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Listening in Naturalistic Scenes: What Can
Functional Near-Infrared Spectroscopy and
Intersubject Correlation Analysis Tell Us
About the Underlying Brain Activity?

Stephen C. Rowland1,2, Douglas E. H. Hartley1,2,3,4, and
Ian M. Wiggins1,2,3

Abstract

Listening to speech in the noisy conditions of everyday life can be effortful, reflecting the increased cognitive work-

load involved in extracting meaning from a degraded acoustic signal. Studying the underlying neural processes has the

potential to provide mechanistic insight into why listening is effortful under certain conditions. In a move toward studying

listening effort under ecologically relevant conditions, we used the silent and flexible neuroimaging technique functional near-

infrared spectroscopy (fNIRS) to examine brain activity during attentive listening to speech in naturalistic scenes. Thirty

normally hearing participants listened to a series of narratives continuously varying in acoustic difficulty while undergoing

fNIRS imaging. Participants then listened to another set of closely matched narratives and rated perceived effort and

intelligibility for each scene. As expected, self-reported effort generally increased with worsening signal-to-noise ratio.

After controlling for better-ear signal-to-noise ratio, perceived effort was greater in scenes that contained competing

speech than in those that did not, potentially reflecting an additional cognitive cost of overcoming informational masking.

We analyzed the fNIRS data using intersubject correlation, a data-driven approach suitable for analyzing data collected under

naturalistic conditions. Significant intersubject correlation was seen in the bilateral auditory cortices and in a range of

channels across the prefrontal cortex. The involvement of prefrontal regions is consistent with the notion that higher

order cognitive processes are engaged during attentive listening to speech in complex real-world conditions. However,

further research is needed to elucidate the relationship between perceived listening effort and activity in these extended

cortical networks.
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Introduction

People with hearing loss report experiencing greater lis-
tening effort than their normally hearing peers (Alhanbali,
Dawes, Lloyd, & Munro, 2017). Although listening effort
may partly arise from hearing loss reducing the fidelity
with which auditory signals are transduced within the
ear, adverse acoustic conditions routinely encountered in
daily life exacerbate the problem (Mattys, Davis,
Bradlow, & Scott, 2012). Indeed, listening can be effortful
even for people with normal hearing when a target signal
is degraded through the presence of background noise
(Zekveld, Kramer, & Festen, 2010), competing speech
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(Koelewijn, Zekveld, Festen, & Kramer, 2012), or room
reverberation (Holube, Haeder, Imbery, & Weber, 2016).
Listening effort has been the focus of increased research
interest over recent years (McGarrigle et al., 2014;
Pichora-Fuller et al., 2016), leading to advances in our
understanding of the acoustic, linguistic, contextual, and
individual factors that influence listening effort as well as
the underlying neurocognitive processes. However, much
is still to be learnt, including how listening effort is
deployed in the complex and dynamic environments
that characterize real-world listening. In this study, we
aimed to combine the optical brain-imaging technique
functional near-infrared spectroscopy (fNIRS) with real-
world binaural stimuli to investigate perceived listening
effort and associated brain activity in naturalistic acoustic
scenes.

Recent articles have sought to provide clarity regard-
ing the definition of listening effort. McGarrigle et al.
(2014, p. 434) defined it as ‘‘the mental exertion required
to attend to, and understand, an auditory message.’’
Subsequently, Pichora-Fuller et al. (2016, p. 5S) pro-
vided a more technical definition of effort as ‘‘the delib-
erate allocation of mental resources to overcome
obstacles in goal pursuit when carrying out a task, with
listening effort applying more specifically when tasks
involve listening.’’ A variety of factors can make for
adverse listening conditions (Mattys et al., 2012), with
consequent increases in the amount of mental resources
needed to successfully comprehend speech. Whether an
individual will expend the required effort to achieve this
goal depends on their level of motivation, which is in
turn influenced by an internal assessment of success
importance (Pichora-Fuller et al., 2016). From a clinical
perspective, there is concern that chronically elevated lis-
tening effort could lead to fatigue, with associated nega-
tive effects on quality of life (Hornsby, Naylor, & Bess,
2016). Furthermore, excess listening effort could poten-
tially contribute to accelerated cognitive decline in older
adults with hearing loss, either through long-term
impacts on brain structure or function (Cardin, 2016)
or mediated by social isolation (Pichora-Fuller, Mick,
& Reed, 2015). Given these serious potential conse-
quences, a diverse array of subjective, behavioral, and
physiological measurement approaches has been
advanced to further our understanding of listening
effort (McGarrigle et al., 2014). At present, however, it
is unclear how various putative measures of listening
effort relate to one another, with speculation that differ-
ent measures may tap into different aspects of listening
effort, including demands on perceptual or linguistic pro-
cessing, working memory, and conflict monitoring and
executive control networks, general alertness or arousal,
vigilance, and acute stress when task demands outstrip
available resources (McMahon et al., 2016; Miles et al.,
2017; Pichora-Fuller et al., 2016).

An important goal for research is to reveal more
about the neurocognitive mechanisms that underpin lis-
tening effort (Pichora-Fuller et al., 2016). Previous neu-
roimaging studies have revealed a general trend toward
increased recruitment of frontal brain regions as listening
conditions become more challenging, typically inter-
preted as reflecting an increase in the amount of cogni-
tive effort being exerted (Adank, 2012; Davis &
Johnsrude, 2003, 2007; Eckert, Teubner-Rhodes,
& Vaden, 2016; Golestani, Hervais-Adelman,
Obleser, & Scott, 2013; Hervais-Adelman, Carlyon,
Johnsrude, & Davis, 2012; Peelle, 2018; Vaden,
Kuchinsky, Ahlstrom, Dubno, & Eckert, 2015; Vaden
et al., 2013; Wijayasiri, Hartley, & Wiggins, 2017;
Wild, Davis, & Johnsrude, 2012a; Wild et al., 2012b;
Zekveld, Heslenfeld, Festen, & Schoonhoven, 2006;
Zekveld, Heslenfeld, Johnsrude, Versfeld, & Kramer,
2014). The recruited frontal regions subserve a variety
of functional purposes. Recruitment of areas tradition-
ally associated with speech production, for example, left
inferior frontal gyrus (Broca’s area) and premotor
cortex, could reflect the activation of motor speech rep-
resentations or increased reliance on verbal working
memory to support the comprehension of degraded
speech (Hervais-Adelman et al., 2012; Peelle &
Wingfield, 2016a; Wijayasiri et al., 2017; Wild et al.,
2012b; Zekveld et al., 2006). Elevated activation within
the cingulo-opercular system is thought to reflect self-
monitoring of performance and the optimization of
behavior taking into account the anticipated reward of
completing an effortful task (Eckert et al., 2016; Vaden
et al., 2013, 2015). Recruitment of dorsolateral pre-
frontal cortex, part of the domain-general frontoparietal
attention network (Dosenbach, Fair, Cohen, Schlaggar,
& Petersen, 2008), could reflect upregulation of top-
down cognitive control mechanisms to help focus atten-
tion on a target sound in the presence of competing
information (Eckert et al., 2016; Evans, McGettigan,
Agnew, Rosen, & Scott, 2016; Sharp, Scott, Mehta, &
Wise, 2006). A challenge for ongoing research is to better
understand the specific listening conditions under which
each of these supporting neural systems is recruited
(Peelle & Wingfield, 2016a).

With a few notable exceptions (Damian, Corona-
Strauss, Hannemann, & Strauss, 2015; Wu et al.,
2014), most studies of listening effort have used labora-
tory-based tasks that represent the challenges of real-
world listening in a highly simplified form. Thus,
relatively little is known about how listening effort is
deployed in the complex and dynamic environments of
everyday life. In recent years, there has been a growing
trend in neuroscience toward studying how the brain
responds to complex, naturalistic stimuli (Hasson,
Malach, & Heeger, 2010; Maguire, 2012). This necessi-
tates the application of new analysis approaches that do
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not depend on a precise, parameterized description of the
stimulus, nor an explicit model of how the brain will
respond to that stimulus. One such approach is intersub-
ject correlation (ISC) analysis (Hasson, Nir, Levy,
Fuhrmann, & Malach, 2004). In the ISC approach,
brain activity is measured in a group of participants
who are exposed to an identical stimulus, and the ana-
lysis proceeds by identifying regions of the brain that
respond similarly across participants. The approach
has been used extensively in functional magnetic reson-
ance imaging (fMRI) studies to investigate how the brain
responds to complex stimulation, for example, during
free viewing of movies or listening to audio books or
music (Boldt et al., 2013; Hasson, Furman, Clark,
Dudai, & Davachi, 2008; Hasson et al., 2004;
Jääskeläinen et al., 2008; Jääskeläinen et al., 2016;
Kauppi, Jääskeläinen, Sams, & Tohka, 2010;
Nummenmaa et al., 2012; Trost, Fruhholz, Cochrane,
Cojan, & Vuilleumier, 2015). In the auditory domain,
Wilson, Molnar-Szakacs, and Iacoboni (2008) have
shown that ISC has greater power to detect activation
in higher level frontal brain regions during narrative
comprehension than does conventional subtraction ana-
lysis (i.e., contrasting periods of listening vs. rest).
Because listening under effortful conditions is also
thought to recruit higher level frontal regions, ISC-
based analyses could provide a powerful means to inves-
tigate this effort-related brain activity. Furthermore,
recent studies have implemented a dynamic form of
ISC analysis, which allows the momentary strength of
intersubject brain synchronization to be related to
time-varying properties of the stimulus, or participants’
subjective reaction to it (Nummenmaa et al., 2012; Trost
et al., 2015). Adopting a similar approach in the present
context could help to shed light on how specific cortical
resources are recruited as the demands of a naturalistic
listening situation unfold over time.

In this study, we investigated effortful listening to con-
tinuous speech narratives in naturalistic scenes. Virtual
acoustics techniques were used in conjunction with bin-
aural recordings made in a variety of real-world loca-
tions to recreate complex listening environments
featuring ecologically relevant sources of background
noise, competing speech, and room reverberation. We
studied normally hearing participants’ subjective experi-
ences of listening effort in these realistic scenes, alongside
their brain activity. Brain activity was measured using
the optical technique fNIRS. A silent and flexible alter-
native to fMRI, fNIRS holds promise for investigating
the brain activity underlying effortful listening in natur-
alistic conditions (Peelle, 2017; Wijayasiri et al., 2017).
Like fMRI, fNIRS measures the hemodynamic response
to brain activation (Scholkmann et al., 2014). However,
fNIRS achieves this by optical means; specifically, by
noninvasively illuminating the brain with infrared light

via optodes placed in contact with the scalp. Because the
penetration depth of infrared light through biological
tissue is limited, fNIRS measurements are strongly
biased toward parts of the brain that are close to the
scalp (Strangman, Li, & Zhang, 2013). Thus, fNIRS is
unlikely to be suitable for probing all regions implicated
in effortful listening, with much of the cingulo-opercular
system, for example, lying too deeply to be accessible.
However, other relevant regions, such as the inferior
frontal gyrus and dorsolateral prefrontal cortex, are in
principle amenable to imaging by optical means.

Our primary aim was to establish the viability of using
ISC analysis on fNIRS data to identify cortical regions
involved in comprehending narrative speech in natural-
istic scenes. Based on prior fMRI findings (Honey,
Thompson, Lerner, & Hasson, 2012; Lerner, Honey,
Silbert, & Hasson, 2011; Schmälzle, Häcker, Honey, &
Hasson, 2015; Wilson et al., 2008), we anticipated that
ISC analysis would reveal the involvement of an
extended network of frontotemporal brain regions. We
additionally aimed to examine the interrelationships
among self-reported listening effort, brain activity, and
simple acoustic descriptors of the auditory scenes.
Specifically, we considered better-ear signal-to-noise
ratio (SNR) as a proxy for scene-by-scene acoustic diffi-
culty, as well as the envelopes of the target speech and
background sound to test whether brain activity tracked
moment-to-moment fluctuations in the acoustic energy
of the constituent sound sources.

Methods and Materials

Overview

Each participant attended a single session, during which
testing took place in a double-walled sound booth.
Participants first listened to a set of speech narratives
while having their frontotemporal brain activity mea-
sured using fNIRS. Participants were instructed to main-
tain attention on a target talker while the auditory scene
smoothly transitioned in the background, varying the
nature and degree of the acoustic challenge. To encour-
age sustained attention to the target speech, participants
were asked a series of multiple-choice questions relating
to the content of each narrative immediately after hear-
ing it. Participants subsequently listened to another set of
closely matched narratives and rated subjective effort
and intelligibility for each scene in turn. Before each
stage of the experiment, participants completed a short
practice run to gain familiarity with the relevant task.

Participants

Thirty university students aged 18 to 23 years (17
women) took part in the study. All participants had
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(self-reported) normal hearing, normal or corrected-to-
normal vision, and no known cognitive or motor impair-
ments. They were all native English speakers. Of the 30
participants, 22 were right handed, four were left
handed, and four showed no strong preference for
either hand, as assessed using the Edinburgh
Handedness Inventory (Oldfield, 1971). The study was
approved by the University of Nottingham Faculty of
Medicine and Health Sciences Research Ethics
Committee, and written informed consent was obtained
from all participants.

Stimuli

Stimulus materials were adapted from the RealSpeechTM

content library (used with permission of Dr. Ian Wiggins
and Dr. Mark Fletcher). This library provides a collec-
tion of (a) target-speech narratives recorded under near-
anechoic conditions (dry speech signal), (b) real-world
binaural recordings of background sounds made in a
variety of everyday listening environments, and (c) the
means to flexibly combine these such that a chosen talker
can be simulated speaking in a particular environment
(with the acoustics of that environment accurately recre-
ated through convolution of the dry speech signal with
an appropriate binaural room impulse response). The
real-world recordings were made using a proprietary bin-
aural microphone with realistic artificial pinnae. Note
that because the target-speech narratives were separately
recorded in a quiet environment, there was no recreation
of the Lombard effect (the involuntary increase in vocal
amplitude that might have been expected to occur had
the speech truly been produced in a noisy environment).

In this study, as target speech, we used three narra-
tives for brain imaging and a further three narratives for
the subsequent subjective-ratings task. These narratives
covered a variety of general-interest topics (e.g., the use
of pit ponies in the mining industry from the mid-18th
until the mid-20th century; the changing climate on
Mars; a biography of English musician John Lennon,
co-founder of the Beatles) and were each of approxi-
mately 4 to 5min duration.

As background scenes, we used a total of 17 different
environments. These included a busy café, an open-plan
office, a swimming pool, various residential rooms and
outdoor spaces, and a traveling car. The use of binaural
recordings allowed us to approximate real-world spatial
sound fields by presenting the stimuli to participants
through insert earphones (Hammershøi and Møller,
2005).

To present participants with a continually varying
acoustic challenge, we generated stimuli in which the
background auditory scene smoothly transitioned every
8 to 27 s (median 13.8 s), timed to coincide with natural
pauses in the narratives. This was achieved by

crossfading between scenes (3-s crossfade duration).
The SNR within each scene was manually set during
study design with the aim of achieving a suitably wide
range of listening difficulties overall (SNR range across
scenes: �16 dB to þ25 dB). Subsequently, the scene-spe-
cific SNRs were fixed across participants such that every-
one was presented with the same stimuli. Each narrative
comprised between 18 and 23 scenes.

The stimuli were presented binaurally through
Etymotic ER-2 insert earphones (Etymotic Research,
Inc., Elk Grove Village, Illinois). Prior to the main
experiment, participants were played a representative
sample of target speech (in quiet), followed by one of
the loudest scenes, and given the opportunity to adjust
the overall volume to a comfortable level. Participants
could not make any adjustment to the SNR using this
process. Because the ER-2 earphones are designed to
achieve a flat frequency response at the human eardrum,
yet the source recordings were made using the equivalent
of a blocked-entrance microphone position, it was neces-
sary to filter the stimuli to reinstate the main ear-canal
resonance. We applied the required broad mid-frequency
boost based on group-average data provided by
Hammershoi and Moller (1996). We corrected only up
to 8 kHz, reasoning that individual variability at higher
frequencies would render any attempt at correction inef-
fective. It must be noted that the use of generic, rather
than individualized, binaural stimuli, together with the
absence of individualized earphone equalization, will
have limited the fidelity of the virtual acoustic reproduc-
tions (Begault, Wenzel, & Anderson, 2001; Wightman &
Kistler, 2005; Xu, Li, & Salvendy, 2007). We cannot be
sure to what extent each participant experienced a true-
to-life spatial auditory percept. Nevertheless, partici-
pants were exposed to naturalistic speech-in-noise stimuli
capable of evoking a general sense of spaciousness and
containing interaural cues of physiologically plausible
magnitude.

During listening, participants were presented with a
still image on a computer display that represented the
auditory environment currently being simulated, includ-
ing the location of the target talker within the scene
(Figure 1). The visual images were smoothly cross-
faded in time with the auditory scene transitions. This
visual information was provided to help participants
remain orientated within the simulated sound fields, con-
sidered important in this study given the complex nature
of the real-world listening environments being recreated
and the fact that the background scene changed regularly
while the listening task was ongoing. Because neither the
talker nor the background was animated, the accom-
panying visual stimulation did not provide speech-read-
ing cues. Nonetheless, the visual context provided by
these images may still have benefitted speech understand-
ing, by, for example, helping the listener to understand
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the nature of the interfering sounds or cueing the spatial
location of the target talker. Indeed, it has been shown
that prior knowledge of a target talker’s location can
significantly improve performance in complex listening
scenarios (Kidd, Arbogast, Mason, & Gallun, 2005;
Kitterick, Bailey, & Summerfield, 2010).

Brain-Imaging and Content-Recognition Task

Three narratives were presented sequentially during brain
imaging, each read by a different talker (two men and one
woman). The order of presentation of the three narratives
was randomized for each participant, though within each
narrative all participants received identical stimulation
(order of scenes and SNR within each scene fixed across
participants). Each narrative was preceded by a 10-s title
screen and immediately followed by a series of multiple-
choice ‘‘fill in the blank’’ style questions designed to assess
recognition of the content just heard. The questions com-
prised short extracts from the transcript of the relevant
narrative with a word missing, together with four options
for what the missing word might have been. The three
foils were in each case chosen to be semantically plausible;
however, the choice of foils was not guided by any formal
evaluation of phonological or semantic similarity or word
frequency. There was typically one question per scene and
questions were presented in the same order as the asso-
ciated content had appeared in the auditory narrative.
The questions were presented on the computer display
and participants responded by using a mouse to select
the correct word. To ensure that the experimental session
moved along at a consistent pace, participants were given
a fixed time window of 30 s to answer as many questions
as possible. To promote task engagement, participants
were provided with feedback on the number of questions
they answered correctly (6 s); there was then a 10-s pause
before the title screen for the next narrative appeared.
Brain activity was continuously measured using fNIRS
throughout.

Subjective-Ratings Task

The subjective-ratings task followed a similar format to
the brain-imaging task, except with each scene now

presented in isolation rather than continuously flowing
one into the next. This gave time for participants to pro-
vide their subjective ratings of effort and intelligibility
immediately after listening to each scene. Effort was
probed with the question ‘‘How effortful was it to
follow what the talker was saying?’’ and responses were
given on a 10-cm visual analog scale with end points
labeled ‘‘Not at all effortful’’ and ‘‘Extremely effortful.’’
Participants could respond anywhere along the scale,
and there were no intermediate marks or labels.
Similarly, intelligibility was probed with the question
‘‘How much of what the talker said could you under-
stand?’’, and the visual analog scale end points were
labeled ‘‘Not a word’’ and ‘‘Every single word.’’ Effort
and intelligibility were jointly probed on the same screen
to encourage participants to recognize these as distinct
perceptual dimensions. In addition to the effort and
intelligibility scales, the response screen included a box
which participants were instructed to tick if, and only if,
they had found listening in a given scene so difficult that
they had felt compelled to give up. Participants still had
to give effort and intelligibility ratings, even if ticking this
box. The task was automated and participants
responded using a mouse as the input device.

Different narratives were used for the subjective rat-
ings, compared with those used for brain imaging, to
avoid familiarity effects. However, for each narrative
used during brain imaging, a corresponding narrative
was prepared for the subjective-ratings task that was as
closely matched as possible. Paired narratives were
matched in the following ways: (a) the identity of the
talker was the same; (b) the duration of the target
speech within each scene was matched as closely as nat-
ural breaks within the speech would allow; and (3) within
each scene, the A-weighted root mean square level of the
target speech was equalized between the corresponding
brain-imaging and subjective-ratings narratives.

fNIRS Data Acquisition

The fNIRS data were acquired using a Hitachi
ETG-4000 system (Hitachi Medical Co., Japan). The
ETG-4000 is a continuous-wave system that measures
simultaneously at wavelengths of 695 and 830 nm at a

Figure 1. Examples of real-world listening environments recreated in this study. A range of indoor (e.g., scenes (a), (c), and (d)) and

outdoor (e.g., scene (b)) scenes were used. A mixture of competing speech (e.g., scenes (a) and (c)), ambient background sound (e.g.,

scenes (b) and (e)), and adverse room acoustics (e.g., scenes (a) and (d)) presented a wide variety of acoustic challenges.
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sampling rate of 10Hz. A 3� 11 optode array compris-
ing 17 emitters and 16 detectors was used providing
coverage of prefrontal and (superior) temporal cortex
(Figure 2). There were 52 measurement channels in total.

Analyses

fNIRS Data Preprocessing

Preprocessing of the fNIRS data was performed in
MATLAB (MathWorks, Natick, MA) and proceeded
along similar lines to previous fNIRS studies conducted
in our laboratory (Anderson, Wiggins, Kitterick,
Hartley, 2017; Wiggins, Anderson, Kitterick, &
Hartley, 2016; Wiggins & Hartley, 2015; Wijayasiri
et al., 2017). First, the raw intensity signals were con-
verted to changes in optical density (Huppert et al.,
2009). Then, motion-artefact correction was applied
using a wavelet filtering approach (Molavi & Dumont,
2012) with an exclusion threshold for wavelet coefficients
of 0.719 times the interquartile range below the first
quartile or above the third quartile. The data were then
bandpass filtered between 0.01 and 0.5Hz to remove
low-frequency drift and cardiac oscillations. Finally, a
hemodynamic signal separation method was applied to
help isolate the functional response to brain activation
from the systemic physiological signals that can other-
wise confound fNIRS measurements (Yamada,
Umeyama, & Matsuda, 2012). Subsequent statistical

analyses were performed based on the estimated func-
tional component of the hemodynamic signal.

Prior to statistical analysis, we excluded channels suf-
fering from poor contact between optode and scalp. We
identified such channels using the scalp-coupling index
described by Pollonini et al. (2014). We excluded chan-
nels with scalp-coupling index< 0.12; this threshold was
chosen to exclude only the worst 5% of channels across
the entire dataset.

For each participant, data from the three narratives
were placed into a uniform order, demeaned, and con-
catenated. The first 6 s of each narrative, corresponding
to the fade-in period, were trimmed prior to concaten-
ation. Subsequent analyses were performed on the con-
catenated data.

fNIRS Data Analysis

Long-term ISC analysis. Our primary approach to analyzing
the fNIRS data was to test for overall similarity of brain
activation across individuals by computing the ISC
between every pair of participants (Hasson et al.,
2004). Following Wilson et al. (2008), prior to calculat-
ing ISC, we regressed out the global mean signal (i.e., the
average time course across all fNIRS measurement chan-
nels) from each channel: The aim of doing so was to
minimize the influence of any common, spatially nonse-
lective brain activity across individuals, as might have
resulted from changes in arousal, heart rate, and so

Figure 2. (a) Variation in optode positioning across eight volunteers (color-coded according to individual). These data were acquired

using a three-dimensional digitizer to record optode positions, as well as anatomical surface landmarks, followed by registration to a

standard atlas brain. (b) Aggregate cortical sensitivity profile across the entire probe-set calculated using the AtlasViewer tool (Aasted

et al., 2015). The color scale depicts relative sensitivity on a logarithmic scale from 0.001 to 1.
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forth. Where a given channel had been excluded for a
certain participant, that participant was left out from the
calculation of ISC for that channel (i.e., the effective
sample size was reduced by one). Because the correlation
coefficient r is not normally distributed, the Fisher z
transformation was applied: z¼ 0.5� ln((1þ r)/(1� r)).
To test whether mean ISC values were significantly
greater than zero, we performed one-tailed t tests on a
channel-wise basis (Wilson et al., 2008).

Time-varying ISC analysis. We were also interested to
explore whether the momentary strength of ISC varied
systematically according to short-term listening condi-
tions. This could have occurred if, for example, activity
in a certain brain region became more strongly synchro-
nized across participants during periods when listening
was particularly effortful. Note that such changes in syn-
chronicity across participants can in principle occur even
in the absence of any overall increase or decrease in the
level of activity in a particular brain region. To this end,
following Nummenmaa et al. (2012), we performed a
sliding-window dynamic ISC analysis over the full dur-
ation of the concatenated data. The window size was 16 s
and the step size was 2 s. The ISC was calculated on the
windowed data using the same procedure as described
earlier, resulting in a mean ISC value per window per
fNIRS channel. We then used general linear model
(GLM) analyses to test whether momentary ISC could
be explained by relevant subjective or acoustic descrip-
tors of the time-varying listening conditions, as described
later.

GLM analyses. We used GLM analyses to test for relation-
ships between various subjective or acoustic predictors
and brain activity. We conducted two types of GLM
analyses. In the first type, introduced earlier, we
attempted to model time-varying ISC in a similar
manner to Nummenmaa et al. (2012). In these models,
predictor variables were time aligned with the fNIRS
data by convolution with a simple Gaussian filter (5-s
time-to-peak). The second type of GLM analyses was
of a more conventional nature, in that they aimed to
model the magnitude of brain activation directly
(Bartels & Zeki, 2004; Evans et al., 2016); that is, these
models tested for brain regions in which the level of
activity systematically increased or decreased as listening
became more or less effortful, for example. In these
models, predictor variables were convolved with the
canonical dual-gamma hemodynamic response function
(HRF) provided in SPM8 [http://www.fil.ion.ucl.ac.uk/
spm]. In both types of GLM, we applied the Cochrane-
Orcutt procedure recursively to deal with serial correl-
ation in the error term (Cochrane & Orcutt, 1949). Our
stopping criterion was when the autocorrelation in the
model residuals changed by less than 0.01 between one

iteration and the next. In the case of models aiming to
predict the magnitude of brain activation directly, we
took the beta weights from the individual-participant
models to a group-level random effects analysis by per-
forming two-tailed t tests on a channel-wise basis.

As potential predictors of brain activity, our primary
variables of interest were participants’ ratings of listening
effort and intelligibility. That is, we looked to explain
brain activity in terms of subjective experiences asso-
ciated with effortful listening. It is important to note
that perceived effort (the subjective experience of how
taxing a task is or was) does not necessarily equate to
processing effort (the mental resources deliberately allo-
cated to overcome obstacles in goal pursuit when carry-
ing out a task) (Lemke & Besser, 2016; Pichora-Fuller
et al., 2016). Nonetheless, we anticipated that there
would be systematic relationships between brain activity
and subjective ratings of listening effort or intelligibility.
Across multiple other studies that employed complex,
naturalistic stimuli, brain activity has been found to be
predicted by subjectively rated experiences, including
humorousness (Franklin & Adams, 2011; Jääskeläinen
et al., 2016) and emotional valence or arousal
(Nummenmaa et al., 2012, 2014; Trost et al., 2015;
Viinikainen et al., 2012). When modeling time-varying
ISC, we used group-average ratings of listening effort
or intelligibility, while when modeling the magnitude of
brain activation directly, we used each individual’s sub-
jective ratings to predict their own brain response. As an
objective acoustic metric, we also considered the scene-
by-scene SNR at whichever ear received the more favor-
able look at the target speech (better-ear SNR). Recall
that the SNR was fixed across participants, and in cal-
culating better-ear SNR, we used the equivalent
A-weighted level of the speech and background sound
averaged over the duration of each scene (see
Supplementary Figure S1 for details of the distribution
of better-ear SNR across scenes and narratives). Finally,
we included the instantaneous amplitude envelopes of
the target speech and background sound (separated
from one another acoustically). This allowed us to test
for brain responses that directly tracked the envelope of
the acoustic signals, as opposed to higher level concepts
such as the scene-by-scene SNR. In extracting the enve-
lopes, the signals were passed through an A-weighting
filter, and the overall level across the two ears was calcu-
lated assuming energetic summation. The envelopes were
temporally smoothed through convolution with the
canonical HRF.

Correction for multiple comparisons across channels. As this is,
to the best of our knowledge, the first attempt to probe
brain activation during effortful listening in naturalistic
scenes, we adopted an exploratory approach, testing
across the entire probe-set in a channel-wise manner,
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rather than in predefined regions of interest. To correct
for the multiple comparisons issue associated with per-
forming simultaneous testing in 52 measurement chan-
nels, we controlled the false discovery rate following the
procedure described by Benjamini and Hochberg (1995).

Subjective-Ratings Analysis

Following a similar approach to Bartels and Zeki (2004),
we used correlational analyses to establish: (a) the degree
of consistency between participants in their subjective
ratings of listening effort and intelligibility and (b) the
relationship between self-reported effort and intelligibil-
ity within individuals. To assess consistency between par-
ticipants, we calculated the Pearson’s correlation
coefficient between effort (or intelligibility) ratings from
all possible pairs of participants, on a per-narrative basis.
To assess the relationship between self-reported effort
and intelligibility, we calculated the correlation between
these percepts on a within-participant basis, before aver-
aging across participants. In all cases, we applied the
Fisher z transformation to the individual correlation
coefficients before calculating means and standard devi-
ations. Results were converted back to the original cor-
relation scale for ease of interpretation.

To explore what drives self-reported effort and intel-
ligibility, we plotted the respective mean ratings against
better-ear SNR for each scene. We performed broken-
line fits to better understand the nature of these relation-
ships. We also assessed whether self-reported effort or
intelligibility depended on the presence of competing
speech. We manually categorized each scene according
to whether the background (when listened to in isolation)
featured potentially intelligible speech of an ongoing
nature. Scenes containing only isolated vocalizations,
or vocalizations that were clearly unintelligible (e.g., dis-
tant laughter), were classed as not containing competing
speech. Across all narratives, 16 of 63 scenes (&25%)
were categorized as containing competing speech. We
used multiple linear regression to test whether self-
reported effort (or intelligibility) was significantly differ-
ent in those scenes that contained competing speech
compared with those that did not, after controlling for
better-ear SNR. Better-ear SNR was controlled for sta-
tistically since it was not precisely matched between cate-
gories (up to 3 dB difference in mean better-ear SNR,
depending on the narrative).

Results

Content-Recognition Task Run Alongside the
Brain-Imaging Data Collection

The mean number of questions answered (across narra-
tives and participants) was 5.3, with a mean success rate

of approximately 50% (chance performance would have
been at 25% correct). The relatively low success rate
might stem from participants having had to retain details
of each narrative over a duration of several minutes.
Indeed, due to the limited number of questions that par-
ticipants managed to answer within the time-limited
period (corresponding to around 25%–30% of all avail-
able questions), they primarily responded to questions
on content that had appeared toward the start of the
narrative, several minutes before the questions were
posed. Of course, the fact that listening was, by design,
highly challenging during a proportion of each narrative
will also have limited participants’ success rates. A limi-
tation arising from the relatively small proportion of
questions that participants were able to complete
within the time limit is that, in practice, they were not
probed on their retention of details relating to the mid
and latter parts of each narrative. As this prevents the
use of these data to provide an indication of the extent to
which an individual sustained engagement throughout
the full listening task, these results are not considered
further.

Subjective Ratings

Table 1 shows the results of the subjective-ratings ana-
lysis. Participants were generally consistent with one
another in their ratings of effort (mean r across narra-
tives¼ .81) and intelligibility (mean r¼ .82). Within par-
ticipants, self-reported effort and intelligibility were
strongly negatively correlated (mean r¼�.83). In all
cases, correlation values were similar across the three
narratives, suggesting that these relationships generalize
across different talkers and speech materials.

Participants rarely reported having felt compelled to
give up listening because the target speech was too hard
to follow. Depending on the narrative, no participants
reported giving up in between 68% and 82% of all
scenes. The greatest proportion of participants who
reported giving up on any single scene was 7 of 30
(23%) for Scene 7 of Narrative 1. In conclusion, it
seems that the stimuli presented participants with a suit-
able range of listening difficulties overall, except for pos-
sibly a small number of scenes that may have been too
challenging for a minority of individuals.

Figure 3 plots mean scene-by-scene effort and intelli-
gibility ratings for each narrative used in the subjective-
ratings task. Consistent with the correlational analyses, it
is clear that self-reported effort generally increased as
intelligibility decreased and vice versa. However, it is
interesting to note that there are several examples of
scenes (e.g., Narrative 1 Scenes 9 and 18; Narrative 2
Scene 14; Narrative 3 Scene 5) in which listening was
reported to be moderately effortful, despite perceived
intelligibility being near perfect. This observation is
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further supported by Figure 4, which plots self-reported
effort and intelligibility against better-ear SNR. The
broken-stick fits make clear that effort generally
decreased, and intelligibility generally increased, as the
SNR improved. However, above a certain SNR, listening
became effortless and the target speech became fully
intelligible. Interestingly, the break points in the fits sug-
gest that perceived intelligibility became perfect some
5 dB or so before listening became subjectively effortless.

Multiple linear regression analysis showed that, after
controlling for better-ear SNR, self-reported effort was
significantly higher in scenes that contained competing
speech than in those that did not, t(60)¼ 2.02, p¼ .048.
There was no corresponding effect of competing speech
on perceived intelligibility, t(60)¼� 0.88, p¼ .381.

fNIRS Results

Figure 5 shows the mean long-term ISC map across the
entire probe-set. As expected, significant ISC (q< 0.05,
false discovery rate corrected) was observed in channels
overlying the bilateral auditory cortices (Channels 32, 42,
and 52). However, significant ISC was not circumscribed
to superior temporal cortex, with significant ISC also
seen in channels overlying the right postcentral gyrus
(Channel 11), bilateral inferior frontal cortex (Channels
44 and 51), bilateral dorsolateral prefrontal cortex
(Channels 18, 24, and 29), and bilateral frontopolar
cortex (Channels 25, 36, 38, and 48). Spatially extensive
ISC during listening to complex auditory narratives is
consistent with previous fMRI studies (Honey et al.,

Figure 3. Scene-by-scene subjective ratings of effort and intelligibility for each narrative used in the subjective-ratings task. The mean

rating across participants (bold horizontal lines) �1 standard error of the mean (surrounding shaded regions) is shown in each case.

Table 1. Correlation Coefficients (Mean� SD) Among Subjective Ratings of Listening Effort and Intelligibility Between Participants

(Top Two Rows) and Between Percepts Within Participants (Bottom Row).

Narrative 1 Narrative 2 Narrative 3

Correlation of effort across all pairs of participants 0.81� 0.24 0.82� 0.26 0.80� 0.09

Correlation of intelligibility across all pairs of participants 0.83� 0.09 0.85� 0.10 0.78� 0.09

Correlation between effort and intelligibility ratings within participants �0.81� 0.12 �0.84� 0.09 �0.85� 0.08
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2012; Lerner et al., 2011; Schmälzle et al., 2015; Wilson
et al., 2008).

In the GLM analyses aiming to model time-varying
aspects of brain activity based on various subjective or
acoustic predictors, we observed few significant results
after controlling for multiple comparisons across meas-
urement channels. Whether modeling time-varying ISC
or the magnitude of brain activation directly, we did not
find any statistically significant relationships between
brain activity and (a) self-reported effort, (b) self-
reported intelligibility, or (c) scene-by-scene better-ear
SNR. Results for these analyses are therefore not
plotted.

The one case in which we did observe significant rela-
tionships between an acoustical predictor and brain
activity was when modeling the magnitude of brain acti-
vation using the smoothed amplitude envelopes of the
target speech and background sound as predictors.
These two predictors were entered into a GLM

simultaneously such that it was possible to assess the
effect of the target-speech envelope on brain activation
while controlling for the effect of the background sound
envelope and vice versa. Activation in channels overlying
the bilateral auditory cortices (Channels 32, 42, 43, and
52) was significantly related to the target-speech enve-
lope, suggesting that these regions responded principally
to the presence of the target speech (Figure 6). The same
was true for a region of right dorsolateral prefrontal
cortex (Channels 4 and 14). No channels showed a
response that was significantly driven by the envelope
of the background sound (results not shown).

Discussion

We combined the optical neuroimaging modality fNIRS
with a model-free, data-driven analysis technique (inter-
subject correlation) to investigate brain activity asso-
ciated with effortful listening to speech in naturalistic

Figure 4. Self-reported effort (left) and intelligibility (right) as a function of better-ear signal-to-noise ratio. Marker style and color are

used to differentiate scenes that contained competing speech (red squares) from those that did not (blue circles). Also, broken-stick fits to

the data with the break points indicated are shown.

Figure 5. Intersubject correlation (ISC) map across the entire probe-set. Channels showing statistically significant ISC (q< 0.05, false

discovery rate corrected) are highlighted. Note that the map is interpolated from single-channel results and the overlay on the brain is for

illustrative purposes only. Brighter colors (yellow or white) indicate higher ISC, that is, more strongly synchronized brain activity across

individuals.
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scenes. In the same individuals, we also investigated self-
reported listening effort and intelligibility under similar
conditions. Consistent with expectation based on prior
imaging studies, the results indicate that higher order
frontal brain regions are engaged during effortful listen-
ing in complex, real-world conditions. However, the
degree to which specific brain regions are engaged in
different listening environments, and as listening
becomes more or less effortful, remains unclear. Our
results additionally provide insight into the factors
likely to influence perceived listening effort under eco-
logically relevant conditions.

Attentive Listening to Speech in Naturalistic Scenes
Elicits Common Brain Activity Across Individuals

The long-term ISC analysis identified several cortical
regions that responded similarly across individuals
during attentive listening to speech in naturalistic
scenes. Unsurprisingly, these regions included bilateral
superior temporal cortex, well known to play a funda-
mental role in speech processing (Hickok & Poeppel,
2007). Consistent with previous fMRI studies that
employed ISC during narrative comprehension (Honey
et al., 2012; Lerner et al., 2011; Schmälzle et al., 2015;
Wilson et al., 2008), we additionally observed significant
ISC across a swathe of prefrontal cortex. Significant ISC
was observed not only in the core language network
(e.g., superior temporal gyrus and inferior frontal
gyrus) but also in extralinguistic regions (e.g., dorsolat-
eral prefrontal cortex and frontopolar cortex). Common
brain activity in these extralinguistic regions may reflect
the processing of narrative meaning or social content
over extended timeframes (Honey et al., 2012; Lerner
et al., 2011), or, potentially, the time-varying demand
placed upon domain-general cognitive control networks
as the degree of acoustic challenge varied (Blank &

Fedorenko, 2017; Regev, Honey, Simony, & Hasson,
2013).

These results confirm the viability of using ISC ana-
lysis on fNIRS data, a promising approach which has
only just begun to be explored in the literature (Liu
et al., 2017). This is important because ISC is a powerful
technique for analyzing brain activity collected under
complex, naturalistic conditions, while fNIRS is itself
uniquely well suited among neuroimaging modalities
for use in unconstrained, naturalistic settings (Balardin
et al., 2017; Quaresima & Ferrari, 2016). Nonetheless,
the results of ISC analyses can be difficult to interpret
in isolation. Significant ISC in a given brain region does
not necessarily imply an active role of that region in
processing the experimental stimuli: Indeed, significant
ISC can occur in regions that are deactivated during
stimulus presentation compared with rest (Wilson
et al., 2008). Significant ISC merely implies that a
given brain region responds similarly across individuals
to some fluctuating element of the stimulus or task, with-
out offering insight into the functional role of that
response. We therefore conducted a series of secondary
analyses aimed at understanding how the brain
responded to changes in listening difficulty across scenes.

A Neural Marker for Real-World Listening Effort
Remains Elusive

Using GLM analyses, we attempted to identify brain
regions that responded systematically to variations in
self-reported listening effort across scenes. We looked
both for regions that showed an overall increase or
decrease in activation under more effortful conditions
(conventional analyses) and increased or decreased syn-
chronization across individuals under more effortful con-
ditions (dynamic ISC analyses). Based on prior research,
candidate regions that might have been expected to show

Figure 6. Group-level random effects analysis testing for a linear relationship between the (smoothed) time-varying envelope of the

target speech signal and the strength of brain activation. Channels showing a statistically significant relationship (q< 0.05, false discovery

rate corrected) are highlighted. Note that the map is interpolated from single-channel results and the overlay on the brain is for illustrative

purposes only.
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sensitivity to listening effort include: (a) the left inferior
frontal gyrus, which has been shown to respond more
strongly to degraded-yet-intelligible speech than to
either clear speech or unintelligible noise (Davis &
Johnsrude, 2003; Hervais-Adelman et al., 2012;
Wijayasiri et al., 2017; Wild et al., 2012b; Zekveld
et al., 2014); (b) prefrontal regions underlying the fore-
head, which have been shown using fNIRS to be sensi-
tive to mental workload (Ayaz et al., 2012; Herff et al.,
2013); and (c) fNIRS-accessible components of the
domain-general ‘‘multiple demand’’ system (including
dorsolateral prefrontal cortex) in which activity has
been shown to scale with cognitive effort across a
range of linguistic and nonlinguistic tasks (Blank &
Fedorenko, 2017; Duncan, 2010). However, we did not
find statistically significant relationships between self-
reported effort and brain activity in any of these regions.

It is unclear why we did not observe significant rela-
tionships between brain activity and self-reported listen-
ing effort. One possibility is that this reflects the
complexity of the relationship between ‘‘processing
effort’’ (as quantified by physiological indices of listening
effort, including brain activity) and ‘‘perceived effort’’ (as
quantified by self-report) (Alhanbali et al., 2017). Indeed,
ours is by no means the first study to find difficulty in
establishing a relationship between self-reported listening
effort and some objective measure of effort (McGarrigle
et al., 2014). However, it is noteworthy that we were also
unable to identify significant relationships between brain
activity and an objective acoustic metric of listening dif-
ficulty (better-ear SNR). Self-reported listening effort, in
contrast, was strongly (negatively) correlated with better-
ear SNR.

A second possibility is that it is overly ambitious to
seek a neural marker of listening effort that generalizes
across the wide range of complex, naturalistic scenes
included in this study. Different scenes presented differ-
ent forms of acoustic challenge (adverse room acoustics,
background noise, and competing speech), and it may be
that different types of listening challenge recruit different
neurocognitive processes to support successful compre-
hension (Peelle, 2018; Peelle & Wingfield, 2016b).
Equally, it must be acknowledged that the scenes and
narratives also varied in other, uncontrolled dimensions
(e.g., level, spectral content, complexity of spectro-tem-
poral modulations, spatial locations of target and back-
ground sound sources, and semantic content of the
target speech and context of the background):
Influences of these uncontrolled dimensions on brain
responses may have obscured any systematic relationship
with self-reported effort. Nonetheless, it is worth noting
the remarkable success that others have had in decoding
sensory experiences from neuroimaging data collected
under similarly complex and uncontrolled conditions,
albeit using more advanced machine-learning techniques

(Floren, Naylor, Miikkulainen, & Ress, 2015; Valente,
De Martino, Esposito, Goebel, & Formisano, 2011).

In a final analysis, we tested for brain regions in which
activity was driven by the acoustic envelope of the target
speech or background sound. We found that bilateral
superior temporal cortex was significantly responsive to
the envelope of the target speech. This result provides
reassurance that the absence of significant effects in the
analyses reported earlier is unlikely to have been due to a
fundamental lack of statistical power. It is interesting
that activity in fNIRS channels overlying superior tem-
poral cortex tracked the envelope of the target speech
but not the background sound. This apparent preference
for speech, over acoustic stimulation in general, may
reflect the depth profile of our fNIRS measurements.
The primary auditory cortex (which would be more
likely to track fluctuations in overall acoustic energy)
lies hidden in the depth of the Sylvian fissure (Moerel,
De Martino, & Formisano, 2014); our fNIRS measure-
ments, biased toward more superficial parts of the brain
(Strangman et al., 2013), likely had greater sensitivity to
belt or parabelt regions, which respond preferentially to
spectrotemporally complex sounds such as speech
(Rauschecker & Scott, 2009). Interestingly, we found
that a region of right dorsolateral prefrontal cortex was
also significantly responsive to the envelope of the target
speech. While further investigation is needed to clarify
the precise nature of this response, it is possible that it
reflects increased demand on cognitive control processes
during periods of active listening (i.e., when the target
speech was present; Sharp et al., 2006). It is noteworthy
that a recent fMRI study of narrative speech perception
in noise also observed right-lateralized prefrontal activa-
tion, specifically in response to sound onsets (Evans
et al., 2016). These onset responses were interpreted as
‘‘phasic alerting’’ responses, preparing the listener for
subsequent stimulation.

Comprehension Succeeds Before Listening Becomes
Effortless

Despite wide variability in acoustic conditions across the
range of complex, naturalistic scenes included in this
study, we found that both self-reported effort and intel-
ligibility were strongly correlated with a simple acoustic
metric of listening difficulty (better-ear SNR).
Interestingly, our results suggest that while perceived
intelligibility became perfect at a better-ear SNR of
around þ7 dB, listening did not become subjectively
effortless until the better-ear SNR further improved to
around þ13 dB. Thus, in the naturalistic scenes simu-
lated here, there was a range of positive SNRs over
which comprehension was fully successful for our nor-
mally hearing listeners, yet listening was still perceived as
being somewhat effortful. Importantly, this range of

12 Trends in Hearing



positive SNRs corresponds with the sort of listening con-
ditions typically encountered in daily life (Smeds,
Wolters, & Rung, 2015; Wu et al., 2017). Recent research
in the field of listening effort emphasizes the importance
of including test conditions corresponding to ecologically
relevant signal-to-noise ratios, where effort may differ
between listener groups despite intelligibility being
near-perfect (Ohlenforst et al., 2017).

Listening Is More Effortful in the Presence of
Competing Speech

A further interesting finding that emerged from our
analysis of listeners’ subjective ratings of effort and intel-
ligibility is that, after controlling for better-ear SNR,
listening was perceived as being significantly more effort-
ful in scenes that contained competing speech compared
with those that did not. The presence of competing
speech did not have any corresponding effect on per-
ceived intelligibility. We propose that greater perceived
effort in the presence of competing speech could reflect
an additional cognitive cost of overcoming informational
masking (Kidd & Colburn, 2017). Parallels may be
drawn to the findings of Koelewijn et al. (2012), who
showed using pupillometry that, to maintain similar
intelligibility levels, listeners must expend greater
mental effort when listening to speech masked by
another talker than by either stationary or fluctuating
noise. In our study, greater perceived effort could con-
ceivably reflect greater demand on attentional processes
when competing speech is present in the auditory scene
(Koelewijn, de Kluiver, Shinn-Cunningham, Zekveld, &
Kramer, 2015).

Limitations

Although we were able to successfully identify common
intersubject brain activity in multiple frontotemporal
regions, the absolute magnitude of the intersubject cor-
relations that we observed was small (max& 0.03). To
some extent, this might reflect inherent limitations of the
fNIRS technique, specifically its modest spatial reso-
lution (Boas, Chen, Grebert, & Franceschini, 2004) and
lack of an anatomical image. Despite best efforts to
ensure consistent optode positioning across individuals,
in the absence of an anatomical image of each individ-
ual’s brain, it is impossible to confirm that the fNIRS
measurement channels were always similarly located
with respect to underlying cortical anatomy. Thus, it is
possible that ISC may have been reduced due to time
courses from slightly different brain regions being com-
pared across participants. Similarly, the modest spatial
resolution of fNIRS may have weakened ISC due to
blurring of activity across functionally distinct cortical
regions (White et al., 2001). Although Pajula and

Tohka (2014) have shown that ISC analyses are rela-
tively forgiving of spatial smoothing as applied to
fMRI data, fNIRS measurements inherently involve a
much greater degree of spatial smoothing, which could
obscure significant ISC occurring in localized subregions
of the investigated cortical volume. This could be par-
ticularly problematic in the frontal cortex, where lan-
guage-selective and domain-general subregions have
been shown to lie in close proximity (Fedorenko,
Duncan, & Kanwisher, 2012). Limited spatial resolution
and potential intersubject differences in anatomical regis-
tration might similarly have hampered our attempts to
identify significant relationships between brain activity
and self-reported listening effort. In principle, these
issues might be partly resolved in future studies by
employing high-density diffuse optical tomography, an
extension of fNIRS which uses spatially overlapping
measurement channels at multiple source–detector dis-
tances to achieve higher spatial resolution (Chitnis
et al., 2016).

Another factor that may have acted to increase vari-
ance in our brain-imaging data was our decision to
include all eligible participants irrespective of handed-
ness. It is common practice in cognitive neuroscience to
exclude left-handed participants in order to reduce vari-
ance in the data, despite left-handedness occurring
within a substantial portion (roughly 10%) of the popu-
lation (Willems, der Haegen, Fisher, & Francks, 2014).
Rerunning our analyses to include only right-handed
participants (N¼ 22 of 30) did not reveal any fundamen-
tal changes compared with the results shown for the full
sample, although in a few cases, individual-channel
results that had been significant in the full sample
became nonsignificant in the reduced analysis. This sug-
gests that patterns of brain activity in the non-right-
handed participants (four left handers and four having
no strong preference for either hand) were sufficiently
like those of the right handers to boost statistical
power when included in the sample. This is perhaps
not surprising given that, among left-handers, only a
minority (roughly 25%) display atypical hemispheric
dominance for language (Pujol, Deus, Losilla, &
Capdevila, 1999; Szaflarski et al., 2002). The number of
left-handed participants (N¼ 4) was unfortunately too
small to analyze data for this subgroup in isolation.

A limitation of our experimental design is that different
narratives were used for brain imaging and for subse-
quently obtaining participants’ subjective ratings of listen-
ing effort and intelligibility. This decision was necessitated
by the requirement that all participants should be exposed
to the same stimuli during brain imaging, a prerequisite
for undertaking ISC analysis. We made efforts to match
the stimulus used to obtain subjective ratings for a par-
ticular scene as closely as possible to that presented during
brain imaging (same talker identity, duration of speech
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extract matched, and A-weighted SNR equalized).
Nevertheless, differences in narrative content may have
meant that, in some cases, the subjective listening experi-
ence in the subjective-ratings task was not fully represen-
tative of the experience when listening to the
corresponding scene in the brain-imaging task. Any such
differences would have manifested as a source of uncon-
trolled variance in our dataset.

A further limitation is that we did not have available any
complementarymeasure of task engagement collected con-
currently with fNIRS imaging (excepting the content-
recognition questions that were presented after each nar-
rative; for reasons already discussed, these questions did
not provide an adequate indicator of sustained task
engagement). Although participants only infrequently
reported having felt compelled to give up listening in indi-
vidual scenes, during the brain-imaging task, they were
required to maintain attention for several minutes at a
time. We cannot rule out that participants may have dis-
engaged from listening attentively to the target speech at
some points during the narratives. Indeed, anecdotally,
several participants reported having struggled to maintain
their attention for the full duration of the imaging session.
Idiosyncratic lapses in attention or task engagement would
be expected to reduce ISC, especially in higher order
regions potentially involved in effortful speech comprehen-
sion. Similarly, any such lapses might also have hindered
our attempts to correlate brain responses with perceived
effort. In future research, it would be beneficial to combine
fNIRS imaging with the simultaneous acquisition of other
markers of physiological arousal, such as pupil dilation
(McGarrigle, Dawes, Stewart, Kuchinsky, & Munro,
2017). Of course, pupil dilation is itself well established as
a putative measure of listening effort (Zekveld & Kramer,
2014). Combined fNIRS or pupillometry studies could
prove a powerful approach to shed light on the neural cor-
relates of pupil dilation during effortful listening, especially
under naturalistic conditions as considered here.

Conclusion

When listening to continuous narratives in naturalistic
scenes, participants perceived the target speech to
become fully intelligible at a lower SNR than was
needed for listening to become subjectively effortless.
After controlling for better-ear SNR, self-reported
effort was greater in the presence of competing speech,
potentially reflecting an additional cognitive cost of over-
coming informational masking. Using the optical brain-
imaging technique fNIRS, we found evidence of
common brain activity across individuals in multiple
frontotemporal regions during listening to speech in nat-
uralistic scenes. Also, activity in bilateral superior tem-
poral cortex (i.e., the auditory cortices), as well as a
region of right dorsolateral prefrontal cortex,

significantly tracked the acoustic envelope of the target
speech. However, we were unable to identify significant
relationships between brain activity and self-reported lis-
tening effort or acoustic SNR. Further research is needed
to fully understand the brain activity that underpins
effortful listening in complex, everyday environments.
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