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a b s t r a c t

Vibrational and acoustic energy distributions of wave fields in the high-frequency regime
are often modeled using flow transport equations. This study concerns the case when
the flow of rays or non-interacting particles is driven by an uncertain force or velocity
field and the dynamics are determined only up to a degree of uncertainty. A boundary
integral equation description ofwave energy flowalong uncertain trajectories in finite two-
dimensional domains is presented, which is based on the truncated normal distribution,
and interpolates between a deterministic and a completely random description of the tra-
jectory propagation. The properties of the Gaussian probability density function appearing
in the model are applied to derive expressions for the variance of a propagated initial
Gaussian density in theweak noise case. Numerical experiments are performed to illustrate
these findings and to study the properties of the stationary density, which is obtained in
the limit of infinitely many reflections at the boundary.
©2018 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Noise and vibration simulations for mechanical structures are commonly based on numerical solutions of linear wave
equations. Popularmethods include finite elementmethods, finite volumemethods, boundary elementmethods or a variety
of spectral methods. However, numerically approximating the solutions of wave equations directly has two potential
drawbacks. Firstly, the number of degrees of freedom in the numerical model needs to be increased as the frequency
is increased to maintain a fixed accuracy level. If the local wavelengths are significantly smaller than the dimensions of
the physical system, then this requirement can become computationally prohibitive. Secondly, uncertainties play a more
important role at higher frequencies when the structural modes become sufficiently dense that they can switch positions
due to small structural differenceswithin standardmanufacturing tolerances.When the resonance shifts become larger than
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the mean distance between the structural modes then wave based models of a vibrating system deviate from experimental
data, nomatter how accurate the numerical wave solver. These issues can be addressed by instead using statistical methods,
such as Statistical Energy Analysis (SEA) [1], to predict averaged energy distributions as well as higher order statistical
moments via random matrix theory [2]. However, SEA only provides a coarse description of the modeled structure since
constant energy levels are assumed throughout relatively large substructures and the validity of such a model can therefore
be difficult to ascertain a-priori [3].

The vibrational or acoustic energy distributions predicted in SEA can be modeled with a higher spatial resolution by
considering high-frequency wave energy transport in terms of a geometrical ray description [4]. Wave effects such as
interference and diffraction are not included in themodel, which is recast in terms of tracking densities of rays or particles in
phase-space. The computational cost of directly tracing rays or beams from a source to a receiver scales with the number of
paths thatmust bemodeled. For complex domains includingmany reflections this can lead to unfeasibly large computational
models. For example, applications in room acoustics are typically limited to (at most) second order reflections [5]. In built-
up mechanical structures it may also be necessary to include mode conversion and refraction in the model. Here, indirect
methods based on propagating ray densities (instead of the rays themselves) through phase-space such as the so-called
Dynamical Energy Analysis (DEA) method [4,6–8] can provide a more practical alternative. The deterministic propagation
of ray densities through phase-space is governed by the Liouville equation, the solution of which can be expressed in
terms the so-called Frobenius–Perron operator [9]. In general, this linear integral operator transports ray densities along
the trajectories of a dynamical system and is often termed the transfer operator. These ideas have also found their way into
the literature in computer graphics [10] and room acoustics [11] amongst others, where the corresponding transfer operator
equation is more commonly known as the rendering equation.

In this work we consider wave energy transport through uncertain two-dimensional domains in the high-frequency ray
limit,which leads to a stochastic velocity field driving the energy transport.Wediscuss the propagation of these uncertainties
using stochastically smoothed transfer operators [9,12–14]. These operators propagate densities along stochastic ray
trajectories, where both the arrival position of the ray and the nature of its reflection at the boundary will be considered
as uncertain. Physically, these uncertainties may be due to an uncertain boundary geometry, including rough boundary
scattering, or propagation through media with random inhomogeneities. This gives rise to both uncertain ray trajectories
and uncertainties in the reflected direction, leading to probabilistic positions andmomenta. Typically, themean transported
position and reflected direction relate to those of the underlying deterministic ray flow with specular reflections.

Stochastic transfer operators have also been employed more widely for modeling probability density distributions ρ as
they are transported along trajectories X in phase-space [15]. Assuming X(t) is a stochastic process defining the phase-space
coordinates of the trajectory at time t , then it can be described via a stochastic dynamical system of the form

dX(t) = V(X(t))dt + σdW (t), (1)

where σ > 0, W is a phase-space Wiener process and V is a (deterministic) vector field. The solutions of this dynamical
system X are related to the probability density ρ via

Prob(X(t) ∈ A) =

∫
A
ρ(Y , t)dY .

For sufficiently smooth vector fields V, then conservation of probability leads to a continuity equation of the form

∂ρ

∂t
+ ∇ · (Vρ) =

σ 2

2
∆ρ, (2)

known as the Fokker–Planck or forward Kolmogorov equation. The solution of this equation in R2 (with phase-space R4)
may be represented using a Wiener integral along a small time increment δt of the form [16]

Lt
[ρ](X) =

1
(2πσ 2δt)2

∫
R4

e−
1

2σ2
∫ t
0 (Ẋ(τ )−V(X(τ )))2dτ

ρ(Y , 0)dY (t), (3)

which is sometimes referred to as the Fokker–Planck operator [13]. We note that the proper definition of Ẋ(τ ) is a delicate
issue that we avoid here by using a reformulation of the model for discrete flow maps, described later.

The classical method for computing phase-space densities transported via deterministic transfer operators dates back
to the early sixties and is known as Ulam’s method [17]. In this approach the phase-space is subdivided into cells, and
local approximations of the transition rates between these cells are applied. More recently, modified Ulam-type methods
have been devised for the case of stochastic transfer operators, see for example Refs. [15,18]. Alternatively, periodic orbit
techniques have been developed for stochastic transfer operators since the late nineties [12,19–22]. Initial studies focused on
determining spectral properties of the Fokker–Planck operator for Langevin flows in the weak noise limit. More recent work
has considered higher dimensional cases [13] and the estimation of stationary distributions [23]. On the other hand, one
may also consider the modeling of uncertainties in stochastic dynamical systems propagated via a deterministic transfer
operator [24]. The equivalence of such an approach to stochastic transfer operator based models is well-known, see for
example Ref. [21].

In this work we consider the case where V describes a Hamiltonian vector field, and hence the divergence operator in the
Fokker–Planck equation (2) reduces to the Poisson bracket ∇ · (Vρ) = {ρ,H}, where H is the associated Hamiltonian. Ray
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Fig. 1. Tracking ray trajectories via a noisy boundary map.

tracing can be interpreted in the sense of modeling rays as trajectories of particles following Hamiltonian dynamics, and so
this special case includes short wavelength asymptotic approximations to high-frequency waves modeled via the evolution
of a probability density (or wave energy density if

∫
ρ(Y , t)dY is not necessarily equal to unity) along ray trajectories. We

will focus on stationary solutions of the Fokker–Planck equation satisfying

{ρ,H} =
σ 2

2
∆ρ, (4)

where the corresponding wave problem is now formulated in the frequency-domain, instead of the time-domain [7]. Eq. (4)
will therefore form our underlying basic model for the long-time stochastic evolution of densities along ray trajectories
through two-dimensional domains. We will also consider the generalization to the case when σ is replaced by a vector σ,
which specifies differing levels of diffusion in position and momentum space.

The aim of this work is to uncover how a source probability density evolves through uncertain two-dimensional domains
under the action of the stochastic evolution operator, and thus to quantify uncertainties in solutions of Eq. (4). In order
to track the density through reflections at the boundary of the domain, we reformulate the Fokker–Planck operator (3) to
evolve a discrete map ϕ, instead of a continuous time trajectory evolution X(t). The map ϕ corresponds to discrete values
of X(t) at times when the trajectory is positioned on the boundary of the domain Ω ⊂ R2. Note that this reformulation
leads to a reduction in dimensionality; the boundary phase-space coordinates in position and momentum are both one
dimension lower than before. The trajectory evolution X(t) at the discrete set of boundary intersection timesmay bewritten
a stochastic boundary map ϕσ(X) = ϕ(X) + Xε , where Xε is a vector of independent random variables. In particular, the
probability density function (PDF) fσ from which these random variables are drawn appears as the kernel of our modified
stochastic transfer operator [14]. In contrast with the Gaussian PDF appearing in (3), the support of the PDFs fσ considered
here are, in general, bounded. In the simplest case the PDF could describe a uniformly distributed probability of location
and tangential momentum, which leads to a non-parametric SEA-type approach as described above. In this study we will
instead base our model on the truncated normal distribution, which includes the uniform distribution model as a limiting
case. We will focus, in particular, on the weak noise case with near deterministic dynamics when the truncated Gaussian
PDF approximates a Dirac delta distribution. Finally, we consider the influence of damping on the dynamics, and ultimately
the level of noise present in the stationary density ρ.

2. A boundary integral description of stochastic propagation

Let Ω denote a finite two-dimensional domain with an associated speed of propagation c. Consider phase-space
coordinates (r, p) ∈ Ω×R2, where r is the spatial position and p is themomentum or slowness vector. When c is a constant,
the Hamiltonian Ĥ = c|p| = 1 describes trajectories within Ω moving in straight-line paths between reflections due to
hitting the boundary Γ = ∂Ω . We write the phase-space coordinates on Γ as X = (s, p), where s is an arc-length parameter
for Γ and p = c−1 sin(θ ) is the tangential component of the momentum vector p at the point s. Here θ ∈ (−π/2, π/2) is the
angle between the trajectory leaving the boundary at s and the normal vector to Γ at s. We will restrict to convex polygonal
domainsΩ to avoid additional complications due to incorporating visibility functions and curved edges.

The stochastic propagation of a phase-space density ρ between intersections with the boundary Γ is described by an
operator of the form [14]

Lσρ(X) =

∫
Q
fσ(X − ϕ(X ′))ρ(X ′)dX ′. (5)

Here, Q = Γ × (−c−1, c−1) denotes the phase-space on the boundary and ϕ : Q → Q defines the boundary flow map
mentioned earlier, which maps a vector in Q to another vector in Q . The boundary map ϕ(X ′) describes a deterministic
evolution from X ′

= (s′, p′) to (ϕs(X ′), ϕp(X ′)), where the straight-line trajectory with initial position s′ and momentum p′
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next intersects Γ at position ϕs(X ′) and the momentum ϕp(X ′) corresponds to a specular reflection at ϕs(X ′). The kernel of
the boundary integral operator (5) is given by a probability density function (PDF) fσ such that∫

Q
fσ(X − ϕ(X ′))dX ′

= 1, (6)

where σ = (σs, σp) is a parameter set controlling the shape of fσ as a function of position s and momentum p. The physical
meaning of the term fσ(X − ϕ(X ′)) is that it gives the probability of a particular arrival position and tangential momentum
X relative to the deterministic boundary map ϕ. For example, if fσ is a PDF with mean zero, then the mean arrival position
and tangential momentum X is ϕ(X ′) and so, on average, trajectories will travel acrossΩ in a straight-line path and undergo
specular reflections at the boundary. On the other hand, if fσ is a uniform distribution then the trajectories are equally likely
to arrive at any position on the boundary within the support of the PDF and undergo Lambertian reflection when they reach
Γ .

We choose fσ to be an uncorrelated bivariate truncated normal distribution as detailed in [14] and sketched below.
The truncation limits arise from the interpretation of the evolution given by the operator in Eq. (5) as originating from a
stochastic boundary map ϕσ(X ′) = ϕ(X ′) + Xε with added noise Xε = (sε, pε). For X ∈ Q given, we have to ensure that
ϕ(X ′) = X − Xε is still in the range of the deterministic map ϕ; this gives rise to restrictions on the possible values of Xε and
thus on the domain of fσ . Denoting these truncated ranges by (X−, X+) where X± = (s±, p±), the PDF fσ will have support
on Xε ∈ (s−, s+) × (p−, p+) only, as depicted in Fig. 1 for the spatial limits s±. In the momentum coordinate we have that
p+ = c−1

− ϕp(X ′) and p− = −c−1
− ϕp(X ′).

A cut-off function of the form χ(X−,X+)(Xε) = χ(s−,s+)(sε)χ(p−,p+)(pε) for restricting the support of fσ to (X−, X+) can be
defined using step functions as detailed in Ref. [14]. An uncorrelated bivariate truncated normal distribution may then be
expressed as

fσ(Xε; X±) =

⎛⎝χ(s−,s+)(sε) exp
(
−

s2ϵ
2σ2

s

)
√
2πσsψσs (s±)

⎞⎠
⎛⎜⎝χ(p−,p+)(pε) exp

(
−

p2ϵ
2σ2

p

)
√
2πσpψσp (p±)

⎞⎟⎠
= fσs (sε)fσp (pε), (7)

where the normalization defined through ψσs and ψσp is given as

ψσs (s±) =
1
2

(
erf

(
s+

√
2σs

)
− erf

(
s−

√
2σs

))
, (8)

and ψσp is defined analogously. The scaling ensures that the PDF satisfies condition (6) for the truncated sampling ranges
specified through χ(X−,X+). The mean and variance of fσ differ, in general, from that of the underlying normal distribution,
that is, from 0 = (0, 0) and σ = (σs, σp), respectively. As σs → 0 and σp → 0, then one obtains a deterministic propagation
model as fσ becomes an increasingly peaked Gaussian, which tends to a two-dimensional Dirac delta in the limiting case.
That is, the ray will follow a straight-line path prescribed by the initial vector X ′ when σs → 0 and will reflect specularly
upon reaching Γ when σp → 0. On the other hand, in the limit as σs → ∞ and σp → ∞ then fσ becomes a uniform
distribution [14]. That is, for σs → ∞ the ray will travel to all points on Γ \ E(s′) with equal probability, where E(s′) is the
polygonal edge containing s′ as shown in Fig. 1. The limit σp → ∞ corresponds to the ray undergoing Lambertian reflection
upon reaching Γ . We note that the connection to the Lambertian reflection law can be explicitly derived by noting that a
uniform distribution over p means that each possible p ∈ (−c−1, c−1) must have probability c/2. If we change the variable
from p to θ using p = c−1 sin θ , then we obtain

1 =

∫ c−1

−c−1

c
2
dp =

∫ π/2

−π/2

cos(θ )
2

dθ, (9)

which is Lambert’s (cosine law) distribution cos (θ) /2 for the probability of each reflected direction θ . The transition from
σp = 0 to σp → ∞ therefore corresponds to the classical model in room acoustics for interpolating from pure specular
reflection to Lambertian reflection.

The mean and variance of the truncated normal distribution may be calculated from the PDF (7) using the standard
formulæ. The variance of the bivariate distribution will tend to σ in the weak noise limit as σ → 0. In the next section, we
begin by deriving a model for quantifying the uncertainties propagated by the operator (5) in this weak noise limit.

3. Uncertainty quantification

The stochastic propagationmodel introduced abovemay be used to describe a number of types of parametric uncertainty
arising in a high-frequencywavemodel, including uncertain sources, geometry andmaterial parameters. An additional paper
on this topic is currently being prepared [25], where it is shown that in the weak noise asymptotic regime one can derive
direct connections between the variance for a normally distributed and linearly varying noise term in the propagation speed
c and the parameters σs and σp considered here. A similar analysis is also performed for an uncertain boundary location.
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Some introductory work in this direction is reported in Ref. [26]. However, in this work we instead study the effect of the
stochastic propagation model on the statistical properties of a prescribed initial probability density ρ0. We make use of
the fact that in the weak noise regime, the noisy trajectory map may be linearized about the corresponding deterministic
trajectories, using the noise as the expansion variable [13,22]. An alternative approach for the strong noise case is to instead
analyze non-parametric uncertainties in the sense of SEA. In this case a uniformly distributed density will be mapped to
another uniformly distributed density and the variance depends only on the sizes of the domain and range of the noisy flow
map ϕσ .

3.1. Weak noise approximation of the variance evolution

Consider the propagation of a density from the phase-space boundary coordinate X ′
= X̄ ′

+ X ′
ε , via the noisy flow map

ϕσ , to the phase-space boundary coordinate X = X̄ + Xε . Here the over-bar notation relates to the deterministic (or mean)
trajectory coordinate and the ε subscript is used to indicate the noise term in each case. Let the truncation limits for Xε
be denoted X± as before, and for X ′

ε we correspondingly denote the truncation limits by X ′
±
. The deterministic trajectory

evolution is then described by ϕ(X̄ ′) = X̄ , and taking the Taylor expansion of ϕ(X ′) about X̄ ′ leads to

ϕ(X ′) = ϕ(X̄ ′) +

[
∂ϕ

∂X ′

]⏐⏐⏐⏐
X ′=X̄ ′

X ′

ε + · · ·

≈ X̄ + JX ′

ε,

where we have used J to denote the 2 × 2 Jacobian matrix [∂ϕ/∂X ′
]|X ′=X̄ ′ . Combining this expansion with the relation

X = X̄ + Xε leads to the approximation X − ϕ(X ′) ≈ Xε − JX ′
ε , which is valid in the weak noise limit. The stochastic

transfer operator (5) may therefore be approximated as the convolution

Lσρ(X) ≈

∫ X ′
+

X ′
−

fσ(Xε − JX ′

ε)ρ(X̄
′
+ X ′

ε)dX
′

ε. (10)

Note that for a flow between two prescribed edges of a polygonal domain Ω , the deterministic trajectory flow has the
property that the final direction is independent of the initial position, and hence we have J21 = 0 in the matrix J above.

In this work we consider boundary source terms of the form

ρ0(s, p) =
exp

(
−p2/(2σ 2

0 )
)

A
√
2πσ 2

0 erf
(
1/(

√
2σ0c)

) (11)

for s belonging to specified edges of a polygonal domain Ω of cumulative length A, and ρ0(s, p) = 0 otherwise. This type
of source term was introduced in Ref. [14] and for small σ0, it corresponds to a unit boundary density propagating (on
average) with momentum p = 0, perpendicular to the boundary (the extension to other mean propagation directions is
straightforward). For large σ0 it corresponds to random propagation from the specified part of the boundary. Applying the
weaknoise stochastic transfer operator (10) toρ0 givenby (11) in theweaknoise limit leads to a convolution of twoGaussians
in the momentum coordinate as follows:

Lσρ0(X) ≈

1
A

∫
∞

−∞

exp
(

−
p′2
ε

2σ2
0

)
exp

(
−

(pε−J22p′
ε )

2

2σ2
p

)
2πσ0σp

∫
∞

−∞

exp
(
−

(sε−J11s′ε−J12p′
ε )

2

2σ2
s

)
√
2πσ 2

s

ds′εdp
′

ε. (12)

Here we have used that J21 = 0 and the scaling factors tend to 1 and the integration limits can be extended to ±∞ in the
weak noise limit; the rapid decay of the Gaussian away from the deterministic trajectory means that the extended regions
of the integral are essentially zero. The integration with respect to s′ε can be evaluated in terms of the error function and on
substitution of the limits simplifies to |J11|−1. Hence

Lσρ0(X) ≈
1

A|J11|

∫
∞

−∞

exp
(

−
p′2
ε

2σ2
0

)
exp

(
−

(pε−J22p′
ε )

2

2σ2
p

)
2πσ0σp

dp′

ε

=

exp
(

−
p2ε

2(σ2
p +J222σ

2
0 )

)
A|J11|

√
2π (σ 2

p + J222σ
2
0 )
, (13)

which is a Gaussian in the momentum variable with variance term J222σ
2
0 + σ 2

p .
We observe that for the choice of initial densityρ0 given by (11), the variance term σ 2

s for the stochastic propagation of the
position variable does not enter the above expression for Lσρ0 in the weak noise regime. However, the above analysis can in
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principle be generalized to (truncated) Gaussian boundary source terms in both the position and momentum variables, and
even to sources and propagation operators including correlations—see Ref. [13]. In themost general case, a bivariate Gaussian
source distribution with covariance matrixΣ0 is mapped, under the action of a weak noise stochastic transfer operator with
a bivariate Gaussian kernel and covariance matrix Σ, to a bivariate normal distribution with covariance JΣ0JT + Σ [13].

We have therefore shown how the variance of the initial probability density ρ0 evolves as it is propagated by the operator
Lσ in the weak noise regime. After applying sufficiently many iterates of Lσ , the variance will converge only if J222 < 1,
in which case the limiting value is σ 2

p /(1 − J222) and is independent of σ 2
0 . Note that if J222 is close to, but still less than 1,

then the weak noise assumption will eventually be violated. This is also the case if J222 = 1 or J222 > 1, where the weak
noise theory would predict incorrectly that the variance tends to infinity (linearly or exponentially, respectively) as the
number of iterations of Lσ is increased. For the polygonal domains considered here we have J22 = − cos(θ̄ )/cos(θ̄ ′) where
θ̄ ′

∈ (−π/2, π/2) is the angle between the trajectory specified by X̄ ′
= (s̄′, p̄′) and the normal vector to Γ at s̄′, and

analogously for θ̄ . For a general polygonal domainΩ , the situation can become complex with some regions of phase-space
where the variance is converging, and other regions where it is diverging as the number of iterations of Lσ is increased.
In fact, for every trajectory with a converging variance there exists the same trajectory, which if traversed in the opposite
direction, will diverge. Whether a particular trajectory actually enters the model in the weak noise regime will depend on
both the source term and the geometry of Ω . The predictions for the variance of the propagated density detailed in this
section will be tested numerically in Section 4.2.

3.2. Long-time behavior and the stationary density

The long-time behavior of the stochastic propagation model will be studied by considering the sum

ρn =

n∑
j=0

Lj
σρ0, (14)

where Lj
σ denotes the jth iterate of Lσ . Taking the limit as n → ∞ in (14) leads to a stationary density ρ = ρ∞ as described

by Eq. (4). However, this sum only converges if damping is present, in which case the stationary density may be computed
using the standard Neumann series result and hence by solving the second-kind integral equation

(I − Lσ)ρ = ρ0. (15)

Note that here Lσρ0 no longer corresponds to a probability density since the damped version of the operator Lσ no longer
conserves probability/energy. For the case when the weak noise assumption is only violated in Lj

σρ0 when j is sufficiently
large, then the level of noise contributing to the stationary density from later iterates could be controlled by damping. We
will apply damping in the model via a multiplicative factor of the form exp(−µd(s, s′)) inside the integral defining Lσ (5),
where d(s, s′) denotes the Euclidean distance between the boundary points s′ and s and µ ⩾ 0 is the attenuation per unit
(ray) length. In Section 4.2, we will investigate numerically the extent to which a given damping parameter µwill diminish
the contributions to the stationary density ρ from the later iterates of Lσ , relative to the early iterates where the weak noise
approximation may be valid.

4. Implementation and results

In this sectionwe describe the discretization of the operatorLσ and then calculate the statistical properties of a truncated
Gaussian probability density (11) after it has been transported under the action of Lσ .

4.1. Discretization

The operatorLσ is bounded and compact for σs, σp > 0 [27], unlike the corresponding deterministic operator (Frobenius–
Perron operator) studied, for example, in Ref. [7] and obtained in the limit σs, σp → 0. As a consequence we may apply any
standard method for the discretization of the integral operator Lσ , such as the Nyström, collocation or Galerkin methods. In
contrast, for a direct discretization of the Frobenius–Perron operator one is restricted tomethods that regularize the operator
by imposing it in a weak form and so typically Galerkin methods are employed [7].

The discretization of the operator Lσ is performed using piecewise collocation in the position variable s and the Nyström
method in the momentum variable p as described in Ref. [14]. However, a notable improvement on the methods presented
in [14] is achieved by using appropriately sub-divided Clenshaw–Curtis quadrature for the Nyström method, which leads
to spectral convergence of the approximation scheme in p as reported in Ref. [28]. The choice of the piecewise constant
collocation method in space has the major advantage that the boundary integrals required for the evaluation of Lσρ may be
carried out analytically. Note also that for the polygonal domains considered in this work one cannot, in general, expect a
high degree of regularity in the spatial dependence of the density ρ.
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The first step towards implementing the discretization scheme described above is to divide Γ into n boundary elements.
We then separate the spatial and momentum variable dependence of the density ρ and project onto a piecewise constant
spatial basis as follows:

ρ(s, p) ≈

n∑
j=1

ρj(p)bj(s). (16)

Here ρj are a set of directionally dependent expansion functions to be determined and bj are a set of piecewise constant
spatial basis functions; i.e. bj(s) = 1 if s lies on the jth boundary element and zero elsewhere. Substituting (16) into (5) we
obtain

Lσρ(X) ≈

n∑
j=1

∫
Q
fσ(X − ϕ(X ′))ρj(p′)bj(s′) dX ′

=

n∑
j=1

∫ c−1

−c−1
ρj(p′)fσp (pε)

[∫
ej

fσs (sε) ds
′

]
dp′, (17)

where ej = [αj, βj] ⊂ Γ denotes the jth boundary element. Note that the (spatial) integral with respect to s′ appearing in
(17) can be solved analytically in terms of the error function erf; this remains tractable if we include an additional damping
factor of the form exp(−µd(ϕs(X ′), s′)). In what follows, we denote this spatial integral as S jµ, where

S j0(s, p
′) = −

1
2ψσs (s±)

erf
(
s − ϕs(X ′)

√
2σs

)⏐⏐⏐⏐s′=βj(p′)

s′=αj(p′)
(18)

for the undamped case when µ = 0. Note that the integration limits lie at the end points of (or inside) the jth boundary
element ej; if the limit is inside the element then it corresponds to the pre-image of a vertex of the domain for rays with
direction p′.

We now change the variable in the momentum integration from p = c−1 sin(θ ) to the direction angle θ and define
collocation points si, i = 1, . . . , n, where si is chosen as the centroid of the ith boundary element. Applying a numerical
integration rule with nodes pk and weights wk, for k = 0, . . . , K , then the combined collocation and Nyström method
discretization of Lσρ is given by

(Lσρ)(si, pκ ) ≈ c−1
n∑

j=1

K∑
k=0

wkρj(θ ′

k)fσp (pε(θk, θ
′

k))S
j
µ(si, c

−1 sin(θ ′

k)) cos(θ
′

k), (19)

where i = 1, . . . , n, κ = 0, . . . , K and fσp is given by (7). As mentioned earlier, the quadrature rules employed for
the simulations in the next section are based on the Clenshaw–Curtis rule applied to a number of sub-divisions of the
direction integral. The subdivisions are performed atmomenta p′ where the spatial integral S jµ(s, p

′) can becomenon-smooth.
Explicitly, these momenta correspond to directions where the ray arrives at a corner of the polygonal domainΩ , or at one
of the collocation points. Note therefore that the number of sub-divisions in the Nyström method quadrature rule both
grows as the spatial mesh is refined, and depends on which element j contains the starting point of the trajectory. For the
numerical experiments reported in the next section, we simplify the implementation by fixing the number of subdivisions
for all elements to be the maximum required for any particular j = 1, . . . , n.

4.2. Numerical results

In this section we evaluate Lσρ0 for the case whenΩ is a rectangular domain and estimate its variance in both the strong
andweak noise regimes.We thenmove on to consider damped problems and properties of the stationary density. The reason
for choosing this relatively simple domain is that it is straightforward to keep track of the deterministic trajectory paths. This
property helps when interpreting the results in the weak noise case, particularly after multiple iterations of Lσ . We choose
the rectangular domain to be

Ω = {r = (r1, r2) ∈ R2 such that 0 < r1 < 0.75, 0 < r2 < 0.25}

and impose a non-zero source boundary density ρ0 given by (11) along the left-hand edge at r1 = 0 only. We choose the
propagation speed as c = 1 meaning that both the position and momentum variables have the same range. Hence the
values of the parameters σs and σp, governing the level of noise in the position and momentum of the flow map ϕσ , are
directly comparable. The predictions in Section 3 for the limiting cases of weak and strong noise will be compared against
direct calculations on the computed densities ρ(s, p) using the standard formulæ for the mean ρ̄(s) and variance v(s) given
by

ρ̄(s) =

∫ 1
−1 p ρ(s, p)dp∫ 1
−1 ρ(s, p)dp

and v(s) =

∫ 1
−1 p

2ρ(s, p)dp∫ 1
−1 ρ(s, p)dp

− (ρ̄(s))2, (20)
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respectively. We note that the normalization factors (denominators) have been introduced to generalize to the case when
ρ(s, p) is not necessarily a probability density in the momentum variable as a function of s.

For the particular example of the rectangle described above, the underlying deterministic propagationmodel corresponds
simply to rays leaving the left edge perpendicular to the boundary, then arriving at the right edge and reflecting through
π rad, and so on. Before proceeding to the computational results for this example, we summarize the corresponding main
results from Section 3 (with no damping µ = 0) for clarity as follows:

• In the weak noise case σ0, σs, σp ≪ 1, an initial density ρ0 of the form (11) on the left-hand edge with approximate
variance σ 2

0 will map (after one reflection) to a density Lσρ0 on the right-hand edge with approximate variance
v(s) = σ 2

0 + σ 2
p , since cos(θ̄ ) = cos(θ̄ ′) = 1 and so J222 = 1, |J11| = 1 - see Eq. (13).

• Theweak noise theory predicts that the limiting value of the variance after infinitelymany reflectionswill diverge, since
the explicit expression for the limit is σ 2

p /(1 − J222) and J222 = 1. We therefore expect that the weak noise predictions
will become invalid after a finite number of reflections.

• In the strong noise case with large σp > 1, the variance of Lσρ0 (after one reflection) on the right-hand edge will
be v(s) = 1/3. As the reflection order increases, the density will spread over all edges with (normalized) variance
v(s) = 1/3.

4.2.1. Statistical properties of Lσρ0
Initially we consider the undamped case (µ = 0) and analyze the effect of different choices of the parameters σ0, σs and

σp on the density Lσρ0. The left sub-plot of Fig. 2 shows the computed boundary phase-space density ρ1 = ρ0 + Lσρ0 in
the weak noise case with σ 2

p = σ 2
0 = 1e−4 and σs = 0. (Note that the exact spatial integral S jµ, j = 1, . . . , n defined in

the previous section still converges in the case σs = 0.) For this plot we have used Eq. (19) to compute Lσρ0 with a total of
1025 quadrature points for the Nyströmmethod in themomentum variable (that is, K = 1024) and n = 88 spatial boundary
elements. The right sub-plot of Fig. 2 shows the numbering of the spatial collocation points around the rectangular boundary
Γ . The space axis in Fig. 2 has been divided by a white line separating ρ0 on the left side of the rectangle Γ (elements 78 to
88), and Lσρ0 on the other three sides of Γ (elements 1 to 77). Elements 34 to 44 correspond to the right hand side of the
rectangleΓ as shown in the right sub-plot of Fig. 2, and in theweaknoise regime it is essentially only these elements onwhich
the density Lσρ0 has support. Note that the sharp change of solution behavior between different edges is a consequence of
the parameter choice σs = 0. The weak noise behavior of the model is therefore as expected; a Gaussian with a sharp peak
at the p = 0 (perpendicular to the boundary) on the left-hand edge of Γ is transported by Lσ to another Gaussian on the
opposite edge with a slightly broadened distribution, again peaking at p = 0. We note that physically, the behavior shown
in Fig. 2 is close to that of a specular reflection at the right-hand edge of the domain; however, a pure specular reflection
would appear as an infinite Dirac delta peak at p = 0 from collocation points 34 to 44.

In Fig. 3 we investigate the effect of the parameters σp, σs and σ0 on the variance of Lσρ0, computed using (20). Each of
the three rows of the plot correspond to one of the parameters being varied whilst the other two are fixed sufficiently small
for the weak noise theory to be applicable. The default values for the fixed parameters are those from Fig. 2: σ 2

s = 0 and
σ 2
p = σ 2

0 = 1e−4. The left column shows the variance computed at the collocation point (0.75, 0.125),which is located at the
center of the right hand edge, compared to the theoretical prediction for the weak noise regime (v(s) = σ 2

0 + σ 2
p ) described

above. The right column shows the plots of the boundary phase-space density ρ1 = ρ0 + Lσρ0 when the parameter being
varied in that particular row is set to its largest value. These plots provide a direct comparison with the weak noise case
shown in Fig. 2.

In the first row of Fig. 3 we observe that as σ 2
p is increased, the computed variance follows the theory from the weak

noise regime reasonably closely until almost the point where the weak noise theory plot intersects the plot of the variance
for the corresponding uniform distribution, which has value 1/3 as described above. For large σ 2

p , the computed variance
then corresponds to this uniform distribution. These observations are consistent with the right sub-plot, which shows that
the Gaussian source ρ0 (above the white line) has been transported by Lσ to a uniform distribution on the opposite edge
(elements 34 to 44) with height 2 as expected (recall that the momentum coordinate range is 2). Note that the color axis
has been truncated to more clearly show Lσρ0; the maximum value of ρ0 is still approximately 160 as shown in Fig. 2. The
physical interpretation of the right sub-plot is a Lambertian reflection (9) along the right hand edge of the domain since all
momenta p are (approximately) equally probable for collocation points 34 to 44. Furthermore, although the computations in
the left plot are performed for just one point in space, the computed variance is independent of the point chosen on the right
hand edge due to the highly directive nature of ρ0; the points on the right edge of Γ receive a highly dominant contribution
to the ray density from the corresponding point on the left edge with the same r2 coordinate. For this same reason, the
computed density Lσρ0 is a probability density (only) at the collocation points along the right hand edge of Γ .

The second row of Fig. 3 shows that the weak noise theory is not accurate for σ 2
s ⩾ 0.01. In this case, since σ0 and σp are

fixed, the weak noise theory predicts a constant variance of σ 2
0 + σ 2

p = 2e−4. When σs is increased, the computed variance
eventually reaches a steady value of around 0.015 where the density is spread uniformly across all spatial collocation points
on the three receiving edges of Γ , as shown below the horizontal white line in the right sub-plot. The distribution Lσρ0
remains localized in momentum with a lower peak and larger variance than the initial density ρ0. As before, the color axis
has been truncated to more clearly show Lσρ0. Owing to the even spreading of the initial density ρ0, which has support on
an edge of length 0.25, to the computed density Lσρ0, which has support on edges of cumulative length 1.75, then Lσρ0 is
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Fig. 2. The phase-space density ρ1 = ρ0 + Lσρ0 for σ 2
p = σ 2

0 = 1e−4 and σs = 0 (left), and the rectangular domain showing the numbering of the
collocation points and indicating the edges where the densities ρ0 and Lσρ0 have support (right). Horizontal white lines in the left plot correspond to
vertices of the rectangle and furthermore, the solid white line additionally represents the separation of ρ0 on the left edge above the line and Lσρ0 on the
other three edges below the line.

not a probability density on the receiver edges in the strong noise limit and instead integrates to 1/7 (the ratio of the initial
edge length to the cumulative receiver edge lengths).

In the third row of Fig. 3 we observe that the weak noise theory is accurate for σ 2
0 ⩽ 1e−4. As σ 2

0 is increased, there is a
transition region until the uniform distribution estimate for the large noise limit is valid. This transition region appears
to be centered approximately at the point where the weak noise theory plot intersects the plot of the variance for the
corresponding uniform distribution. The variance of the uniform distribution here is smaller than before since the range
of propagation angles at (0.75, 0.125) has been reduced as shown in the right plot at collocation point number 39. This
reduction is because the source direction is approximately random, but the reflection at the right-hand edge is approximately
specular and so the range of propagation angles relates to the range of admissible incoming angles at (0.75, 0.125). The
range can be approximated using basic geometry (see Fig. 4) since for a uniformly distributed source on the left edge of
Γ , the rays that can reach the point (0.75, 0.125) at the center of the right edge will arrive at angles within the range
(− tan−1(1/6), tan−1(1/6)). The reflection angles will therefore also lie in the same range due to symmetry, and because σ 2

p
is small, this will also approximately be the range for the propagation angles from (0.75, 0.125). The variance for a uniform
distribution in the momentum variable is therefore sin2(tan−1(1/6))/3 = 111−1. Again, the normalization introduced in
(20) plays a role; the right sub-plot shows that the uniform distribution has height 2 (the same height as ρ0) and so it will
not integrate to onewith respect tomomentum since the range of directions has been reduced from (−π/2, π/2). The range
of the uniform distribution is therefore geometry dependent and so both the mean and variance depend on the position on
Γ , as shown in Fig. 5. The mean and variance values shown in this plot can also be verified, as above, using basic geometric
arguments to determine the range of uniformly distributed tangential momentum p from a given collocation point on Γ .

4.2.2. Higher order reflections and the stationary density
We now consider how the variance of the initial density (11) evolves under multiple iterations of the operator Lσ . We

will then introduce damping and explore links to the variance of the stationary density, again computed via the formulæ
(20). Throughout this section we fix σ 2

s = 0 and σ 2
0 = 1e−4.

Fig. 6 shows the effect of the parameter σ 2
p on the computed variance ofLj

σρ0 for j = 0, 1, 2, . . . at each spatial collocation
point and in the absence of damping (µ = 0). The upper-left plot corresponds to the weak noise case with σ 2

p = 1e−4,
the lower-right plot corresponds to the uniformly directed propagation case with σ 2

p = 100 and the other plots show the
transition between these two cases. For all four values of σ 2

p tested, the computed variance eventually reaches a steady
equilibrium value for each collocation point, and this equilibrium value is reached more quickly for larger values of σ 2

p . In
the case of large σp we also see that the equilibrium corresponds to the theoretical strong noise prediction of variance 1/3.

For σ 2
p = 1e−4, the early iterates follow the weak noise theory outlined earlier on the left and right edges (collocation

points 34 to 44 and 78 to 88 inclusive). Eventually, at around iteration j = 500, the computed variance on these edges reaches



Please cite this article in press as: D.J. Chappell, G. Tanner, Uncertainty quantification for phase-space boundary integral models of ray propagation,Wave
Motion (2018), https://doi.org/10.1016/j.wavemoti.2018.08.010.

10 D.J. Chappell, G. Tanner / Wave Motion ( ) –

Fig. 3. Left column: The computed variance at the 39th collocation point (0.75, 0.125) compared with the estimates from the weak noise theory and for
the corresponding uniform distributions. Right column: The phase-space densities ρ1 obtained when one of the parameters (σ0, σs, σp) is taken to be
relatively large, whilst the other two parameters are fixed in the range of validity for the weak noise theory. Horizontal white lines correspond to vertices of
the rectangle and furthermore, the solid white line additionally represents the separation of ρ0 on the left edge above the line and Lσρ0 on the other three
edges below the line. Note that the color scales for the upper and central plots in the right column have been truncated to show the propagated density
Lσρ0 more clearly, the peak in ρ0 is approximately 160 as before—see Fig. 2.

a steady value of around 0.3. On the upper and lower edges of the rectangle Γ , the computed variance quickly reaches
a relatively large value close to 1 before decaying to a steady value of approximately 0.7 from around iteration j = 500
onward. The large values on these edges in the weak noise case can be explained since the most probable trajectories to
reach these edges do so at directions which are close to tangential to the edge; the underlying deterministic propagation in
the model is between the left and right edges in the direction perpendicular to these edges. Hence for the upper and lower
edges of the rectangle, the associated density in the weak noise limit will be bi-modal at the limiting tangential directions
±π/2 rad, but with mean 0. The decay of the computed variance (on the upper and lower edges) for later iterates therefore
actually corresponds to a build up of noise in the model.
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Fig. 4. Range of outgoing momenta for Lσρ0 at the point (0.75, 0.125) (i.e. collocation point number 39) for a noisy source density undergoing
approximately deterministic propagation.

Fig. 5. The spatial dependence of the mean and variance of Lσρ0 for parameters (σ0, σs, σp) = (10, 0, 0.01). Dashed vertical black lines correspond to
vertices of the rectangle separating the three receiving edges (lower, right and upper, respectively).

In the other extreme casewhenσ 2
p = 100,wenotice that the computed variance reaches the steady value of 1/3 after only

one iteration and takes this value for all collocation points and all future iterates. Recall that the value of 1/3 corresponds to
the variance of the uniform distribution on the momentum coordinate range (−1, 1). In the upper-left corner of the lower-
right sub-plot one can notice the initial density variance of 1e−4 for iteration 0 and collocation points 78 to 88 along the left
hand edge of the rectangle. For the intermediate cases one notices that the steady variance is becoming more uniform (and
closer to the value 1/3 overall) as σ 2

p is increased. When σ 2
p = 1e−2, the noise builds up quickly enough to violate the weak

noise theory after only a few iterates and the steady state is achieved from around iteration j = 50 onwards. For σ 2
p = 1, the

steady equilibrium is reached after fewer than 10 iterations of Lσ , and closely resembles the uniform distribution observed
when σ 2

p = 100. Note that the transition between different steady equilibria observed here is a consequence of the simple
integrable dynamics of the underlying deterministic model. For irregular domains we will instead observe ray chaos [4,29]
and the steady equilibrium will always be a uniform distribution with variance 1/3, even for a deterministic propagation
model.

We now consider the properties of the stationary density ρ, which we recall is given by the limit as n → ∞ of
ρn =

∑n
j=0 L

j
σρ0. Note that the computed variance of Ln

σρ0 closely resembles the computed variance of the sum ρn(14)
provided that n is taken sufficiently large; the repeated addition of the steady equilibrium distribution eventually leads to
a distribution ρn with approximately the same shape as the equilibrium distribution Ln

σρ0. The results in Fig. 6 therefore
suggest that noise will always build up in the model and hence in the stationary density ρ, leading to a distribution very
different from those described by the weak noise theory outlined in Section 3. However, this may not necessarily be the case
when we introduce damping into the model, which is necessary for computing the stationary density ρ. We now consider
the influence of damping on the properties of the stationary density for the case σ 2

p = σ 2
0 = 1e−4 and σ 2

s = 0. In particular,
we investigate whether the influence of the later and more noisy iterates in the sum (14) can be controlled.

The upper sub-plot of Fig. 7 shows the computed variance of the stationary density ρ obtained by solving Eq. (15) for
different values of the viscous damping parameter µ. This plot should be read in conjunction with the lower plot, which
shows the total density present at each collocation point, and thereforewhich parts of the boundaryΓ contain the dominant
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Fig. 6. The evolution of the computed variance of Lj
σρ0 at the spatial collocation points as the number of iterations j is increased. The four sub-plots each

show the result for a distinct value of σp , with fixed σs = 0 and σ0 = 0.01. Dashed horizontal white lines correspond to vertices of the rectangle.

contributions to the ray density ρ. The variance of the undamped cumulative density ρ1500 is also shown on the upper sub-
plot for reference; note that it bears a strong similarity the profile shown in the upper-left plot of Fig. 6 once the steady
equilibrium has been reached. Fig. 7 shows that for smaller values of the damping parameter, the density ρ is concentrated
along the left and right edges ofΓ and that as the damping is increased toµ = 6.4 or 12.8, only the source density ρ0 remains
dominant with total density 1 and variance 1e−4 as expected. The computed variances along the left and right edges of Γ
for µ ⩾ 0.4 are around 2e−3 or lower and start to enter the range where the weak noise theory can be applied (see Fig. 3).
This result is also demonstrated qualitatively in Fig. 8, which shows the stationary density for µ = 0.4. The left sub-plot
shows a similar density distribution to the weak noise case shown in Fig. 2, and is dominated by peaks at 0 rad on the left
and right edges of Γ . The right sub-plot shows the same result but with the color-axis maximum truncated at 2. This allows
one to observe the behavior of the density on the upper and lower edges of Γ and explains the relatively large variances
computed here. In particular, one has a bi-modal distribution with peaks at momenta ±1, and as discussed earlier, this is
the expected behavior in the weak noise case.

Finally, we apply the weak noise theory from Section 3 to provide approximate upper bounds for the variance of the
stationary density. We note that in the weak noise regime and for a sufficiently large choice of damping parameter µ, the
stationary density along the left and right edges of Γ is a weighted superposition of Gaussians of increasing width and
decaying height. This is a consequence of the fact that the trajectories for the corresponding deterministic problem all have
equal length, meaning that the damping term would merely apply a constant decay factor that does not alter the shape of
the distribution. The computed variance will therefore approximately be bounded above by the variance of the broadest
Gaussian contributing to the superposition before damping renders such contributions insignificant. For example, consider
the variance along the right-hand edge of Γ with the damping parameter µ = 3.2. Here, only odd numbered iterates j
of Lj

σρ0 will contribute to the superposition and the damping will lead to a decay factor of approximately exp(−1.5µ) for
the iterate j + 2 relative to the iterate j, as well as a decay factor of exp(−0.75µ) for the first iterate relative to the initial
density. Hence, as a result of damping, the contribution to the stationary density will decrease by in excess of three orders of
magnitude relative to the initial density after only j = 3 iterates. The weak noise theory then tells us (in the undamped case)
that L3

σρ0 is a Gaussian with variance σ 2
0 +3σ 2

p = 4e−4, which can be observed as approximately the maximum variance of
the stationary density forµ = 3.2 along the right-hand edge shown in Fig. 7. One can perform a similar analysis for different
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Fig. 7. The computed variance and total density of the stationary density ρ obtained by numerically solving Eq. (15) for different values of the damping
parameterµ as shown in the legend. The legend is common to both plots, however the variance for the cumulative density ρ1500(14) is only included in the
upper sub-plot. This case is included for reference to a result where µ = 0. Dashed vertical black lines correspond to vertices of the rectangle. Parameter
values: σ 2

p = σ 2
0 = 1e−4 and σ 2

s = 0.

damping factors, but it is important that the damping leads to sufficient decay of the contributions to the superposition
before the noise builds up sufficiently to violate the weak noise theory.

4.2.3. Discussion: extension to more complex geometries
The results presented in the previous two subsections for ray propagation in a simple rectangular domain provide a proof

of concept for the uncertainty quantification theory discussed in Section 3. Whilst this example is useful for understanding
how the uncertainty changes as it propagates in a simple intuitive situation, it does naturally lead to the question of how
widely these ideas can be applied in general. The theory in Section 3 can, in principle, be directly applied to any convex
polygon as considered in Section 2 and so no additional restrictions are added on the range of applicability at this stage.
However, the weak noise theory requires knowledge of the mean incoming and outgoing ray directions at each boundary
positionwhere onewishes to estimate the variance. Since thesemean directions correspond to the underlying deterministic
boundary map ϕ, then any practical application of the weak noise theory described in Section 3 relies on a full knowledge
of the ray trajectories ϕ at each reflection. The method therefore has a similar limitation to traditional ray tracing and will
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Fig. 8. The phase-space stationary density ρ with damping parameter µ = 0.4. The right sub-plot repeats the plot on the left for a truncated color axis in
order to more clearly show the density along the upper (collocation points 45 to 77) and lower (collocation points 1 to 33) edges of Γ . Dashed horizontal
white lines correspond to vertices of the rectangle. Parameter values: σ 2

p = σ 2
0 = 1e−4 and σ 2

s = 0.

become unfeasible for high reflection orders in complex geometries, when the number of distinct ray paths to trace becomes
intractably large. However, as discussed in the previous section, one typically has a build up of noise in the system as the
reflection order increases and hence the range of practical applicability of the weak noise theory also coincides with the
typical validity range of the theory in the first place. Hence, thewider application of theweak noise theory should be feasible
provided that the focus is on similar cases to those studied here; that is the properties of the density ρ1 after one reflection
as considered in Section 4.2.1, or the properties of the stationary density ρ in the presence of strong enough damping to
ensure that only the early reflections dominate its behavior.

5. Conclusions

An integral equationmodel for the stochastic propagation of densities through phase-space in two-dimensional domains
has been presented. The integral kernel is chosen as an uncorrelated bivariate truncated normal distribution, which has
the property of interpolating between deterministic ray tracing and random propagation according to the level of noise
prescribed in the model. We have shown that in the weak noise limit the variance of an initial Gaussian probability density
will be propagated to another Gaussian, and derived an explicit expression for its variance. In the strong noise limit we have
shown how the variance corresponds to that of a uniform distribution, and have demonstrated the applicability of both of
these theories for the limiting cases numerically. Finally, we have studied the properties of the stationary density in the
limit of infinitely many reflections. We found that the weak noise theory could provide upper bounds on the variance of the
stationary density, provided that the damping parameter was taken to be large enough to effectively remove the noise that
builds up in the system after many reflections.
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