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Abstract—Multiphase electrical machines have gained
increased attentions recently due to its fault tolerance capability
which is of great importance for more-electric aircraft
application. This paper studies sensorless control of a high-
speed dual three-phase electrical machine for turboprop
aircraft green taxiing motor and engine generator applications.
After introduction of a detailed mathematical model of a dual
three-phase permanent magnet machine, two different types of
back EMF based sensorless control are compared in this paper.
The first method uses a phase-locked-loop (PLL) type speed and
rotor position estimator and the other uses a Luenberger
observer estimator. The effectiveness of these two different
methods is demonstrated using simulations in the
Matlab/Simulink environment. The comparison studies show
that Luenberger type estimator has better dynamic
performance but suffers high frequency noise in the estimated
speed error and requires the use of machinal parameters. In
contrast, PLL type estimator has inferior but acceptable
performance. Its low-pass characteristics frees it from the high
frequency noise. Moreover, it does not require the use of
mechanical parameters.

Keywords—Dual Three-Phase PMSM, Sensorless Control,
Back EMF Sensorless Control Method.

I. INTRODUCTION

Over the last few decades, there has been tremendous
progress in the efforts to move toward more electric aircraft
(MEA). Many subsystems that previously used hydraulic,
mechanical, and pneumatic power have been fully or partially
replaced by electrical systems. Multiphase machine has been
widely used in MEA [1] since it can provide notable
improvements in various aspects of performance when
compared with the use of conventional three-phase machine
[2]. Multiphase machine exhibits outstanding advantages,
such as reduced phase current rating as well as torque ripple,
less DC link harmonic current; smooth magneto motive force
(MMF), improved efficiency, and excellent fault tolerant
characteristics [2-5]. In addition, the system reliability is
greatly improved with multiphase machines since the machine
can operate continuously even if one or several phases (in
some cases) are lost [1]. One of the various multiphase drive
solutions is the dual three-phase (DTP) machine that has two
identical star-connected three-phase stator windings with
isolated neutral points [6]. Considering the spatially shifted
angle between two sets of three-phase windings, DTP
machines can be classified as symmetrical (shifted by 60
electrical degrees) machines and asymmetric (shifted by 30
electrical degrees) machines. According to [7], symmetric
DTP-PMSM is preferred to satisfy the severe fault-tolerant
requirements that are imposed by the specific aerospace

application. Hence, in this study, a symmetric DTP-PMSM is
investigated to try to develop a mechatronic device for
turboprop aircraft applications. The electrical machine is used
for green taxiing application and driving propellers during
motoring mode. During the generation mode, the electrical
machine is driven by the engine and runs as an electrical
generator. The schematic diagram of the machine is shown in
Fig. 1.

Sensorless control is required in this study because the
space in the gear-box is too small to install mechanical
speed/position sensors. Besides, system reliability is
improved since vulnerable components such as mechanical
sensors in entire system are removed. Generally, sensorless
control methods can be divided into two categories [8]. One
is rotor saliency based methods such as high frequency signal
injection approaches [9, 10]. The other one is a back EMF
based method. In this study, the characteristics of the
estimated back EMF signals are analyzed. The differences
between a phase-locked-loop (PLL) type estimator and a
Luenberger observer type speed and position estimator are
compared. Sensorless control design for symmetric DTP-
PMSMs has not been studied in details in existing
publications and this paper undertakes the attempt to fill this
gap.

II. DUAL THREE-PHASE PMSM MODEL

In this section, mathematic models of DTP-PMSM are
built in three-phase coordinate frame, dq rotating frame and
ߚߙ stationary frame.

A. Mathematical Model in Three-Phase Coordinate Frame

The voltage and flux equations of a DTP-PMSM in
original phase coordinate frame can be written as
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currents,
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௘ߠ is the electrical rotor position in radians,

ܴ is stator resistance,

߮௠ is permanent magnet flux.

࢙ࡸ is the inductance coefficient matrix which can be
presented as
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where ௭ܮ is the stator leakage inductance, ௗܮ and ௤ܮ are stator
inductances in d-axis and q-axis respectively. I is a unity
matrix with six columns and six rows. ࡹ ࢕ and ࡹ ࢞ are
detailed in Appendix II. The system parameters used in this
study are given in Appendix I.

The electromagnetic torque of the PMSM is obtained by
taking the partial derivative of the system co-energy with
respect to the rotor position angle,
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where �ܲ௉ is the number of pole pairs.

B. Model Representation in dq Rotating Frame

By ignoring zero sequence component, DTP-PMSM can
be represented as two single three-phase machines with
mutual coupling through transformation matrix ௦ܶ.
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where ݂�stands for variable such as voltage, current or flux.
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Fig. 1 DTP-PMSM drive system.

C. Model Representation in ߚߙ Stationary Frame

The transformation of variable between dq rotating frame
and ߚߙ stationary frame can be presented as:
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III. BACK EMF BASED SENSORLESS CONTROL

A. Estimation of Back EMF

The voltage equation in dq rotating frame can be derived
from (1)-(2) and (5)-(8)[11]:
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Since the two sets of three-phase windings are exactly
symmetric, if the current controllers of these two dq frames
share same parameters, (12) can be expressed as:
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Voltage equation in ߚߙ stationary frame can be deduced
combining (9)-(11) and (14)-(15):
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where ଷܯ is detailed in Appendix II.

According to (16), two sets of three-phase windings can
be completely decoupled and voltage equation of DTP-
PMSM in ߚߙ stationary frame can be simplified as
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According to [12], a PI type Back EMF estimator consists
of two parts: the DTP-PMSM model (17) without the
extended EMF ( ఈ݁ఉభǡమ ) and a proportional–integral (PI)

compensator. Since the extended EMF is unmodeled, it is
inherently estimated by the PI compensator. The schematic
diagram of this estimation is shown in Fig. 2. The voltage
equation in Fig. 2 can be written as:

ఈఉభǡమݑ ൌ ܴଓƸఈఉభǡమ ൅ ஽ଓƸఈఉభǡమܮήݏ ൅ ݆߱ ௘൫ܮ஽ െ ொ൯ଓሶఈఉభǡమܮ +

Ƹ݁ఈఉభǡమ  

Combining (17) and (18) gives:
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Since the estimated Back EMF is the output of the PI
controller, the following equation exists:

 െ Ƹ݁ఈఉభǡమ ൌ ൫݅ఈఉభǡమ െ ଓƸఈఉభǡమ൯ቀ݇ ௣ +
௞೔

௦
ቁ 

 ௣݇ ൌ ஽߱௘௦௧ܮ ௜݇ൌ ܴ߱௘௦௧ 

Combining (19)-(21), the following relationship between
actual extend EMF and estimated EMF can be given as:
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Fig. 2 Back EMF estimator.

B. Estimation of Speed and Position

In this section, two different types of speed and position
estimator will be introduced, i.e. PLL type and Luenberger
observer type.

1) PLL Type Speed and Position Estimator

The PLL type speed and position estimator is shown in
Fig. 3.

From (16), it can be deduced that
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According to (23) and (24), the error signal ο݁ in Fig. 3
can be presented as:
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The following approximation exists if ௘ߠ െ ෠௘ߠ is small
enough[12]:

ο݁ൎ ݇ሺߠ௘ െ (෠௘ߠ 

Thus, a PI controller can be utilized to correct the position
error ο݁ and make the estimated position converge to the
reference one.

Fig. 3 Block diagram of PLL based speed and position estimator.
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Fig. 4 Equivalent block diagram of PLL based speed and position estimator.

According to (26), Fig. 3 can be simplified equivalently
to Fig. 4. The transfer function from ௘ߠ to ෠௘ߠ in Fig. 4 can be
given by:
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The characteristic equation of the standard second-order
system can be written as:
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where ߦ is damping ratio and ߱௡ is natural frequency.

By assuming that the denominator of (27) is the same as
that of (28), ௣ܭ and ௜canܭ be deduced as follows:
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The transient response of the PLL type estimator can be
improved by adding a double integral term into the PI
controller as follows:
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The transfer function from ௘ߠ to ෠௘ߠ is given by:
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The three gains in (31) are determined to satisfy the
following condition:
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whereߦ and ߱௡ are the same values as in the foregoing
simulations.

2) Luenberger Observer Type Speed and Position
Estimator

A Luenberger observer type speed and position estimator
can also be used for the estimation of rotor speed and position
[13] as shown in Fig. 6. The transfer function of the
Luenberger observer type position estimator, shown in Fig. 6
is given by (37) [14]


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where J is rotational inertia, B is viscous friction.

The gains of the estimator in Fig. 6 can be selected such
that the characteristic equation of (33) has the same roots as
the followings [14]:

 ௔ܭ ൌ െߙܭୠ ൌ ୡܭଶߙܬ ൌ െߙܬଷ 

where ߙ is the root of the characteristic equation.

Fig. 5 shows the bode plots of (30) and (33) where andߦ
߱௡ are set to 0.5 and 100 rad/s, respectively. As shown in Fig.
5, when the double integral term is added, the phase delay
declines and the performance of transient state is improved.
Hence, a double integral pulsed PI controller is utilized as
PLL estimator.

Fig. 5 Bode diagram of PLL type estimators.

Fig. 6 Block diagram of Luenberger observer based speed and position
estimator.

Fig. 7 Block diagram of sensorless control system based on DTP-PMSM
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Fig. 8 Comparison of simulation results (a) PLL type estimator (b) Luenberger observer type estimator

IV. SIMULATION RESULTS

The block diagram of the sensorless control system is
shown in Fig. 7. Simulation results of PLL based back EMF
method and Luenberger observer based back EMF method
are shown in Fig. 8. The comparison of these two methods is
made on the same scenario which can be divided into two

stages. The first stage continues from beginning to 2.5 s while
the second stage lasts from 2.5 s to the end. In the first stage,
there is no load torque and rotor speed increases steadily from
0 rpm to 18 krpm during the first two seconds and retains at
18 krpm afterwards. In the second stage, a torque load is
applied. The torque load grows steadily from 0 N ∙ m to
100% load (14.8 N ∙ m) between 2.5 s and 3.5 s and then stays
at 14.8 N ∙ m for 1 s. After unloading from 100% load to 0
N ∙ m between 4 s and 5 s, it keeps at 0 N ∙ m to the end of
simulation.

The aims of using sensorless control in this study is
achieved according to Fig. 8. Satisfactory performance of
current is observed and flux weakening control is thereby
verified after calculation. System keeps at stable status as
variable load torque is applied. The tracking of speed
reference (߱௘

∗) is satisfactory. Yet, there are some differences
of speed and position estimation between control
performance obtained using PLL type estimator and
Luenberger type estimator. The Luenberger type estimator
has a better dynamic performance which can be observed
especially in the partial enlargement figure during dwell 0 s
to 0.2 s. This advantage is due to include the demanded

torque as a feed forward term [15] as shown in Fig. 5.
Luenberger observer type estimator is parameter dependent
although it provides the best dynamic response [16]. Besides,
high frequency noise is observed in the estimated speed
obtained using Luenberger observer type estimator. In
contrast, the high frequency component in the estimated
speed error is filtered by the PLL type estimator since the
estimator and the low-pass filter share a same frequency.

CONCLUSIONS

Two back EMF based estimators for the sensorless
control of a DTP-PMSM are investigated in this study. S-
domain simulations are conducted to compare the
effectiveness of these two estimators. Luenberger type
estimator has better dynamic performance but suffers high
frequency noise in the estimated speed error and requires the
use of machinal parameters. In contrast, PLL type estimator
has inferior but acceptable performance. Its low-pass
characteristics frees it from the high frequency noise.
Moreover, it does not require the use of mechanical
parameters. PLL type estimator is preferred in further study
and potential applications due to its simpler structure and
independence from mechanical parameters.
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Appendix I

Table 1 Parameters of machine.

Parameter Mark Value Unit

Phase Resistance ܴ 0.41 Ohm

D-axis Inductance ௗܮ 365 μH 

Q-axis Inductance ௤ܮ 410 μH 

Rotational Inertia ܬ 0.00263 kg∙m2

Peak No-load Flux
Linkage per Channel

߮௠ 0.0287 V∙s 

Pole Pairs Number ௉ܲ 6 /

Appendix II

ࡹ ࢕ and ࡹ ࢞ are matrixes in (3). ଷܯ is matrix in (16).
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