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Introduction.1

This landmark paper by Burgess & Webster (1980a) signalled a new era in the spatial mapping2

of the soil. The emergence of pedometrics as a distinct subdiscipline of soil science was a gradual3

process, and had its roots in earlier studies than this one, but if one publication is to mark the4

start of pedometrics, then this is it.5

The publication of this paper, and the successors in the series that it initiated, showed that6

statistics could do more than just assist the soil surveyor in quantitative prediction from maps7

based on a legend of discrete units. It showed soil scientists that there was a very different way8

of mapping the soil, namely through geostatistical interpolation.9

The impact of the paper on practice has been substantial. Soil scientists have used geosta-10

tistical prediction to map the distribution of nutrients or pests at within-field scale for precision11

agriculture, to delineate contaminated land, to map changes in soil properties over time at the12

regional scale to map the risk of problems such as salinity and even for forensic inference.13

The value of geostatistics was soon recognized in soil science. This is, in part, because when14

one considers the state of the art at the time of its publication it is clear that it fulfilled a need for15

new methods. At the same time, its impact was not simply due to the method it introduced to16

soil science, ordinary kriging, but to the interest it stimulated among soil scientists and applied17

statisticians who went on to develop and improve the methodology in several critical ways.18
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The paper and its background.19

In the 1960s and 1970s soil scientists in various centres started to consider how the process of20

soil mapping and prediction of properties from soil maps could be made more quantitative. In21

particular they asked how the quality of a soil map for prediction might be measured. The22

Soil Science Laboratory at Oxford was one such centre, and it was there that Richard Webster23

undertook work on the prediction of soil properties from interpretation of air photographs.24

The principle was that physiographic units delineated in such an interpretation should be more25

internally uniform with respect to soil properties than the landscape as a whole. That being26

so, the mean value of the soil property for a unit, estimated from an appropriate sample, could27

be treated as a prediction of that property at any unsampled site in the unit. The difference28

between units might be examined by an analysis of variance (anova), the outputs of which29

would indicate both the extent to which the interpretation had been successful in accounting for30

soil variation, and allow the errors of resulting predictions to be quantified (Webster & Beckett,31

1968).32

We may consider a conventional soil map, with delineated map units corresponding to a33

legend based on some soil classification, as a predictive model of the soil. As such it has two34

drawbacks. First, it implies discontinuous spatial variation of the soil, and the predicted value35

of any soil property is a constant within any map unit. Furthermore, there is no basis to treat36

the variation within the map unit as anything other than uncorrelated white noise, that is to37

say the variance within any small sub-region of the map unit is the same as the variance within38

the map unit as a whole.39

Both these features of the conventional soil map are clearly unrealistic as representations of40

the spatial variation of soil. The soil varies over multiple spatial scales, and so, even where a41

set of boundaries within a landscape constitutes a meaningful, if somewhat artificial, model of42

soil variation, we expect the variation within the boundaries to have a complex and spatially-43

dependent structure.44

This was the state of affairs when soil scientists came upon geostatistical methodology. This45

did not happen in a sudden revelation. Analysis of the variation of the soil as a spatially-46

dependent process had been undertaken by Youden & Mehlich (1937) using spatially nested47

sampling. Some forty years later than this Philip Beckett and Stein Bie analysed data from48

soil samples they collected on a journey from Alice Springs to Darwin in Australia’s Northern49

Territory. They computed the mean variances of their observations within intervals of increasing50

length and plotted the result for each interval against its length. In a closing remark they noted51

that these graphs are related to Matheron’s variogram (Beckett & Bie, 1976). In fact these52
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graphs are also related to the correlograms computed by Webster & Cuanalo (1975) from soil53

properties measured at regular intervals on a transect in the north of Oxfordshire. This work54

on spatial variation was presented in terms of the description of spatially-dependent variation55

in the soil and was not connected to prediction, but together with the perceived deficiencies56

of prediction by map-unit means, it served as a praeparatio evangelica for the dissemination of57

geostatistical ideas in soil science.58

As expressed in the title, this landmark paper focused on spatial prediction of soil properties59

as an isarithmic map. On such a map soil variation is visualized by isarithms or contours,60

where one isarithm joins locations where the property takes a common value. Isarithms can be61

drawn once the variable of interest has been interpolated at the nodes of a fine grid. Burgess62

& Webster (1980a) noted that various methods exist to do this interpolation (e.g. triangulation63

with linear interpolation) but that these are essentially arbitrary methods. They are not based64

on a statistical model of spatial variation of soil. As a result there is no guarantee that they65

are unbiased, they provide no measure of the uncertainty in the prediction and still less do66

they minimize that uncertainty. Kriging is advantageous over these other methods in all three67

respects.68

The paper gave the reader a clear introduction to ordinary kriging, with three case studies.69

The first was on the sodium content of a field at the Welsh Plant Breeding Station, Plas Gogerd-70

dan. A linear isotropic variogram model was fitted. The authors note the effect of the relatively71

large nugget variance in the somewhat ‘spotty’ appearance of the resulting map which arises72

because of discontinuities of the kriged surface at sample locations. In a second case study, they73

kriged the depth of cover loam at Hole Farm in Norfolk, this time with the bounded spherical74

variogram model.75

Finally, the authors returned to Plas Gogerddan and kriged the stone content of the soil,76

using a suitable variogram model to represent this variable’s marked anisotropy.77

This first paper used punctual (point) kriging. The second paper in the series (Burgess &78

Webster, 1980b) introduced block kriging, in which rather than predicting at a point location79

one predicts the mean value of the soil property across a block.80

The third paper (Webster & Burgess, 1980) introduced universal kriging, to be used when81

the assumption of stationarity of the mean of the target variable appeared implausible. Alex82

McBratney joined the authors in the next paper, on the use of the variogram to select a spacing83

for a sample grid (Burgess et al., 1981), and the fifth extended the analysis to the multivariate84

case for co-kriging (McBratney & Webster, 1983). A few years later Webster & Oliver (1989)85

completed the series with a paper on non-linear geostatistics, specifically disjunctive kriging.86
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In this series of papers, initiated by the Landmark paper we are considering, Burgess, Webster87

and colleagues set out the stall of what one might call ‘mining geostatistics’, the geostatistical88

methodology that Matheron derived from the pioneering work of Danie Krige. We take this89

name from the title of the influential textbook by Journel & Huijbregts (1978) to which Burgess90

& Webster (1980a) referred their readers for more detail on geostatistical methods. Putting these91

tools into the hands of soil scientists had a substantial impact on how they thought about the92

spatial prediction of the soil, particularly as computer programs to undertake the calculations93

became more widely available.94

What happened next.95

As with all papers that are true landmarks, the article by Burgess & Webster (1980a) marked96

the beginning of methodological development in soil science, rather than the end of the search97

for a suite of methods for spatial prediction. This work was published in various journals of98

soil science, earth sciences and environmental science, but here we focus on those published in99

this journal, and included in the virtual special issue to accompany this Landmark paper. Some100

of these developments were essentially refinements of the mining geostatistics framework. For101

example, Webster & McBratney (1989) examined the problem of selecting a variogram model,102

Laslett & McBratney (1990) combined modelling of measurement error and soil variation and103

Goovaerts (1992) used factorial kriging to analyse the variation of soil into separate additive104

components associated with different spatial scales of variation. Bierkens & Burrough (1993)105

were the first to use indicator kriging for mapping categorical soil data. Geostatistical method-106

ology was also applied to the problem of soil monitoring (Papritz & Webster, 1995; Rawlins et107

al., 2017). Lark (2000) examined alternative estimators for the empirical variogram, and Van108

Meirvenne et al., (2008) investigated historical soil contamination using geostatistics.109

However, soil scientists were to find themselves pushing mining geostatistics to its limit. One110

reason for this was the desire to include ancilliary soil information in the prediction process. In111

some respects geostatistics, at least ordinary kriging, pushed the pedologist out of the business of112

predicting soil conditions in space. This was undesirable because our knowledge of soil-forming113

processes, and how they vary across the landscape, is substantial, and should be incorporated114

into the statistical prediction of soil properties rather than supplanted by it. Leenhardt et al.115

(1994) attempted this in a study on prediction of soil water. However, this is not easy to do in the116

mining geostatistics framework. One approach, exemplified in this journal by Bourennane et al.117

(1996), was to use the universal kriging method expounded by Webster & Burgess (1980). This118

approach was first developed to incorporate a model of drift, local trend, into the geostatistical119
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model, by which the mean value of the target property is not a constant but is expressed as120

a spatial trend. In the method of kriging with external drift the trend model for the mean is121

replaced by a model which is a function of some environmental variable, in this example the122

slope gradient. This incorporates knowledge of factors which influence soil variation (and can123

also include categorical predictors such as soil classes or map units). However, in the mining124

geostatistics framework the challenge is to estimate correctly the variogram which expresses the125

variation of the soil after the trend or external drift is accounted for. This process of structural126

analysis is neither straightforward nor entirely repeatable. In their original exposition Webster127

& Burgess (1980) observed that it requires ‘trial and error combined with good judgement’. This128

is clearly far from satisfactory.129

The solution was to come from statisticians who showed that kriging and the geostatistical130

model are one case of, respectively, the best linear unbiased predictor (BLUP) based on a131

linear mixed model in which covariates or spatial trend can be expressed as fixed effects, and132

a correlated Gaussian random field is included in the random effects. A thorough account of133

this is given by Stein (1999). In this approach the parameters of the random effects part of134

the model (equivalent to the variogram parameters in mining geostatistics) are estimated by135

residual maximum likelihood. The BLUP can be shown to be equivalent to ordinary kriging136

under the assumption of a locally stationary unknown mean, and to universal kriging with an137

external drift when the external drift variable is included in the linear mixed model as a fixed138

effect. This approach was described in the journal by Lark et al. (2006) and has been variously139

applied (e.g. Kempen et al., 2010).140

Another important line of development is the adoption of a Bayesian framework for the lin-141

ear mixed model. In frequentist geostatistics the estimated parameters of the random effects142

are ‘plugged in’ to the equations for the BLUP as if they were known without uncertainty. In143

many circumstances this has little effect, but a Bayesian approach, in which the parameters144

are treated as random variables and the process of estimation from data entails obtaining pos-145

terior distributions for these parameters, can be useful for dealing with the uncertainty in the146

parameters particularly when data are sparse. An example is provided by Orton et al. (2011)147

who used a Bayesian approach to deal with both the uncertainty arising from the spatial varia-148

tion of observations, and the uncertainty about the appropriate form of a model to express the149

relationship between the target variable and a set of covariates.150

Finally, we mention a paper in this journal which records, perhaps, the first application of151

multiple-point geostatistics in soil science (Meerschman et al., 2013). Multiple-point geostatistics152

aims to deal with some limitations of the Gaussian assumption in the linear mixed model. A153
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Gaussian model, even after transformation of data, can be very poor for characterizing highly154

structured variation (such as spatial patterns of soil driven by infilled channels or braided streams155

in a texturally-contrasting matrix). At present the methodology for multiple-point methods is156

cumbersome, and very data-demanding, but it could be that this work ultimately leads to radical157

transformation of spatial statistics in the earth sciences.158

The future.159

In an era when advanced statistical tools are readily available for open-source platforms, and in160

which the availability of methods such as kriging can be taken for granted, it is easy to forget how161

radical a change Burgess & Webster (1980a) made to the provision of soil information. The paper162

has been transformative, but most particularly through stimulating new ideas. That is surely163

the most effective way for science to work, and is something worth celebrating here. Burgess164

& Webster (1980a) marked a critical step in the development of methods for spatial prediction165

of soil properties, but this step was the beginning of further innovations which have allowed166

geostatistical prediction to take greater account of soil knowledge, particularly as represented167

by covariates provided by remote sensors, soil surveyors or geophysical instruments. In doing168

this, Burgess & Webster (1980a) started the process of methodological development which has169

led to the current practice of digital soil mapping (McBratney et al., 2001). Lagacherie et al.170

(2012) exemplify this approach within the pages of this journal, and there are many examples171

elsewhere.172

Digital soil mapping owes a great deal to the pioneering work of this Landmark paper.173

We suggest that the value of republishing it now goes beyond mere historical curiosity. It is174

important to reflect on the story that we tell above when looking to the future of digital soil175

mapping and spatial prediction of soil properties more generally.176

Digital soil mappers have embraced a range of methods for spatial prediction of soil properties177

from covariates. In addition to the BLUP, based on a linear mixed model, there has been a good178

deal of enthusiasm for machine learning methods. In a machine learning approach a predictive179

relationship between soil properties and covariates is derived by an algorithm rather than a180

statistical model in the sense of the linear mixed model. This may be the way forward, but we181

think that caution is needed. We noted above that when kriging was adopted by soil scientists for182

prediction, other methods of interpolation were available. However, these had no underpinning183

model. It was therefore not possible to claim that they produced results that were unbiased, or184

that they represented the best prediction possible from the data in some sense. Furthermore,185

there was no reliable basis for quantifying their uncertainty. Kriging won on all counts.186
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Little attention has been paid to these questions in the application of machine learning in187

digital soil mapping. For example, these methods appear to take no account of the fact that188

available soil data are rarely collected according to an independent random sampling design but189

are often selected on grids or transects, or include some intentional clustering. In a geostatistical190

linear mixed model we do not require any assumptions of independence because the spatial de-191

pendence of the observations is explicitly modelled, and so our estimates of variance components192

or of fixed effects coefficients are reliable if the model is valid. We may check the validity of the193

model, and identify the need for robust estimation, or non-stationary covariance structure as194

required (e.g. Marchant et al., 2006). This gives us a basis for treating the model as robust and195

for quantifying the uncertainty of its predictions with some confidence. It is not clear, at least196

at present, how this can be matched by the machine learning methods currently in vogue.197

The future for reliable, robust digital soil data will depend, not on the uncritical adoption of198

ad hoc algorithms but on careful and statistically sound development which does not let go of199

the benefits that geostatistics introduced. Perhaps we should be looking for the next Landmark200

paper to achieve and exemplify this.201
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