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Parsing a Mental Program: Fixation-related Brain Signatures of 

Unitary Operations and Routines in Natural Visual Search 

Abstract  

  Visual search involves a sequence or routine of unitary operations (i.e. fixations) embedded in 

a larger mental global program. The process can indeed be seen as a program based on a while loop 

(while the target is not found), a conditional construct (whether the target is matched or not based on 

specific recognition algorithms) and a decision making step to determine the position of the next 

searched location based on existent evidence. Recent developments in our ability to co-register brain 

scalp potentials (EEG) during free eye movements has allowed investigating brain responses related 

to fixations (fixation-Related Potentials; fERPs), including the identification of sensory and cognitive 

local EEG components linked to individual fixations. However, the way in which the mental program 

guiding the search unfolds has not yet been investigated. We performed an EEG and eye tracking co-

registration experiment in which participants searched for a target face in natural images of crowds. 

Here we show how unitary steps of the program are encoded by specific local target detection 

signatures and how the positioning of each unitary operation within the global search program can be 

pinpointed by changes in the EEG signal amplitude as well as the signal power in different frequency 

bands. By simultaneously studying brain signatures of unitary operations and those occurring during 

the sequence of fixations, our study sheds light into how local and global properties are combined in 

implementing visual routines in natural tasks. 
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1. Introduction 

 Most daily tasks –for example reading this sentence– involve a sequence of operations. 

During the last few decades, there has been an accumulation of knowledge about how the brain 

computes unitary operations.  In contrast, the mechanisms by which unitary operations are assembled 

in programs and routines in the brain have seen comparatively very little investigation [1–7]. One 

prominent example of a mental program comes from natural viewing, where two levels of processing 

must be integrated in real-time: visual processing of each stimulus, and the integration of information 

along the sequence to achieve the goal of the whole task. However, little is known about brain activity 

in natural viewing as obtaining EEG potentials is intrinsically difficult because eye movements 

heavily contaminate brain signals.  

 In fixed-gaze scenarios, sequential-decision making has been one specific case in which the 

iteration of unitary operations of information updating has been studied in human neurophysiology 

[5]. Lange and colleagues showed a gradual reduction of cortical activity with each sample: activity 

was inversely related to the accumulated evidence, which was interpreted as a reflection of top-down 

influence on sensory processing [8]. These results built on single neuron studies in macaques, 

reporting that neuronal activity was modulated by the evidence accumulated throughout a sequence of 

simple operations in neurons in the parietal cortex [9] and in more complex visual tasks by recordings 

in the primary visual area [10]. In humans, early ERP studies have shown that in fixed-gaze oddball 

experiments the amplitude of the P3 component, emerging when the target is detected, is modulated 

by the inter-stimulus interval (ISI) [11–13]. In many studies, this has been related to the concept of 

expectancy and surprise and led to the prediction that P3-like components could act as a cortical index 

to a discrete sequence of accumulated processes [7]. Beyond discrete event-related potentials, some 

experimental evidence suggests the involvement of low-frequency oscillations (theta, alpha and beta) 

in integrative brain processes, while high-frequency oscillations (gamma-band oscillations) are sought 

to reflect the circuit-level mechanisms mediating local encoding processes (either sensory or motor), 

although both could involve neuronal activity within the same cortical region [14]. For instance, top-
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down attention has a different spectral profile from the local encoding of sensory features in primary 

visual cortex [15], and decision-making has a different spectral profile from that of motor planning 

[16–19]. Large modulations in the alpha-band have been associated to both event-related 

desynchronization (ERD) and synchronization (ERS). The most common observation is that brain 

areas that are activated during a task exhibit ERD, whereas areas associated with task irrelevant and 

potentially interfering processes exhibit ERS. Thus, the latter process is usually associated with an 

inhibition, and the former one with the release of that inhibition. This has been observed, for instance, 

in tasks that vary stimulus modality (e.g., Visual vs. Auditory) [20], stimulus processing domain (e.g., 

related to the ventral vs. dorsal processing stream) [21] or stimulation side (e.g., stimulation of the 

right vs. left visual hemifield) [22,23]. The changes in alpha-band frequency power are also 

progressive, as shown by the temporal spectral evolution (TSE) waveforms in many tasks. For 

instance, when a warning signal preceded a target or non-target in an oddball task, the alpha-band 

oscillations not only responded to the identity of the stimulus but also to the expectancy of the 

upcoming stimulus [24]. Desynchronization of alpha/beta activity has also been reported when the 

anticipation of an impending target increases [25]. 

 Eye movement and modeling approaches to visual search tend to focus on general planning of 

the scanpath, and how image properties modulate both fixation duration and position distributions 

[26–32]. Other experimental approaches include fixed-gaze neuroimaging studies with a single 

spatially spread stimuli presentation, or sequentially centered stimuli presentations. Single 

presentation EEG studies tend to focus on the neural basis of spatial covert attention and its 

mechanisms [33,34], while serial visual presentations (fixed-gaze) are mostly used to study the neural 

correlates of target detection/identification with overt visual attention [13,35]. Regardless of the 

methodological approach, much of what is known in the field comes presenting ‘synthetic’ stimuli, 

ranging from simple bars and sinusoidal gratings to other typical laboratory stimuli including pre-

segmented objects and faces. Consequently, there has been an increasing interest in visual search of 
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natural scenes as the complexity of natural scenes may provide a greater depth of the behavior for 

investigation [36], particularly in free-viewing visual search [37]. 

 Recent studies have started to combine EEG and eye movements [38–42]. They have shown 

that it is possible to reliably measure brain activity related to the visual information retrieved from 

each fixation, which has begun to close the gap between these approaches. This opened the possibility 

to combine these lines of research and study human neurophysiology of visual overt exploration of 

natural scenes. In particular, previous studies have investigated brain activity elicited on each fixation, 

showing that a clear P3 arises from both synthetic [40,43–45] and natural [46] stimuli. Moreover, the 

P3 component is observed both when a target stimulus is embedded in the middle [40] or at the end of 

the stream of fixated items [43,45–47], and it is robust enough to be detected in a trial-by-trial basis 

[43,45–47]. This component has been used as part of a brain computer interface (BCI) system for 

assistive technologies [47], as well as to investigate other “real world” applications such as 

understanding information systems [48], or the hazard perception driving test [49]. Most studies have 

focused on the comparison between target and distractor responses (but see [44] for sequential 

differences among distractors) [33,34]. A few co-registration studies have also focused on eye 

movements over natural scenes but in scene perception and memorization, and described the early 

processing of the fixated patches [41,50–52]. In a recent study [46], we showed that there is a high 

similarity between fERPs recorded in an eye movement visual search task and ERPs recorded in a 

fixed-gaze experiment with similar stimuli. This was reflected both in early visual potentials, but also 

in a late potential that discriminated targets from distractors. One pitfall of that study is that 

participants were explicitly instructed to perform long fixations. This aimed at eliciting comparable 

number of long epochs with fixations to targets and distractors at the expense of ecological validity, 

since in natural viewing the processing of each single stimulus has to be combined with the 

information integrated throughout the task.  

 Here, we aimed to investigate the existence of brain signatures for unitary operations and 

mental programs in a completely free viewing visual search task. To date, this has only been 
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addressed in very few studies and they all used fixed-gaze paradigms. We hypothesized that local 

processing in unitary operations under fixed-gaze would be conserved in natural viewing, and could 

be captured by fixation-related components. Furthermore, we also hypothesized that signatures of 

global integration of information along the task would be reflected in modulations in the P3 amplitude 

and low-frequency oscillations. We propose a schematic framework to link the identified 

electrophysiological signatures with underlying integrative processes in natural viewing, which could 

form the basis of future theoretical frameworks of gaze control integrating electrophysiology and eye 

movements in natural viewing.  

 

2. Materials and Methods 

2.1. Participants 

 Seventeen subjects participated in the experiment (13 male/4 female; aged between 21-31 

years). All subjects were naïve to the objectives of the experiment, had normal or corrected to normal 

vision, and provided written informed consent according to the recommendations of the declaration of 

Helsinki to participate in the study.  

 

2.2. Apparatus 

 Stimuli were presented in a 21-inch cathode ray tube (CRT) monitor with a screen resolution 

of 1024 x 768 pixels and at a refresh rate of 75Hz. Subjects sat 60cm from the monitor in a chair, with 

their heads stabilized using a specially designed ‘cheek rest’ (to avoid EEG artifacts from muscular 

activity from the jaw) and responses were made on a standard ‘qwerty’ keyboard. All stimuli were 

were presented in MATLAB (MathWorks 2000) using the Psychophysics Toolbox extensions [53,54]. 
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2.3. Stimuli 

 In the database there were 60 gray-scale images. The images were of football crowds in 

stadiums, each image was 800x768 pixels (23.4 by 22.4 degrees of visual angle) and contained 

between 23-35 distractors (30.68 mean average) (Fig S1B,D). The luminance profile of each image 

was equalized and the pictures were converted to gray-scale to constrain the variability of visual 

salience across global displays (i.e. to avoid characteristics of the image that could be particularly 

salient). From each image, 3 faces of size 80x80 pixels were chosen as targets and the rest were 

marked as distractor faces (Fig S1C,D). The selected target locations did not follow any specific 

pattern and included different angles, expressions and genders. The spatial distribution of all faces and 

particularly the targets covered the whole display. 

 

2.4. Experimental Procedure 

 We followed a similar procedure as in Kaunitz et al. (2014) [46]. Briefly, at the beginning of 

each trial subjects pressed the space bar and were presented with a target face for 3 s (Fig 1A). The 

target faces were first cropped to a square of size 2.04° x 2.04°. To prevent subjects from facilitating 

their visual search based on the size of the target face, in each trial we rescaled the original target face 

to a random size between 1.75° x 1.75° and 2.63° x 2.63°.  After this time a fixation dot was presented 

on the screen at a random location (Fig S1A). Subjects had to fixate at the dot location for 1 s for the 

image of a crowd to appear on the screen (Fig 1A). The task was to search for the target face within 

the crowd and to fixate on it for 1 s once they have found it (Fig 1A-C). Trials ended when subjects 

found the target or after 20 s of visual search. The 60 images were presented in pseudo-random order 

as a block. Between blocks subjects took 5 min resting breaks. In each block the target face for each 

image was different from previous blocks. In total subjects performed 180 trials (3 different targets 

per crowd image for the whole experiment).  

 The main difference from Kaunitz et al. (2014) was that in the present study participants were 

neither trained to perform slower fixations in a previous session, nor were the instructions biased 
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towards accuracy instead of speed [46]. Subjects were simply left to explore and search for the target 

as they naturally would. The rationale of the procedure in the previous experiment was to get a large 

enough sample of distractors to obtain measurable fERPs. In the present experiment we aimed to 

explore naturally occurring fixations, and we show that even in this situation it is possible to observe 

robust fERPs. 

 

2.5. Eye movements and EEG data acquisition 

 Eye movements were registered with an EYELINK 1000 system (SR Research, Ontario, 

Canada). The ET was used in binocular mode with stabilised-head and sampling rate of 500Hz in each 

eye. Saccades were detected using an adapted version of velocity-based Engbert and Kliegl's 

algorithm [55,56]; using the parameters described in Kamienkowski et al. (2012) [40]. Only saccades 

larger than 1 degree were kept for the analyses of the data, as saccades below this threshold were 

considered microsaccades [37]. For all the experiments a drift correction was made every 10 trials, 

and a recalibration of the ET every 60 trials (before the beginning of a new block). 

 The EEG data was recorded with a 64-channel 10-20 montage using the Biosemi Active-Two 

System (Biosemi, Amsterdam, Holland) at 1024 Hz. The Data were imported into Matlab using the 

EEGLAB toolbox [57] with linked mastoids as the reference. For fERPs, the datasets that were 

created were down-sampled at 256 Hz and band-pass filtered between 0.1 – 40 Hz (six order elliptic 

filter). The start of the fixation on the distractor or target face, identified from the eye tracker data, 

was taken as the onset of the trial. The brain responses for the target from each crowd image were 

analyzed, as were the fixations to distractors. For the comparisons between targets and distractors, 

only fixations that lasted longer than 400ms were kept and the EEG data was aligned to fixation onset 

and epoched between [-0.2 0.8] seconds from the start of the fixation. For constructing the fERPs 

related to distractors early processing, we kept fixations longer than 200ms. In both cases, we 

excluded fixations to distractors larger than 1000ms, which represented (0.6 ± 0.1)% of the fixations 

to distractors. For the fERP local analyses, we applied a baseline correction to each epoch in the time 
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window [-200 -100]ms from fixation onset. For the global fERP analyses (Fig. 4), no baseline 

correction was used. 

 EEG and ET data were synchronized as in Kaunitz et al. (2014) [46]. Briefly, an analog card 

was used to convert the digital eye position into analog voltage channels. The temporal offset between 

the signals was corrected by realigning the eye tracking data to the frontal electrodes that exhibited a 

sharp saccadic spike potential shortly after saccade onset.  

Data are fully available on reasonable request. 

 

2.6. Matching Procedure 

 Fixations to targets and distractors were match-selected, based on the eye-movement 

properties of each fixation [40,58]. This was to avoid any baseline differences created from the eye 

movements, so that the fERPs for targets and distractors could be compared without artifactual 

components affecting the results. In short, we used as matching parameters the preceding saccade 

horizontal (dx) and vertical (dy) amplitudes, as well as its duration (dt). We implemented K-nearest 

neighbors (KNN) algorithm as a robust matching method. This algorithm finds the ‘nearest neighbor’ 

for an mx-by-n matrix X in each point of an my-by-n matrix Y. The method is exhaustive and uses 

replacement; first calculating the distance of each point and then finding the smallest distance. Once 

matched, the element is placed back in the pool to be matched for distance again. A standardized 

Euclidean distance metric (see Equation 4.1) was used, where xs is a column vector from X that 

corresponds to yt  a column vector from Y:  

 

  !"# = %" − '# ()* %" − '# ′     (4.1) 

 Here, V is the n-by-n diagonal matrix whose jth diagonal element is s(j)2, where s is the 

vector with the sample standard deviation; this scales the difference between rows xs and yt by 

dividing the corresponding elements by the standard deviation. Following the matching procedure, the 
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different parameters matched were shown to have similar distributions across both target and 

distractor condition (see Fig S2). The matching procedure has shown that the parameters have no 

significant differences in each of the three variables used: Saccade Duration (D: 32.0ms ([24.0 ms 

38.0 ms]), T: 32.0 ms ([24.0 ms 38.0 ms]), Wilcoxon rank-sum test: p=0,96), Horizontal Saccade 

Amplitude (D: 4.7 deg ([2.3 deg 8.1 deg]), T: 4.6 deg ([2.3 deg 8.2 deg]), Wilcoxon rank-sum test: 

p=0,86), and Vertical Saccade Amplitude (D: 2.4 deg ([1.1 deg 4.7 deg]), T: 2.5 deg ([1.2 deg 4.8 

deg]), Wilcoxon rank-sum test: p=0,81). 

 In earlier studies, explicit instructions were given to participants in order to increase the 

length of fixations, producing more predictable and “matchable” eye movements [40]. Here we found 

that it is possible to match properties with unrestricted free-viewing eye movements in a robust way.  

 

2.7. Single-Trial Analysis 

 Single-trial ERPs were extracted using a denoising algorithm based on wavelet decomposition 

[59–61]. The first step was to project the single-trial traces into the wavelet space. Then, the wavelet 

coefficients related to the evoked responses were selected automatically for each channel and subject 

using the algorithm implemented in the ep_den package [59]. Finally, the ERPs were denoised by 

reconstructing the signal using only those wavelet coefficients. 

 

2.8. Time-Frequency Analysis 

 For the Time-Frequency analysis, the EEG data sampled at 1024 Hz was band-pass filtered at 

0.1 – 95 Hz (butterworth), and band-stop filtered between 49 – 51 Hz (FIR). The data were epoched 

into trials (including 10 s before the presentation of the stimuli and 10 s after the end of the trial). 

Then, Infomax ICA was calculated only on successful trials. The artifactual ICs related to muscular, 

erroneous electrodes and eye movements were selected and removed based on ‘ADJUST’ [62] and 

‘EyeCatch’ [63] methods and supervised by an expert. Across all participants we removed (8 ± 5)  
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independent componenets (mean ± stdev). Due to the potential confound of removing aspects of 

(fixation-related) cognitive processes of interest, we were particularly conservative in discarding any 

ICs, for instance the sole appearance of an alpha peak was an argument for keeping the IC. 

 Time-Frequency transform was performed using a method based on the convolution of the 

signal with a complex wavelet (‘mtmconvol’ method) from the FieldTrip toolbox [64], using Hanning 

tapers. The time was sampled on windows of 0.5 secs, covering the whole trial with a step of 0.1 secs. 

The frequency was sampled from 0.5 to 30 Hz with a step of 0.5 Hz.  

 Spectral profiles, defined as the change in the cortical power spectrum due to a functional 

process, have been proposed to be a functional link between the MEG/EEG signals and cognition 

[14,65]. Spectral profiles account for changes of the frequency spectrum with a given experimental 

manipulation, stimulus variation or task progression. In our case, we aimed to explore the cognitive 

correlates of progression of the task by using their fingerprints on the spectral profile, i.e. we 

calculated the correlation between the frequency power and the fixation rank to distractors during the 

visual search.  

In particular, for the present analysis we focused on two frequency bands: theta ([4 8] Hz) and 

alpha ([8 13] Hz). Thus, the power of frequencies falling into those bands were averaged for each 

electrode and time window. Then, the trials were epoched into fixations, averaging for each fixation 

the power estimated for all the windows that fall into the fixation. Thus, we ended up with two values 

of power for each fixation (sorted by fixation rank) and electrode, and we averaged those values first 

within participants and then across participants for the electrodes of interest. 

 

3. Results 

3.1. Experimental paradigm and behavior 

The time course of an exemplary trial is shown in Fig 1A. Across all subjects, we obtained a 

total of 19,722 fixations larger than 50 ms. The overall distribution of the eye movement variables 
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during the search presented a typical pattern. The mean and standard deviation of the fixation duration 

were (240 ± 103) ms (Fig 1E). The 5% lower limit of the saccade amplitude was 1.28 degrees (Fig 

1C), and the percentage of saccades that were actually smaller than the target face (2.04 degrees) was 

18.66%. Participants found the target most of the times -P(target found) = (0.86 ± 0.02)- and 

performed very few fixations to the target before the one that finished the trial -percentage of trials 

with re-fixations to the target = (4.3 ± 0.6)%-. Altogether, this suggests that subjects were successful 

at performing this task and did not typically perform two consecutive fixations on the same face (Fig 

1B,C). Another important global variable of the search is the number of fixations performed. The 

median number of fixations needed to find the target (before the last fixation to the target) was 6 

(interquartile range: [3 13]) (Fig 1D). To assess the influence of individual differences in behavioral 

performance, we compared the variance in two dependent variables (Response Time over correct 

trials –RTc- and probability of finding the target, PT) across participants (N=17) and compared it with 

the ones obtained across trials (N=180). We found that both the variances in the mean RTc and PT 

across participants: (var(RTc|part)=0.36, and var(PT|part)=0.004) were smaller than the ones across 

trials: (var(RTc|trials)=1.99, and var(PT|trials)=0.012). To test the hypothesis of lower variability 

across participants (H1), we statistically compared the observed variance across participants with the 

ones obtained from a distribution of 100,000 surrogates, created by randomly taking subsamples of 17 

images (same as the number of participants). We determined the p-value as the fraction of surrogates 

which showed a smaller variance than the original test statistic. The null hypothesis of equal variances 

were rejected with p-values: P(RTc|part >(RTc|trials)=0.00024 and P(PT|part > PT|trials)=0.01374.  

 

3.2. Fixation event-related potentials in unrestricted visual search 

 The dynamics of fERP responses to targets and distractors, summarized in Fig 2A, were 

broadly consistent with what has been observed in previous studies using synthetic stimuli or 

prolonged fixations: A strong P1 at occipital electrodes, a central positivity at ~170ms which 
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resembles the Vertex Positive Potential (VPP) in response to faces [66], and a large target-specific P3 

peaking after 300ms spread from central electrodes [35,40,46]. 

 The VPP was confirmed by analyzing all fixations to distractors larger than 200 ms 

(N=10,466), changing the reference from linked mastoids to average, and observing that the central 

positive peak turns into a parieto-occipital negativity, i.e. the N170, with a slight lateralization to the 

right (Wilcoxon rank-sum test: PO7 vs. PO8 amplitudes in the [150 200] ms time window:  p<0.05, 

zval = -2.00, Cohen’s d (N = 34) = -0.34) [62,63] (Fig S3). 

 In order to control for differences in eye movements for the comparison between targets and 

distractors, we considered: First, only the fixations to distractors longer than 400 ms -where we 

analyzed only the first 400 ms-; and second, we matched the properties of the incoming saccade -the 

duration, and the horizontal and vertical amplitudes- (Fig S2). As expected, we found that the 

strongest difference appeared after 300ms and was more prominent in the centro-parietal electrodes 

but widely spread across most of the scalp (Fig 2B,C, cluster-based permutation test with αcluster<0.01 

[67]). Interestingly, consistent significant differences emerge across several electrodes much earlier 

(around 170 ms), which suggestively matches the latency (Fig 2A, black bars; the limits of the early 

significant interval in the Cz electrode are [117, 207] ms) and scalp distribution of the VPP (Fig 2C). 

Further investigation of the waveforms for fixations that were longer than 400 ms showed no 

significant differences with shorter fixations (between 300 ms and 400 ms (Fig S4)). 

 

3.3. Emergence of properties of the P3 component in free-viewing 

 In fixed-gaze oddball experiments, two major subcomponents of the P3, the P3a and the P3b 

are typically reported [68]. The P3a is elicited at the more frontal electrode sites and is larger for 

novel stimuli, whereas the P3b component is elicited in central and parietal regions, and is larger for 

the detection of a target. Importantly, a modulating property that positively affects the amplitude of 

the P3 is the ISI [11–13]. This has been related to the concepts of expectancy and surprise. As the 

participant is anticipating a target to be presented, a build-up of expectancy is sought to occur; this 
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effect is usually related to the P3b subcomponent of the P3 [35]. Conversely, the surprise effect is 

usually related to the P3a subcomponent of the P3 [13,35]. Therefore, a question raised as to whether 

fERPs in free-viewing visual search tasks show properties that relate to classic concepts of expectancy 

and surprise. 

 In the current design, there was no control of the ISI -i.e. the interval between fixations- as the 

participants can freely decide when and where to fixate next. However, the number of distractors 

presented before the target has also been used to study the properties of the P3 component [13]. In the 

current setup, the number of fixations made prior to finding the target could give an indication of the 

complexity of a scene and indicate how difficult it was to find the target. Hence, we can make a 

parallel with an oddball paradigm -a fixed-gaze sequential visual search- [13].  

  As a first step, we collapsed the trials into two categories based on the number of fixations 

needed to find the target: ‘Short’ (less than 7 fixations; N = 865) and ‘Long’ trials (more or equal than 

7 fixations; N = 1030). Significant differences between these categories were found in frontal, central 

and parietal midline electrodes (Fz: p<0.00001, zval = 6.61, Cohen’s d (N = 1895) = 0.15; Cz: 

p<0.00001, zval = 5.77, Cohen’s d (N = 1895) = 0.13; Pz: p<0.00001, zval = 4.80, Cohen’s d (N = 

1895) = 0.11) but not in the occipital electrodes (Oz: p=0.42, zval = 1.25, Cohen’s d (N = 1895) = 

0.03) (Fig 3A).  

 The amplitude of the P3 component on the central electrode showed a continuous decrease as 

a function of the number of fixations to the target (Fig 3B). Moreover, there was a significant negative 

correlation of the single-trial P3 amplitudes with the number of fixations to the target (Fig 3C; 

Pearson’s correlation coefficient R = -0.11, p<0.00001). This decrease is also in agreement with a 

gradual reduction of the surprise effect.  

 

3.4. Global properties of fERPs 

 In the previous section we started the investigation with local properties of the fERPs, such as 

their relation with face processing and target-face detection, and ended with an analysis of more 
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global properties such as the dependence of the P3 with the length of the trial (where the length is the 

number of fixations performed) -and thus, the number of faces seen-. The dependence of the target 

detection on the number of previous fixations led us to investigate how the development of the whole 

trial is encoded in each distractor’s fERP, before the target was detected, and how the target response 

was built-up.  

 In order to examine slow changes across the whole trial, we studied the relationship between 

fixation rank (the number of fixations up to the one being considered) and baseline activity -i.e. the 

activity before the saccade- when no baseline correction was applied. To investigate the encoding of 

each stimulus, we also examined the relationship between fixation rank and the amplitude of the P1 

component with baseline correction. Fig 4A,B shows a strong dependence of the baseline activity on 

the fixation rank of the distractor. This dependence appears more prominent in the centro-frontal 

electrodes, although significant correlations were observed along midline channels (Pearson’s 

correlation coefficient R(Fz) = -0.95, p<0.000001; R(Cz) = -0.92, p<0.00001; R(Pz) = -0.90, 

p<0.00001;  R(Oz) = -0.85, p<0.0001). In order to rule out that these correlations reflected the time 

elapsed since the start of the trial (which correlates with the fixation rank), we compared the 

correlations of the baseline activity with time using different window sizes to group fixations along 

the search -between 100ms and 500ms-. The correlations with time were always smaller than the 

correlations with the fixation rank, failing in many cases to reach significance (Fig S5). This suggests 

that global changes in baseline activity are related to the sequence of fixations as processing units, and 

not with the mere time elapsed. Conversely, the encoding of each distractor stimulus did not change 

with the progression of the trial; as it can be inferred from the constant amplitude of the P100 as 

function of fixation rank (Fig 4C,D; R(Oz) = -0.27, p=0.33). Thus, there were global changes in 

baseline and target detection, but not in the encoding of an individual stimulus. 

 

3.5. Global changes in frequency spectrum 
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  Changes of the frequency power with the fixation rank of the distractors, measured as the 

correlation between these two variables, showed intervals of positive and negative correlations (Fig 

5). These intervals, although not significant for all frequencies, fit nicely into the standard 

classification of EEG low frequency bands (delta, theta, alpha, and beta) for the different electrodes 

(Fig 5A). Significant correlations appeared in the four frequency bands at different electrodes (Fig 

5A, top panel; p < 0.01, Bonferroni corrected for multiple comparisons for 240 tests, i.e. 60 frequency 

steps x 4 electrodes). 

 A large positive correlation between theta power and fixation rank, and a decrease in the 

(upper) alpha band appeared in the occipital electrode (Fig 5B, lower panel). This was also evident in 

the time-frequency plots (where time is represented in terms of fixation rank; Fig 5C, lower panel). 

These changes are usually observed together [65], and are sought to reflect increasing demands of 

visual attention. In contrast, the parietal, central and frontal electrodes exhibited a pronounced 

negative correlation in the alpha frequency band –i.e. ramping towards the presentation of the target–, 

but no significant correlation on the theta band (Fig 5B,C). This effect is slightly spread towards the 

beta band, and vanished beyond 23Hz; which is consistent with the broad frequency range that 

Donner and Siegel (2011) attribute to the more integrative cognitive processes. In particular, the 

negative correlation of the alpha frequency band is consistent with the findings of Klimesch and 

collaborators [24,65], who suggest that the alpha band must be negatively modulated by the 

expectancy of an upcoming stimulus.  

 

4. Discussion 

 We developed a free-viewing paradigm that allowed us to investigate the brain correlates of 

unrestricted visual search with natural images. We showed that the local dynamics following each 

stimulus/foveation exhibits the fixed-gaze ERP components (P1, N170/VPP, P3). These brain events 
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are then signatures of the specific unitary operation performed at each stage of a mental program. A 

global analysis of the brain activity throughout the task allowed us to investigate signatures related to 

the accumulation of evidence during the task. In particular, we showed an increased demand of visual 

attention, changes in the expectancy of the stimulus and robust sequential effects from the analysis of 

baseline and the spectral profile. In what follows, we discuss our results in the context of local 

dynamics of unitary operations, global dynamics and mental programs, their interaction and the 

implications that our findings might have for future concurrent EEG and eye movement studies.  

 

4.1. Local Dynamics: fERPs during Natural Tasks 

 Brain activity elicited after each fixation during visual search has been studied with both 

synthetic [40,43–45,47] and natural [46] stimuli. These studies have described a robust P3-like 

potential evoked by the object that the participant is looking for. In our experiment we observed a 

significant difference between the signals in response to targets and distractors, extending our 

previous finding using the same stimuli [46]. Interestingly, in the present study the difference between 

targets and distractors became significant about ~100ms earlier (~170ms vs. ~250ms). Two possible 

explanations could account for this difference: Firstly, both protocols differ in the speed-accuracy 

tradeoff that governed the search. In our previous experiment, participants were instructed -and briefly 

trained- to perform the search slowly; prioritizing the identification of the fixated face before moving 

on. In the current experiment, participants were only instructed to search for the targets, which led to 

shorter fixations. Nevertheless, we observed very few misses on the target (situations in which the 

participant fixated in the target but continued searching, as they failed to identify the target), as this 

occurred in (4.3 ± 0.6) % of the trials per subject -(7.7 ± 1.1) trials-. Thus, we can speculate that, in 

order to perform the search at this pace, participants must take an early decision on whether they have 

to continue moving their eyes or stop. The early detection that we observed in the fERPs could be the 

brain correlate of this process, although the full identification could occur later. Secondly, in the 

present study, as in Kamienkowski et al. (2012) but not in Kaunitz et al. (2014), we matched the 
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fixations to targets and distractors by the eye movement properties before performing statistical 

comparisons. This procedure could allow the detection of more subtle differences between these 

signals, which may have otherwise been indistinguishable in Kaunitz et al. (2014). 

 As in previous studies with faces [69,70], we observed the VPP / N170 potential in response 

to faces, which was confirmed by changing the reference from linked mastoids to average, which led 

to a shift from a central positive peak (VPP) to a parieto-occipital negativity (N170), with a slight 

lateralization to the right [69]. These results further support the validity of EEG and eye movement 

co-registration in the study of neural correlates of natural visual processing, and conversely extend the 

previous knowledge to more natural environments. However, an in-depth understanding of face 

processing in natural environments will require specific future experiments using faces and other 

objects embedded in the same natural images, to allow a comparison between faces and other stimuli.  

 Studies focusing on the early detection of different objects within rapid presentations of 

natural complex scenes -in which a cue is presented before the stimulus and rapid responses are 

required- have shown that identity stimulus information (contingent upon recognition) is able to be 

conveyed quite early, ranging from 150 to 300 ms [71–73]. In line with this, one recent study reported 

an early target related potential in free-viewing, but not fixed-gaze conditions [40], while another 

study found that it is possible to identify the target location even when fixating on the target for less 

than 10 ms in a free-viewing search, but not in a fixed-gaze condition [74]. The short timings for 

target identification can be related to extrafoveal detection. Target identification would trigger a 

saccade towards the target location, or less strictly, it would suggest that there is an ongoing 

computation of the probability to find the target that primes a given location [31]. This is consistent 

with an extrafoveal detection of the target in an easy visual search, and with an early foveal detection 

in a difficult visual search [75]. Since high attentional engagement is naturally present in free-

viewing, from fixation onset or even earlier [76,77], another possible theoretical explanation for this 

early identification in free-viewing is the temporal modulation of attention [40,78,79]. Indeed, 

previous behavioral experiments have shown homogeneous performance of target detection within 
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almost the entire fixation but, strikingly, confidence judgments varied along the fixations. These 

results suggest that, while it is possible to detect a target accurately in the first tens of milliseconds of 

a fixation, the integration process continues along the whole fixation [79]. Moreover, previous studies 

have shown that each fixation is consistent with an attentional episode, where saccades accentuate the 

episodic borders [78], in agreement with a discrete structuring of attention; sampling information 

from temporal episodes during which several items can access the encoding process [80–82].  

 Previous EEG experiments have shown that temporal attention has an effect on the amplitude 

and latency of the N2 [83], the P3 component [84], and on the amplitude of the P1 component. 

Targets appearing at attended moments, close to a cue, evoke a larger P1 [83]. Furthermore, early 

components seemed to be affected only in highly demanding perceptual processing tasks [83]. These 

studies suggest that high attentional engagement could fasten the processing of the stimulus, and that 

change is measurable in the EEG signal as a modulation in early components. Following this idea, we 

can speculate that early target detection is more prominent in highly demanding perceptual processing 

tasks. We previously reported early target detection in tasks involving prolonged fixations when 

participants were asked to detect a subtle change in a synthetic stimulus [40], but not when they had to 

produce long fixations to find a hidden target face in a crowded scene [46]. The results presented in 

this study, with significant early target detection in free-viewing, might be associated to a higher 

attentional engagement occurring in a free-viewing visual search task with natural images. 

Additionally, they are in accordance with perceptual load theories, which state that earlier responses 

are expected on higher perceptual load tasks, subtle differences in crowded synthetic stimulus or 

faster searches in natural scenes; since they all involve higher attentional resources [85]. 

 Furthermore, the early differences found in this natural visual search paradigm are in line with 

fast saccade response time (SRT) experiments, in which participants are asked to decide between two 

stimuli, and respond making a saccade towards the target as fast as possible. In these experiments, 

participants are able to respond in less than 150 ms and starting as early as around 100 ms to detect 

human faces and animals [86,87]. 
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4.2. Global Dynamics: Monitoring the progress of the task 

 We found a significant decrease in the baseline amplitude in central-frontal regions, which 

followed the progression of the search. Similar gradual changes in the baseline were observed in other 

tasks in which participants required to accumulate some evidence in order to achieve a decision [5]. In 

our case, the amount of evidence is difficult to estimate in a direct way. Current visual search models 

based on eye movements tend to predict the sequence of fixations based on the construction of 

saliency maps on static images (i.e. disregarding the amount of evidence gained in each fixation) 

[88,89]. One interesting exception is the model of Najemnik and Geisler (2005), which estimates how 

the probability of finding the target at the end of the search changes in every fixation [31]. Although 

the fixation rank is naturally correlated with time, we found that the correlations between the baseline 

activity and time were smaller than those between the baseline activity and fixation rank. This 

suggests that global changes in baseline activity are indexing the sequence of processing steps within 

the task, rather than the time elapsed since the start of the trial.  

 To better understand the neural and cognitive processes involved in the slow dynamics 

throughout the trial, we explored the contribution of different frequency bands to the EEG signal. In 

particular, we calculated the correlation between the power in narrow bands and the fixation rank to 

build a spectral profile as proposed by Donner and Siegel (2011) [14]. Consistent with fixed-gaze 

studies, the broad decrease in alpha and increase in occipital theta activity could suggest a surge in the 

resources involved in visual attention [65]. For instance, an increase in theta activity in the occipital 

cortex was reported when viewing images that were later remembered [90]. A negative modulation in 

the alpha band has been previously related to the expectancy of an upcoming stimulus [24,65,91], 

which comes from an increasing probability of finding the target over time. This is consistent with our 

results, since we observed a negative correlation in the alpha frequency band -i.e. ramping towards the 

presentation of the target- mainly over the parietal, central and frontal electrodes. Interestingly, the 

negative correlation we observed spread beyond the alpha range, up to 23 Hz in the centro-parietal 
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sites. This broad frequency range is sometimes referred to as “low frequencies” (e.g., see [14]) and 

has been particularly linked to cognitive integrative processes.  

 

4.3. Interactions between Local and Global Dynamics 

 Despite the fact that estimates of “surprise” and “expectancy” cannot be directly derived from 

our experiment, we can consider that shorter trials will likely be more associated with surprise. On the 

other hand, the more fixations a subject made within a trial, the more the target will be expected. 

Therefore, we hypothesized that trials that required very few fixations to find the target will have a 

larger surprise associated, while long trials will have a larger expectancy. Our results suggest a 

stronger effect of surprise over expectancy in the P3, since the difference in the amplitude favored 

shorter trials. Moreover, this result was supported by the more frontal distribution of shorter versus 

longer trials, consistent with the observations of Polich (2007) [35]. These late changes were observed 

despite the fact that the early feedforward visual processing of each stimulus, tagged by the P1 

component, was preserved throughout the search. Together with the fact that low frequencies, but not 

high frequencies, correlated with fixation rank, this suggests that only the integrative cognitive 

processes are related to the progression of the search.  

 An alternative explanation for the influence of ISI on P3 in fixed-gaze experiments is the 

Recycling Cycle Hypothesis [11,13], which suggests that the P3 component is reduced with short ISIs 

because the system requires time to recover from recent ERP production. In our experiment, this 

would mean that the P3 is reduced in later fixations only because the underlying generation processes 

lack the resources to fully recover within a multiple-fixation-trial. However, this alternative 

explanation is unlikely for three reasons: First, participants only saw one target, which implies that the 

resources related to target processing should be fully available for the whole trial. Second, we have 

previously shown that the information regarding the salient target in an attentional blink task recovers 

rapidly in successive fixations, since saccades accentuate episodic boundaries of the temporal 

episodes [78]. It follows that the alternative explanation would be unlikely even if more than one 
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target was present. Third, resources related to distractor processing should already vanish before 300 

ms -according to mainstream theories such as the Global Workspace Theory, which proposes early 

processing of a new stimulus could start in parallel [92–94]-. This is also in agreement with the 

episodic theory of attentional deployment, which proposes that information is sampled from temporal 

episodes of about 400 ms [81,82]. 

 

4.4. Towards an integrative framework in natural viewing 

 From an algorithmic perspective –in line with Marr’s levels at which the brain as an 

information-processing device must be understood [95]– the schematic diagram shown in Fig 6 can be 

used to put our findings into a more general framework. At the bottom level (visual encoding in Fig 

6), every fixation produces the typical sequences of visual ERPs towards a face, including the P1 and 

N170/VPP, irrespective of the fixation rank. These fERPs share the topographies and latencies of their 

fixed-gaze counterparts (see also [40,46]), thus the initial feedforward processing of the stimulus in 

each fixation seems to be conserved and is independent of the task. The eye movement control level 

(motor prep./exec in Fig 6) can be separated into the parallel processing of the “when” and “where” 

streams plus an inhibition, as proposed by the well-established model of saccade generation of 

Findlay and Walker (1999) [96]. Some existent models already include these ideas, for instance, in the 

CRISP model [97], the “when” stream is constantly generating saccades that could be inhibited, while 

the “where” is implemented as a two-stage saccade programming composed by an initial, labile stage 

that is subject to cancellation (inhibition of the “when” stream), followed by a non-labile stage 

[97,98]. Thus, there is a continuous crosstalk between saccade preparation and visual-cognitive 

processing, which allows difficulties in online visual and cognitive processing to immediately inhibit 

(i.e. delay) saccade initiation, leading to longer fixation durations. The early target detection potential 

that we observed could be interpreted as a cancellation signal during the first labile stage of the 

saccade preparation, where the next saccade is canceled at early latencies leading to longer fixations 
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[97]. Successful early target detection is followed by a global P3 component, reflected in higher and 

later activity, which also resembles the P3 recorded in fixed gaze conditions [35,40,46].  

 Interestingly, the preparation of the upcoming saccade could be accompanied with a 

modulation of cover attention towards the potential landing site. These processes have previously 

been studied with crowded scenes in fixed-gaze reaction time experiments [32], and in saccade 

reaction time experiments, which allowed studying the interaction between covert attention and 

saccade execution [33,34]. However, it is important to distinguish these processes from the overt 

allocation of attention that follows the eye movement. The interplay between covert and overt 

allocation of attention is one of the fundamental open issues for which the co-registration of brain 

activity and eye movements could largely contribute in future studies.  

 At the top level (global integration in Fig 6), the integration of the information about the 

whole image acquired so far could involve, for instance, computing the target position probabilities 

based on existent evidence, which necessarily includes information about the surface already explored 

as well as past events and the current position [31,58,99]. These integrative processes also serve to 

build a general model of the visual scene, and to guide future eye movements, as another crosstalk 

between the saccade preparation and visual-cognitive processing. Although it could run on top of 

visual encoding and saccade preparation processes, it should interchange information with them. 

Hence, it should be in pace with the fixations. This accumulated evidence is indexed by changes in 

baseline, which scales with the fixation rank better than with time itself, and is further reflected by 

changes in alpha/theta band oscillatory activity and modulations in the amplitude of the P3 

component.  

It is well established that human behavior in complex tasks is strongly shaped by individual 

differences in certain capacities and strategies. For instance, measures of visual working memory 

(VWM) capacity are strongly related to performance in both visual search without eye movements 

[100,101] and constrained eye movement paradigms [102]. Also, VWM capacity correlates with slow 

potentials such as the contralateral delay activity (CDA) [103] that have a similar behavior as the 
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baseline changes during search. These estimates of VWM capacity are potentially appealing because 

they have been proven to be very robust within a single participant (for instance, they could yield a 

test-retest reliability of 0,77 after 1.5 years later) and consistent predictors of many complex visual 

tasks [101]. By comparing the variance in two behavioral dependent variables, we showed that the 

major source of variability in this experiment were the trials and not the participants. However, future 

work on both complex visual search models should include VWM or other performance measures, 

which could influence markers of cognition and decision-making, as co-variables.  

4.5. Alternative theoretical frameworks 

 The main focus of the present paper is related to the deployment of overt visual attention 

rather than covert visual attention, since eye movements are an essential part of behaviour. Although 

these processes could share some mechanisms, these are not necessarily the same [104]. Some of 

these shared mechanisms could be part of the global processes of the task. For instance, the 

Competitive Guided Search model [105] -which is an updated version of the Guided Search model 

[32,106]-, has included a module that evaluates whether to quit the search or continue. This “quit 

unit” establishes an accumulation process that runs in parallel with the actual search, and competes to 

terminate the task. However, since in our task participants were not able to finish the trial before 

finding the target or reaching the 20 secs maximum trial period and there was not a forced-choice for 

target present/absent, response times are not as relevant as in other experiments so it is unlikely that a 

quit unit would play a major role. Interestingly, the integrative framework we present here could 

potentially combine more than one integrative processes in the global workspace, leaving space for 

contribution from other theoretical models.  

 

4.6. Concluding remarks 

Our findings contribute to the study of human physiology and cognition in natural 

environments in three fundamental ways: First, it presents robust fERPs in unconstrained visual 

search with real-world images. This extends previous fERP work but also highlights potential 
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differences, as early target detection was only previously found with synthetic stimuli, giving a more 

complete understanding of how the brain processes unitary operations in natural viewing. Second, by 

focusing on brain oscillations at different frequencies and modulation of evoked components 

throughout the trial, we were able to confirm that specific brain signatures, previously identified for 

fixed-gaze paradigms as indexes of accumulation of evidence, can be robustly obtained in natural 

viewing. Finally, it allows us to introduce a data-driven framework to link oscillations with the 

underlying mental program. 

 The schematic diagram that we have considered here is, of course, a simplification of all the 

complexities involved in natural viewing everyday scenes. However, we believe it can be a starting 

point for considering general neurophysiology data-driven frameworks to elucidate how complex 

mental operations are performed in natural viewing. 
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Figure Captions 

 

Fig 1. Experimental Design. (A) The target face (inset) is presented for 3 seconds. Then, a fixation 

dot appears in a random position for 1 second. The search starts when the fixation dot disappears and 

the crowds image is presented. Once the subject finds the target face; they fixate on it for 1 second to 

end the trial. The crowd image shown here is the same as the one shown in panel B. (B) Search 

example: The scan path (black line) and fixations (color dots) are superimposed to the crowd image 

and the target (highlighted with a brown square). The color of the dots represents the fixation rank of 

the distractors, -i.e. the fixation number- and the diameter size represents the duration of the fixation. 

(C) Eye traces of the same trial for both horizontal (black) and vertical (gray) positions of the right 

eye. The vertical red line shows the onset of the fixation to the target. (D) Distribution of the number 

of fixations preceding the target; these are all the fixations preceding the target regardless of their 

position. (E) Distribution of fixation durations made to distractors. (F) Distribution of distractor 

saccade amplitudes.  

 

Fig 2. fERPs for matched eye movement properties across midline channels. (A) Fixations onset 

at 0ms and the fERPs were baseline corrected [-200 -100]. Channels Fz, Cz, Pz and Oz are shown for 
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the target (red) and distractor (blue) conditions. The horizontal and vertical saccade amplitude, as well 

as the saccade duration preceding the fixation of interest; were matched between targets (N=1895) 

and distractors (N=1895) for fixations longer than 400 ms. The p-values for the significant differences 

(p<0.01) are represented with black bars at the top of each channel plot, and were estimated using a 

cluster-based permutation test from the FieldTrip toolbox [67]. The boundaries of the significant 

intervals observed in the panel A insets are: Fz: {[121, 164] ms, [254 400] ms}, Cz: {[117, 207] ms, 

[238, 400] ms}, Pz: {[148, 215] ms, [230, 400] ms}, Oz: {[184, 203] ms, [281, 297] ms, [309, 324] 

ms, [332, 348] ms, [363, 400] ms}. (B) Significant channels within 30ms time windows centered in 

{0 ms, 50 ms, 100 ms, 170 ms, 240 ms, 310 ms, 380 ms}, after the cluster-based permutation test. (C) 

Scalp topographies of the difference wave (Targets – Distractors). Each topography corresponds to 

the average activity of the same intervals as panel (B). 

 

Fig 3. Global effects on target detection. (A) Midline Target P3 Amplitude as a function of Short 

and Long trials. The amplitude was calculated as the mean average in the [250 400] ms windows 

extracted from the individual target fERPs, averaged across all trials and subjects. The gray bars 

represent the Short trials (<7 fixations in a trial, N=865) and the black bars represent the Long trials 

(≥7 fixations, N=1030). Bonferroni-corrected rank-sum tests showed significant differences for Fz, 

Cz, and Pz (p<0.00001) but not for Oz (p = 0.4210). n.s.: p>0,05, and ***: p<0,001.  (B) fERPs to 

targets as function of time, for different fixation ranks. (C) Denoised single trial P3 amplitudes vs. 

fixation rank at Cz electrode. Amplitude of the P3 distribution (top left) and fixation rank (botton 

right) histograms. Two-dimensional histogram of those variables (top right); each bin of the histogram 

contains single trial amplitudes of the P3. Amplitudes of the P3 and fixation ranks were negatively 

correlated (Pearson’s  R = -0.11, p<0.00001). 
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Fig 4. Global effects on baseline and visual processing. (A) Midline fERPs to distractors as 

function of the fixation rank. fERPs were epoched between [-500 500]ms and no baseline correction 

were applied in order to observe its slow progression along the trial. From top to bottom: Fz, Cz, Pz, 

and Oz. The gray shadow in the top panel shows the [-500 -100] ms period analyzed in panel B). 

Vertical solid lines represent the onset of each fixation, and vertical dashed lines represent the 

boundaries of each epoch. (B) Average amplitude in the [-500 -100] ms period for each electrode. 

Error bars represent the ±s.e.m. interval. (C) Early fERPs to distractors in the electrode Oz as a 

function of fixation rank. Baseline correction between [-200 -100] ms were applied. The gray shadow 

shows the [75 125] ms period analyzed in panel D). The vertical solid lines represent the onset of each 

fixation. (D) Average amplitude in the [75 125] ms period for each electrode. Error bars represent the 

±s.e.m. interval. 

 

Fig 5. Spectral profile. (A) Correlation between the frequency power during each fixation and the 

fixation rank as a function of frequency, for each electrode (Fz, Cz, Pz, and Oz). The upper panel 

shows the Bonferroni-corrected significance of the correlations (considering 240 comparisons, i.e. 60 

frequency points and 4 electrodes) and thresholded by 0.01. Red and blue shadows highlight the theta 

([3.5 8.0] Hz) and alpha bands ([8.0 13.5] Hz). (B) Power in theta and alpha frequency bands as 

function of fixation rank. Error bars represent the ±s.e.m. interval, and the straight line the general 

trend. (C) Time-Frequency image plots for each electrode, where the timecourse of the exploration is 

indexed by the fixation rank. 

 

Fig 6. Integrative framework of natural visual search. Schematic framework of the identified 

electrophysiological signatures and their interactions with key processes in a free-viewing visual 

search task.  
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