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Abstract. We consider the wave dynamics on networks of plates coupled along

1D joints. This set-up can be mapped onto an extension of wave graph systems

studied in, for example, quantum graph theory. In the elastic case, different mode-

types (flexural, longitudinal and shear waves) propagate in each plate and do so at

different wave speeds. The flexural (or bending) modes are described in terms of

fourth order equations introducing an always evanescent wave component into the

system. Waves encounter plate intersections and can be transmitted, reflected or mode

converted. The intersection or vertex scattering matrices mix different waves which can

be propagating (open) and evanescent (closed). The local scattering matrices and the

global transfer operator are no longer unitary; the consequences of this non-unitarity

on secular equations and the Weyl law will be discussed. The findings are of relevance

to describing complex engineering structures such as networks of beams and plates.

1. Introduction

We treat the problem of elastodynamic waves propagating on graph-like structures, or

networks of plates, extending ideas developed in the context of quantum graphs [1, 2, 3].

The motivation for this investigation is two-fold. First, the elastodynamic extension of

quantum graphs has novel and interesting theoretical features, emerging, for example,

from the need to take account of evanescent modes which appear systematically in elastic

problems. Second, the behaviour of elastic waves in complex structures is of practical

importance in modelling noise and vibration in large structures such as ships or cars

in the high frequency limit: in this context, the study of energy propagation on graphs

can serve as a proxy for problems whose greater intrinsic complexity prevents explicit

solutions, while sharing common characteristics such as a statistical description of the

response of the system.

In the context of noise and vibration, numerical tools such as the Finite Element

Method (FEM) or the Boundary Element Method (BEM) scale with the wavelength and

lead to ever larger matrix problems in the short wavelength limit. Alternatively, ray

based [4, 5, 6] methods have been proposed and are used for modelling wave propagation
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Figure 1. Example of simple plate networks together with the corresponding graph

description; the plates are considered to extend to ± infinity along the lines of

intersection (marked as red dots in the cross section graph).

within a structure. Wave methods based on the so-called wave-finite-element method

(WFEM) have been useful in describing wave propagation within layered materials

[7] and have found applications in mechanical engineering treating wave propagation

problems within coupled beam and plate problems in terms of local scattering matrices

at component interfaces and global operators connecting the local interface solutions

[8, 9].

Here, we consider elastodynamic waves propagating on graph-like structures such as

networks of plates. We will restrict the analysis to homogenous and isotropic plates being

extended to infinity in one spatial direction and being connected along 1D interfaces such

as depicted in Fig. 1. Due to the translational invariance along the extended direction,

we can project the dynamics onto graph networks consisting of 1D edges and vertices as

shown in Fig. 1. Vertices correspond here to intersections between different plates or to

plate boundaries (red dots in Fig. 1), while edges correspond to plate sections between

intersections/boundaries (blue lines in Fig. 1).

Scattering on graphs has so far mainly been studied for so-called quantum graphs

[1, 2, 3] where the wave dynamics is given by the Helmholtz equation on 1D edges. These

ideas have been extended to the Dirac operator and relativistic quantum mechanics

on graphs propagating 2 or 4 spinor components [10] as well as to generic directed

graphs with local unitary scattering matrices and averaging done over so-called unitary

stochastic ensembles [11, 12]. There is also a considerable literature on differential

equations on graphs and their generalisations (see for example, [13, 14]) which has

overlap with the underlying physical problems, although not with the scattering

approach that is the focus here. Considering elastodynamics on graphs introduces novel

features to the graph-scattering problem that are interesting both from a conceptual

point of view and in terms of applications. First of all, plate equations are vector wave

equations describing the linear dynamics of a displacement vector field. Using thin-

plate theory, the vector field is split into a component perpendicular to the plate surface

(bending modes) described by the fourth order biharmonic equation and in-plane modes

(shear and pressure modes) described by the Helmholtz equation with mode specific

wave velocities, see [15] for details. The biharmonic equation admits both propagating
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and evanescent solutions. We thus have in total four wave components describing the

dynamics on each edge, of which at least one component is evanescent. This is in

contrast to the vector wave dynamics on graphs for the Dirac operator considered in

[10], for which the free wave solution on edges does not contain evanescent waves. Mode

mixing can occur at the plate interfaces and reflection, transmission and mode-mixing

coefficients will depend on the angle of incidence of the incoming wave front. The latter

property has so far not been considered on wave graphs and can be introduced here due

to the translational symmetry along the extended plates. By considering plates of finite

thickness, the coupling coefficients at joints will not only depend on the number of plates

which meet at the interface, but also on the angles between plates. (Wave dynamics

on graphs depending on geometric features, such as angles between edges meeting at

vertices, have also been termed “fat graphs” in the literature [3, 16].) In addition, there

is a dependence on material parameters and the thickness of the plates as well as the

driving frequency. The actual reflection/transmission coefficients can be obtained using

methods described by Langley and Heron [17].

We will describe the general set-up for finding wave solutions on networks of plates

in Sec. 2. We will in particular focus on the role of evanescent contributions in the overall

description of the wave propagation. We will introduce generalised scattering matrices

at vertices or interfaces and derive a transfer matrix describing the wave dynamics on

the network globally including evanescent contributions; the transfer matrices set up

in this way are no longer unitary - in contrast to wave graph systems considered so

far. It is often assumed that evanescent waves do not carry power and hence that their

influence is negligible [17]. This is justified if the emphasis is on scattering into the

far-field. In the presence of counter-propagating pairs of evanescent waves, these waves

do, however, contribute to the power transmitted across plate sections [18] as will be

shown. We will then give a brief introduction into elastic plate theory and describe the

local interface scattering matrices in more detail. In Sec. 3, we will present generalised

scattering matrix conditions similar to those considered by Smilansky and co-workers

in [19, 20]. We will then investigate how the evanescent contributions influence the

eigenvalue conditions and the so-called functional equations and we will construct a

unitary transfer matrix for the overall graph. In Sec. 4, we will derive the Weyl term

describing the mean density of eigenmodes on the graph and discuss the influence of

evanescent contributions on Weyl’s law. Conclusions and an outlook on applications is

given in Sec. 5.

2. Wave dynamics on plate networks – the general set-up

We will give here the general set-up for describing the wave dynamics in networks

of plates. The plate segments between two intersections are considered isotropic and

homogeneous, with plates being of constant width. We furthermore assume that the

underlying elastic equations are linear and lossless in what follows. We work in the

frequency domain with fixed frequency ω corresponding to a time dependence of the
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Figure 2. A T-junction and corresponding cross-section with wave amplitudes are

illustrated.

form e−iωt. The plates are of infinite extent in one direction, here the x direction,

reducing the set-up to a graph structure with effectively 1D edges – the plates – and

0D vertices – the plate intersections or free plate boundaries. In what follows, we will

briefly recapitulate the basic ingredients for the wave dynamics on a network, before

discussing the wave modes describing the elastic deformations of plates and then the

coupling coefficients for reflection/transmission at plate intersections.

2.1. Waves on networks

Wave propagation on networks is usually decomposed into free wave propagation on

edges followed by scattering on vertices leading to coupling between different edges

[1, 2, 3]. The wave field is described as a superposition of incoming and outgoing

waves at vertices. The propagation along edges is written in terms of a shift matrix

containing the phase shifts experienced by each mode, while coupling between different

edges at vertices is given in terms of vertex scattering matrices derived from boundary

conditions. A similar set-up has been proposed in terms of boundary integral equations

in [21]. A semiclassical version valid in the short-wavelength limit has been presented

by Bogomolny [22]. We follow the two step approach sketched above: first we determine

the possible solutions of the wave equation on each edge, disregarding the boundary

conditions at the vertices. The wave field on each edge is then split into incoming

and outgoing solutions with (multicomponent) wave amplitudes at vertices collected in

vectors ψ− and ψ+. This is sketched for a specific example, a T-junction (or T-beam),

in Fig. 2. In the notation of Fig. 2, the components of the matrix on edge (ij) mapping

outgoing waves at vertex i into incoming waves of the same type at vertex j is written

in the form

ψ−ji = S(ij)ψ+
ij , (1)

with 4D wave amplitude vectors ψ−ji and ψ+
ij and S(ij) the so-called shift matrix of edge

(ij) of the form

S
(ij)
XX′ = exp(ikX,⊥Lij) δX,X′ . (2)
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Here, X = B1, B2, S or L denotes a specific mode type, such as one of two bending

modes (B1 and B2), shear (S) or pressure/longitudinal (L) waves on plates, see Sec.

2.2. Here, kX,⊥ is the associated wavevector component normal to the plate junction

and Lij is the length of the plate segment perpendicular to the intersection. We have

Lij = Lji. Note that the wave numbers can be either real and imaginary depending on

whether we are dealing with propagating or evanescent modes.

The shift matrices S(ij) describe wave propagation across individual plates between

scattering events at plate junctions. At a plate junction i, (elastic) waves are partially

reflected and partially transmitted as represented by a local scattering matrix denoted

σ(i), which transforms incoming waves into outgoing waves according to

ψ+
ij =

∑
k

σ
(i)
ij,ikψ

−
ik, (3)

where the sum is over all vertices k connected to vertex i. The local scattering

matrices σ(i) at a given intersection i are discussed in more detail in Sec. 2.4. In a

next step, we collect the local matrices S(ij) and σ(i) to obtain a global matrices S

and σ describing connections across the entire graph, so that the global state vectors

representing incoming and outgoing waves satisfy

ψ− = Sψ+ and ψ+ = σψ−, (4)

(when the system is undriven). Here, ψ± denotes a vector of incoming or outgoing

wave amplitudes of dimension dimψ± = Nm, where N is the number of edges or plate

segments and m the number of modes on each segment. We have m = 4 in the case of

plate elastodynamics, see Sec. 2.2. We further define a transfer matrix [21, 22]

T = σS, (5)

so that eigenmodes of the system are determined by the equation

ψ+ = Tψ+, (6)

where T is a function of ω. The roots of the secular equation

det(1− T (ω)) = 0 (7)

are then the resonant- or eigen-frequencies of the graph.

2.2. Wave dynamics on plates

To describe the local vibrational dynamics on a given plate segment α = (ij), a local

coordinate system (x, y, z)α is defined so that the x-axis is along the infinite extension of

the plate, the y-axis points into the plate segment and the z-axis points in the direction

normal to the plate. The x-axis is a global coordinate, which is the same for all plate

segments. We furthermore introduce the vector of elastic deformations (u, v, w)α for
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each plate which are defined with respect to the local coordinates (x, y, z)α such that u

and v are in-plane deformations parallel to x and y, respectively, and w is parallel to z.

The equations governing deflections of a plate α are then [15]

D∇4w − ρω2w = 0 (8)

for the out-of-plane elastic deformations w and

1

1− ν2

∂2u

∂x2
+

1

2 (1 + ν)

∂2u

∂y2
+

1

2 (1− ν)

∂2v

∂x∂y
+

ρ

Eh
ω2u = 0, (9)

1

1− ν2

∂2v

∂y2
+

1

2 (1 + ν)

∂2v

∂x2
+

1

2 (1− ν)

∂2u

∂x∂y
+

ρ

Eh
ω2v = 0 (10)

for the in-plane elastic deformations u and v. Here, ρ is the density (that is, the mass

per unit area), ν is the Poisson ratio, E is Young’s modulus and

D =
Eh3

12(1− ν2)

is the flexural rigidity, with h being the thickness of the plate. These parameters can

be different for different plate elements α. Furthermore, incoming and outgoing waves

meeting at a given junction have the same dependence exp (ikxx− iωt) along x and with

t. Together with the dispersion relations given below, this fixes the y-component of the

wavevector, ky, for each wave mode and thus also the angles of incidence/reflection at

plate junctions.

The equations of motion (8-10) give rise to four types of wave solutions [15] with

wave numbers

k4
B =

ρω2

D
, k2

L =
ρω2(1− ν2)

Eh
, k2

S =
2ρω2(1 + ν)

Eh
. (11)

The subscripts L, S and B refer again to longitudinal, shear and bending modes,

respectively. The wavevector components perpendicular to interfaces and pointing into

plates are denoted,

kB1,y =
√
k2
B − k2

x, kB2,y = i
√
k2
B + k2

x, (12)

kL,y =
√
k2
L − k2

x, (13)

kS,y =
√
k2
S − k2

x (14)

for some fixed component kx along the junction. Note that one of the solutions for the

bending deformations, kB2,y, is always purely imaginary, describing an evanescent mode.

The other modes can be either propagating or evanescent depending on whether kx is

smaller or larger than the wave number kX in (11) with X = B, S or L. We will use

the symbol κ to denote the positive imaginary component of the evanescent wavevector

components. For example if, in addition to the always-evanescent bending mode B2,

the longitudinal mode L is also evanescent, we denote

kB2,y = iκB2,y = i
√
k2
x + k2

B and kL,y = iκL,y = i
√
k2
x − k2

L. (15)
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In the following, the discussion is valid for any possible combination of open and closed

modes, but we refer to the case in Eq. (15) predominantly when considering specific

examples.

Next, we set out our conventions for the wave amplitudes. The in-plane displace-

ments u and v can be written as

u =
[

kxa
−
Le−ikL,yy − kS,ya−S e−ikS,yy + kxa

+
LeikL,yy + kS,ya

+
S eikS,yy

]
eikxx, (16)

v =
[
− kL,ya−Le−ikL,yy − kxa−S e−ikS,yy + kL,ya

+
LeikL,yy − kxa+

S eikS,yy
]
eikxx, (17)

while the out-of-plane displacement takes the form

w =
[
a−B1

e−ikB1,y
y + a−B2

eκB2,y
y + a+

B1
eikB1,y

y + a+
B2

e−κB2,y
y
]
eikxx. (18)

The symbols + and −, respectively, label outgoing and incoming components at a

junction, as in Sec. 2.1, and we note that the conventions used for evanescent modes are

chosen to align the sense of propagation with the direction of decay.

2.3. Power flow

When the problem is lossless, the scattering, shift and transfer operators exhibit

symmetries associated with conservation of power. To state these concretely we relate

the power flux incident on a junction to the wave amplitudes a±X . Following the analysis

in Appendix A, this can be achieved more compactly by rescaling the amplitudes as

follows:

b±S =

√
1

2
ρω3kS,y a

±
S , b±L =

√
1

2
ρω3kL,y a

±
L ,

b±B1
=

√
ρω3

k2
B

kB1,y a
±
B1
, b±B2

= ±

√
ρω3

k2
B

iκB2,y a
±
B2
. (19)

For evanescent modes we choose the branch
√

i = eiπ/2 of the ensuing complex square

root (and note that it is only for the mode B2 that we alternate the sign before the

square root when swapping between incoming and outgoing components — this leads to

simpler expressions for power flux in the discussion below). As described in Appendix A,

the detailed form of the power flux depends on which modes are propagating and which

are evanescent. We illustrate the calculation here for the case where the longitudinal

mode is evanescent, along with the always-evanescent bending mode B2, while the shear

wave and bending mode B1 are propagating. Then, in terms of the scaled amplitudes,

the power contributions arriving at a junction from the in-plane and out-of-plane modes

in a given plate α = (ij) are respectively

jin-plane
α = |b−S |

2 − |b+
S |

2 + ib+∗
L b−L − ib−∗L b+

L ,

jbending
α = |b−B1

|2 − |b+
B1
|2 + ib+∗

B2
b−B2
− ib−∗B2

b+
B2
. (20)
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Eq. (20) takes into account that counterpropagating evanescent waves can carry flux,

the consequences of which are explored further in Sec. 3. In open scattering systems

there are no such contributions because evanescent waves can only propagate in one

direction and flux is carried by open modes only. However in a scattering problem of

finite extent such as this one, solutions which grow exponentially as we cross a plate

from one junction to another are admissible, and we get a contribution to the current

from the closed modes as described by the last terms in (20).

In the remainder of this paper we will assume that the solution vector on each plate

α = (ij) is written in terms of the scaled amplitudes

ψ±α =


...

b±X
...

 (21)

and, following [19, 20], we will also order the modes on each plate into propagating

“open” and evanescent “closed” components, using the notation

ψ±α =

(
ψ±α,o
ψ±α,c

)
. (22)

Then the net power flux jα = jin-plane
α + jbending

α given by (20) can be written

jα = 〈ψ−α,o, ψ−α,o〉 − 〈ψ+
α,o, ψ

+
α,o〉+ i〈ψ+

α,c, ψ
−
α,c〉 − i〈ψ−α,c, ψ+

α,c〉, (23)

with the obvious interpretation of the inner product. With the conventions thus adopted,

the form of the net power, Eq. (23), is found to apply generally, irrespective of which

modes are evanescent or propagating, see also Appendix A.

2.4. Scattering from plate junctions

Having defined the wave amplitudes as described in Secs. 2.2-2.3, the local shift matrix

Sα and the global shift matrix S are now obtained with respect to ψ±α from (21) with

entries defined in (2) using the wave numbers (12-14). To complete the construction of

the transfer operator (5) and thus to obtain global solutions on the network, we need

also to determine the local scattering matrices (3) at plate junctions in the basis (21).

Reflection, transmission and mode-conversion coefficients at junctions with an arbitrary

number of attached plates can be obtained following Langley and Heron [17], see also

[23]. We will not reproduce the results here, a typical set of coefficients is shown in Fig.

3 for an L-junction and an incoming bending wave (incoming from plate 1) using the

line-junction approximation presented in [17]. (This approximation neglects geometric

details of the junction itself). In Fig. 3, the relevant parameters, Young’s modulus E,

the area density ρ, the thickness h and the frequency ω, are chosen such that kL/kB =

0.3 with Poisson ratio ν = 0.3 reproducing one of the examples in [17]. The transmission

coefficients τXX
′

ij with i = 1 and j = 1, 2 and X = B, X ′ = B, S, L, are plotted here
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⌧12
BB

⌧11
BB

⌧11
BL

⌧12
BL ⌧12

BS

⌧11
BS

1

2

Figure 3. Transmission coefficients for an L-junction, that is, two identical semi-

infinite plates linked at a 90 degree angle. The material parameters and frequency are

chosen such that kL/kB = 0.3 and Poisson ration ν = 0.3.

against cosφ, with φ the angle between the incoming wavevector and the x direction

tangential to the interface. The coefficients τXX
′

ij shown in Fig. 3 are obtained by

taking the absolute value square of the corresponding scattering matrix elements of the

scattering matrix (3). Note, that the scattering matrix σ is an 8 × 8 matrix in the

example considered here and all matrix elements need to be computed including those

between propagating and evanescent waves as well as between incoming and outgoing

evanescent contributions. In Fig. 3, only the coefficients for propagating outgoing modes

are shown - these form a unitary sub-matrix of the full scattering matrix, see Sec. 3 for

details. The corresponding transmission coefficients for a fixed incoming mode thus sum

up to one. Note that the outgoing longitudinal mode becomes evanescent for cosφ > 0.3,

the critical angle for the shear wave is cosφ ≈ 0.507.

In what follows, the exact form of the scattering matrix elements are not important

and the main results in Sec. 3 can be derived based on general principles such as energy

and flux conservation. For all examples and the analysis of the generalised Weyl law in

Sec. 4, we use realistic plate parameters and associated scattering coefficients following

[17].

3. Flux conservation in the presence of evanescent modes

3.1. Extended unitarity of the scattering matrix

The key conditions which extend the unitarity of scattering matrices to include

evanescent channels or modes have been derived in [19, 20] in the context of billiards

coupled to waveguides. These conditions have also been set out separately in the

electromagnetic context by Carminati et al. in [24]. We review them here in the context

of the transfer matrix T = σS, Eq. (5), with σ and S, the global interface scattering

and shift matrix as defined in (4) offering a derivation based on flux conservation only.

First, in analogy with (22), we separate the global solution vectors into propagating
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“open” and evanescent “closed” components,

ψ± =

(
ψ±o
ψ±c

)
, (24)

and denote a corresponding block-decomposition of the scattering and shift matrices by

σ =

(
σoo σoc

σco σcc

)
and S =

(
Soo Soc

Sco Scc

)
. (25)

Recall that there is at least one closed bending mode for each plate, and possibly more

if kx is large enough. We also define matrices

Po =

(
I 0

0 0

)
and Pc =

(
0 0

0 I

)
, (26)

representing projection onto the open and closed subspaces, respectively.

Let us now focus on scattering from plate junctions. If this is a lossless process,

then the current arriving at each vertex should be balanced by the current leaving it,

so that the net current vanishes:

0 = j =
∑
α

jα = 〈ψ−o , ψ−o 〉 − 〈ψ+
o , ψ

+
o 〉+ i〈ψ+

c , ψ
−
c 〉 − i〈ψ−c , ψ+

c 〉

= 〈ψ−, Poψ
−〉 − 〈ψ+, Poψ

+〉+ i〈ψ+, Pcψ
−〉 − i〈ψ−, Pcψ

+〉,

extending the notation of (23) in the obvious way. This condition of vanishing net

current can be rearranged to give

〈ψ+, Poψ
+ − iPcψ

−〉 = 〈ψ−, Poψ
− − iPcψ

+〉.

Asserting that this condition must hold independently of ψ− whenever ψ+ = σψ− brings

us to the condition

σ†(Poσ − iPc) = Po − iPcσ. (27)

Written out explicitly for each block, this is equivalent to the conditions

σ†ooσoo = I, (28)

σ†ooσoc = iσ†co, (29)

σ†ocσoo = −iσco, (30)

σ†ocσoc = i
(
σ†cc − σcc

)
, (31)

being satisfied by individual blocks (noting that (29) and (30) are redundant and that

σ†oc ≡ (σoc)
†) etc.). Thus, even though the open-open block σoo is unitary, the full

matrix is not. Bearing in mind that the detailed forms of (30) and (31) depend on the

phase convention used for closed modes, these are the conditions written for higher-

dimensional scattering problems by Rouvinez and Smilansky in [19] and by Schanz and
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Smilansky in [20], and separately in the electromagnetic context by Carminati et al. in

[24].

It can be shown similarly that, under the assumption that propagation across plates

is lossless, the shift matrix satisfies the same condition:

S†(PoS − iPc) = Po − iPcS. (32)

However, the product T = σS is in general not of this form:

T †(PoT − iPc) 6= Po − iPcT. (33)

That is, conditions (27) and (32) do not define a group property. We remark, however,

that by redefining the conventions for decomposing closed modes into incoming and

outgoing components, similar to an approach suggested for higher-dimensional problems

in [25], it is possible to construct scattering and shift matrices that are unitary and

remain so under composition, although space limitations inhibit us from describing this

in detail here and its discussion is deferred to a future publication.

3.2. A functional equation for the nonunitary transfer matrix

Resonant frequencies of the elastic network are obtained as solutions of the secular

equation (7). For lossless problems, it is physically clear that we should find real

solutions of this equation, but since T (ω) is a complex, non-unitary matrix, it is not

immediately obvious how this emerges from the formalism. Here, we demonstrate a

functional equation which shows why zeros are found for real frequencies.

By exploiting the identity(
σ†Po + iPc

)
(1− σS) =

(
σ†S† − 1

)
(PoS − iPc) ,

which follows from (27) and (32) after some manipulation, we arrive at the functional

equation

det (1− T (ω)) = det
[(
σ†Po + iPc

)−1 (
σ†S† − 1

)
(PoS − iPc)

]
=

det (PoS − iPc)

det (σ†Po + iPc)
det
(
σ†S† − 1

)
=

(−i)M det (PoS)

iM det (σ†Po)
(−1)N+M det (1− T (ω))∗

= det(−σooSoo) det (1− T (ω))∗ ,

where N and M are the number of open and closed components, respectively. and we

write PoS− iPc and σ†Po + iPc in block form before taking determinants. Since σoo and

Soo are unitary, it follows that | det(−σooSoo)| = 1 and the function

DT (ω) =
det (1− T (ω))√

det(−σooSoo)
=

(
det (1− T (ω))√

det(−σooSoo)

)∗
(34)
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is real-valued when ω is real and therefore generically has zeros on the real axis

corresponding to the eigen-frequencies of the plate ensemble. Note that the unitary

matrix σooSoo appearing in the denominator here is not the open sub-block Too of T .

Nor is it the unitary matrix obtained after elimination of closed modes, as described

in Sec. 3.3. Nevertheless the phase of its determinant is directly relevant to the

characteristic polynomial of T , as above, and will be important when considering the

Weyl formula in Sec. 4.

3.3. Reduction to a unitary problem

Alternatively, the eigenvalue condition (6) can be reduced to a unitary eigenvalue

problem by elimination of the closed modes. To demonstrate how this is achieved,

let us first consider the simplified problem where S is replaced by the identity matrix,

so that we seek solutions of

ψ = σψ.

By writing separate equations for open and closed components defined in (24), and

eliminating the closed components, this can be restated as

ψo =

(
σoo + σoc

1

1− σcc

σco

)
ψo.

Then the matrix

U = σoo + σoc
1

1− σcc

σco (35)

can be shown to be unitary following from Eq. (27). To see this use (30) to write

U =

(
I + iσoc

1

1− σcc

σ†oc

)
σoo

and recall that σoo is unitary, so it just remains to show that the matrix

U ′ = I + iσoc
1

1− σcc

σ†oc

is unitary. This is easily seen using (31), that is,

U ′U ′
†

= I + iσoc
1

1− σcc

σ†oc − iσoc
1

1− σ†cc

σ†oc + σoc
1

1− σcc

σ†ocσoc
1

1− σ†cc

σ†oc

= I + iσoc
1

1− σcc

σ†oc − iσoc
1

1− σ†cc

σ†oc + iσoc
1

1− σcc

(
σ†cc − σcc

) 1

1− σ†cc

σ†oc

= I.

The full problem represented by equation (6) reduces on elimination of closed modes to

ψ+
o = V ψ+

o

where

V = Too + Toc
1

1− Tcc

Tco. (36)
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It can be shown that V is also unitary using (27) and (32). The derivation is more

involved because the conservation conditions satisfied by T are less simple (see (33)), so

we omit the derivation here, see also [26] for details.

We can therefore also determine resonant frequencies as zeros of

DV (ω) =
det (1− V (ω))√

det(−V )
=

(
det (1− V (ω))√

det(−V )

)∗
. (37)

Although this function looks formally similar to (34) and has the same real zeros, the

relationship between these two expressions is non-trivial. Off resonance, the function

DV (ω) is derived from the characteristic polynomial of V which corresponds in the

original setting to the generalised eigenvalue problem

T

(
ψo

ψc

)
=

(
λψo

ψc

)
,

whereas the function DT (ω) defined in (34) corresponds in the original setting to the

simple eigenvalue problem

T

(
ψo

ψc

)
=

(
λψo

λψc

)
.

Although solutions to these problems coincide when the resonance condition λ = 1 is

satisfied, they are otherwise distinct.

An explicit relation between the functions DT (ω) and DV (ω) can be given exploiting

the identity

I − T =

(
I − V −Toc(I − Tcc)

−1

0 I

)(
I 0

−Tco I − Tcc

)
.

One obtains in particular

det(1− T ) = det(1− V ) det(1− Tcc). (38)

and therefore

DT (ω) = DV (ω) det(1− Tcc)
√

detV ′,

where the relation V = σooV
′Soo defines V ′. In the high-frequency regime where

evanescent components of the total wave solution decay rapidly, the components of

the closed-closed block Tcc are generally small and one has det(1− Tcc) ≈ 1. Then the

functions DT (ω) and DV (ω) would differ only by a phase. However, for moderate

or low frequencies where evanescent terms contribute more significantly, or where

evanescent waves incident on junctions can be scattered resonantly, we will see that

DT (ω) and DV (ω) can behave quite differently despite necessarily having the same

zeros. The differences are particularly large around frequencies supporting edge states,

that is, states which are localised around junctions between plates and which decay

exponentially away from the plates edges. These features and the ramifications of (38)

for the Weyl law and a description of the spectrum in terms of periodic orbits are

discussed further in Sec. 4 below.
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4. Weyl laws and trace formulas for elastic networks

In the previous section, we have presented two distinct secular equations for the lossless

case given in Eqs. (34) and (37). The eigenfrequencies are real in this case and can be

expressed in terms of a density of states,

ρ(ω; kx) =
∑
n

δ(ω − ωn(kx)),

or equivalently in terms of the staircase function

N(ω; kx) = #{ωn(kx) < ω}.

Note that we consider here the spectrum as a function of ω for fixed wavenumber kx. We

change the angle of incidence when changing the frequency and thus also the number

of propagating versus evanescent modes. Fig. 4 illustrates this, showing the number of

propagating modes across the ω−kx plane for a plate with parameters given in the figure

caption. Here, white, yellow, green and blue correspond to the cases of no, one, two or

three propagating modes, respectively. For fixed ω, there are no propagating modes if

kx is large enough. Increasing ω for fixed kx, one of the modes eventually switches on

(bending mode B1 first for kx below about 23m−1 for the plates considered in Fig. 4,

and shear mode S first if kx is larger than this value). As ω increases further, a second

and eventually a third propagating mode switches on, the order in which this happens

depending on kx.

An essential difference between the functionDT (ω; kx) in (34) andDV (ω; kx) defined

in (37) is that DT (ω; kx) can have poles in addition to zeros on the real ω-axis, whereas

DV (ω; kx) has at most zeros due to the unitarity of V . The eigenvalues of the finite

matrix V are then all on the unit circle and det(1− V ) is bounded. Because T is non-

unitary, det(1− T ) is subject to no such restriction: we will find that poles can in fact

arise which are associated with edge states and related to singularities of reflection of

evanescent waves from plate edges or junctions. In what follows, we denote these poles

by νn(kx) and we define a staircase function also for poles of the form

P (ω; kx) = #{νn(kx) < ω}.

We will now split these expressions into a smooth Weyl-like component and periodic-

orbit contributions giving rise to an oscillatory part, see for example [2, 3, 22]. We will

show that the smooth Weyl law obtained for DT (ω; kx) differs from that obtained for

DV (ω; kx) in the way the pole counting staircase function is included.

4.1. Decomposition of the staircase based on DT

We first describe a decomposition of the density of states using as a starting point

the function DT (ω; kx) defined in (34) with a corresponding decomposition based on

DV (ω; kx) discussed in Sec. 4.2. We follow essentially the treatment described in Kottos

and Smilansky [2].
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Figure 4. An illustration is given here of the regions in the ω−kx plane corresponding

respectively to no (white region), one (yellow regions), two (green regions) or three

(blue region) modes being propagating. The detailed scales shown are for the case

of a network of plates (T-graph) with identical physical parameters, here E =

200 × 109N/m
3
, ν = 0.3, ρ = 8000kg/m

3
and h = 0.1m. We emphasise that the

number of propagating modes will provide a qualitatively similar map no matter what

parameters are used.

To obtain the number of zeros and poles in the interval [ω0, ω1] with ω1 > ω0 ≥ 0

real, let C be a contour in the complex ω plane passing leftwards from ω1 + iε to ω0 + iε

and ω0− iε and then rightwards to ω1− iε, before returning to its starting position (with

ε > 0, small). From Cauchy’s theorem, we have

N − P =
1

2πi

∮
C

D′T (ω)

DT (ω)
dω = − 1

π
lim
ε→0

Im logDT (ω + iε),

where N is the number of zeros on the real axis between ω0 and ω1 and P is the number

of poles. Writing (34) in the form

DT (ω; kx) = e−iΘT (ω;kx)/2 det(1− T (ω; kx)),

where √
det(−σooSoo) = eiΘT (ω;kx)/2

defines ΘT (ω; kx), we find that

N(ω1; kx)− P (ω1; kx)−N(ω0; kx) + P (ω0; kx)

=

[
1

2π
ΘT (ω; kx)−

1

π
lim
ε→0

Im
(

log
(

det(I − T )
))]ω1

ω0

. (39)

A Weyl formula is obtained by identifying the first term in brackets as providing the

average growth rate of the staircase function in the form

N̄T (ω; kx)− N̄T (ω0; kx) =
1

2π
(ΘT (ω; kx)−ΘT (ω0; kx)) . (40)
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Figure 5. The Weyl formula and the corresponding staircase function defined

respectively by DT (ω) (a) and DV (ω) (b) are shown. The staircase function in (a)

decreases by one at poles. Note that each pole of DT (ω) has a zero nearby associated

with an edge state, so the region between 1.5 and 1.8×104Hz shows no net gain in (a),

whereas in (b) such edge states contribute to the staircase. The example considered

here is for a T-junction made up of three plates of the same length L = 4m, thickness

h = 0.1m, Poisson ratio ν = 0.3 and density ρ = 8000kg/m3, while Young’s modulus is

E1 = 200×109N/m
3

on plate 1, but 0.99E1 and 0.95E1 on plates 2 and 3 respectively.

The wave number is fixed at kx = 6m−1. The smooth curve corresponds to the leading

order Weyl term N̄T (a) and N̄V (b).

The remaining terms provide the fluctuations around this mean and can be written in

terms of a trace formula [2]. Note, however, that N̄T (ω; kx) corresponds to a staircase

function that not only increases by one unit at each resonant frequency ωn, but also

decreases by one unit at each pole νn. This feature is seen in Fig. 5(a), where we show

the staircase function for a T-junction configuration of three plates with parameter

values similar to those of [27], but varied slightly on each plate so that we can resolve

edge states supported at the tips of each plate and discussed at the end of this section.

See the figure caption for the parameter values used. For quantum graphs we would

typically substitute ω0 = 0 in (40) and start counting states with N(ω0; kx) = 0. In the

case of elastic graphs, however, care must be taken to properly account for changes in

the numbers of propagating and evanescent modes as ω and kx are varied, and the more

general form used in (40) allows us to patch staircase functions across parameter values

where these numbers change. For example, our numerical illustrations of the staircase

function in Fig. 5 are given for the yellow region towards the bottom left of Fig. 4, in

which the bending mode B1 is propagating and all others are evanescent.

To leading order, the Weyl law is typically written in terms of volumes in 3D, areas

in 2D or lengths in 1D – or more generally in terms of phase-space volumes – thus

capturing the essential geometry of the problem; boundary conditions enter through

next-to-leading contributions. In this spirit, we note that

N̄T (ω; kx)− N̄T (ω0; kx) =
1

2π
[arg(det(Soo)) + arg(det(−σoo))]ωω0

.



Elastodynamics on graphs - wave propagation on networks of plates 17

The contribution from arg(det(Soo)) gives the leading order term for the growth of

N(ω; kx) and corresponds to the total optical length of the graph taking account of all

the open modes in the problem. In fact, from the description in Sec. 2, we can write

explicitly

arg(det(Ŝoo)) =
1

π

∑
plates
α

∑
modes

o

kα,oy Lα,

where the sum is taken over all plates and the open modes, they support. The

remaining terms derived from arg(− det(σoo)) provide boundary corrections induced

by the conditions imposed at junctions. These are nontrivial when the full physical

boundary conditions are used and we cannot offer simple analytical expressions. As

discussed in Sec. 2.4, they can be approximated in terms of simple low-dimensional

systems of equations using the treatment suggested in [17].

Denoting the fluctuating part of the staircase function related to DT as

ÑT (ω; kx) = NT (ω; kx)− N̄T (ω; kx)

we can identify this part with periodic-orbit contributions after writing

ÑT (ω; kx)− ÑT (ω0; kx) =

[
− 1

π
lim
ε→0

Im
(

log
(

det(I − T (ω + iε; kx))
))]ω

ω0

=

[
1

π
lim
ε→0

Im

(
∞∑
t=1

1

t
TrT t(ω + iε; kx)

)]ω
ω0

, (41)

noting that TrT t can be written as a sum over all contributions from periodic paths on

the graph with period t. The expansion (41) is well-defined only if the eigenvalues of

the matrix T lie entirely on or inside the unit circle: we show in the following sections

that one can find examples of plate networks in which an eigenvalue of T associated

predominantly with the closed-closed block Tcc lies outside the unit circle and then the

second form above cannot be used. When this expansion is admissable then ÑT (ω) can

be expressed as a sum over periodic orbits including orbits with evanescent segments or

even being fully evanescent on all plates.

To illustrate the appearance of edge states and associated singularities in DT , we

return to the staircase function shown in Fig. 5(a) obtained for a T-junction graph.

The range of frequencies shown is chosen to coincide with an interval in which there

is one propagating mode (bending in this case) on each plate while all other modes

are evanescent — corresponding to a horizontal slice through the yellow region at the

bottom left of Fig. 4. We have intentionally chosen a plate thickness here that is not

particularly small relative to the plate lengths, despite the underlying physical model

being based on thin-plate theory. This has been done so that features relating to poles

of DT (ω) are easier to resolve. We emphasise that qualitatively similar features are seen

also in Fig. 7, which uses smaller thicknesses.

We find that DT has three poles towards the end of the illustrated frequency

interval, in which only the bending mode B1 is propagating. These are associated with
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Figure 6. A schematic illustration is provided here of the mechanism producing edge

states near poles of DT . The blue and black curves respectively represent evanescent

waves approaching and leaving the plate edge on the right. Edge states occur when an

evanescent wave approaches the plate edge with a very small amplitude (proportional

to the blue curve). Singular scattering associated with a pole of σ can then boost the

reflected amplitudes sufficiently that the wave decaying to the left (proportional to the

black curve) is significant, leading to a global stationary state that is strongly localised

on the corresponding edge.

poles in the closed block σcc of the junction scattering matrix, representing singular

reflection of in-plane modes from the tips of each of the plates in turn. These in-plane

modes (S and L) are evanescent and decouple from the bending mode while scattering

from the plate tips. Because they are evanescent, we find that it is possible for reflection

from the tips to be singular for these modes (see Appendix C). This occurs in our

illustration for a slightly different frequency on each of the three plate tips (because they

each have slightly different values of Young’s modulus E), thus giving rise to three poles

nearby in frequency. We find systematically that for each such pole there is a nearby

resonant frequency whose corresponding eigenvector is heavily localised at the associated

plate tip, as an “edge state”. Such edge states may be simply understood in the limit

of large plate lengths and are illustrated schematically in Fig. 6. Then any in-plane

wave component approaching the plate tip evanescently must have vanishingly small

amplitude when it reaches the tip itself. However, near the pole of the tip-scattering

matrix, the amplitude of the corresponding reflected wave can be boosted arbitrarily

strongly — note that this reflected wave is also in-plane and decays away from then

plate tip, represented schematically by the black curve in Fig. 6. The boost provided

by such singular reflection can be enough to overcome the smallness of the incoming

wave and lead to a nontrivial overall solution that is strongly localised near a plate tip.

Because the corresponding resonant frequency is extremely close to the pole frequency,

the staircase function in (39) rises and falls again in a short frequency interval, leaving

no net change to the staircase, and such edge states are essentially “missed” by the Weyl

formula defined by DT (ω; kx). We will see in the next section that these edge states are
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positively counted by the Weyl formula defined through DV (ω; kx).

We may quantify the frequency gap ∆ω between a pole and its corresponding edge

resonance by noting that an evanescent wave leaving the central junction decreases in

amplitude by a factor of O(e−κL) when it arrives at a plate tip, where L is the length of

the plate and κ the imaginary part of the wave number for the slowest-decaying in-plane

mode. This wave is boosted by a factor of order σ = O(ω/∆ω) by reflection near the

pole frequency, before suffering a further O(e−κL) decay on its way back to the central

junction. Assuming scattering amplitudes from the central junction are O(1), we then

require O(e−2κLω/∆ω) = O(1) or ∆ω/ω = O(e−2κL) for a stationary state to arise. The

parameters in Fig. 5 have been chosen so that this gap is not particularly small, but the

gap may in practice be undetectably small if the plate lengths are large enough.

4.2. Decomposition of the staircase based on DV

An alternative decomposition of the density of states into a Weyl term and periodic

orbit contributions can be obtained from DV (ω; kx) defined in (37). In this case, Eq.

(39) is replaced by

N(ω; kx)−N(ω0; kx) =[
1

2π
ΘV (ω; kx)−

1

π
lim
ε→0

Im
(

log
(

det(I − V )
))]ω1

ω0

, (42)

where √
det(−V ) = eiΘV (ω;kx)/2

defines the new phase ΘV (ω). Note that the corresponding Weyl law

N̄V (ω; kx)− N̄V (ω0; kx) =
1

2π
(ΘV (ω; kx)−ΘV (ω0; kx)) (43)

is different to (40), where the difference manifests itself in the way periodic orbits made

up entirely of evanescent segments are treated. This can be quantified by considering

Eq. (38), from which the relation

N̄V (ω; kx)− N̄T (ω; kx) = − 1

π
lim
ε→0

Im log det(1− Tcc)

=
1

π
lim
ε→0

Im
∞∑
t=1

1

t
TrT tcc (44)

follows. The expansion in the last line is again only possible if all eigenvalues of Tcc

are inside or on the unit circle. In the DT representation, the fluctuating part of the

staircase function contains all periodic orbits, including those periodic orbits made up

entirely of evanescent contributions (contained in TrT tcc). In the V representation, these

all-evanescent periodic orbits are counted as part of the smooth contribution N̄V . Given

that these contributions are indeed non-oscillatory, an ambiguity of where to ’count’ the

TrT tcc contributions is perhaps not surprising. It then becomes a matter of convention
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Figure 7. Comparison between the staircase function N (blue) and the Weyl terms

N̄T (yellow) and N̄V (red) for a T-junction using the same parameters as in Fig. 5

apart from h = 0.01m. As in Fig. 5, we find edge states and associated poles, here at

frequencies around 1.6× 104 Hz leading to deviations between N̄T and N̄V . One also

observes a sudden drop of N̄V compared to N̄T around 0.25×104 Hz: this is associated

with a transition of an eigenvalue of T from outside to inside the unit circle, see the

main text for details.

whether one prefers the reduction of the problem to a unitary matrix V , making the

conservative nature of the dynamics immediately manifest, or rather prefers the full,

nonunitary matrix T , resulting in a more equitable treatment of open and closed, i.e.

evanescent, periodic orbits. The latter also behaves less pathologically when eigenvalues

of the block Tcc fall outside the unit circle, as discussed below. The difference between

the two representations vanishes at high-enough frequencies (for fixed kx) when the

evanescent contributions are exponentially small in the lengths of the plates.

Significant differences between these two Weyl counting functions arise at low-to-

medium frequencies in two ways. The first possibility has already been discussed in

Sec. 4.1, allowing for singularities in the T representation which are absent in the V

representation. Eigenstates of the elastic graph system associated with edge states

are linked to poles of the local scattering matrices σ and give no net contribution to

the staircase function NT (ω; kx) and are thus not contained in N̄T (ω; kx); they are,

however, counted in NV (ω; kx) and appear in N̄V (ω; kx). This difference is apparent
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when comparing Fig. 5(a) and (b). It can also be observed in Fig. 7 for frequencies

just above 1.6 × 104 Hz where N̄T does not pick up a series of edge-states, while N̄V

does. The computations for Fig. 7 are done for the same T-junction structure and plate

parameters as in Fig. 5 except that the thickness of the plates is smaller, leading to

significantly more resonant frequencies being found in the interval concerned.

In Fig. 7, a second scenario arises where the two Weyl formulas differ. The sudden

drop seen in N̄V at a frequency ωc ≈ 0.25 × 104 Hz is not present in N̄T . A closer

inspection shows that an eigenvalue of Tcc lies outside the unit circle for frequencies

below ωc in this case, moving inside the unit circle while passing close to unity as ω

passes through ωc from below. Near ωc, there is a resonant mode which is predominantly

evanescent and, as with the edge states discussed in Sec. 4.1, supported near plate tips.

There is, however, no associated pole in this case and N̄T (ω; kx) counts this resonance

positively. The eigenmode arises here because low in the spectrum, exponential decay

of evanescent waves along plates may be slow enough that the spectrum of Tcc reaches

outside the unit circle without singularities in scattering arising. A simple analogue

calculation, using 2 × 2 matrices, is outlined in Appendix D which shows qualitatively

similar behaviour.

The Weyl counting function N̄T (ω; kx) passes smoothly through this event: the

decomposition (39) remains valid as long as we do not invoke the expansion in

(41) and provided we track the branch of the logarithm continuously. There is no

associated pole, so the staircase function NT (ω; kx) counts the state even though it is

supported predominantly on plate edges. We emphasise that (42) similarly remains

valid throughout: there is simply a transfer of one unit from the Weyl term to the

periodic-orbit contributions.

The main conclusion of this section is that comparison between the Weyl counting

functions N̄T (ω; kx) and N̄V (ω; kx) allows us to distinguish between predominantly

evanescent edge states and predominantly propagating bulk states. This makes it

possible to count these two types of states separately without necessitating a detailed

examination of the spectrum or the eigenfunctions.

5. Conclusions

We have established an extension of quantum graphs to the elastic case, motivated

by the relevance of these structures to problems in noise and vibration and by the

novelty of some of the theoretical features. Elastic graphs differ from quantum graphs

due to the inclusion of the evanescent modes, which make scattering matrices and the

transfer operator non-unitary in the most natural representation. We have demonstrated

how underlying symmetries associated with flux conservation lead to an extension of

unitarity which allows us to establish a functional equation satisfied by the secular

equation for eigenstates. In particular, this functional equation can be used to establish

a decomposition of the density of states (or corresponding staircase function) into a

smooth Weyl-like part and periodic-orbit contributions accounting for periodic orbits
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that are fully or partially or not at all evanescent. Two alternative approaches have

been explored which differ in the way in which they count edge states. In particular

there is a difference between the corresponding Weyl counting functions which allows

us to count edge states separately from bulk states.
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Appendix A. Power flux

In this appendix we give details of the relations set out in Sec. 2.3 describing the power

flux incident on a junction. These relations form the basis in Sec. 3 to establish extended

unitarity of the junction-scattering and shift matrices in the lossless case.

We begin with the frequency-domain expression of average power per unit length

incident on a junction y = 0; for further details, see [17] and [23]. The total power can

be decomposed into a contribution

jin-plane = −ω
2

Im [Nv∗ + Tu∗] (A.1)

from in-plane displacements, where N and T are normal and tangential shear forces

given by

N =
Eh

(1− ν2)

(
∂v

∂y
+ ν

∂u

∂x

)
, T =

Eh

2(1 + ν)

(
∂v

∂x
+
∂u

∂y

)
and a contribution

jbending = −ω
2

Im

[
M
∂w∗

∂y
+ L

∂w∗

∂x
+Qw∗

]
(A.2)

from the out-of-plane displacements, where M , L and Q are the out-of-plane moments

and forces given by

M =
Eh3

12(1− ν2)

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
, L =

Eh3

12(1− ν2)
(1− ν)

∂2w

∂y∂x
,

Q = − Eh3

12(1− ν2)

(
∂3w

∂y3
+

∂3w

∂y∂x2

)
.

These expressions are obtained from corresponding time-domain expressions of the

power flux in [17, 23] after adopting the convention that physical time-domain

displacements are given by the real part of u, v and w when the frequency domain

displacements are as written in (16-18), for example.
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We now substitute the plane wave displacements defined by equations (16-18) into

the expressions above. The detailed results depend on which modes are evanescent and

which are propagating. As in Sec. 2.3, we present details for the particular case where,

in addition to the always-evanescent bending mode B2, the longitudinal mode L is also

evanescent, with corresponding imaginary wavevector components given by (15). We

assume the remaining modes S and B1 to be propagating. We find in this case, after

some manipulation and using the dispersion relations (11), that the in-plane power flux

becomes

jin-plane =
1

2
ρω3kS,y

[
|a−S |

2 − |a+
S |

2
]

+
1

2
ρω3(iκL,y)

[
a−La

∗+
L − a

+
La
∗−
L

]
,

while the bending power flux can be written as

jbending =
ρω3

k2
B

kB1,y

[
|a−B1
|2 − |a+

B1
|2
]

+
ρω3

k2
B

(−iκB2,y)
[
a−B2

a∗+B2
− a+

B2
a∗−B2

]
.

Represented in terms of the rescaled amplitudes b±X , this reduces to Eq. (20). In other

cases of propagating and evanescent modes, similar calculations lead to the general

expression for the current given in (23).

Appendix B. Time-reversal and parity

In addition to the conditions (28-31) imposed by flux-conservation on scattering and

shift matrices, we get analogous but distinct conditions respectively imposed by time-

reversal and parity symmetries, which are described in this section.

Appendix B.1. Time-reversal symmetry

Time-reversal symmetry emerges from the observation that, if equations (16-18) provide

a solution to the junction-scattering or plate propagation problems, then so too do their

complex conjugates T (u, v, w) = (u∗, v∗, w∗), written explicitly as

u∗ =
[

kxa
−∗
L eik∗L,yy − k∗S,ya−∗S eik∗S,yy + kxa

+∗
L e−ik∗L,yy + k∗S,ya

+∗
S e−ik∗S,yy

]
e−ikxx, (B.1)

v∗ =
[
− k∗L,ya−∗L eik∗L,yy − kxa−∗S eik∗S,yy + k∗L,ya

+∗
L e−ik∗L,yy − kxa+∗

S e−ik∗S,yy
]
e−ikxx (B.2)

and

w∗ =
[
a−∗B1

eik∗B1,y
y + a−∗B2

eκB2,y
y + a+∗

B1
e−ik∗B1,y

y + a+∗
B2

e−κB2,y
y
]
e−ikxx. (B.3)

Note that when the solution is conjugated, incoming components of propagating modes

are mapped to outgoing components and vice versa; incoming components of evanescent

waves, however, are mapped back to incoming components (and outgoing to outgoing).

In addition, we need to take account of the different behaviour of in-plane and

out-of-plane amplitudes when the wavevector is reversed. The displacements defined by
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the in-plane amplitudes (a±L , a
±
S ) rotate with the direction of propagation and we note

in particular that, in contrast to the bending components, these change sign under a

reversal (kx, kX,y) → (−kx,−kX,y) of the wavevector. This distinction motivates us to

define the diagonal matrix

J = diag(· · · ,±1, · · · ), (B.4)

where the negative sign is used for in-plane components and the positive sign for out-of-

plane, bending components. We also decompose this matrix into blocks corresponding

to open and closed modes

J =

(
Joo 0

0 Jcc

)
in analogy with (25).

Let ψ± and ϕ± respectively denote decompositions into incoming and outgoing

waves of the original, global solution and of its conjugate, using the convention defined

in (19) and (21). Taking account of all of the effects just mentioned, along with the

complex phase of closed modes in that convention, we find that

ϕ±o = Jooψ
∓∗
o and ϕ±c = iJccψ

±∗
c .

Using the projection operators defined in (26), these can be combined in

ϕ± = J
(
Poψ

∓∗ + iPcψ
±∗) .

Let us now write the symmetry imposed on the junction-scattering matrix σ. Noting

explicitly that σ depends on kx and that the sense of kx is reversed by conjugation, we

can write

ψ+∗ = σ∗(kx)ψ
−∗

by simply conjugating the original scattering solution ψ+ = σ(kx)ψ
− or

ϕ+ = σ(−kx)ϕ−

by treating the conjugate solution afresh as a scattering solution in its own right. In

order for these to be consistent for arbitrary ψ− the condition

σ(−kx)J (Poσ
∗(kx) + iPc) = J (Po + iPcσ

∗(kx))

must hold. Denote

σ[ = Jσ∗J. (B.5)

Then this condition can be rearranged in the form

σ[(−kx) (Poσ(kx)− iPc) = (Po − iPcσ(kx)) (B.6)

or written explicitly in block form as

σ[oo(−kx)σoo(kx) = I, (B.7)

σ[oo(−kx)σoc(kx) = iσ[oc(−kx), (B.8)

σ[co(−kx)σoo(kx) = −iσco(kx), (B.9)

σ[co(−kx)σoc(kx) = i
(
σ[cc(−kx)− σcc(kx)

)
. (B.10)
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Finally, we note that analogous conditions are satisfied by the shift matrix S.

Condition (B.6) and its block form (B.7-B.10) are analogous in structure to the

flux-conservation conditions (27) and (28-31). Together, they provide the relation

σ†(kx) = σ[(−kx),

or, equivalently,

σT (kx) = Jσ(−kx)J. (B.11)

Note that this last equation generalises to elastic waves the standard condition for

simple, quantum wave propagation that the scattering matrix is symmetric when there

is time-reversal symmetry - see also the discussion at the end of Appendix B.2.

Appendix B.2. Parity

Alternatively, we obtain another scattering solution by mapping the solution in (16-18)

under the parity operation

P (u(x, y), v(x, y), w(x, y)) = (−u(−x, y), v(−x, y), w(−x, y)).

Taking account of the transformation P : (kx, kX,y) → (−kx, kX,y), the effect on the

amplitudes a±X is to change the sign of the shear mode but to leave the longitudinal and

bending modes unchanged. This motivates us to define the matrix

K = diag(· · · ,±1, · · · ), (B.12)

in analogy with (B.4), but with the difference that the minus sign applies to the shear

amplitudes only, whereas the matrix J in (B.4) reverses the sign of both the shear and

longitudinal amplitudes. We also define

L = JK,

which reverses the sign of the amplitudes of the longitudinal modes but leaves those of

shear and bending modes unchanged.

Then, by treating P (u, v, w) as a scattering solution for either the junction-

scattering or shift matrices with kx → −kx we get the identities

Kσ(−kx)K = σ(kx) and KS(−kx)K = S(kx)

(although this symmetry is trivial for the shift matrix as it does not couple different

modes).

Note that this parity symmetry, combined with the time-reversal symmetry

expressed in Appendix B.1, allows us to write the following alternative to (B.11)

σT (kx) = Lσ(kx)L, (B.13)

in which there is no reversal of kx. Thus, in contrast to the treatment of scalar quantum

mechanics in [19, 20], the elastodynamic scattering matrix is not symmetric when

presented in the basis (21). Although σ can be made symmetric by an alternative

choice of basis, the conventions which achieve this lead to more complicated expressions

of the symmetries presented above.
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Appendix C. Examples: reflection from an edge

We provide here some simple special cases of elastic scattering matrices which exemplify

the flux conservation conditions (28-31) and the symmetries discussed in Appendix B.

We consider specifically the case of reflection from the edge of a single plate, which

can be written explicitly without needing the more demanding formalism of [17]. In

particular, in-plane and bending modes do not couple in these examples and can be

treated independently.

Consider first the case of bending waves normally incident on an edge. Then there

is precisely one open and one closed mode, corresponding respectively to the labels B1

and B2. It is then straightforward to derive edge scattering matrices of the forms

σbending
clamped =

(
σoo σoc

σco σcc

)
=

(
i −i

√
2

−i
√

2 i

)
for a clamped edge (satisfying w = 0 = ∂w/∂n) and

σbending
free =

(
σoo σoc

σco σcc

)
=

(
i i

√
2

i
√

2 i

)

for a free edge under conditions of no traction (leading to ∂2w/∂n2 = 0 = ∂3w/∂n3 for

normal incidence) and using the conventions of (19). Note that both of these examples

are symmetric, confirming as a special case the time-reversal symmetry (B.11) for

bending modes (for which we can set J = I) at normal incidence (for which kx = −kx).
Parity symmetry is trivial for these examples.

Edge reflection of normally-incident, in-plane modes is trivial so we treat non-

normal incidence to exemplify this scenario. We consider first the case where kx is in

the range where the shear waves are propagating but longitudinal waves are evanescent:

see (15). Then one can show for tractionless reflection that

σin-plane
free =

(
σoo σoc

σco σcc

)
=

1

X2 − iY 2

(
X2 + iY 2 2e−iπ/4XY

−2e−iπ/4XY X2 + iY 2

)
(C.1)

in the conventions of (19), where X and Y are defined

X = 2
√
kS,yκL,y kx and Y = k2

S − 2k2
x

and kL,y = iκL,y defines κL,y. It is straightforward to check that any matrix of the

form given in (C.1) satisfies conditions (28-31) as long as X and Y are real. Note

also that time-reversal symmetry is less trivial for these in-plane modes: the matrix is

not symmetric in the conventions used, as the off-diagonal elements have opposite sign.

Invariance under transpose is therefore only achieved by, for example, also reversing the

sign of kx, which reverses the sign of X (see (B.11) and note that we can set J = −I for

in-plane modes), or by conjugating with matrix L (see (B.13)). Note that the matrix

therefore also satisfies the parity symmetry expressed in Appendix B.2.
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Finally, we note that the explicit calculations in Sec. 4 were performed in a regime

where both of the in-plane modes are evanescent. Reflection from the free ends of the

three plates is still described by the matrix at the right of (C.1), except that

X = 2eiπ/4√κS,yκL,ykx = eiπ/4X ′

is now complex, where kS,y = iκS,y defines κS,y, so that

σin-plane
free =

1

(X ′)2 − Y 2

(
(X ′)2 + Y 2 −2iX ′Y

2iX ′Y (X ′)2 + Y 2

)
.

The open blocks are empty here and σcc is the entire 2 × 2 matrix. Conditions (28-

31) reduce to the condition that σin-plane
free be Hermitian, which is manifestly the case.

Furthermore, (C.1) has poles when (X ′)2 = Y 2, the condition for Rayleigh waves to be

supported on the edge [28], which underlies the behaviour illustrated in Figs. 5 and 7.

Appendix D. A simple model of flux conservation with evanescent modes

Here we parametrise the simplest matrices exhibiting flux conservation with evanescent

modes and show how they can be used to reproduce qualitatively the drop in N̄V (ω; kx)

seen in Fig. 7.

The most general 2× 2 matrix satisfying (28-31) can be put in the form

σ2×2 =

(
σoo σoc

σco σcc

)
=

(
−ie2iφ zeiφ

z∗eiφ x+ i|z|2/2

)
, (D.1)

where φ ∈ [0, π), x ∈ R and z ∈ C. For example, σbending
clamped and σbending

free given in Appendix

C are special cases of this form with (x, φ, z) = (0, π/2,−
√

2) and (x, φ, z) = (0, π/2,
√

2)

respectively. So of course is σbending
clamped in (C.1), although the parameters (x, φ, z) are then

less simple and not written explicitly here. The corresponding unitary matrix defined

by (35) is 1× 1 with the single entry

U1×1 = −ie2iφ 1− x+ i|z|2/2
1− x− i|z|2/2

= −ie2iφ · eiα,

which is manifestly on the unit circle, and where the form on the right defines angle α.

This 2× 2 case provides us with a simple model to explain the essential mechanism

behind the sharp drop seen in N̄V (ω; kx) in Fig. 7, under an assumption of weak coupling

between open and closed blocks that corresponds in the model to z being small. Here

we let σ2×2 be a proxy for the entire transfer matrix, not just the junction scattering

matrix as in the previous examples, and U1×1 then offers a proxy for the unitary matrix

V . The phase φ is analogous to the total optical length of a graph, which should

rotate uniformly counterclockwise with increasing frequency. The real parameter x is

analogous to the Hermitian part of Tcc, which approximates Tcc itself when coupling
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to open modes is small. In the calculation illustrated in Fig. 7, an eigenvalue of Tcc

passes from outside to inside the unit circle, which would correspond in this model to x

decreasing through unity. As x does this, U1×1 undergoes a rapid (for small z) clockwise,

nearly-complete circuit of the unit circle, generically passing though U1×1 = 1 along the

way, and correspondingly a counting function

N̄2×2 =
1

2π

(
2φ+ α +

π

2

)
,

defined according to (43), drops by one unit. One likewise finds in the full calculation

that eigenvalues of V move rapidly clockwise (through level crossings) around the unit

circle, contrasting with the generically anti-clockwise rotation of other eigenvalues.
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