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Abstract
Optical fibre sensors (OFS), as a result of their unique properties such as small size, no interference
with electromagnetic radiation, high sensitivity and the ability to design multiplexed or distributed
sensing systems, have found applications ranging from structural health monitoring to biomedical
and point of care instrumentation. While the former represents the main commercial application for
OFS, there is body of literature concerning the deployment of this versatile sensing platform in
healthcare. This paper reviews the different types of OFS and their most recent applications in
healthcare. It aims to help clinicians to better understand OFS technology and also provides an
overview of the challenges involved in the deployment of developed technology in healthcare.
Examples of the application of OFS in healthcare are discussed with particular emphasis on
recently (2015–2017) published works to avoid replicating recent review papers. The majority of
the work on the development of biomedical OFS stops at the laboratory stage and, with a few
exceptions, is not explored in healthcare settings. OFSs have yet to fulfil their great potential in
healthcare and methods of increasing the adoption of medical devices based on optical fibres are
discussed. It is important to consider these factors early in the device development process for
successful translation of the developed sensors to healthcare practice.

Keywords: optical fibre sensors, biomedical, healthcare

(Some figures may appear in colour only in the online journal)

1. Introduction

This paper reviews recent achievements in the area of optical
fibre sensors (OFS) and the application of the technology in
healthcare. The first section of the paper introduces the principle
of operation of optical fibres as a sensing platform, discussing

different types and configurations of OFS and difficulties of
comparison between them with an aim of providing an overview
of OFS capabilities for end users (clinicians/healthcare workers).
The sensors are then classified according to the measurands used
in healthcare and are classified as physical (temperature, strain,
pressure) and biochemical (volatile organic compounds (VOCs),
biomarkers, proteins, immuno-sensors). Examples of the appli-
cation of OFS in healthcare are discussed with particular
emphasis on recently (2015–2017) published works to avoid
replicating recent review papers on pressure [1], temperature [2]
and biosensor [3] applications in healthcare. The use of optical
fibres to deliver and collect light in applications such as laser
Doppler flowmetry and oximetry are mentioned only briefly, as
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the main focus of this paper is on measurement approaches that
involve the detection of a measurand-induced modulation of the
optical fibre’s properties. The major hurdles faced by OFS
technology in translation to, and adoption in, healthcare practice
are outlined. Issues such as the careful consideration of the choice
and robustness/longevity of chemically sensitive films, and the
selection of technologies that will provide the most value to
healthcare providers are discussed and future directions are
proposed.

2. Introduction to OFS

Light propagates in the core of an optical fibre via total internal
reflection with relatively low losses. This allows the transmis-
sion of information over long distances. The first working fibre
optic data transmission system in 1965 [4] was demonstrated
100 years after the first demonstration of the concept of light
propagation inside a medium via total internal reflection as a
‘light fountain’ [5]. Since then, the potential of light propagation
inside a medium has been recognized and has resulted in
numerous ideas for practical implementation, in areas ranging
from imaging to high power light transmission. The main
application nowadays is long distance high speed communica-
tion, facilitated by the reduction of transmission losses to as low
as 0.2 dB km−1 [6]. Owing to the unique properties of optical
fibres, mainly their small size, no interference with electro-
magnetic radiation and prospect for remote sensing, the optical
fibre has found niche applications in sensing.

A standard single mode optical fibre used in tele-
communication, illustrated in figure 1, typically consists of
three layers; a silica core of diameter of the order of microns
(typically 2–10 μm) and doped with a material such as ger-
manium to increase its refractive index (RI), a pure silica
cladding of diameter 125 μm and a buffer coating that does
not play a role in light guiding, but protects the fibre from
mechanical damage and provides mechanical robustness.
Optical fibres can also be made using materials such as plastic
[7], chalcogenide [8] glasses or a combination of materials,
where the core and cladding are of different composition. For

example, optical fibres having silica core and plastic cladding
are commercially available [9]. Depending on the core size,
wavelength of operation and difference in refractive indices
between the core and the cladding, an optical fibre can operate
in a single mode or a multimode regime. In the former,
the profile of the light energy distribution across the core of
the optical fibre is Gaussian, while in multimode fibre the
profile is more complex [6].

Optical sensors detect changes in optical parameters that
depend upon the physicochemical parameters of the investi-
gated environment. Optical fibres offer a convenient method
for the implementation of optical sensing, by directing light
to, and collecting light from, the measurement region, so
called extrinsic sensors [10] or by using the fibre itself as the
transducer, so called intrinsic sensors [11]. In general, OFS
operate by measuring changes in light propagation caused by
external stimuli ranging from physical parameters (strain,
pressure, temperature) to biochemical parameters (analyte
concentration, chemical composition).

OFS offer several advantages over conventional sensor
technologies [11, 12]. They are not susceptible to electro-
magnetic interference, they can survive harsh environments
and tolerate high temperatures. They are biocompatible and
are readily multiplexed, allowing the simultaneous monitor-
ing of a number of measurands. They can be used for remote
monitoring of the environment because of the low attenuation
that is a property of light propagation in telecommunications
grade single mode optical fibres. Optical fibre based mea-
surement techniques have attracted a great deal of attention in
a diverse range of applications such as structural monitoring,
resin flow and curing, railway and aerospace, chemical and
biological sensing, environmental monitoring and medical
diagnosis. The variety of designs and measurement schemes
that may be employed using optical fibres provides the
potential for the creation of highly sensitive and selective
sensors for deployment in real environments.

Since the main application of optical fibres is in com-
munications, they are designed in such a way that minimizes
influence of the external medium on the light (hence infor-
mation) propagating inside the optical fibre. For efficient
operation of OFS, however, the influence of the external
medium should be maximized. This can be achieved using
different optical fibre processing methods which frequently
utilize interaction of the evanescent field with the external
medium. The following sub-sections introduce the basic
principles of the various configurations of OFS.

2.1. Cladding removed evanescent wave (EW) OFS

Perhaps the simplest way to achieve direct interaction of light
with the medium surrounding the optical fibre is through the
removal of the cladding to allow access to the EW, as illu-
strated in figure 2.

A change of the optical properties of the surrounding
medium, for example, RI or spectral absorption, will lead to
modulation of the light propagating in the optical fibre. This
fibre modification facilitates EW spectroscopy [13], which is
a highly sensitive and powerful technique that is used to

Figure 1. Schematic illustration of standard single mode telecoms
silica optical fibre consisting of the core (diameter 4–10 μm),
cladding (125 μm) and buffer. n1—refractive index of the core,
n2—refractive index of the cladding. To satisfy the conditions for
total internal reflection n1>n2.
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measure quantitatively and qualitatively the chemistry of the
environment surrounding the optical fibre. The intensity of
the EW decays exponentially with the distance from the
interface between the fibre core and the surrounding
environment. The penetration depth (dp) of the EW is
described by:

d
n n2

, 1p
seff

2 2 1 2
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where λ is the wavelength of light in free space, ns is the RI of
the surrounding environment and neff is the effective RI of the
mode guided by the optical fibre [10].

The absorption spectrum of the medium surrounding the
fibre influences the attenuation of the EW, and thus of the
mode, according to the Lambert–Beer law:
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I
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where α is the molar extinction coefficient, c is the con-
centration of the absorbing substance, L is the path-length that
light travels through the sample and Io and I are the light
intensities at the input and output of the optical fibre, i.e.
before and after interaction with the absorbing substance,
respectively.

In its simplest form, coupling the output from a broad-
band optical source into the proximal end of the fibre and
observing the transmitted light by coupling the output from
the distal end to a spectrometer will allow the spectroscopy of
the surrounding medium to be measured. An example of the

use of EW spectroscopy, undertaken using a hard-clad mul-
timode silica optical fibre with a section of the plastic clad-
ding removed, to measure the absorption spectrum of a
porphyrin dye compound is shown in figure 3 [13].

A variation of this type of OFS involves the creation of a
‘U’ shaped bend in a section of multimode optical fibre [14].
Bending the fibre causes the EW to extend further into the
surrounding medium, increasing the interaction between the
EW and the measurand [14]. There is also an implementation
advantage as the source and detector are positioned on the
same side of the medium under investigation. It is also worth
mentioning that the low attenuation of chalcogenide glasses in
the infrared (IR) region (1–10 μm), where specific absorption
features of organic molecules are located, makes the use of
these fibres attractive for EW spectroscopy [15].

2.2. Tapered OFS

Access to the EW can be also gained via tapering of a rela-
tively short section (of length ranging from sub-millimetre to
tens of millimetres) of the optical fibre. A tapered optical fibre
consists of a region of fibre with reduced and uniform dia-
meter (the waist) that is bounded by conical sections where
the diameter of the fibre changes to merge the tapered section
with the unperturbed surrounding fibre, as illustrated in
figure 4(a). Tapered fibres are fabricated by heating and
stretching the optical fibre with the heat source being typically
a flame or the output from a CO2 laser. The optical properties
of the tapered fibre waveguide are influenced by the profile of

Figure 2. Schematic illustration of an evanescent wave based OFS with removed cladding.

Figure 3. (a) Transmission spectrum of a hard-clad multimode silica optical fibre with the plastic cladding removed before (black line), and after
(red line) immersion into a porphyrin dye compound; (b) absorption spectrum calculated from (a). Reproduced with permission from [13].
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the conical tapering sections, by the diameter of the taper
waist and by the RI of the surrounding medium. The pro-
portion of the power in the EW, and thus the interaction with
the surrounding medium, increases with decreasing diameter
of the taper waist, and with decreasing difference between the
RI of the fibre and surrounding medium [16, 17]. Tapered
optical fibres offer a number of attractive features for sensor
development, including large evanescent fields, flexibility and
compactness. In the case of a tapered optical fibre that is
coated with a functional material, the properties of the
waveguide are influenced by the optical thickness (product of
the RI and geometrical thickness) of the coating.

Originally, tapered optical fibres were employed for the
development of directional couplers, where two or more
tapers are fused together, to provide efficient light coupling
between fibres [18]. They have also found applications in
sensor development [19], light amplifiers [20] and near and
far field microscopy [21].

Optical fibre tapers are classified as adiabatic and non-
adiabatic. In adiabatic configurations, the angle of the taper
transition region is small (10−4 to 10−3 rad [22]) and the
cylindrical symmetry of the optical fibre is retained (with
taper ratio of taper diameter to initial diameter of the core
(a/a0) between 0.2 and 1 [22]), resulting in most of the
optical power remaining in the fundamental mode [16]. The
uniform transmission spectrum of adiabatic tapers facilitates
their use for EW spectroscopy. In non-adiabatic tapers, the
geometry of the taper is such that the fundamental mode is
coupled into higher order modes. For non-adiabatic tapers of
diameter less than 10 μm, the linearly polarized, LP01, mode
of the single mode fibre generally couples to the hybrid, HE11

and HE12, modes of the tapered waist [23]. Interference
effects in recombination of the excited modes at the 2nd
tapering section introduce channelled spectrum features into
the transmission spectrum, the wavelengths of which are
sensitive to differential changes in the effective index of the
modes, which arises from the different penetration depths of

their evanescent fields. This has been exploited to allow
measurements of the RI of the surrounding environment or in
the RI of chemically sensitive material deposited onto the
surface of the tapered section of fibre.

Tapered optical fibres have been exploited as sensor plat-
forms for a variety of applications [24–26]. There are two
approaches that are used to exploit the interaction between the
EW and the surrounding medium. The first involves the mea-
surement of the attenuation of light propagating through the
tapered region, which is influenced by both the spectroscopy
and RI of the surrounding medium [15]. The second concerns
the influence of the surrounding medium on the effective
refractive indices of the modes propagating through the taper,
which can be probed interferometrically, as described above, or
by using mode coupling devices such as in-fibre gratings [27],
surface plasmon resonances and lossy mode resonances [28].

2.3. Interferometers

Optical interferometry offers highly sensitive platforms for
sensor development. The non-adiabatic tapered optical fibres
described in the previous section are an example of a modal
interferometer (MI). Other approaches include in-fibre gratings,
regions of core mismatch and directional couplers [29]. Optical
fibre MI rely upon the creation of a region where energy is
coupled into two modes of the fibre. The modes then propagate
along the sensing region of the fibre with different effective
refractive indices and respond to the measurand differently.

Fibre optic MI are based on the interference between
higher order and fundamental modes, which leads to a sinu-
soidal channelled transmission spectrum containing fringes
described in section 1.2. The phase of the fringes of the
spectrum depends on the difference in the optical path lengths
of the interfering modes, according to [29]:

n L
2

, 3effj
p
l

d= ( ) ( )

Figure 4. (a) Schematic illustration of the structure of a tapered optical fibre; and (b) a typical channelled transmission spectrum of a non-
adiabatic taper with waist diameter of 10 μm fabricated in an optical fibre with a cut-off wavelength of 670 nm. [16] [18 Apr 2012] Reprinted
by permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).
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where λ represents the wavelength, L is the centre-to-centre
distance between two coupling elements and δneff is the dif-
ference in refractive indices between the higher order and
fundamental modes [29]. As the evanescent fields of modes of
different order extend different distances into the surrounding
medium, changes in the optical properties of the medium will
influence the modes’ effective refractive indices differentially,
causing changes in the phase of the MI and of the channelled
spectrum.

MI with configurations akin to the Mach–Zehnder
interferometer (MZI) and Michelson interferometer (MchI)
can be implemented in optical fibres. In the context of optical
fibre tapers, as discussed in section 2.2, an MZI can be rea-
lized by fabricating a non-adiabatic taper of diameter
<10 μm, in which two modes are excited at the first taper
transition, which propagate with different effective refractive
indices and which interfere at the second taper transition.
External stimuli cause changes in the effective indices of the
modes and thus induce a phase change in the channelled
spectrum, figure 4(b) [26, 30]. An optical fibre MZI can also
be created between two identical non-adiabatic tapers as
shown in figure 5 [29]. The first taper couples the core mode
to higher order cladding modes, while second recombines
these modes to interfere and create the channelled spectrum.
Changes in environmental parameters, such as temperature or
RI, around the section of fibre separating the two tapered
regions will induce a phase change that will result in a shift of
the interference features of the spectrum. Optical fibre MZIs
can also be implemented using coupling elements in the form
of in-fibre gratings, regions of core mismatch and directional
couplers [29].

In an example of an optical fibre MchI, illustrated in
figure 6, the non-adiabatic taper couples the core mode to
higher order cladding modes, which are reflected at the gold
coated tip of the optical fibre and are recombined at the same
taper to produce interference fringes. Again, changes in

environmental around the section of optical fibre separating
the taper and the gold coated tip will induce a phase change
that will result in shift of the interference features of chan-
nelled spectrum. For the same physical length of the inter-
ferometer, a MchI will exhibit higher sensitivity as light
traverses the sensing region twice. MchI can also be imple-
mented using coupling elements in form of in-fibre gratings
and regions of core mismatch [29].

These types of interferometers can be interrogated by
measuring the wavelength shifts of the features in the chan-
nelled spectrum or by recording an amplitude change at a
fixed wavelength, table 1. Another example of an interfero-
metric OFS is the so called Fabry–Perot interferometer (FPI),
which consists of a cavity formed between two reflectors, as
illustrated in figure 7. This cavity can be formed by a gap
between two fibres, or between the tip of the fibre and a
membrane (figure 7(a)). Alternatively, a thin film can be
deposited at the tip of the fibre to form an FPI, where the
interface between the fibre tip and the film forms one reflector
and the interface between the film and the surrounding
medium forms the second mirror.

The total reflected power (PR) for thin film FPI case is
described by [29]:

P R A R R e

A R R R
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where R1=[ηfibre−ηf/ηfibre+ηf]
2 is the Fresnel coefficient

at the interface fibre-film and R2=[ηf−ηair/ηf+ηair]
2 is

the Fresnel coefficient at the interface film-air; α is the
transmission loss factor inside the cavity (absorbance) and A
is the loss coefficient at the first interface fibre-film; ηfibre is
the RI of the fibre, ηair is the RI of the air, L is the physical
thickness of the nano-coating and ηf is the effective RI of the

Figure 5. Schematic illustration of an optical fibre modal Mach–Zehnder interferometer [29].

Figure 6. Schematic illustration of an optical fibre modal Michelson interferometer.
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film. A change in either the RI of the cavity or its length will
modulate the reflected power, which can be used to detect the
measurand that modulates the coating’s parameters.

2.4. Grating based OFS

Fibre optic devices based on grating structures inscribed into
optical fibres have been investigated extensively for sensing
applications [31]. An optical fibre grating consists of a peri-
odic modulation of the propagation constants of the modes of
the optical fibre, typically induced by a modulation of the RI
of the core of the fibre by exposure to a spatially modulated
intensity pattern from a UV or femtosecond laser [31]. In the
case of a grating that has a period on the order of the
wavelength of light (around 1 μm), a so called fibre Bragg
grating (FBG), the grating acts to couple the forward propa-
gating mode to a backward propagating mode of the core at a
wavelength that satisfies the Bragg condition, which is
dependent on the period of the grating and the effective RI of
the propagating mode, figure 8. An FBG is viewed as a
wavelength selective mirror, which reflects a narrow band of

wavelengths back along the optical fibre while transmitting all
other wavelengths. The reflected Bragg wavelength is gov-
erned by [31, 32]:

2 , 5Bragg effl h= L ( )

where neff is effective RI of the mode propagating in the core
and Λ is the period of the grating.

The Bragg wavelength is sensitive to parameters that
influence the period of the grating and RI of the fibre, typi-
cally strain and temperature [31, 32]. The wavelength-enco-
ded nature of the sensor offers a number of advantages, not
least the ability to multiplex a serial array of FBG sensors in a
single optical fibre by ensuring that each has a different
period, and thus a different Bragg wavelength. To sensitize
the Bragg wavelength to the surrounding RI, the fibre has to
be polished, etched or tapered to allow the EW to interact
with the surrounding medium. The interaction of the EW with
the surrounding medium influences the effective index of the
propagating mode, resulting in changes in the Bragg wave-
length, and, as the attenuation of the taper is dependent upon
the surrounding RI, changes in the reflected power. The total
wavelength shift (Δλ) due to strain (ε) and temperature
change (ΔT) can be approximated by equation (6) [31, 32].

P P T1 1 , 6e eBraggl l e a xD = - + - ⋅ + D[( ) (( ) ) ] ( )

where Pe the photoelastic is constant, ξ is the thermo-optic
coefficient of the optical fibre and α is the thermal expansion
coefficient [31, 32].

Tilted FBGs (TFBGs), where the grating planes fabricated
such that they are inclined with respect to the axis of the fibre,
can be used to measure the changes in the surrounding RI
without the need for further modification of the fibre. TFBGs,
in addition to coupling light to a backward propagating mode

Table 1. Summary of the measurands and measured light parameter monitored/detected by different types of OFS.

Type of the sensor Measured light parameter Units Measurand

Cladding removed evanes-
cent wave

Intensity dB, %, Concentration, absorption

Tapered Intensity, wavelength shift dB, %, nm Concentration, RI, absorption, pressure,
temperature, strain

Fibre Bragg grating Wavelengths shift, Intensity dB, %, pm pressure, temperature, strain
Long period grating Wavelengths shift, Intensity dB, %, nm Concentration, RI, absorption, pressure,

temperature, strain
Interferometers Wavelengths shift, Intensity,

phase
dB, nm, %, degrees Concentration, RI, absorption, pressure,

temperature, strain

Figure 7. Schematic illustration of a Fabry–Perot interferometer
formed (a) by a gap between two optical fibres (or between the fibre
end and a membrane); and (b) by depositing thin film at the tip of the
optical fibre.

Figure 8. Schematic illustration of an FBG (grating period 100 s nm)
and LPG (grating period 10 s to 100 μm).
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at the Bragg wavelength, also couple light to forward propa-
gating modes of the cladding, creating further spectral features.
The interaction of the cladding modes’ EWs with the sur-
rounding medium changes their effective refractive indices,
resulting in changes to the wavelengths of the cladding mode
coupling features (the Bragg wavelength is unchanged) [33].

In contrast to FBGs, a long period grating (LPG) typi-
cally has a period in the range 100 μm to 1 mm and couples
light from the core mode to a discrete set of co-propagating
cladding modes, also shown in figure 8 [13]. As the cladding
modes suffer high attenuation, the transmission spectrum of
an LPG is characterized by a series of resonance bands, each
corresponding to coupling to a different cladding mode. The
resonance wavelengths are dependent on the product of the
period of the LPG and the difference between the core and
cladding mode indices, governed by [34]:

n n , 7i c
i
cladl = - L( ) ( )

where Λ is the period of the grating, nc is the RI of the mode
propagating in the core, and n i

clad is the effective index of the
ith axially symmetric and linearly polarized cladding
mode [34, 35].

As a result of the interaction of the EW of the cladding
modes with the surrounding medium, the resonance wave-
lengths are inherently sensitive to changes in the surrounding
RI, and to the optical thickness of nanoscale coatings deposited
onto the cladding. This makes LPG sensors ideal candidates for
development of refractometers and biosensors. In biosensor
applications, since the LPG is sensitive to both bulk (due to
concertation change) and surface (due to binding events) RIs,
special care needs to be taken to address this difference. The
different ways of addressing this and enhancing the sensitivity
of LPGs in bio-sensing applications have been thoroughly
described in recent paper by Chiavaioli et al [3].

LPGs fabricated in standard single mode optical fibres
offer inherent sensitivity to a number of parameters, pre-
dominantly strain, temperature, curvature and surrounding RI
[34]. The temperature sensitivity of the central wavelength
(λi) of the LPG can be calculated using equation (8) [36] and
the sensitivity to the variation of the surrounding RI (n3) can
be calculated using equation (9) [37],

d
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where L is the length of the LPG, Λ its period,
n n nc

i
eff cladd = - (differential effective index). The cross-

sensitivity to strain is not considered in this treatment since
material (strain-optic and Poisson’s effect) and waveguide
(change of the grating period) contributions to strain sensi-
tivity can cancel each other out having opposite signs
[36, 37]. The phase matching condition described by
equation (7) contains a turning point at which it has been
demonstrated [38–40] that the sensitivity of the attenuation
band to perturbation of the surrounding environment is at its
maximum, i.e. there is optimum sensitivity when the LPG is

fabricated with a period such that the coupling of light to the
cladding mode occurs near to or at the phase matching turning
point [41]. Among the various types of OFS, those based on
optical fibre gratings offer wavelength-encoded information
that overcomes the referencing issues associated with inten-
sity based approaches.

2.5. Summary

The properties of the OFS described in this section are sum-
marized in table 1. According to the measurands, OFS can be
broadly classified into physical, chemical and biosensors.

As mentioned in [3], it is often difficult to compare the
performance of the different OFS even when same measurand
is measured, as authors usually provide limited information,
typically stating only the units of sensitivity, which differ
when different principles of operation of the sensors is
employed (table 1). For example, sensitivity to temperature
measured using an FBG will be reported in pm °C−1 while
that measured by an interferometer be reported in rad °C−1 or
dB °C−1, which makes comparison of sensors in terms of
sensitivity meaningless. There is a need for the optical sensor
community to develop standardized units of measurements to
allow comparison of the performances of different types of
OFS. Perhaps the performance of the sensor can be expressed
in terms of a figure of merit that will allow this comparison—
this could well be the range, resolution/accuracy or limit of
detection (LoD) of the particular measurand, as this takes into
account standard deviation. This discussion, however, is
beyond the topic of the current review paper and readers are
referred to [3] for a detailed discussion of OFS metrology.

3. Physical measurands in healthcare

3.1. Temperature

Temperature is one of the vital signs and is a crucial and
routinely monitored parameter in medicine that is measured
using a variety of technologies [42] in all clinical settings,
including surgeries, oncology treatment and intensive care
units [43]. In healthcare, the temperature sensing require-
ments are application dependent, but generally a temperature
range of 35 °C–45 °C with a resolution of at least 0.1 °C is
required [44]. The required response time of the temperature
sensor is also application dependent [2]. For some thermal
treatment procedures, such as high-intensity focused ultra-
sound ablation, the coagulative temperature (43.5 °C–
57.0 °C) is reached within less than 30 s [45], while for laser
ablation this can lie between 5 and 15 min [45].

Typically, OFS will be deployed to measure temperature
when immunity to electromagnetic interference or electrical
insulation are required [44, 46], such as during magnetic
resonance imaging (MRI) or radio frequency (RF) treatment
[46–48]. OFS temperature sensors exploit a range of trans-
duction principles, such as temperature dependent fluorescence
lifetime [49–52], Rayleigh scattering (change in the amplitude
of the back-reflected signal with temperature) [53] and thermal
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expansion and the thermo-optic effect in FBGs [54–56], LPGs
and FPIs [57, 58]. Table 2 summarizes key parameters of
optical fibre temperature sensors [2].

In addition, optical fibre temperature sensors, especially
those based on gratings and Rayleigh scattering, offer a
prospect for multiplexed or distributed temperature sensing,
allowing the generation of a heat map of the area of interest
[27, 62, 64, 65]. Figure 9 shows an example of the temper-
ature distribution measured inside liver tissue (figure 9(a))
using a Luna OBR4600 optical fibre distributed temperature
sensor (DTS), measuring changes in the Rayleigh back scat-
tering signal in the optical fibre, during an RF ablation pro-
cedure [62]. The equipment was configured such that
measurement time of 1 s for the entire fibre length (<20 m)
and choosing an accuracy estimated as 0.5 °C, a minimum
spatial resolution of 200 μm in real time (and 20 μm in post-
analysis with data processing) was achieved. The perfor-
mance of the DTS Luna Rayleigh back scattering system
depends on a tight trade-off between accuracy, spatial reso-
lution, and sampling time. Analysis of the thermal maps
verified that the spatial and temporal evolutions of the
temperature were smooth and consistent with what would be
physically anticipated [62]. The authors reported that mea-
surements can be employed to investigate the physics of RF
ablation and for the validation of ablation models. Results can
be used for investigating the physics of thermal ablation, to

set the basis for distributed temperature monitoring and for
the validation of models [62]. It has the potential to facilitate
the adjustment of treatment to the specific biological and
electrical properties of the tissue undergoing ablation.

Despite the commercial availability of OFS systems tar-
geted at healthcare, based on various measurement principles,
offered by FISO, LumaSence, Neoptix and OpSens, there are
limited reports of in vivo use of OFS with animals or humans
[2]. Fajkus et al [66] proposed a system based on FBGs for
vital sign measurements (body temperature, heart rate and
respiratory rate). The system consisted of 32 FBG sensors that
were embedded into polymer to increase their temperature
sensitivity. The FBGs were interrogated using a wide-spectrum
SLED (1512.5–1587.5 nm and an output power of 1 mW)
connected to spectrum analyser via a fibre optic circulator. The
system was tested on 10 human volunteers, with the mea-
surements showing good correlation with standard equipment
routinely used in hospitals [66]. The main advantage of the
system identified by authors was the design of the novel
patient-friendly non-invasive measurement probe.

For applications such as cryo-ablation, OFS need to
perform at temperatures down to −180 °C [67]. Samset et al
[67] measured the temperature distribution using 10 wave-
length division multiplexed FBG sensors. Adjacent sensor
elements were separated by 6.5 mm and the external diameter
of the probe was 1.25 mm. The median difference between

Table 2. Summary of key parameters of optical fibre temperature sensors.

OFS Sensitivity Resolution Range Response time Reference

Fluorescence 0.5 μs °C−1 ±0.50 °C 20 °C–80 °C —
a [59]

FBG 27 pm °C−1
— 20 °C–80 °C 100 ms [60]

FPI 0.19 nm °C−1 0.34 °C 25 °C–80 °C 67 °C/sb [61]
Rayleigh scattering 10 pm °C−1 0.1 °C 20 °C–46 °C 1 s [62, 63]

a

No information available.
b

This is the rate of temperature change that sensor can measure, rather than the response time.

Figure 9. (a) One-dimensional (1D) axisymmetric experimental chamber—the optical fibre is inserted into the tissue through medical needles;
and (b) average temperature space–time evolution for each repeated experiment. Reproduced with permission from [62].
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measured and estimated temperature was 3.03 °C, and the
measurements provided valuable information for the devel-
opment of models of cryo-ablation. Temperature maps as
outlined in the work may be used for monitoring of cryo-
therapy in order to increase clinical effectiveness.

Yoo et al [68] proposed respiration sensors based on
thermo-chromic material deposited onto the tip of plastic
optical fibre for respiratory monitoring inside an MRI system.
Two types of non-invasive fibre optic respiration sensors were
reported, one being a nasal-cavity attached sensor that could
measure the temperature variation of air-flow using a thermo-
chromic pigment. The other was an abdomen-attached sensor
that measured the abdominal circumference change using a
sensing component composed of polymethyl-methacrylate
tubes, a mirror and a spring. The intensity of reflected light
was changed by the variation of the distance between the
mirror and the distal end of the plastic optical fibre according
to abdominal movement. The authors verified that respiratory
signals can be obtained with no detrimental effects on the
magnetic resonance image.

Musolino et al [69] described a fluorescence based
optical fibre temperature sensor based on rear earth glass
deposited onto the tip of an optical fibre. The sensitivity was
reported to be 0.005 258 K−1 over a temperature range of
22 °C–51 °C. The sensor was tested successfully in vivo by
measuring the brain temperature of rats [69]. A comprehen-
sive review of optical fibre temperature sensors and their
applications in healthcare can be found in [2].

The temperature sensitivity of the light propagating
through optical fibres compromises the sensing of other
measurands, and hence temperature needs to be taken into
account when measuring other parameters. This can be done
either by developing temperature insensitive sensors [70, 71]
or by measuring temperature independently to other measur-
and and subsequently compensating for its effect [72].

3.2. Pressure

Pressure in the human body is grouped into two categories,
isotropic pressure, such as blood pressure and intracranial
fluid pressure, and contact pressure such as intra vertebral
pressure. Blood pressure, in particular, is a vital sign in the
human body that is routinely measured during medical
examinations and procedures [1, 73]. The pressure range of
interest, however, is very wide, is dependent on the part of the
body where the measurement is performed and is influenced
both by external and internal factors [73]. The pressure in the
human body at normal physiological conditions is typically
divided into three levels [73, 74]:

• low pressure domain—between 0 and 10 mbar
(1 mbar=100 Pa≈0.75 mmHg); (capillaries, brain,
urinary bladder, and muscular compartments)

• medium pressure domain—the values lie between 25 and
150 mbar (circulatory system including the heart)

• high pressure domain—the values can be as high as
180 mbar (load bearing structures like hips and knees)
(135 mmHg).

At pathophysiological conditions, the pressure can vary
significantly and range from –0.1 bar (–10 kPa, –75 mmHg)
for intra-alveolar and intra-tracheal pressure to as high as
0.4 bar (40 kPa, 300 mmHg) for aortic and left ventricular
pressure [74]. These requirements place constraints on optical
fibre pressure sensors. Ideally, an optical fibre pressure sensor
should be able to operate between 0.04 bar (–4 kPa,
–30 mmHg) in the heart [75] to 10 bar (7500 mmHg) in bones
and joints [76, 77] with a typical resolution of 1 mbar
(0.75 mmHg) and accuracy of <1% [44]. In practice, how-
ever, the sensors will cover much narrower range to satisfy
requirements of a particular application.

A variety of OFS can be used to measure pressure, such
as intensity modulated, FBGs [78–80] and FPIs [81].

Intensity modulated pressure sensors were originally
proposed for pressure measurements in 1960s [82] but,
despite the simplicity of the design and its cost effectiveness,
they have not found widespread application. There are two
main designs, one based upon a movable reflectance mem-
brane interfaced with the tip of the optical fibre such that the
intensity of light reflected back into the fibre depends on the
pressure [83, 84]. The second relies upon bending losses,
where the pressure dependent bend will induce loss in light
propagation inside the optical fibre [85]. The main drawback
of these approaches is their reliance on the measurement of
intensity, which can be influenced by a wide range of para-
meters including light source fluctuation, changes in the
reflectivity of the membrane (due to temperature or oxidation
effects) and bending of the fibre [86].

The inherent sensitivity of single mode silica optical fibre
FBGs to hydrostatic pressure is not very high (0.304 pm bar−1

(4.05×10−4 pmmmHg−1)) [87]. Increasing the pressure sen-
sitivity is typically achieved by transducing the pressure into a
strain acting along the axis of the fibre by appropriate packa-
ging. One of the approaches consists of attaching the FBG to a
flexible diaphragm either orthogonally or in the diaphragm
plane in areas where the strain is maximal. Another approach
involved the packaging of the FBG sensor in a cylindrical
assembly so that pressure sensitivity can be increased via
mechanical amplification schemes [86]. Sensitivity can be
enhanced to 270 pm bar−1 (0.36 pmmmHg−1) when the FBG is
embedded into a flexible patch that translates the transverse load
into an axial strain measured by the FBG [88, 89].

Fabry–Perot sensors offer the highest sensitivity to
pressure and can be implemented with great design flexibility
[86]. A compact pressure sensor was developed by FISO [90],
where the diameter of the sensor head was 125 μm with
standard range of ±300 mmHg and system accuracy of
±3 mmHg. A detailed review of optical fibre pressure sensors
is beyond the scope of this paper, but more details of optical
fibre pressure sensors can be found in recent reviews in
[77, 81, 91]. Table 3 provides key parameters of optical fibre
pressure sensors [91].

Optical fibre pressure sensors have been trialled in both
ex vivo and in vivo applications in various areas of healthcare,
including gastroenterology, cardiology, neurology and uro-
dynamic. The review by Poeggel et al [1] summarizes com-
prehensively these applications. Optical fibres have also been
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Table 3. Summary of key parameters of optical fibre pressure sensors.

OFS Sensitivity Resolution Range Response time Reference

FBG From 5.870a pm bar−1

(7.8×10−3 pm mmHg−1) to 270 pm bar−1

(3.6×10−4 pm mmHg−1)

From 0.013 bar
(9.75 mmHg) to 0.08 bar
(60 mmHg)

0–50 bar From 5.870a pm bar−1

(7.8×10−3 pm mmHg−1) to 270 pm bar−1

(3.6×10−4 pm mmHg−1)

[88, 89, 91, 92]

FPI 0-3.8×104 mmHg (0–3.8)×104 mmHg [91, 93–96]
Intensity
modulated

—
b

—
b −50 to 0.4 bar

(300 mmHg)
40 s [84, 91, 97]

a

Comprehensive review on optical fibre pressure sensors with detailed sensor parameters can be find in [91].
b

No data available.
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used for contact pressure sensing in applications in bio-
mechanics and rehabilitation or at the interface between the
medical device and tissue (e.g. sockets, bandages [77], in
bone, dental biomechanics and as insole and amputee socket
sensors). A number of applications were reviewed by Poeggel
et al [1] and by Al-Fakih [77]. Here, more recent examples of
in vivo pressure sensors applications are outlined.

OFS were applied recently to address an important pro-
blem known as medical device related pressure ulcers, which
causes over a third of soft tissue damage in hospitals [98, 99].
Here, the optical fibre pressure sensor was based on an FBG
embedded into a polymer patch with high sensitivity to
contact pressure, which could be used to measure at the
interface between a medical device and tissue [89, 100].

The Arkwright group [101, 102] has recently proposed
an interesting approach to pressure sensing involving the use
of FBG sensors entwined in a double helix, which allows real
time, distributed sensing of pressure to be performed with
inherent temperature immunity. The sensor can be used in
compression bandaging and for in vivo colonic diagnostics
[80]. Compression bandaging is a major approach in health-
care for the treatment of conditions such as venous leg ulcers
and lymphoedema, where precise control of the applied
pressure is essential. The FBG based sensors were blind
tested on 46 humans with results showing a correlation to the
target gradient of 93% [102].

One example of internal tissue damage that can occur is
post-intubation laryngotracheal stenosis, which is caused by
use of an endotracheal tube (ETT) during mechanical venti-
lation. It is a life threatening debilitating condition with a
protracted course, typically requiring multiple complex sur-
gical procedures. ETT is used in mechanical ventilations and
consists of lumen that is used to deliver artificial air and an
inflatable cuff that holds tube in place and ensures that there is

no leak of secretions into the lungs; figure 10. A sensorised
ETT was developed with the aim of aiding a reduction in soft
tissue damage and improving design of future devices.
Optical fibre sensing was used to monitor both cuff contact
pressure (via a packaged FBG) and tissue perfusion (via
reflectance photoplethysmography (PPG), which detects
blood volume changes in the microvascular bed of tissue).
The monitoring system was used successfully in an animal
study, demonstrating reliable measurement of contact pres-
sure and perfusion (PPG) [100]. Both the FBG and the per-
fusion sensor were bonded to the outside of the cuff and an
additional outer cuff was bonded to the ETT in order to
enclose the sensors and inner cuff (figure 10).

The FBG sensor incorporated into the ETT was inter-
rogated using a commercially available system (Smartscan,
Smart Fibres Ltd, Bracknell, UK), which uses a tuneable laser
diode to provide swept wavelength illumination of the FBG.
This wavelength shift is related to the applied pressure after
compensating for temperature by subtracting readings from
an FBG that was not embedded into the patch. Perfusion was
measured using reflectance PPG and the recorded data sent to
a laptop for further processing. The device was tested on six
pigs to investigate whether pressure and blood flow could be
monitored reliably in vivo. The results are shown in figure 11.
It is interesting to note that the FBG could measure changes in
respiration due changes in the contact pressure between the
sensor and trachea (figure 11(a)). The measurements also
revealed that high cuff pressures occluded the blood flow,
such that the pulsatile signal could not be observed at high
pressure but returned when pressure was reduced. The sensor
demonstrated high quality reliable PPG signal return from
tissue when the cuff was brought into optimum contact with
the trachea.

3.3. Respiratory and heart rate and blood flow measurements

The response of an FBG to strain can be used to measure the
periodic mechanical movement of the chest wall caused by
breathing or cardiac contractions and hence monitor respira-
tion and heart rate [103]. Heart rate can be measured using
FBG sensors via the detection of the pressure pulse waveform
(PPW) generated by the heart that travels through the human
body [104]. The principle of operation of such a sensor is
based on the detection of the change of the Bragg wavelength
of an FBG placed close to an artery by the PPW travelling in
the artery. A number of configurations have been demon-
strated, including adhering the FBG to a silicone diaphragm,
which in turn is adhered to a hollow box [105], a portable
pen-like OFS [106], and a lever amplification mech-
anism [104].

Similar principles may be used to measure respiratory
rate, where movement of the chest generates a strain acting on
FBG [103] or LPG [107, 108] sensors. Both LPGs and FBGs
can be embedded into textiles to create wearable unobtrusive
sensor devices [109, 110]. OFS have been used extensively in
monitoring respiration in MRI scanners and a useful review is
provided in [111].

Figure 10. Fibre optic pressure and perfusion sensors bonded to the
ETT cuff and then enclosed within an external cuff. Reproduced
with permission from [100].
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The other physical parameter that is routinely measured
in clinical settings is blood flow [112]. Optical fibre Doppler
flowmetry is used routinely for blood flow measurements
[113]. The role of the optical fibre in this measurement is to
deliver to, and collect light from, the measurement point.
Optical fibre velocimeters have been reviewed in detail in
[114]. The role of the optical fibre in these measurements is
simply to deliver and collect light to and from the measure-
ments point and will not be discussed in further in this review.

4. Biochemical measurands in healthcare

In addition to high sensitivity and low limits of detection, one
of the crucial sensor parameters in biochemical measurements
is selectivity, which is the ability to detect the particular
measurand of interest in the complex matrix of other, often
interfering, measurands (both physical and biochemical). The
optical fibre RI sensing platforms described in section 1 are
not selectively sensitive to a particular chemical measurand
(analyte). There are two approaches that are used to imbue
OFS with a selective response. The first is based on EW
spectroscopy in which interaction between EW and analyte
allows direct analysis of the spectroscopy of an analyte
[115–117], as described in section 1.1. This approach, how-
ever, requires special optical fibres made of material that is
transparent in the IR wavelength range, [118] where bio-
chemical analytes have rich absorption features [119]. These
materials can be chalcogenide glasses, fluoride or silver halide
glasses [118]. At this stage, the use of these special optical
fibres in healthcare is limited because of the potential toxicity
of chalcogenide glasses [120] and further research is required
to better understand their behaviour in biological systems.

The second approach involves the indirect measurement
of the analyte, whereby a chemically sensitive functional
coating, which changes its optical properties when it comes

into contact with the analyte, can be deposited onto the sur-
face of the optical fibre. Using appropriate OFS sensing
platforms, the changes in the characteristics of the coating can
be transduced to a change in the properties of the light pro-
pagating in the fibre. Analysis of the optical fibre’s trans-
mission spectrum can then provide quantitative and
qualitative information on the chemical species under exam-
ination. The use of chemically sensitive coatings means that
the operating wavelength of the sensor is defined by the
coating properties, rather than by the absorption spectrum of
the analyte, which can be advantageous. OFS based on this
approach offer the prospect for the development of cheap and
compact devices, due to the combination of low cost light
emitting diodes and photodetectors. The sensitivity of the
device is dependent on the length of the sensing area and, for
efficient operation, coating materials with strong optical
absorption features should be selected [121]. This section
focuses on the functionalisation of OFS for the development
of biochemical sensors, as this is an area of considerable
research interest and innovation. Although the technology is
maturing there has been little work on its use in vivo.

4.1. Chemical OFS

The detection of chemical compounds in the human body can
be conducted in the gas phase, analysing exhaled gases in the
breath or gases emitted through the skin, or in the liquid
phase, in samples such as urine, saliva, sweat, tears and blood.

4.1.1. Detection in gas phase. Gaseous compounds excreted
from the human body (biomarkers) reflect certain metabolic
conditions as well as the blood gaseous content, which offers a
possibility for the development of non-invasive diagnostics
[122]. The classification of bacteria related to human diseases
[123, 124], urinary tract infections [125] and further progress to
metabolic disorders such as diabetes [126] or renal dysfunction
[127] has been achieved by monitoring biomarkers. Further,

Figure 11. Comparison of the pressure measured by an FBG sensor at the interface between cuff and trachea and a manometer, which
measured intracuff pressure. The oscillation in the contact pressure is due to the mechanical ventilation, which caused a change in contact
pressure as the lungs expanded and contracted. (b) Reflectance PPG with a change in cuff pressure. After reducing the pressure the PPG
signal returns. Reproduced with permission from [100].
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renal failure in rats [128] and lung cancer detection in people
[129] have been achieved using the breath sniffing method and
using arrays of appropriately modified chemo-resistors.

Despite the interest and success in characterizing human
odours, only few methods have the potential to be employed
in clinical practice. Most of these methods have been used for
monitoring the presence of gases such as CO, NO, isoprene
[130], acetone [131], and ammonia [132] in human breath.

CO2 and oxygen are two gases that are routinely
measured in clinical settings [133]. OFS can be used to
measure both of these gases via the simultaneous excitation of
two fluorescent pH sensitive indicators with well-separated
emission bands [134]. It was reported that oxygen can be
continuously monitored in the 0–200 Torr (0–26.6 kPa) range
with ±1 Torr accuracy and that CO2 can be monitored in the
0–150 Torr (0–20 kPa) range with ±1 Torr accuracy. The
accuracy is higher at low partial pressure, so that the detection
limits are defined at ∼0.5 Torr in both cases [134].

In clinical settings, IR spectroscopy (capnography) is
used to detect CO2. In demonstrations of CO2 OFS,
pH sensitive indicators are usually used. Kole et al measured
breath-to-breath CO2 and oxygen using an optochemical
oxygen sensor, exploiting the measurement of the quenching
of the intensity of photoluminescence of the dye platinum
(U)-octaethylporphyrin-ketone [135]. One of the issues with
dye based OFS is the lifetime, as the dye tends to leach and
thus the coating loses its sensitivity. An optical fibre CO2
sensor based on an LPG coated with metal organic
compounds (HKUST-1) to detect CO2 was proposed recently
[136]. The sensor operated in the range of 500–40 000 ppm of
CO2 with the LoD of 401 ppm.

Ammonia is one of the major metabolic compounds and
the importance of its detection has been emphasized recently
because of its correlation with specific diseases such as
dysfunction in the kidney and liver [137–141]. At normal
physiological conditions, ammonia can be expelled from the
slightly alkaline blood and emanated through the skin or
exhaled with the breath. The detection of the ammonia
present in breath or urine can be used for the early diagnosis

of liver or stomach diseases [138]. The development of
sensing devices for measuring ammonia with a sensitivity of
50–2000 ppb and with a fast response time is highly
desired [137].

To the best of our knowledge, there is still no OFS that is
capable of measuring ammonia in the breath. Conventional
methods for the ammonia measurements are mainly based on
gas chromatography mass spectrometry, which, in spite of its
high selectivity and sensitivity, is expensive, requires well
trained operator and is time consuming. The development of
cheap, small, sensitive and reliable sensor devices that can
efficiently operate at different relative humidity (RH) levels
can help to create a point-care medical system that can be
used in daily life.

In past decades, a number of approaches to optical fibre
based ammonia sensing utilizing sensitive coatings have been
reported. Wolfbeis employed fluorescent measurements using
optical fibre probe to measure pH of an indicator solution
[142]. Since then, lossy mode resonances [143], EW
[144–146] fibre gratings and reflection sensors at the tip of
the fibre [147] have been reported. Generally, the LoD ranges
from 10 to 100 s of ppm, which is too high for meaningful
healthcare application. Table 4 summarizes some of the
ammonia sensor parameters reported in the literature.

Although the detection of VOCs is not routinely
conducted in clinical settings, it has high potential as a non-
invasive diagnostic tool and much literature has been published
on the relationship between diseases at the VOCs emitted from
human body [150]. A sensor based on the cladding removed
EW OFS modified with sensitive layer of dye compound that
was tested on several humans was able to distinguish skin
emanations from different people was reported in [151]. Using
this sensor it was also possible to recognize changes in
people’s physiological conditions by applying a pattern
recognition technique (principal component analysis) to
analyse changes in the EW spectrum. The developed system
has a significant advantage in size, simplicity of fabrication and
cost as compared to the arrays of chemical sensors or more
sophisticated gas chromatography techniques. Being able to

Table 4. Summary of optical fibre based ammonia sensor parameters.

Sensor type Sensitive element
Limit of detection (LoD)/lowest mea-
sured concentration (LMC) Response time Reference

Cladding removed eva-
nescent wave

Universal pH indicator 10 ppm(LMC) 5 min [144]

Bromocresol purple/bromocresol
green, dip coating sol-gel

9 ppm (LMC) 0.014 dB ppm−1 8 s [145]

Bromocresol purple, sol-gel 145 ppm (LMC) 10 s [146]
TSPP 6 ppm 15 s [13]

Reflection type ZrO2/PSS Nano-assembled 1 wt% (LMC) Minutes [148]
Oxazine 170 perchlorate 200 ppm (LMC) — [149]

Lossy mode resonance Titanium dioxide containing
TMPyP

0.1 ppm (LMC) 30 s [143]

Grating based PDDA/TSPP 0.67 ppm (LoD) — [147]
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recognize qualitative changes in ‘global body odour’, the
described system has the potential for further development for
application in healthcare for disease diagnostics.

Several OFS have been used to detect VOCs, although none
yet have sufficient sensitivity and selectivity for meaningful
medical application [152]. There have been a number of fibre
optic based VOC gas sensors proposed recently using the
deposition of a sensitive layer on the fibre tip to form an FPI
[153–157], or cladding removed EW sensors, where part of the
cladding is mechanically or chemically removed and then the
functional coating is deposited over the stripped region
[158–162]. Coatings sensitive to VOC vapours have been also
deposited onto the surface of photonic crystal fibres [163] and
LPGs [164–166]. The reported sensors suffer mostly from a long
response time, in the range of 10 s of minutes, and are usually
tested over a limited but biologically relevant concentration range.

Humidity measurement plays an important role in the
monitoring of air delivered to mechanically ventilated patients in
critical care [167] and in monitoring the microenvironment of
chronic wounds [168]. Humidification of inspired gases is an
essential part of clinical treatment in critical respiratory care.
Inhalation of inadequately humidified gas during invasive
(through an ETT placed in the patient’s trachea) or non-invasive
(via a mask placed on the patient’s face) ventilation, causes
drying of the delicate respiratory mucosa and consequent
cooling, mucosal injury, drying of (and difficulty in clearing)
secretions and respiratory deterioration [169]. The clinically
acceptable range of absolute humidity (AH) and RH values at
the level of the upper trachea is between 5mg l−1 (50% RH at
27 °C–28 °C) and 42mg l−1 (85% RH at 34 °C nasal, 95% RH
at 35 °C naso/oropharynx) [170]. Requirements for response
and recovery times of humidity sensors are driven by the
respiration rate and typical need to be faster than 1 s [167].

A number of OFS configurations have been used to measure
humidity, such as FPI using various humidity sensitive thin films
[167, 171–175], de-clad plastic optical fibre [176, 177], hetero-
core OFS [178] and microstructured optical fibres [179]. FBGs
modified with materials that swell and contract when exposed to
water can also be used to measure humidity [180], but this type
of sensor possesses relatively slow response and recovery times
and is thus not suitable for medical application.

The principle of operation of FPI humidity sensors is
based on the detection of the RI change caused by the
absorption of water molecules into a humidity sensitive film,
which can provide fast response to changing humidity levels
[167]. An FPI humidity sensor was reported recently that was
tested within a mechanical ventilator to detect respiration rate,
see figure 12 [167], and to determine the AH delivered into
the lungs [181]. The response time was 1.5 s. The sensor has
also been validated with animal models [100, 182].

Another application of humidity sensing is in wound
healing [177]. A wound dressing that remotely monitors
parameters associated with healing such as the humidity
presented on the wound microenvironment, wound exudate
pH and proliferative cell levels within the wound could have a
significant impact on wound treatment. This monitoring
would enable clinical interventions to take place promptly but
only when required, thus improving wound care and reducing

the number of clinical appointments [183]. The humidity
sensor had sensitivity of approximately −3.87×10–3 and
−9.61×10−3 in transmittance percentage per RH percentage
for the range of ∼10% to ∼75% RH and 90% to 97% RH,
respectively. The proof of concept measurements made on the
skin using a sensor embedded into a wound dressing, see
figure 13, indicated that this sensor has the potential to be
used to monitor the humidity of the skin microenvironment
within a wound dressing, which can be used to provide better
prognosis of healing.

4.1.2. Detection in liquid phase. Knowledge of the pH of
human samples provides valuable information about diseases
[184]. The pH in the human body can vary from 1.35 to 3.5 in
the stomach to 8.0–8.8 in urine and pancreatic fluid. Table 5
provides a summary of the range of pH values and their
function in the human body [184].

The pH level in serum has to be tightly controlled around
to a value around 7.4 (a slightly alkaline range of 7.35–7.45)
[185], which imposes strict demands on parameters of
pH sensors, requiring a resolution better than 0.01 pH. The
most popular approach to optical fibre based pH sensing relies
on the use of dye indicators or fluorophores [186] deposited
on tip of an optical fibre [187] or tapered optical fibres [17].
The principle of operation is based on detection of pH-
induced colour change of the dye indicators, fluorescent
intensity or the lifetime of fluorophores.

Recently, monitoring changes in polyelectrolytes depos-
ited onto optical fibres has become an alternative approach for
pH detection. The principle of operation is based on pH-
induced swelling and contraction of the deposited film that
results in a change of the optical thickness.

Shao et al [188] proposed an optical fibre pH sensor
based on a TFBG coated with a pH sensitive polymeric film,
poly (diallyldimethylammonium chloride) (PDDA) and poly
(acrylic acid) (PAA), using the layer-by layer electrostatic
self-assembly technique. A near-linear pH sensitivity of 117
arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the
range of pH 4.66 to pH 6.02) with 10 s rise time and 18 s fall
time for a sensor with six bilayers of PDDA/PAA was
achieved. Gu et al [189] used a MI modified with poly
(allylamine hydrochloride) and PAA nanocoatings to measure
pH with the linear response in either acid or alkali solution (in
the pH range 2.5–10) with resolution of 0.013 pH unit. Corers
et al [190] coated polyelectrolyte structures onto an LPG for
pH sensor development in the range of 4–7 pH units with
sensitivity of 28.3 nm/pH and response recovery times of
120 s and 270 s, respectively. Goicoechea et al [191] used an
FPI formed at the tip of an optical fibre using a coating of
poly(allylamine hydrochloride) and the polymer PAA to
detect pH with a resolution of 0.051 pH units.

Despite some of the reported optical fibre pH sensors
being tested in vivo [192] and their commercial availability
from Ocean Optics [193] and PreSens [194] with sufficient
performance for medical applications, optical fibre pH sensor
are yet be routinely adopted in clinical settings. As noted by
Mignani [44], this could be associated with some problems
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that have emerged with the use of intravascular OFS, namely
the formation of a thrombus around the sensor tip, which
corrupts the measurement.

The detection of drug concentrations in biological fluids
would aid the appropriate administration of pharmaceutical
compounds to achieve efficient therapeutic effects in humans
or animals [195]. Development of reliable sensors that can
measure selectively a particular drug of interest with sufficient
sensitivity and selectivity is an enormous task. Monitoring of
the levels of antibiotics in the blood is an interesting area of

current OFS research, and successful development would
open a possibility for personalized drug treatments allowing
doses of medication to be given when the level in the blood
drops to near the minimal effective dose. A vancomycin (VA)
sensor based on an LPG modified with molecular imprinting
polymers has been reported [196]. VA is a glycopeptide
antibiotic derived from Amycolatopsis Orientalis. The mode
of action of VA consists of the inhibition of cell wall
biosynthesis and alteration of the permeability of the bacterial
cell membrane. VA has been used to treat various serious

Figure 13. (a) POFHS embedded in a dressing and covered by a clinical gauze as a secondary dressing for humidity measurements. The
unclad visible part of the sensor is 30 mm length. (b) In vivo humidity measurements on the palm of the hand recorded with the POFHS
embedded on a dressing and covered with a clinical gauze as secondary dressing. Reprinted from [177], Copyright (2018), with permission
from Elsevier.

Figure 12. (a) Comparisons of OFS response (blue trace) and capacitive sensor response (red trace) at 15 cm H2O in intermittent positive
pressure ventilation (IPPV) mode and 12 breaths min−1; the black traces correspond to the output of a moving average filter for each device
response. During the measurement period, the temperature increased from 28.2 °C to 30.7 °C in the T-piece. The inset presents a zoom from
200 to 260 s of 15 cm H2O in IPPV mode and 12 breaths min−1; the optical fibre is the only sensor capable of measuring individual breaths
due to its fast response; and (b) comparison of different pressures of IPPV for the same frequency of breaths min−1; the behaviour shown is
consistent for the whole experiment (600 s duration), the pressure of 15 cm H2O always produced a higher RH than 20 cm H2O and 30 cm
H2O. © 2016 IEEE. Reprinted, with permission, from [167].
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gram-positive infections. It is a powerful antibiotic, which in
high doses can be toxic to the ears and kidneys, whilst at low
doses can cause hypersensitivity reactions. Thus it is
important to measure accurately the concentration of VA in
blood to control its administration to patients. Molecular
imprinting is one of the most promising approaches for
achieving specific molecular recognition. The technique is
versatile, as any compound with functional groups can, in
principle, be imprinted in different porogens (either water or
organic solvents). The basic concept of molecular imprinting
is based on the creation of imprints of the template compound
(i.e. chemical molecules or biological species that needs to be
detected—analytes) in a polymeric matrix, achieved by its
incorporation during the polymerization step. The reported
sensor was able to measure concentrations as low as 10 nM
with high selectivity against other commonly prescribed
antibiotics such as amoxicillin, bleomycin and gentamicin. In
addition, the response of the sensor was characterized in a
complex matrix, porcine plasma, spiked with 10 μM of VA.
Adriamycin, an anthracycline antibiotic with antineoplastic
activity, has also been detected using OFS [197]. Lu et al
[197] proposed a fluorescence quenching sensor that was able
to measure adriamycin with detection limits as low as
0.057 μg ml−1 at a signal-to-noise ratio of 3. The developed
sensor was tested in vivo on an animal model.

Propofol (2, 6-di-isopropylphenol) is an intravenous
anaesthetic widely used during surgery and for continuous
sedation in intensive care, and is another example of a drug
where there is demand for its detection. Li et al [198]
demonstrated a system for propofol detection using on-line
molecularly imprinted polymer solid-phase extraction
coupled to fluorescence optical fibre detection. The linearity
was assessed from 0.10 to 15 mg ml−1 of propofol in whole
blood.

4.2. Optical fibre Biosensors

The commonly accepted classical definition of a biosensor is
[199]: ‘Biosensors are a particular class of devices, where the
sensing unit is constituted by a biological recognition ele-
ment, able to recognize in a highly specific manner a selected
target or a class of compounds’. The key in this definition is
‘biological recognition element’ and therefore, as discussed

by Wang and Wolfbeis [200], ‘chemical sensors not using a
biological component but placed in a biological matrix (such
as a pH electrode in blood) are not biosensors by definition’.
Recently, Socorro and Diaz [201] suggested that the bio-
sensor definition should be updated and expanded to include
‘devices capable of monitoring a specific biomedical variable
(including biochemical or physical) and provide information
that can give a rapid and accurate diagnosis of a patient’s
health condition’. Although this is an interesting suggestion,
perhaps this definition is more suitable for a healthcare sensor
rather than a biosensor and therefore in this review we will
follow a classical definition of biosensor as a device with a
biological recognition element. This biological recognition
element, typically bound to an optical fibre via covalent
bonding, could be an antibody [40, 202], an enzyme [203], a
protein [204], or a nucleic acid [205] or even a whole cells
[206, 207], chosen to recognize analytes via biochemical
mechanisms.

The sensing system can be designed to operate in labelled
and label-free mode. The former utilizes fluorescence label-
ling of the analyte and measures changes in fluorescence
intensity caused by the interaction of analyte with the biolo-
gical recognition element [202]. This approach is similar to
enzyme-linked immunosorbent assay, ELISA, which is used
routinely in healthcare [208]. In the development of optical
fibre biosensors, there is more research effort devoted to the
label-free mode, since it overcomes the disadvantages of the
fluorescence methods, such as the additional labelling step
and problems associated with fluorophores, for example their
relatively short lifetime and photobleaching. The label-free
approach is usually based on the detection of changes in
optical thickness (product of RI and geometrical thickness)
associated with the binding of analyte to the biological
recognition element deposited onto an optical fibre. Optical
fibre refractometers based on sensing platforms such as
tapered optical fibres [209–213], LPGs [40, 214–220] and
TFBG [221] coated with biological recognition elements have
been explored for label-free bio-sensing.

Another interesting approach for label-free bio-sensing is
based on so called plasmonic OFS [222]. This approach uti-
lizes noble metals, typically gold or silver, (in the form of a
film or nanoparticles) grafted with bioreceptors and deposited
onto the surface of the optical fibre. The EW is used to excite

Table 5. pH of selected fluids, organs, and membranes reproduced form [184].

Organ, fluid or membrane pH Function of pH

Skin Natural pH is between 4 and 6.5 Barrier protection from microbes
Urine 4.6 to 8.0 Limit overgrowth of microbes
Gastric 1.35 to 3.5 Break down protein
Bile 7.6 to 8.8 Neutralize stomach acid, aid in digestion
Pancreatic fluid 8.8 Neutralize stomach acid, aid in digestion
Vaginal fluid <4.7 Limit overgrowth of opportunistic microbes
Cerebrospinal fluid 7.3 Bathes the exterior of the brain
Intracellular fluid 6.0–7.2 Due to acid production in cells
Serum venous 7.35 Tightly regulated
Serum arterial 7.4 Tightly regulated
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plasmons (oscillation of electrons at the metal–dielectric
interface), which are sensitive to the binding of analytes. One
of the biggest advantages of plasmonic OFS over other label-
free methods is their high sensitivity [223].

In healthcare, biosensors can be used to detect bio-
markers or to detect bacteria directly. Albert et al [223]
reported a plasmonic OFS based on a TFBG coated with a
thrombin binding aptamer, figure 14(a), to detect the protein
human α-thrombin, an important enzyme in the blood-clot-
ting cascade, in its fibrinogen-binding exosite. The authors
demonstrated that the specific interaction between the protein
and the sensor lead to a signal increase after each new higher
concentration, and that an increase of the SPR signal
remained after a final protein buffer wash, revealing the
binding of the analyte to the sensitive layer, figure 14(b).

The authors also proposed a concept for multiplexed
TFBG-SPR sensors embedded across a microfluidic channel;
figure 15 [223]. This concept allows application of several
OFS in a multiplexed array, where the fibres were inter-
rogated sequentially. Each sensor could have its surface
functionalised with a different bio-receptor to capture differ-
ent targets, to provide baseline reference data, or to improve
the LOD through statistical analysis of the response of mul-
tiple identical sensors.

In a similar approach [205], an LPG was functionalised
with an aptamer to detect the outer membrane proteins of
Escherichia coli in the clinically relevant concentration range
between 0.1 and 10 nM. The principle of operation is based
on the measurement of the wavelength shift induced by the
binding of the membrane protein. The sensor could be
regenerated by treatment with acid. An example of an enzy-
matic optical fibre biosensor, where a particular enzyme is
used to detect analyte, is a glucose sensor, which was reported
in [224]. In glucose biosensors, glucose oxidase (GOx) is
attached to the optical fibre and the change of RI due to the
oxidation of glucose by GOx is measured. The sensor

operated in the 0–2.6 g l−1 concentration range and was tested
in whole blood.

Comprehensive reviews of optical fibre chemical and
biosensors have been recently published [3, 199–201, 221].
There are no reports of optical fibre chemical or biosensors
that have been used in clinical settings. Moreover, there are
no publications that have validated optical fibre chemical and
biosensors in vivo, with all published work stopping at the
proof of concept stage in the laboratory setting. The possible
reasons for this and also some suggestions how this can be
overcome are discussed in the next section.

5. Adoption of OFS in healthcare

As described in this article, a wide range of mechanical and
biochemical sensing configurations have been developed in
the laboratory setting that have high potential to make a
significant difference to healthcare. There have been some
successes in niche applications [225] such as measurements
of intracranial pressure (ICP by e.g. FISO, Canada) [86],
intracuff air pressure in intra-aortic balloons (e.g. Arrow
FiberOptix™ Technology by Teleflex, USA), temperature
(e.g. Lumasense, USA) and blood pressure (Opsens Medical,
Canada). These have been motivated by the advantages of
OFS, including their small size, high performance and
immunity from electromagnetic interference. However, it is
reasonable to state that, aside from some successes in niche
markets, optical fibre sensing has not fulfilled its promise in
healthcare. This section offers observations by the authors on
why this might be the case and suggests areas for con-
sideration by those developing OFS in healthcare.

As described in section 2, the technology for pressure
and temperature sensing [1, 2] is well established and
although the costs of fibres and connectors are low they are
still much higher than their wired equivalents. Furthermore,

Figure 14. (a) Schematic diagram of gold coated tilted fibre Bragg grating surface plasmon resonance sensor coated with aptamer receptor
molecules. (b) Normalized amplitude of the TFBG-SPR aptasensor as a function of time, for increasing concentrations of thrombin (the
successive steps of the ladder are: (1) Milli-Q water; (2) DNA buffer; (3) aptamer, 20 μM; (4) thrombin, 0.1 μM; (5) thrombin, 0.5 μM;
(6) thrombin, 1 μM; (7) thrombin, 5 μM; (8) protein buffer; (9) regeneration in 0.2 M of Na2CO3). The inset in the figure illustrates the
relationship between normalized SPR signal change and thrombin concentration, from which binding constant, Kd, can be estimated.
Reprinted from [223], Copyright (2013), with permission from Elsevier.
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interrogation units utilizing tuneable lasers or spectrometers
are expensive. Even though these can be used multiple times
with disposable OFS, the field would benefit from lower cost
interrogation units. Biochemical sensors are less well estab-
lished in healthcare and research is still required in the
development of robust, reproducible protocols that are
acceptable for use within medical device regulations.

Bringing a medical device to market is a costly process
due to the need to comply with medical device regulation and
clinical studies. It is therefore important to understand early in
the development process whether a device is likely to attract
investment and eventually be adopted. Several papers have
discussed the multiple factors associated with adoption of
medical devices. Dymond et al [226] provide advice for
bringing new medical technology to the marketplace. An
innovative technology alone is insufficient and other drivers
such as clinical need, competition with the state of the art and
patient need are all identified as factors. Tasks such as market
analysis; device design; research and development, proto-
typing, clinical trials, regulation and manufacturing can all be
conducted in parallel. A case study reported in [227] dis-
cusses adoption of radiotherapy techniques and identifies a
number of social (e.g. enthusiastic colleagues), financial
(incentives) and scientific (clinical evidence) factors as being
the main reasons that influenced adoption. Although addres-
sing the specific case of technologies for healthy aging, Piau
et al [228] pose useful questions that should be asked during
device development and propose a framework for technology
development that utilizes different evaluation approaches at
different stages of the development process.

Although Rogers’ diffusion of innovation theory [229]
has relevance to healthcare there are some limitations when
applied to public health. In common with diffusion of inno-
vation, clinicians will be influenced by the utility of the
innovation; any disruptions that it may cause to existing
habits, personal or social values, social status of opinion

leaders and whether the clinician is an ‘early adopter’ or a
‘laggard’ [230]. Key clinical opinion leaders clearly have an
important role but other stakeholders such as patients, health
economists, government officials, managers, insurers and
regulators are becoming increasingly important. However,
diffusion of medical technology is different because [230]:

(a) Health and illness is emotive and there is often a
political commitment to offer citizens the latest
advances.

(b) New technologies promise better health and improved
quality of life but are often associated with higher cost
services. Due to scarce resources, decision makers have
to prioritize.

(c) There is a gap between ‘best evidence’ and ‘evidence-
based’ practice and clinical evidence alone is insuffi-
cient to push forward the innovation.

A top-down approach of guidance, such as by the
National Institute for Health and Care Excellence (NICE) in
the UK aims to take an evidence-based approach to recom-
mending medical devices and influences adoption decisions.
The process for providing medical device guidance has been
reviewed [231] and the main reasons for not recommending
devices are lack of evidence, insufficient or uncertain benefit
to the National Health Service (NHS), insufficient or uncer-
tain benefit to patients, uncertain or no cost benefit, lack of
novelty, lack of clarity as to how the technology would be
used in NHS, wrong comparator, design appropriate only to a
small population, usability or technology design issues, or the
evidence does not translate to the UK setting and there is
insufficient demand. It is also noted [232] that it is important
to develop a good plausible value proposition to enable
evaluation of the technology. Many smaller manufacturers do
not properly understand how to construct a persuasive value
proposition and the need to provide appropriate clinical
evidence.

Much work has been conducted in developing models to
assess and demonstrate the value of a new technology early in
the development process (see Maarten et al [233] for a useful
review). This approach has the potential to benefit developers
of OFS technology by steering the area of application. A
particularly useful framework for deciding whether to proceed
with development of a new technology has been proposed
[234], which includes competitor analysis, clinical applica-
tion, value proposition and investor decision. Within this
broader framework an early stage health economic assessment
named the headroom method is proposed in which the new
technology is compared with the current gold standard. The
headroom method is based on optimistic but plausible
assumptions about the performance of a new technology and
then calculates the willingness to pay threshold of a device
purchaser given this performance. If this amount is above the
likely price of a device then a developer is likely to continue
development, if this below then a developer should reconsider
development or refine manufacturing strategy. It has also been

Figure 15. Artist conception of a multiplexed TFBG-SPR sensors
embedded across a microfluidic channel. Reprinted from [223],
Copyright (2013), with permission from Elsevier.
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suggested [235] that this approach could be applied in aca-
demia where the research is applied or translational in nature.

Another key component of successful translation of
medical devices into clinical use is to understand the needs of
the end users. Devices need to be well designed to be safe,
comply with regulations and also be usable. Better commu-
nication is required in order to ensure usable designs [236].
Focus groups are often used, but Martin et al [237] describe a
range of ergonomics methods that are appropriate for eliciting
the needs of end users at different stages in the development
process. Many of these methods and the principles of ergo-
nomics are accessible to device developers. A case study has
also been provided to help demonstrate how a company was
guided away from an application based on user engage-
ment [237].

Additional hurdles are also the lack of standardized
protocols capable of guaranteeing repeatable and reproducible
results [3] and also, for in vivo applications, OFSs require
initial calibration steps before any deployment inside the
body, to overcome a different behaviour in complex matrix
and a different uncalibrated response.

In summary, we believe that for those motivated in
translating technologies into clinical practice, it is essential to
understand the multi-factorial decisions made when adopting
devices. Competing technologies and the clinical need has to
be understood. Early stage health economic tools and
engagement with end users should be performed early in the
development process to guide the technology design and
application area.

6. Conclusions and future directions

This paper reviews different types of OFS and their most
recent applications in healthcare. It aims to help clinicians to
understand OFS technology and to provide an overview of
hurdles that OFS community faces during deployment of
developed technology in healthcare.

As discussed, OFS offer great potential for healthcare
applications. However, despite the maturity of the OFS
technology and the advantages it offers, with few exceptions
we can conclude that OFS technology has not realized its full
potential in healthcare yet. We suggest that the following
reasons are responsible for the low level of implementation of
OFS in healthcare. Beware aware of, and addressing, these
reasons will help to support widespread implementation of
this promising technology.

A variety of types of OFS and inconsistency in reporting
their performance make it difficult for end users (clinicians) to
choose an appropriate design for optimal implementation in
particular areas of healthcare. For instance, tapered optical
fibres, despite their high sensitivity and simplicity in fabri-
cation, require careful packaging as the mechanical strength
of the fibre is reduced during tapering and it is not straight-
forward to use them in vivo.

There are a number of regulatory and adoption chal-
lenges of accepting technology in healthcare. For instance,
there was a gap of 2.5 years between animal trials [100] and

the recently conducted human volunteer tests, of which 1 year
was spent on completing regulatory documentation. Under-
standing early the value of a technology to healthcare pro-
viders is very important in the device development process.

There has however been successful testing of OFS in vivo,
measuring temperature, pressure and strain using grating based
approaches. Sensors based on gratings retain the mechanical
stability of the optical fibre and also avoid referencing issues. It
is also worth noting that these examples are comprised of
physical parameters as these are generally easier to detect and
use in diagnostics than biochemical measurands. We believe
that the most promising future directions are in niche appli-
cations of OFS technology, where no other sensors can be
deployed, and also in systems capable of multi-parameter
measurements, where a single optical fibre with a number of
multiplexed sensors provides information simultaneously on
several variables. Again, understanding user requirements is
important early in the development process.

For chemical and biosensors it is noted that the use of
OFS technology to detect gases emitted from human body is
fairly mature in research terms and there are many such
sensors reported, but again with limited examples of in vivo
applications. There are no examples of in vivo applications of
biosensors. Which most likely is owing to the complexity of
sensor development, which needs to take into account not
only the design of the OFS but also that of the sensitive layer
deposited onto the optical fibre. It also requires pre-calibration
steps to take into account complex medium for in vivo
applications. In the majority of cases, the response of these
sensors is non-reversible and their lifetime is limited by the
lifetime of the sensitive layer, which makes it difficult in
practical implementation and additional steps of sample col-
lection are required. Future directions will evolve in the
development of robust OFS that can be tested in vivo. For
instance, these sensors could use grating based biosensors
modified with artificial bioreceptors, such as molecularly
imprinted polymers, as they are more stable than natural
enzyme/DNA/aptamer based bioreceptors. For in vitro
applications in analytical sciences, OFS can be used to
measure minute volumes (in order of femtolitres [238]) of
human samples, which is especially attractive when volume
these samples is limited, for instance saliva, tears and inner-
ear fluids.
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