a rectangle with Golden aspect ratio)
can be used to construct an approximate logarithmic spiral, as shown in Figure 6. One
can split a Golden rectangle by making a Golden cut along the long edge to form a square
and a smaller Golden rectangle. This can then be performed on the smaller rectangle, and
iterated to generate yet smaller rectangles. An approximate logarithmic spiral can then be
produced by drawing quarter circular arcs to connect opposite corners of the squares.

While the above example of spiral galaxies does appear to distribute about a pitch angle
close to that of the Golden spiral, a case that does not is that of the nautilus shell [20-22].
Despite this, the image of the nautilus shell has become synonymous with the Golden ratio,
as evidenced by such an image being featured on the front cover of many books on the
Golden ratio (for example, References [3-7]).

The case of the nautilus shell is a cautionary example that shows the need to be careful
when encountering claims that the Golden ratio appears in some phenomenon. On the one
hand, there may be an element of misunderstanding, such as confusion over the Golden
spiral and the more general logarithmic spiral. On the other hand, too much scepticism
could lead to legitimate occurrences of ¢ in nature being overlooked.
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Figure 6. Approximation of the Golden spiral, using the Golden rectangle. The rectangle can be split
into a square, and a smaller Golden rectangle. Then circular arc lengths can be drawn across the
squares, with radius equal to the square length. This means each arc has a different radius, thus the
resulting spiral is not logarithmic.

3.2. Variable Stars

One apparently legitimate appearance of ¢ in nature may be found in a particular
class of variable star. Many stars, such as the Sun, have a luminosity that remains roughly
the same over time. Some stars however, have a variable luminosity, caused by periodic
changes in pressure. One such class of star are the RR Lyrae variables (named after the
variable star RR Lyrae), which are useful to astronomers as standard candles. Some of these
variable stars pulsate with multiple frequencies.

Using data from the Kepler space telescope, Lindner et al. studied four RR Lyrae vari-
able stars with pulsation frequencies found to be in the Golden ratio [23]. It has been noted
that many variable stars of multiple frequencies have frequency ratios between 0.6 and
0.64 [24]. Lindner et al. found that these stars exhibit ‘strange non-chaotic dynamics’, mean-
ing that they have fractal behaviour without showing chaotic behaviour. This is a highly
non-trivial observation since fractal dynamics is often associated with chaos. These stars
are the first discovered natural phenomena to show this form of dynamics, which was first
discussed by Grebogi et al. in 1984 [25]. Other variable stars, with commensurate pulsation
frequencies were also studied, and these did not exhibit strange non-chaotic behaviour.

Theoretical studies of simple non-linear systems by Lindner et al. (crudely modelling a
variable star) also revealed Golden behaviour [26]. This suggests that the observed variable
star behaviour may be a universal feature of such non-linear systems. The difficulty
of approximating ¢ by rational numbers is of importance in the models considered in
Reference [26], and so they are related to the infinite continued fraction formula for ¢ (i.e.,
Equation (6) with all a; = 1). An equivalent expression for the Golden ratio exists, in terms
of infinitely nested square roots [27,28]

o=\ VI (18)

An investigation by Kutsenko regarding the details of how this expression converges
has revealed fractal behaviour [29], providing another link between the Golden ratio and
non-linear dynamics.
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While observations are limited to a small number of stars, the appearance of the
Golden ratio is supported by theoretical predictions (albeit of simplified models). As
Golden behaviour emerges in both the theoretical and observational treatment of RR Lyrae
stars, it seems as though they are related to the Golden ratio.

3.3. Planetary Orbits

Focusing now on the orbits of planets around a star, an interesting manifestation of
Fibonacci numbers and the Golden ratio may be found in the Solar System. It has been
noted that the mean distances of the planets from the Sun approximately relate to each
other according to the Golden ratio [30,31]. The ratios of successive orbital periods have
been found to be preferentially closer to Fibonacci ratios than to other fractions; not only for
planets in the Solar System, but also for satellites of the gas giants and even in exoplanetary
systems [32].

Dynamics simulations can be used to verify that the orbital periods of the planets (the
time taken for each planet to complete one orbit of the Sun) relate to each other according
to Fibonacci numbers. In such a simulation (A Python implementation of this simulation is
available at http://doi.org/10.17639 /nott.7230. Accessed on 27 September 2022.), the Sun
and eight planets interacted via gravity, and the simulated time was 1630 x 365.25 days,
which is approximately 1630 Earth years. Inspired by Reference [31], this time was chosen as
it is about the time taken for Mercury to complete 6765 orbits, with 6765 being the twentieth
Fibonacci number. The number of orbits made by each planet in this time was recorded
from the simulation, the results of which are shown in Table 1. Each planet completes a
number of orbits approximately equal to a Fibonacci number, with the exception of Mars
and Neptune, which nonetheless do complete a multiple of a Fibonacci number of orbits.

Table 1. Number of orbits completed by each planet in a dynamics simulation with a simulated time
of 1630 Earth years (i.e., 1630 x 365.25 days). These values are compared to Fibonacci numbers, with
percentage errors given to two decimal places.

Planet Number of Orbits Fibonacci Number Error (%)
Mercury 6960.37 6765 2.89
Venus 2655.04 2584 2.75
Earth 1627.75 1597 1.93
Mars 870.59 144 x 6 0.76
Jupiter 136.11 144 5.48
Saturn 54.03 55 1.77
Uranus 19.56 21 6.84
Neptune 10.20 5x2 1.98

This shows a clear link between planetary orbits and the Fibonacci sequence, therefore
suggesting that the ratios between the orbital periods are close to multiples of the Golden
ratio. In particular, ¢ can be most clearly found when considering the orbits of Earth and
Venus. Starting from a configuration where the Sun, the Earth and Venus are co-linear, after
eight Earth years this co-linear state (known as a synodic conjunction) occurs five times (with
8/5 being a Fibonacci ratio), as shown by the intersections in Figure 7, which plots the
angular position in the orbit of the two planets against time. Furthermore, if the number
of orbits made by Venus is plotted against the number of Earth orbits as in Figure 8, the
relationship is linear for long times (i.e., over multiple years) with Fibonacci numbers
plotted against the previous terms in agreement with this line. Performing linear regression
on this data yields a slope of 1.631 ~ ¢.
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Figure 7. Synodic conjunctions of Venus (solid lines) and Earth (dashed lines). Within eight Earth
years, the two planets are co-linear five times (gold circles).
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Figure 8. Number of orbits completed by Venus against the number of Earth orbits as calculated from
the dynamics simulation (black points). The gold circles show the Fibonacci numbers against the
previous term. A linear fit to the orbit data has slope 1.631.

The KAM Theorem

An explanation of why the ratio of planetary orbital periods coincides with ¢ is
presented by the KAM (Kolmogorov—-Arnold-Moser) theorem [33,34]. This theorem applies
to integrable (i.e., the equations of motion can be analytically solved) dynamical systems
that are subject to a small non-linear perturbation. For example, the motion of a single
planet around a star due to gravitation is an integrable system, while the effect of an
additional planet is a perturbation. The evolution of a dynamical system can be represented
as a trajectory in phase space, the space of all possible states of the system. For any integrable
system, this trajectory is confined to the surface of an n-dimensional torus embedded in the
2n-dimensional phase space (where 7 is the number of independent degrees of freedom of
the system) [35]. These surfaces are known as invariant tori because a trajectory that begins
on such a surface remains on the surface for all values of time. The exact torus on which
the trajectory resides is determined by the initial conditions of the system. Given that the
phase space trajectory of an integrable system lies on an n-dimensional invariant torus, the
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dynamics of the system can be described by the combined effect of the n periodic motions
along each independent direction of the torus. Thus, fori = 1,...,n, there are n natural
frequencies, wj, on the torus. The ratios, w;/ wj, are called the winding numbers of the torus.
In the case where each winding number is rational, the trajectory is periodic, whereas if
any winding numbers are irrational, then the trajectory eventually covers every point of
the torus - in which case the trajectory is quasiperiodic.

According to the KAM theorem, under a small perturbation to an integrable system,
some of these tori are deformed but still remain as invariant surfaces, while others are
destroyed and so the trajectory is no longer restricted. A stronger perturbation to the
system results in the destruction of more invariant tori. The surviving tori have frequencies
whose ratios are ‘sufficiently irrational’. A consequence of this is that dynamical systems
with frequencies of an irrational ratio are more resilient to perturbations [36]. Since the
Golden ratio is the ‘most irrational’ number, a Golden frequency ratio provides the most
resistance to perturbations. Thus, in the case of the Solar System, having orbital periods
related by ¢ maximises stability.

This theoretical explanation provides a clear reason for the Golden ratio to be present in
planetary orbits. Moreover, this explanation makes use of the properties of ¢ as an irrational
number. Supported by observational evidence that Fibonacci numbers approximately occur
in the Solar System, it is clear that the Golden ratio plays a profound role in planetary orbits.

3.4. Phyllotaxis

Observations of ¢ are not restricted to only celestial objects. A commonly noted
Earthly case is that of phyllotaxis [37-39], the arrangement of leaves on a stem, which
form spiral patterns. In such spirals, the rotational angle around the stem from leaf
to leaf is approximately 27t/¢ ~ 222.49°, the angle that divides the circumference of a
circle into the Golden ratio. This observation was first reported in the early nineteenth
century by Schimper and by Braun, in the form of the ratios of small Fibonacci numbers (see
Reference [40] for additional historical references). The reason for this is that the ‘maximally
irrational’ property of ¢ provides the least chances for leaves to be positioned directly above
each other, and thus each leaf receives the maximum possible amount of sunlight.

A mathematically rigorous explanation for why the Golden angle is optimal is offered
by Bergeron and Reutenauer [41]. In their paper, a simple model of ‘buds’ growing along a
helix on a cylindrical ‘plant” is studied. Around each bud, a disk is placed with diameter
such that no overlap occurs. Then it is shown that a quantity representing the ‘capacity’
of the plant (i.e., the ability for the plant to grow the most number of buds using minimal
disk area) is optimised when the rotational angle is Golden. As with the KAM theorem, the
proof of this makes use of the irrationality of ¢ in the sense discussed above (see Section 2).

In light of a mathematical proof for the optimality of the Golden angle, along with
observational evidence of the Golden angle that spans nearly two centuries; one may
conclude that the Golden ratio is strongly linked to Phyllotaxis.

3.5. The Ultimatum Game

In game theory, the branch of mathematics devoted to understanding strategic decision
making when two ‘players’ interact, the Golden ratio appears in the ultimatum game, first
described by Giith et al. [42]. In this game, one player has a set amount of some resource
(money, for example), and must offer a share of this to a second player. If the second
player accepts, then the resource is divided according to the offer. If they reject the offer,
then both players leave empty handed. One might think that the best possible strategy
for the first player is to make the smallest possible (non-zero) offer, while the second
player’s best strategy is to accept this. However, in practice, this is not found to be the
actual outcome. The most likely accepted offers tend to be around 40% (or close to the
inverse of the Golden ratio) [43,44]. It was suggested by Schuster [45] (with an argument
based on continued fractions) that the solution to the ultimatum game is to make an offer
such that the proportion of the second player’s share to the first player’s equals that of
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the first player to the whole, i.e., the Golden section. This solution could be interpreted
as the fairest possible trade-off given an asymmetric situation. The Economic Harmony
theory of Suleiman [46] predicts that the split between players should be the Golden ratio,
when considering the ratio between actual and desired pay-off. In addition, Suleiman
showed that the agreement between experimental data and the proposed Golden solution
is statistically significant [46].

The ultimatum game has been applied to a wide range of situations, including that of
human walking [8]. In this case, there are two phases: the stance (when both feet are on the
ground) and swing (when a foot leaves the ground). The most common ratio between the
times spent in each of these phases was found by Iosa et al. to be Golden. From the game
theory perspective, the Golden ratio provides the optimal compromise between continued
motion and stability of the walker.

The approximate split of 60% to 40% observed in many experimental studies, along
with two independent theoretical treatments predicting and explaining a Golden solution,
suggest a strong link between the ultimatum game and the Golden ratio.

3.6. The Human Body

Knowing that the Golden ratio plays a role in human walking, one might ask whether
it also appears in the human body? The answer to this question is that it might, and in a
variety of situations including the heart and the brain, which are both considered here.

3.6.1. The Heart

The work of Henein et al. [47] shows three cases of ¢ present in the human heart.
Their work used images obtained by ultrasound and computerised axial tomography (CAT)
scans, as well as the resting phase of the heart cycle. Firstly, it was found that vertical and
transverse measurements of the left ventricle (one of the chambers of the heart) are in the
Golden ratio. Secondly, the annulus dimensions in the mitral valve (located between the
left ventricle and left atrium) were also found to be in the Golden ratio. Thirdly, the angle
between the right ventricular inlet axis and the outflow tract axis was found to be close
to the Golden angle, 137.5°. For all three of these measurements, there was an observed
deviation from ¢ when the heart was not healthy. This means that such measurements
could be used as a way to identify when the heart deviates from normality.

3.6.2. The Brain

A recent discovery is that ¢ occurs in the dimensions of the human skull. The work of
Tamargo and Pindrik [48] took CAT scanned images of human skulls and considered three
points; the nasion (where the frontal bone meets the nasal bones), the inion (a protuberance
at the back of the skull) and the bregma (a point at the top of the skull where the frontal and
parietal lobes meet). Taking the arc joining the nasion and inion, and dividing it into two
sections separated by the bregma, Tamargo and Pindrik found that the resulting sections
are Golden, i.e., the bregma makes a Golden cut to this arc. They also found that the
equivalent skull dimensions of some other mammals, such as monkeys, rabbits, dogs, lions
and tigers, have differing ratios. Furthermore, these ratios appear to approach ¢ as the
species becomes more sophisticated.

For both the human heart and brain, there exists observational evidence that the
Golden ratio is present in their proportions. However, in both cases there is no theoretical
explanation of why this might be so. In the absence of this, the existing evidence is
circumstantial; enough to suggest that the Golden ratio might be present, but not sufficient
to prove it.

3.7. Proteins and Amino Acids

With the ubiquity of ¢ in various organs of the human body;, it seems natural to ask
whether ¢ appears at smaller biological scales. Recently, the Golden ratio has also been
observed at the nanometre scale [49], in the shape of proteins, macromolecules which
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play a vital role in our existence. The distribution of protein aspect ratios, obtained using
calliper measurements from the Protein Data Bank (PDB), are shown in Figure 9. There are
two peaks in this distribution, one for prolate (cigar shaped) proteins, and one for oblate
(frisbee shaped) proteins. The mode aspect ratio in the prolate case is close to the Golden
ratio, while the peak oblate shape is close to its reciprocal.

To help assess whether these aspect ratios distribute about ¢, hypothesis tests were per-
formed on the protein and amino acid data. Following the recommendation of Santos et al. [50],
the (two-tailed) t-Student test was used with the test statistic defined as D = b¢ — a (wWhere a
and b are the long and short calliper lengths, with a > b). In these tests, the null hypothesis is
that the distributions are centred around ¢. For a subset of the protein data, taken from the
PDBselect database [51], three sets of proteins were tested: oblate, prolate and the whole set.
Taking a significance level of one percent, the obtained p-values were: popjate = 0.29095,
Pprolate = 0.00000 and pypote = 0.00000. The vanishingly small p-values in the latter two
cases imply that the prolate proteins, as well as the entire set, do not distribute around ¢
(i.e., the null hypothesis is rejected). In the oblate case, there is not enough evidence to
reject the null hypothesis and so there remains the possibility that their peak is Golden.

2000 7 Oblate ¢! Sphere ¢ Prolate
1750 :

1500 -
1250 A

1000

Count

750

500 +

250 +

0 T
0.1 0.2 0.5 1 2 5 10

Aspect ratio

Figure 9. Distribution of aspect ratios of proteins, as obtained by calliper measurements. The
distributions for oblate (aspect ratio < 1) and prolate (aspect ratio > 1) proteins peak near aspect
ratios of ¢! and ¢, respectively, (gold lines).

It was also observed that the amino acids that comprise proteins have aspect ratios
that distribute around a value near the Golden ratio. For each residue in the protein dataset
(approximately 13 million amino acids), the spheroid of equivalent steric volume to the
side chain was calculated. This gives a distribution of aspect ratios for each of the 20 types
of amino acid found in proteins. The average aspect ratio (the ratio between the spheroid
major axis, 4, and minor axis b) for each amino acid type (not including glycine, whose side
chain consists of a single hydrogen atom) is shown in Figure 10. It can be seen that the ratios
a/band (a + b)/a distribute around a value close to ¢. It can be noted that the average
values of (a +b)/a and a/b (1.6120 and 1.6808) are quite close to each other, suggesting
that the average shape of amino acids is close to Golden. Interestingly, when taking into
account the number of residues of each type in the protein data, the average aspect ratio,
a/b, drops to about 1.6401 (dash-dotted black line in Figure 10). This can be explained by
noting that the three most commonly occurring amino acid types in the protein dataset,
alanine (ALA), leucine (LEU) and valine (VAL), have relatively low aspect ratios (all below
1.6). While the weighted average aspect ratio is near to ¢, it should be noted that none of
the twenty amino acids themselves have a Golden aspect ratio.
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Figure 10. Average aspect ratios of 19 amino acid types (excluding glycine), as calculated from
spheroids of equivalent steric volume to amino acid side chains in each protein. The triangles show
the ratio a/b, while the circles show the ratio (¢ + b) /4. The dashed and dotted lines show the average
values of the triangles (1.6808) and circles (1.6120), respectively, while the gold solid line shows the
Golden ratio. Shown also, by the dash-dotted line, is the average aspect ratio, a/b, weighted by the
frequency of each residue in the protein data (1.6401).

It is an interesting observation that amino acids in proteins have a shape similar to that
of the proteins they make up, and that this common aspect ratio coincides with ¢, which is
itself defined using the idea of self-similarity. Beyond this coincidence, there is little further
evidence suggesting that the Golden ratio is present in proteins. Prolate proteins (and the
set as a whole) can be judged as non-Golden based on the result of the hypothesis test
above, although it cannot be ruled out that the same holds for oblate proteins. Moreover,
there exists no known theoretical reason for proteins or amino acids to have a Golden
shape. Therefore, there is not enough evidence to confirm that the Golden ratio is linked
to proteins.

3.8. Penrose Tilings and Quasicrystals

In addition to proteins, another example of how atoms can assemble in a self-similar
fashion is that of quasicrystals, structures that are ordered in space but are not periodic. A
crystal is an ordered arrangement of points, usually with a regularly repeated (i.e., periodic)
pattern. A mathematical result known as the crystallographic restriction theorem states that
the only allowed rotational symmetries for a crystal are 2, 3, 4 and 6-fold. In other words,
a periodic tiling using one of these symmetries can be used to completely fill space. This
does not apply to 5-fold, or x-fold (where x > 6) symmetry, meaning for example, that
it is not possible to tile two-dimensional space using regular pentagons. In the geometry
of the regular pentagon, the Golden ratio appears. As pictured in Figure 11, the diagonal
length divided by the side length equals ¢. Thus, the Golden ratio may be associated with
five-fold symmetry in a similar way to how the number 7t = 3.14159 ... is associated with
circular symmetry.

It was discovered by Penrose that two-dimensional space can in fact be tiled by using a
pair of shapes derived from the pentagon [52]. An example of such a tiling, where each tile
is one of two types of rhombus, is shown in Figure 12. The Penrose tiling has the property
of not being periodic, but yet is self-similar in that finite patches of the tiling are repeated
infinitely many times. Furthermore, it is possible to transform a Penrose tiling into another
equivalent tiling by applying a particular set of substitution rules to the tiles. The Penrose
tiling also exhibits multiple instances of the Golden ratio, as might be expected due to its
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five-fold symmetry. The Golden ratio is prominent in the geometry of the tiles themselves,
and in the limit of infinitely many tiles, the ratio of wide to thin rhombi is ¢.

Figure 11. The ratio between the diagonal (dashed gold line) and the side length of a regular pentagon
is the Golden ratio.
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Figure 12. Finite patch of a Penrose tiling of the plane, using two types of thombus derived from the
pentagon. The thin tiles (gold) have internal angles of 36° and 144°, while the wide tiles (silver) have
angles 72° and 108°. In the infinite tiling, the ratio of wide to thin tiles is Golden.

To see how the Golden ratio appears in the Penrose tiling, it is useful to consider a
one-dimensional example of a ‘tiling’, based on the Fibonacci sequence. This example may
be constructed by first taking a square lattice in two dimensions, and defining a strip as
shown in Figure 13, such that its slope is 1/¢. If the strip is defined by taking a unit square
and moving it along this direction, then the projections of the points within the strip onto
the axis parallel to the slope define a series of line segments. It can be seen in Figure 13 that
the line segments have one of two lengths, one short and one long. The ratio between these
lengths is itself Golden, and the sequence of long and short line segments is equivalent to
the Fibonacci sequence. The Penrose tiling can be interpreted as a superposition of five
sets of Fibonacci lattices. It was found by Ammann [53,54] that the rhombus matching
rules can be formulated by drawing straight lines on the tiles, such that the lines continue
when two tiles are placed edge to edge. Figure 14 shows these Ammann lines overlaid on a
Penrose tiling. There are five sets of parallel lines, and for each such set of lines, there are
two separation lengths. These sets of lines are themselves Fibonacci lattices. The Penrose
tiling could thus be viewed as a two-dimensional generalisation of the Fibonacci lattice.

In three dimensions, a forbidden symmetry is that of the icosahedron, a twenty
faced regular polyhedron whose geometry features five-fold symmetry and the Golden
ratio. The Nobel prize winning discovery by Shechtman of icosahedral symmetry in an
aluminium-manganese alloy [55], shows that the crystallographic restriction theorem can
be violated by real materials. This shows that a ‘crystal” structure can be ordered, in
that the positions of the tiles are governed by some mathematical prescription, and yet
not be periodic. Such structures are known as quasicrystals [56]. There are two types
of known thermodynamically stable quasicrystal in three dimensions: polygonal and
icosahedral. Polygonal quasicrystals have an axis of either 8, 10 or 12-fold symmetry, with
the structure being aperiodic in planes normal to this axis and periodic along it. Icosahedral
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quasicrystals on the other hand, are aperiodic along all three dimensions. The work of
Steinhardt et al. [57,58] considers the icosahedral quasicrystal as the three-dimensional
analogue of the Penrose tiling. Icosahedral quasicrystals have been discovered as naturally
occurring in samples from the Koryak Mountains in Siberia [59-61].

Figure 13. Generation of a Fibonacci chain by projection from a two dimensional lattice. A strip
(between the two gold dashed lines) of slope 1/¢ is defined by translating a unit square along this
direction, and all lattice points within this strip are found. These points are then projected onto an
axis of the same slope (solid black line) and this forms a chain of long and short length segments,
which behaves according to the Fibonacci sequence.

PO L B AR R I L

Figure 14. Penrose tiling (black dotted rhombi) with overlaid Ammann lines (gold solid lines). These
lines provide a means of specifying matching rules between tiles, with the rule being that the lines
must remain continuous. The set of Ammann lines in a full Penrose tiling is equivalent to a set of
five overlapping Fibonacci chains.

Given the presence of the Golden ratio in the geometry of the icosahedron, it is an
interesting observation that this symmetry is the only way to produce a quasicrystal that
satisfies quasi-periodicity along all three dimensions, and that it is found in the only known
natural quasicrystals. In light of this evidence, there is no doubt that quasicrystals are
profoundly linked with the Golden ratio.

3.9. Atomic Bond Lengths

While proteins, amino acids and quasicrystals show possible examples of how many
atoms can arrange themselves with geometry described by ¢, the Golden ratio also appears
when considering the bonds between pairs of atoms, and can be used as a simple model
to predict bond lengths. Using density functional methods, Suresh and Koga obtained a
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value of 0.0327 nm for the hydrogen-carbon bond lengths in methane [62]. The work of
Heyrovska [63,64] was motivated by the fact that this value is close to the Bohr radius,
the most probable ground state distance between the proton and electron in the hydrogen
atom (0.0529 nm), divided by the Golden ratio. That work showed that the Bohr radius
can be divided into Golden sections, a. and ap, corresponding to the electron and proton,
respectively. The ionisation energy for hydrogen in the ground state (i.e., the energy
required to separate the electron and proton) can then be written as a difference of two
terms based on these distances. This idea has been extended to the case of a covalent bond
between two identical atoms. For atoms of type A, the length of such a bond, d(AA), can
be considered the sum of two radii, d(A™) and d(A ™), defined by a Golden cut. Given the
covalent bond length for a pair of identical atoms, the values of d(A™) and d(A~) may be
calculated for the atom of type A. These values can then be used, as in Reference [63], to
predict the bond length between two dissimilar atoms.

It was found in Reference [63] that this simple model of bond length shows good
agreement with observed bond lengths in examples such as hydrogen halides, alkali halides
and metal hydrides. Since the model is based on the Golden ratio, this suggests that Golden
behaviour may be present in bond lengths between atoms.

3.10. Black Holes, Quantum Gravity and E8

The two most successful physics theories of the twentieth century are general relativity
and quantum mechanics. The former describes gravity and the universe at large scales,
while the latter describes the universe at small scales using electromagnetism, the strong
nuclear and weak nuclear forces. However, the two theories are notorious for their mutual
incompatibility with each other. An example that invokes both theories is that of black
holes, which have sufficiently strong gravity that even light cannot escape, and are so
compact that quantum effects are important. The study of black holes has revealed multiple
instances of the Golden ratio, two of which are discussed here.

A well known example is that of the specific heat capacity of a black hole. Specific
heat capacity is defined as the amount of energy that must be added to a unit mass of
some object in order to raise its temperature by one unit. Due to a result known as the
virial theorem, self-gravitating objects, such as stars, have a negative specific heat, i.e., they
become hotter when energy is removed [65]. This happens because as energy is removed,
the star contracts and so its constituent particles speed up, increasing the temperature. The
same is true of a Schwarzschild black hole, which is a spherically symmetric, non-rotating
black hole with zero net charge. When considering a black hole that is rotating, the specific
heat capacity can be positive or negative, depending on the angular momentum. It was
found by Davies [66] that the transition between negative and positive occurs when the
black hole satisfies (using units in which the speed of light and the gravitational constant
equal unity),

]2

= 2v/3 — 3 &~ 0.464, (19)
where M is the mass of the black hole, and ] is its angular momentum. Interestingly, a later
paper by Davies [67] showed that the same ratio, J>/ M*, equals the inverse Golden ratio,
(\/5 —1)/2. This latter result has been found to be true, if the ratio of angular momentum
and mass is held constant [68].

While the heat capacity example seems physically unlikely (as there is no reason
to expect that the angular momentum to mass ratio of a black hole remains constant),
Cruz et al. [69] showed that ¢ also appears in black hole physics when considering the
metric (a mathematical object describing spacetime curvature) of Schwarzschild-Kottler
black holes. In particular, ¢ appears when considering the null geodesics (i.e., the paths
taken by photons) of this metric.

The above paragraphs show that the Golden ratio occurs in certain theoretical treat-
ments of black holes. However, due to the inherent difficulty in observing black holes, there
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is as yet no evidence that Golden behaviour occurs in real black holes. As a result, it may
be concluded that the evidence for black holes being related to ¢ is insufficient.

Given the appearance of ¢ in black holes, one might question whether it also appears
in theories attempting to unify general relativity and quantum theory. Some such attempts
involve a mathematical structure known as ‘E8’ [70-72], in which ¢ may also be found [73].
One way to think of the E8 structure is as a lattice of points, corresponding to the dens-
est way to pack ‘spheres’ in eight-dimensional space [74]. Evidence of an E8 governed
phenomenon in nature was found by Coldea et al., with the Golden ratio appearing in
a low temperature one-dimensional magnet known as an Ising chain, formed by cobalt
niobate [75]. When a critical magnetic field is applied perpendicular to the compound,
the spin of each cobalt atom enters a quantum superposition of the up and down states.
According to theoretical predictions, in the vicinity of the critical field, the two lightest
particles of the chain should have masses in the Golden ratio [76]. In the cobalt niobate
experiment, neutron scattering revealed two peaks in energy, interpreted as the two lightest
particles of the Ising chain. As the applied field was increased, their ratio approached ¢. As
pointed out by Affleck [77], the observation of ¢ suggests that E8 underlies this system.

Since the Ising chain is described using ES, its theoretical description contains the
Golden ratio. The experimental agreement with this theory thus confirms that the Ising
chain is indeed related to the Golden ratio.

While the cobalt niobate experiment is currently the only case of an observed E8
governed system, it shows that the Golden ratio can be found at the quantum scale. The
examples discussed above show that there is a tendency for ¢ to appear at all length scales,
sometimes in surprising places. This tendency for the Golden ratio to appear in such a wide
variety of phenomena has even led to suggestions that the Golden ratio is a fundamental
constant of nature [78,79].

4. Conclusions

A remarkable number of apparently disparate natural phenomena can be linked to
the Golden ratio, and occurrences of this number may be found at multiple length scales,
ranging from the galactic to the atomic. Some of these instances; such as planetary orbits,
RR Lyrae stars, phyllotaxis, the ultimatum game, Ising chains and quasicrystals stem from
the fact that the Golden ratio is, in the sense of Hurwitz’s theorem, the most difficult number
to approximate using rational quotients. In such cases, the Golden ratio manifests itself
through its rational approximants, given by the ratios of successive Fibonacci numbers. In
other cases; including spiral galaxy pitch angles, protein and amino acid shape, atomic bond
lengths and black holes, the observations or calculations resulting in the Golden ratio appear
coincidental, but may also indicate that some deeper, as yet unknown, explanation exists.

The propensity of this number to appear in unexpected places does however, some-
times lead to misconceptions, such as the idea that the nautilus shell and hurricanes are
governed by the Golden spiral. Nevertheless, in exploring just one single number, one
may encounter a plethora of fascinating topics from a variety of disciplines. Whenever the
Golden ratio (or a nearby value) is encountered in science, there is an exciting opportunity
for scientific, philosophical and artistic investigations.
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