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Abstract
There are 11,619 community pharmacies in England which dispense over 1 billion prescriptions each year, providing
essential primary care to NHS (National Health Service) patients. These pharmacies are facing pressure from a number
of sources including funding cuts and high demands on services, while trying to deliver the highest standards of care.
This paper presents an optimisation of a Coloured Petri Net (CPN) community pharmacy simulation model using an
Ant Colony Optimisation (ACO) method. The CPN method was proposed by Naybour et al . Quantitative data from
UK community pharmacies was collected by the authors and incorporated into the CPN simulation model. The optimi-
sation is made up of a choice of how many staff to employ, which prescription checking strategy to use, and which staff
work pattern to implement. This method aims to provide decision makers with a set of optimal pharmacy configurations
at different cost levels. This can help to support pharmacy safety, efficiency, and improve decision making processes. It
has been demonstrated how reliability modelling techniques traditionally used in safety-critical industries, can be used to
carry out safety and efficiency analyses of healthcare systems , such as dispensing processes in community pharmacies,
illustrated in this contribution.
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Introduction

Over the last two decades healthcare systems have
become increasingly aware of patient safety issues
occurring during the delivery of care.1 However, as well
as being required to provide a safe and reliable service,
it has been established that patient satisfaction with
community pharmacy services is related to waiting
times.2 These two fundamental objectives, delivering
safe care, in an efficient manner, can come into conflict.

A recent study investigating the number of medica-
tion errors occurring in the National Health Service
(NHS) estimated that 237 million errors occur each
year, of which 15.9% are attributed to dispensing
errors.3 This paper contributes to a growing body of
work4,5 exploring how techniques more traditionally
applied in high risk industries, such as the nuclear6,7 or
aviation sectors,8 might be gainfully employed in

healthcare contexts. It aims to provide a decision sup-
port tool to aid community pharmacy management
and resourcing. Community pharmacy decision makers
in the UK have less money to deliver a higher volume
of services in a safer manner than has been done previ-
ously. This paper aims to address this problem by pro-
viding quantitative evaluations for the performance of
different community pharmacy configurations, and by
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coupling those evaluations with a price, aiding decision
makers when choosing how to staff community
pharmacies.

Previous modelling

Healthcare has been the setting for a large number of
simulation projects.9 The literature demonstrates that
community pharmacies have been the setting for a
number of them. Projects that have focused on reliabil-
ity aspects of dispensing have included: an FMEA proj-
ect based in community pharmacies,10 and a socio-
technical probabilistic risk assessment (ST-PRA) of the
community pharmacy dispensing process.11 For exam-
ple, in the ST-PRA a modelling team constructed fault
trees for 10 preventable adverse drug events involving
six high risk medications. Projects have also focused on
analysing pharmacy efficiency. These have included: a
discrete event simulation model used to evaluate the
impact on waiting times made by the use of an auto-
mated dispensing machine,12 and a multiple server
model based on queueing theory which involved vary-
ing the number of staff and comparing the resulting
waiting time for patients.13 Markov models have been
used to optimise the replenishment process of robotic
dispensing systems,14 as well as to evaluate the cost
effectiveness of healthcare interventions.15 Other work
has focused on maintaining inventories and resource
allocation. Examples have included: an inventory con-
trol model for maintaining levels of medicinal prod-
ucts,16 and a Petri net based methodology, MedPRO,
designed to address organisation problems within
healthcare systems.17

Previous work of the authors has included develop-
ing a CPN simulation model of community pharma-
cies,18,19 capable of evaluating both pharmacy reliability
and efficiency in the same model. The CPN has a set of
input variables, including the number and skill unit of
staff, checking strategies, and work patterns, which pro-
duce different outcomes. This model takes account of
in-field data collected by the authors, and is used within
the optimisation framework proposed in this paper, in
order to evaluate different pharmacy set ups. Section 2
introduces the CPN model used.

Optimisation method

Once the CPN simulation model of a pharmacy was
constructed, the question arose of how best to set up
the pharmacy. This is a multi variable optimisation
problem. Rather than approaching the problem with
an exhaustive search, it is more computationally effi-
cient to use an algorithm.

This paper applies the Min-Max Ant System
(MMAS) ant colony optimisation algorithm20 to a
community pharmacy Coloured Petri Net simulation
model. MMAS is an extension of the original Ant
System algorithm developed by Dorigo et al. in 1991.
Other extensions of the Ant System developed since

the introduction of the original Ant System method
have included best-worst Ant System,21 elitist Ant
System, and the Hyper-cube Ant System.22 MMAS
was chosen as the optimisation algorithm because this
algorithm extension has been seen to produce accu-
rate results when compared against other ant colony
optimisation algorithms, for a detailed introduction
to ACO and some of its key variants, including
MMAS, see Dorigo et al.23

Ant Colony Optimisation is a meta-heuristic optimi-
sation method, derived from the positive feedback
aspects of biological ant behaviour. Example applica-
tions in the healthcare sector have included using simu-
lated annealing,24 the tabu search,25 or genetic
algorithms26 to optimise hospital units, and ACO algo-
rithms have been used to optimise diabetes screening
policies27 and emergency department efficiency.28

Meta-heuristic techniques also see application in a wide
range of non medical fields. Examples have included
using ACO to predict appropriate credit ratings for
businesses,29 and the examination timetabling prob-
lem.30 ACO has been chosen as the optimisation algo-
rithm in this paper as it is has performed well on
discrete space optimisation problems.31 There are other
meta-heuristic algorithms that could potentially be
used to solve the problem. The following algorithms
have been used in the literature to optimise pharmacy
related operations, and would also be candidates for
solving the pharmacy dispensing problem: genetic algo-
rithm,32 simulated annealing,33 particle swarm optimi-
sation,34 among others.

One characteristic issue with using HDN (Heuristics
Defined in Nature),31 is that their performance is con-
trolled by a set of user determined parameters, and
finding good values for these parameters can represent
a whole new optimisation problem in itself.35 There are
several approaches one can take to set the parameters.
These have previously included: ad-hoc selection,36 uti-
lising recommendations from previous research,37 or
using experiments to identify optimum parameter set-
tings.38,39 One issue with using parameters that have
performed well in previous studies is that the para-
meters can be very sensitive to the specific problem
domain. This paper uses a semi-fixed set of parameters,
similar to those seen in Stützle and Hoos20 and a heur-
istic inversion method of searching for optimal solu-
tions is proposed.

This paper offers three novel contributions, which
are as follows: the collection and distribution fitting
analysis of in-field data, an extension of previous work
by the authors in modelling community pharmacies by
the inclusion of an optimisation framework, and the
development of a novel three stage heuristic inversion
method of ant colony exploration. It also aims to
demonstrate how system reliability modelling and
assessment methods, commonly used for the analysis of
industrial systems, can have potential benefits for the
analysis of reliability and efficiency of healthcare
processes.40
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The paper is structured as follows. Section 2 gives an
outline of how the CPN model used to simulate the
outcomes of different pharmacy scenarios was con-
structed. Section 3 presents the results of a data collec-
tion study carried out in 4 UK community pharmacies.
Section 4 gives a description of the biological basis of
the technique, before introducing the core mechanisms
and equations proposed and used in the ACO algo-
rithm. Section 5 details the optimisation problem, and
how the MMAS algorithm has been applied to the par-
ticular state space, generated by the pharmacy simula-
tion model. Section 6 presents the results of the MMAS
optimisation, including a comparison with an exhaus-
tive search, and Section 7 concludes the paper.

CPN modelling approach

This section starts with an overview of the dispensing
process, then presents a short introduction to Petri
Nets, and demonstrates how a Coloured Petri Net
(CPN) model for simulating the processes carried out
in a community pharmacy was developed. Note that
tokens mimic the behaviour of pharmacy staff as they
dispense prescriptions, and complete non-dispensing
tasks. The CPN model is populated with transitions
derived from in field data collection, and is then used to
develop a community pharmacy optimisation problem.

The main stages of dispensing

A brief overview of the community pharmacy dispen-
sing process is now presented. The six keys stages of
the dispensing process are shown in their chronological
order (in practice generating labels, and picking medi-
cines can be interchanged) in Figure 1.41–43

Prescriptions begin moving through the pharmacy after
being handed in, either in person or electronically.
After being handed in, a legal check is undertaken
before a prescription will be dispensed. The labels
detailing instructions for safe use are printed, and all
items contained in the prescriptions are collected. The
labels are adhered to the medicine boxes and when the
assembly is complete, the finished prescription is given
to a pharmacist or suitably qualified ACT (accredited
checking technician), who performs a final accuracy
check. This is the last chance for any errors incurred

throughout the process to be caught and rectified. Any
errors that are not caught at this stage are liable to be
passed onto patients. As well as the accuracy check, a
clinical check is performed on the prescription to
ensure the medicine being dispensed is clinically suit-
able. Completed and checked prescriptions are then
handed over to patients, or stored so they can be sent
out for delivery, or picked up by patients later in the
day.

Petri Nets

Petri nets are a type of executable graph. They are made
of a set of directed edges running between two sets of
nodes, places and transitions. Arcs run between these
two sets of nodes, but no arc will connect two places
within the same set. Places contain a number of tokens,
which are used to control transitions, following a firing
rule. The CPN used as the basis of this optimisation
uses a Timed Petri Net extension, where delay times can
be sampled using specific probability distributions, or
use deterministic delays time (also equal to 0).44 The
Petri Net developed loosely follows the Stochastic Petri
Net (SPN) formalism used in Bause and Kritzinger,45

although it differs in that it is not limited to only using
exponential distributions for delays, and non-zero
deterministic delays are allowed. If transition delay tim-
ings are restricted to exponential distributions, then
Markov methods can be used to analyse Petri nets, oth-
erwise, Monte Carlo simulations are used to derive
results. The Petri net in this paper is not restricted to
only using exponential distributions to control transi-
tion timings, so Monte Carlo methods are used to
derive results.

Introduction to coloured Petri nets. Including colours in a
Petri net framework enables for a more detailed analy-
sis of token behaviour. Colours enable each token to
represent distinct entities, unlike a Petri net without col-
ours, where tokens on a single place are indistinguish-
able. This is useful because, we can use colours to track
how staff tokens spend their time, and information
about prescriptions can be encoded using colours. In
this paper two colour sets, along with the basic token
type (no colours), are used to define three types of
token, prescription tokens (p), worker tokens (w), and
basic tokens (e). The prescription token type has a num-
ber of colours, where each colour represents a feature
of the prescription. The Coloured Petri Net framework
was chosen because CPN models allow for simulating
the efficiency and safety of a pharmacy within a single
modelling framework, instead of having to develop sep-
arate models. The following features of prescriptions
were modelled using colours:

(1) The time taken to dispense the prescription
(2) Delivery or a walk-in.

Figure 1. Dispensing process flow chart.
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(3) Number of iterations to complete the prescription,
if faults occur (represents near misses)

(4) The overall outcome of the prescription (near
miss, dispensing error, or com-pletely correct)

(5) The number of items in the prescription
(6) Contents
(7) Labels
(8) Label application

Worker tokens use one colour to distinguish between
the two roles modelled (pharmacist or dispenser), and
another to define the tasks they are qualified to com-
plete. The CPN makes use of basic tokens, which have
no colours attached, for a number of auxiliary func-
tions. These included, permanently enabling transi-
tions, counting how many times advanced services were
completed, and modelling the availability of labelling
computers.

The firing rule for Coloured Petri nets is more com-
plex than that of non-coloured nets, because there are
extra control mechanisms, such as transition guard
expressions and arc inscriptions to consider. Arc
inscriptions specify which colour tokens are placed onto
output places, and conversely, which colour tokens are
required to enable a transition. Colours are used in this
paper in a similar way to that seen in Jensen,46 and time
is introduced following the method seen in Winfrid.44

An example CPN transition is shown in Figure 2. The

marking next to each place describes the tokens within
each place, and arc weights are written as a multi-set of
token colours. For example, in place p2, there is one
token of type e (denoted as 1’e) and two tokens of type
p (denoted as 2’p). There are three token types in this
example: p, w, and e. The colours on w tokens record
the amount of time spent completing different task
types, p tokens include a set of colours corresponding
to the properties of prescriptions, and e tokens are basic
tokens which have no colours. Once the transition has
fired, the colours corresponding to waiting time and
time spent completing activities are both increased by
the delay time. In addition, a number of tokens is taken
out of input places (such as one token of type p and one
token of type e is taken out of place p2, as described on
the arc by (y) + e; also note that variable y is of type
p). A number of tokens is placed into the output places
(such as one token of type w and one token of type p is
placed in p4, as described on the arc by (x) + (y); note
that variable x is of type w).

Building the model

The model used as the basis of this optimisation simu-
lates a community pharmacy using a manual dispen-
sing method (rather than automated dispensing47). It
can accommodate varying numbers of pharmacists and
dispensers, and staff are capable of working in parallel

Figure 2. A coloured Petri net transition.
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to complete prescriptions. Figure 3 shows the full
graph of the CPN model. It was built by considering
the journey of a single prescription through a phar-
macy, from patient arrival to final handover of medi-
cine, and integrating the way resources are used
throughout the process. A detailed description of the
meaning of all places and transitions in the CPN can
be found in Naybour et al.18

Modelling assumptions. To illustrate the level of detail in
the model, the follow assumptions are described in this
section. Each type of task is designated as being either
a primary or a secondary task. Figure 4 shows that the
model operates with a major distinction between pri-
mary and secondary tasks. Secondary tasks may only
be completed by a qualified pharmacist, while primary
tasks may be completed by any member of staff. As
well as this feature, additional assumptions on how
staff behave and how resources are utilised in the phar-
macy are used. These are the assumptions used to con-
trol staff behaviour:

� The following tasks are classified as primary: stock
management, generating labels, assembling

prescriptions, applying labels, and receiving
prescriptions.

� These tasks are classified as secondary, and may
only be completed by pharmacists: carrying out

Figure 3. A coloured Petri net for modelling community pharmacy dispensing.

Figure 4. Example ACO configuration.
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advanced services, final accuracy checking prescrip-
tions, passing completed prescriptions to patients
and placing completed prescriptions in storage.

� Each staff member has the same level of compe-
tence and skill. That is they take similar amounts
of time to complete tasks, and the chance that they
will make an errors is the same.

� Pharmacist members of staff will complete primary
tasks only if there are no secondary tasks waiting to
be completed.

This is the set of assumptions made about the pharma-
cies’ resources, opening hours and prescriptions:

� The pharmacy uses two labelling stations (small
printers attached to computer interfaces which are
used for printing labels).

� Patients arriving the pharmacy to hand in new pre-
scriptions are prioritised as the highest priority pri-
mary task.

� The three stages, generating labels, assembling pre-
scriptions, and applying labels, are completed
sequentially by the same member of staff.

� Priority is given to walk-in prescriptions over
deliveries.

� The pharmacy opens at 9 am and closes at 5 pm.
� A bulk of delivery prescriptions arrive at the phar-

macy at 10 am.

Pharmacy resources. Initially, all pharmacist tokens are
placed in place 16, and all dispensers are placed in place
6. New walk in prescriptions and customers requiring
advanced services are introduced to the pharmacy by
increments of exponential distributions. The two label-
ling stations are modelled by the basic tokens on place 7.

Primary task allocation. As new tasks arrive, members of
staff are allocated to complete them. The member of
staff that has been inactive on the ‘available’ place for
the longest amount of time is tasked with the newly
arrived task.

Instantaneous transitions are used to control the pri-
ority of each task. These control how staff make deci-
sions about which task to complete when there are
multiple unattended tasks. The primary dispensing
tasks are prioritised from lowest to highest priority is
as follows: starting to dispense a prescription, stock
management, lunch breaks and receiving prescriptions.
Attending to patients waiting in the pharmacy for their
prescription is given the highest priority. Next comes
the relatively low frequency tasks, lunch breaks and
stock management. These are given priority over start-
ing to dispense prescriptions because if starting to dis-
pense prescriptions was prioritised, staff might not be
able to get away from the demands of dispensing.

Secondary task allocation. Pharmacists are allocated to
secondary tasks from their available place (16).
Secondary tasks are prioritised from lowest to highest
priority as follows: final accuracy checking/other sec-
ondary dispensing tasks, and advanced services.

Prescription modelling. The model uses eight colours to
model prescriptions:

(1) Type of prescription, delivery/walk-in.
(2) Waiting time to dispense the prescription
(3) Iterations, that is the number of times a prescrip-

tion is sent to be dispensed again after an error is
found in it.

(4) End result of the prescription, near miss, dispen-
sing error, or completely correct.

(5) Number of items
(6) Labels
(7) Contents
(8) Label application

The number of iterations is a value indicating the num-
ber of times a prescription was intercepted at the final
accuracy check and found to contain an error. They
are representative of near misses. Boolean variables are
used to model the labels, contents, and label applica-
tion variables, where each variable indicates the pres-
ence/absence of an error of each type.

Failures. Bernoulli random variables are used to simu-
late members of staff committing accidental errors
within the dispensing process. The pharmacy model
has four fallible stages: label generation, prescription
assembly, label application and the final accuracy
check. Table 1 show the probability of error at each
stage in the process, where the probabilities were found
in Cohen et al.11 It is a modelling assumption that
applying labels to completed prescriptions will be half
as likely to fail as generating labels.

Arc inscriptions are used to allow for probabilistic
failures of dispensing stages. A Bernoulli random vari-
able is sampled as the transition representing the stage
fires. If the value returned by the Bernoulli random
variable exceeds the error probability in Table 1, then a
colour will be added to the prescription token indicat-
ing which type of error has occurred.

Prescriptions arrive at the final accuracy checking
stage of the process in a number of states. Some

Table 1. Error probability.18

Task Description Probability (%)

1 Labelling 0.06
2 Filling 0.05
3 Label Application 0.03
4 Final Accuracy check 0.05

6 Proc IMechE Part O: J Risk and Reliability 00(0)



prescriptions will be completely correct, while others
with contain one or more types of error. The model
assumes that completely correct prescriptions are not
incorrectly found to be erroneous at the final accuracy
check. If a prescription contains an error at this stage,
the pharmacist performing the check will spot errors,
and send these prescriptions back to be dispensed
again.

Item modelling. Prescriptions can contain a variable
number of items. A large prescription might contain
upwards of 15–20 items, while a small prescription can
be only a single item. The model assigns each new pre-
scription a random number of items by sampling a
Geometric (0.35) distribution. The time to complete
some stages of the dispensing process is then modulated
by the number of items in prescriptions. Stages repre-
sentative of processing tasks sample the timing distribu-
tion attached to their transition one time for each item
in the prescription, these values are then summed to
determine how long the process took.

Summary. This section has introduced the CPN model
used to model a community pharmacy. Transitions of
the CPN related to dispensing tasks are populated with
probability distributions derived from our in-field data
collection, see Section 3. This CPN is used in Section 4
as the basis for setting up a community pharmacy opti-
misation problem, where the number of staff, and dif-
fering checking strategies are used to create a state
space for the optimisation. Further details of the model
can be found in Naybour et al.18

Data collection and analysis

To better inform the Coloured Petri Net simulation
model developed in Naybour et al.,18 quantitative data
of how long it takes to process prescriptions was col-
lected from 4 UK pharmacies. Previous studies have
attempted to time the dispensing process, although the
sample sizes collected were small,2 or dispensing stages
were not clearly distinguished.48

Fitting results

Table 2 shows key information about the four pharma-
cies which participated in the study. Pharmacies A and
B were part of the same company, and pharmacies C

and D were independent pharmacies. Being from the
same company, pharmacies A and B shared the same
set of standard operating procedures,42 and there were
therefore similarities in how medicines were dispensed
in those two pharmacies. For the purpose of this paper
the data collected from pharmacies A and B was
grouped to create one larger data set for analysis. The
data collected in pharmacies C and D were not used in
this paper.

Timing data was collected for six stages of the dis-
pensing process shown in Figure 1. Through discus-
sions with expert pharmacists, it was hypothesised that
the middle four stages would be dependent on the num-
ber of items in a prescription, and the rest of the stages
(reception and handover) would not be. Stages which
are dependent on the number of items (i.e. stages 2, 3, 4
and 5) will be referred to as ‘processor’ stages. For the
two non-processor stages 160 observations of a single
variable were collected (the time taken to complete the
stage), whereas for the processor stages, the data took
the form of 160 observations of two variables:

(1) The time taken to complete the stage
(2) The number of items in the prescription

The data collection technique used was researcher
observation, with a stopwatch used to time each stage.
The data collection period was between 3 and 5 days at
each pharmacy. After collection, the timing data for
the processor stages was segmented into six categories:
1 item, 2 items, 3 items, 4 items, 5–8 items (medium),
and 9+ items (large). Distribution fitting analysis was
then performed on each of the non-processor stages,
and each segment of each processor stage. A statistical
package in R was used to test six probability distribu-
tions for each segment, using the method of maximum
likelihood.49 We fit six probability distributions to the
data: exponential, normal, lognormal, uniform,
Weibull and gamma. For each fitted distribution (apart
from the uniform distribution) an Akike Information
Criterion value was calculated, where the distribution
which produced the lowest AIC value was chosen. QQ
plots for each distribution were used as a checking tool
to see whether the result produced by the distribution
fitting analysis aligns with the Q-Q plots. Finally, a
bootstrap sampling method50 was used to derive 95%
confidence interval for the estimated parameters.
Table 3 presents the results of the distribution fitting
analysis. Further details of the data collection and anal-
ysis can be found in Matthew et al.51

Extrapolation. For some of the segments, very few obser-
vations were collected (N \ 15). In these cases, the dis-
tribution type was assumed to be the same as for
medium sized prescriptions, with new parameters esti-
mated based on any data that was collected for large
sized prescriptions. Since large prescriptions made up
less than 3.2% of prescriptions during simulations, this

Table 2. Participating pharmacies characteristics.

Pharmacy Type Number of staff Co-located

A Large Multiple 4–8 Yes
B Large Multiple 5–7 No
C Independent 4–7 No
D Independent 3–5 No

Naybour et al. 7



extrapolation should not have a large effect on the out-
come of simulations using this assumption.

Ant colony optimisation

Laboratory experiments have been conducted by Goss
et al.52 and Deneubourg et al.53 demonstrating how ant
colonies are capable of finding the shortest path to food
sources using pheromones to guide the future beha-
viour of other ants. Each ant can communicate with
other ants by secreting a pheromone trail of chemicals.
As well as secreting the pheromone, every ant can also
detect the trails of pheromone placed by other ants.
The behaviour of collective path marking and path fol-
lowing, is the basis of Ant Colony Optimisation. Ant
colony optimisation is known to be an effective algo-
rithm for discrete optimisation problems.31

Ant system

In ACO, artificial ants search the solution space of an
optimisation problem, and ants which find good solu-
tions to the problem then influence the future choices
of the colony. Dorigo and Stutzle54 introduced the con-
cept of Ant System to solve minimum path problems
on graphs. Ant system has two main features: a solu-
tion construction decision policy, and a pheromone
update strategy, which will be introduced, and later
used to explain max-min ACO.

Ant system ants have two modes of operation, one
for leaving the nest to travel to a food source (forward),

and another one to return to the nest and lay phero-
mones (backward).

Solution construction. While in the forward mode, a num-
ber of ants simultaneously construct solutions on the
graph by repeatedly applying a decision policy. The
decision policy is probabilistic, and dependent on two
factors: the amount of pheromone on edges connecting
to neighbouring nodes, and the inherent desirability of
each edge. Thus when an ant is on a node i, it uses the
concentration of pheromone and some prior heuristic
information about the edges, to probabilistically decide
which node to move to next. If Ni is the set of nodes
neighbouring node i, then an ant chooses the next node
to visit, j, with probability pij. If the concentration of
pheromone on paths from node i to all neighbouring
nodes j are denoted by tij, and the heuristic information
about node j in relation to node i is nij, then equation
(1) describes the decision probability function:

pij(t)=
tij½ �a nij½ �bP
l2Ni

til½ �a nil½ �b
if j 2 Ni

0, if j 62 Ni

8<
: (1)

where pij(t) is the probability that an ant on node i at
time t moves to node j as its next node. Ni, the neigh-
bourhood of node i, is defined as the set of nodes which
can be reached from node i by travelling along one
edge, except for the node that was previously visited by
the ant. The two parameters a and b control the

Table 3. Summary of distribution fitting analysis.

Task No# items Observations Mean Distribution Parameter 1 Parameter 2

Prescription reception N/a 160 17.9 X 3 Gamma(a, b) 2.46 7.25
Label generation 1 150 27.2 X 3 lognormal(m, s) 3.14 0.549

2 57 38 X 3 lognormal(m, s) 3.53 0.454
3 33 54.6 X 3 lognormal(m, s) 3.88 0.487
4 36 59.5 X 3 lognormal(m, s) 3.96 0.515
Medium 34 90.8 X 3 Gamma(a, b) 5.41 16.8
Large 10 177.7 X 3 Gamma(a, b) 4.48 39.7

Picking 1 138 18.7 X 3 lognormal(m, s) 2.58 0.851
2 65 20 X 3 lognormal(m, s) 2.79 0.653
3 38 27 X 3 Gamma(a, b) 3.99 6.76
4 27 45.7 X 3 lognormal(m, s) 3.42 0.54
Medium 43 56 X 3 Gamma(a, b) 3.06 18.28
Large 5 131.2 X 3 Gamma(a, b) 4 32.8

Applying labels 1 113 19.2 X 3 lognormal(m, s) 2.63 0.787
2 68 32.3 X 3 lognormal(m, s) 3.24 0.673
3 30 40.8 X 3 lognormal(m, s) 3.47 0.658
4 30 50.8 X 3 lognormal(m, s) 3.75 0.599
Medium 61 91.5 X 3 lognormal(m, s) 4.32 0.615
Large 18 176.7 X 3 Gamma(a, b) 2.59 68.5

Accuracy checking 1 133 32.2 X 3 lognormal(m, s) 3.35 0.486
2 68 45.2 X 3 lognormal(m, s) 3.65 0.539
3 34 59 X 3 lognormal(m, s) 3.96 0.484
4 34 47.9 X 3 Gamma(a, b) 8.66 0.181
Medium 50 83.4 X 3 lognormal(m, s) 4.34 0.409
Large 12 175.8 X 3 lognormal(m, s) 4.97 0.629

Handover/store N/a 160 34.2 X 3 lognormal(m, s) 3.15 0.874
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relative importance given to pheromone or heuristic
information in the decision policy. Ants move from
node to node, using this decision policy to choose
where to move next, until they have constructed a solu-
tion to the optimisation problem.

Variable heuristic search. It is common for MMAS algo-
rithms to use a heuristic to encourage ants to search
solutions with a lower cost value.54 This paper proposes
a novel method of using heuristics to generate a larger
set of optimal solutions. Rather than running a single
iteration of the algorithm with a constant set of heuris-
tic values, the algorithm will be run in three iterations.

At the start of each iteration, the pheromone trails
on the state space from the previous iteration are
cleared, and the heuristic values used by the ants are
changed. The three underlying heuristics are as follows.

(1) No heuristic values
(2) A heuristic preferring low cost solutions
(3) A heuristic preferring high cost solutions

Using the variable heuristic values will encourage ants
to concentrate to explore different parts of the state
space.

Pheromone update

After all ants have constructed their solutions, the pher-
omone values of all paths are then updated. This is
done in two stages: first by reducing the concentration
of pheromone on all arcs by the constant factor r, as in
equation (2):

tij  tij 1� rð Þ (2)

and, then adding additional pheromone to arcs used by
the ants, as in equation (3):

tij  tij +Dtk (3)

where Dtij k is the amount of pheromone deposited by
the kth ant on the edge (i, j). Dtij

k is proportional to the
quality of the solution generated by the kth ant, and it
is calculated using equation (4):

Dtk =
1=Ok if(i, j) 2 Pk

0 if(i, j) 62 Pk

�
(4)

Pk is the set of edges used by the kth ant, and Ok is the
objective value returned by the kth ant. If an ant
chooses to use an arc (i, j) in its path to the food
source, the deposit of pheromone onto the edge makes
it more likely that future ants will also choose to use
this arc to construct solutions. The structure of equa-
tion (4) also shows how ants which find better solutions
will deposit more pheromone onto edges than those
that find weaker solutions.

If there are m ants in the colony constructing paths
and laying pheromone, then the concentration of pher-
omone on an edge (i, j) in the next iteration of the algo-
rithm can be updated using equation (5).

tij(t+1)= tij(t)(1� r)+
Xm
k=1

Dtkij (5)

Max-Min Ant System

Max-min Ant System (MMAS) is an ACO variant
developed by Stützle and Hoos,20 as a way to improve
the algorithm’s performance by preventing early con-
vergence to sub-optimal solutions. The key principle of
MMAS, is to generate flexible bounds on the phero-
mone concentrations, so that the concentration on all
paths is within some factor of the most marked path.
This results in a more exploratory algorithm, since
every edge is guaranteed a minimum probability of
being selected. The Max-Min pheromone update fol-
lows equations (2)–(4), although only the global best
ant, or the iteration best ant, are allowed to deposit
pheromone onto the search space. Furthermore, phero-
mone trails are limited to an interval of values
[tmin(t),tmax(t)]. If during the process, the pheromone
trail on a path would be outside the boundary, it is
instead set to the nearest bound. It can be shown that
the maximum concentration of pheromone on a path is
bounded by (1/12r)*(1/Obest). In MMAS this guides
the choice of tmax, which is given in equation (6):

tmax(t)=
1

1� r

1

Obest(t)
(6)

Equation (7) shows how t min is calculated:

tmin(t)=
tmax(t)(1�

ffiffiffiffiffiffiffiffiffi
pbsetn
p

)

(avg� 1)
ffiffiffiffiffiffiffiffiffi
pbsetn
p (7)

where p best is the probability that an ant will choose
the maximally marked path once the algorithm has con-
verged, and avg is the average number of choices an ant
has at each step of the algorithm.

Application of MMAS to the pharmacy
optimisation problem

In the UK, a community pharmacy is generally a small
store focused on the provision of prescriptions to mem-
bers of the public. The process of dispensing can be
separated into six key stages, shown in Figure 1.
Addition non-dispensing tasks include delivering
advanced services, such as the morning after pill or
malaria vaccinations. Stages 1–4 are called primary
tasks, and stages 5 and 6 and called secondary tasks.
The optimisation of a community pharmacy can then
be defined as choosing the best inputs in terms of staff,

Naybour et al. 9



work patterns, and safety precautions, which maximise
the safety of the process and patient satisfaction, while
minimising the costs.

Decision variables

Using the CPN in Naybour et al.,18 three decision vari-
ables could be considered:

(1) The number of dispensers,
(2) The number of pharmacists,
(3) The checking strategy to use while dispensing.

A fourth variable is added in this paper, used to allow
or disallow pharmacists to contribute to the primary
tasks of dispensing and further investigate the efficacy
of different work patterns. A previous conference paper
by the authors,51 examined the optimisation of the
number of dispensers, pharmacists, and work pattern.
This paper extends the method by considering different
checking strategies. Within this framework a pharmacy
set-up, P, takes the form of a 4 tuple of integers, P= (d,
p, cstrat, wpattern), where d is the number of dispensers, p
is the number of pharmacists, c strat the checking strat-
egy used, and w pattern the work pattern.

The state space

By assigning each of the decision variables a range of
valid values, a state space for the optimisation problem
can be constructed. Figure 4 shows a set of nodes rep-
resenting the state space of the problem within the
ACO framework. The state space is made up of layers
of nodes, where arcs exist between the layers, but not
within. Ants must choose a single node from each layer
to create a route from their nest to the food source.
For example, the path in Figure 5 corresponds to a

pharmacy set up with two dispensers and four pharma-
cists, using checking strategy 3, and work pattern 2.

Note that there is a legal requirement for a pharma-
cist to be present if a pharmacy is going to dispense pre-
scriptions. There is no such requirement for dispensers,
that is a pharmacy can operate without dispensers. The
maximum values of d and p have been chosen to be rep-
resentative of a small to medium sized pharmacy in the
UK. The three checking strategies are proposed:

(1) A single check is performed by the pharmacist.
(2) Two checks, the first done by a dispenser, and the

second by the pharmacist. Any errors which are
found are sent back to stage 2 to be dispensed
again.

(3) Two checks are performed as in 2. Any errors
which are found by dispensers are attempted to be
fixed straight away, without going back to stage
2. Pharmacists send errors to be dispensed again.

Each strategy is feasible, although precise prevalence of
each strategy in day to day practice is unknown.
During the data collection study, a mixture of checking
strategy 2 and 3 were observed. Dispensers would regu-
larly check their own prescriptions for accuracy in an
informal way.

(1) Pharmacists are able to contribute to primary dis-
pensing tasks, such as receiving prescriptions from
patients or dispensing prescriptions.

(2) Pharmacists are unable to contribute to primary
tasks.

There are 132 unique pharmacy set-ups in this problem
((6 3 4 3 3 3 2) 2 12=132), since 12 set-ups are
inappropriate because they have 0 dispensers and use
work pattern 2 where pharmacists do not complete pri-
mary tasks. These set ups are not valid as there are no
dispensers to complete primary tasks, and the pharma-
cists will not complete primary tasks when using work
pattern 2, no primary tasks would ever be completed.

Cost of wages

The cost of employing the required staff for each set up
is taken into consideration. According to the Office of
National statistics, in 2015 the median earnings of UK
pharmacists was £ 41,500, and £ 21,134 for a dispensing
technician.55 Therefore, the cost of wages is calculated
using equation (8):

Cost=41, 5003 p+21, 1343 d (8)

Local search

ACO algorithms can also make use of localised search
patterns. This is a situation where the path of an ant
which has returned a good solution is modified slightly,
based on the belief that other good solutions may be in

Figure 5. Local search implementation.

10 Proc IMechE Part O: J Risk and Reliability 00(0)



the surrounding neighbourhood. In this implementa-
tion of MMAS, a local search step is applied after the
initial search phase. In the initial search a number of
ants construct and evaluate solutions, of which the best
ant is sent to a local search. The local search works as
follows: one of the layers of nodes is randomly chosen
for a local search with uniform probability. The path is
kept constant except in the layer being locally searched,
where the nodes 1 above and 1 below are tested. In the
case of the work pattern, only the other option is tested.
Figure 5 shows an example of how the local search is
applied.

Heuristic information

One of the requirements of the optimisation is to find
low cost solutions to the problem. To have the option
of incorporating this preference, where a cost is associ-
ated with choosing an option, the cost using equation
(9):

nij =
1= jCdð Þ if i = nest, j 2 L1

1= jDp

� �
, if i 2 L1, j 2 L2

1 else

8<
: (9)

where nij is the heuristic value for node j if an ant is on
node i. L1 and L2 are the first and second layer of nodes
in the search space, Cd is the cost of a dispenser, and C p

is the cost of a pharmacist in £1 3 104. For example,
the heuristic value from the nest to a node indicating a
solution with one dispenser, has a heuristic value of 1/
2.1134’ 0.48. The optimisation method used in this
paper is a novel 3 stage approach. The optimisation will
be run 3 times, where each iteration will use a different
set of heuristics. The first stage will not use any heuris-
tic information, the second stage will encourage the
exploration of cheaper solutions, and the final stage
will use an inverse cost heuristic to encourage the explo-
ration of more expensive solutions.

Utility function

When evaluating the performance of each set up, there
are multiple variables used to consider whether it was a
successful set up. In this paper, the average waiting
time, the number of errors, and the number of prescrip-
tions completed are used. This represents a multi-
objective optimisation problem. To transform this
multi-objective optimisation problem into a single
objective optimisation, a three termed utility function is
proposed, shown in equation (10):

U= l1XWaiting + l2XErrors � l3XCompleted + g (10)

where l1, l2, l3 . 0. The terms in equation (10) are
defined as follows, XWaiting is the average time taken to
dispense prescriptions, XErrors is the number of errors
dispensed to patients, and XCompleted is the average

number of prescriptions completed. Better solutions to
the problem will minimise the value of the utility func-
tion, U. Such solutions will, therefore, minimise the
waiting time and the number of errors, while maximis-
ing the number of prescriptions being completed. A
constant of g=30 is added to ensure positive value of
all evaluations. Each of the variables were considered
to be of relatively equal importance, so the three
weighting variables were chosen such that the value of
each of the variables would be of the same order. l1

was chosen to be 0.1, l2 was chosen to be 60, and l3

was chosen to be 0.1. These weightings imply that an
improved average waiting time of 5min, has the equiv-
alent value of reducing the average number of errors by
0.5 per day, or completing 300 more prescriptions.

Pheromone update

In this paper the pheromone updates were controlled
using a cycle of 3. Every third pheromone update was
done by the best ant found so far, and every other
update was done using the iteration best ant.
Pheromone evaporation and secretion were implemen-
ted, as described in section 4.2.

Results

This Section presents the results of the optimisation.
When applying the optimisation, checking the entire
state space exhaustively can be avoided. The algorithm
can generate optimal solutions using fewer simulations
than would be required in an exhaustive search. The
three optimisation stages combined used a total of
750,000 simulations. To test the Pareto optimal solu-
tions generated by the ACO, an exhaustive search was
also conducted on the state space. During the exhaus-
tive search each possible pharmacy set up was simulated
15,000 times, which required 1980,000 simulations.

Algorithm implementation

The proposed MMAS optimisation algorithm used two
‘phases’ for each generation of ants crossing the state
space. The first ‘phase’ used four ‘search’ ants, where
each ant constructed a solution on the state space, and
returned an objective value after simulating the CPN
with a set-up corresponding to their path choice 500
times. The path of the ‘search’ ant which returned the
lowest objective value, was then passed to the local
search (the second phase). The local search tested the
original path a further 500 times, and then checked each
of the neighbouring variations another 1000 times each.
Pheromone trails were updated at the end of each itera-
tion, by applying pheromone to the path that returned
the best objective value.

As proposed the MMAS algorithm was run in three
‘stages’. Stage 1 did not use any heuristic information,
stage 2 included heuristic information which encour-
aged the exploration of cheaper solutions, and stage 3
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used heuristic information which encouraged the explo-
ration of more expensive solutions. Each optimisation
‘stage’ was run for a maximum of 50 iterations, with a
stopping condition such that if the same iteration best
path was returned 3 times consecutively the algorithm
would terminate. The Pareto optimal solutions were
found for the results of each instance of the algorithm
before being combined into a single set of solutions.
The parameters used during each stage of the optimisa-
tion are shown in Table 4.

The evaporation rate, r=0.98, has been used previ-
ously in Stützle and Hoos20 and Zecchin et al.37 it is
common for r to be between 0.95 and 0.99.54 The size
of the ant colony was set to be 4, this is at the lower
end of potential colony sizes,56 since the optimisation
state space is relatively small. A b value of 0 is used
during the first stage since no heuristic data is used,
and the following stages use a b value of 1 so that the
different heuristics are taken into account.

Combining and comparing results with the exhaustive
search

Overall, the MMAS optimisation evaluated 84 unique
solutions at the local search level. The combined results
from all three stages are plotted in Figure 6. Of the 84
solutions, 14 set-ups were non dominated, that is each

solution in this set, cannot be improved without
increasing the price, shown in Table 5. The optimal set
up, was a team of five dispensers and four pharmacists,
using a combination of checking strategy 2, and a non-
flexible work pattern. Each stage of the optimisation
contributed at least one Pareto optimal solution that
was not found by the other stages. Stage 1 contributed
four unique Pareto solutions, stage 2 contributed two
unique Pareto solutions, and stage 3 found only a sin-
gle unique Pareto solution. All other solutions were
found by multiple stages.

Table 5 shows the set of Pareto optimal solutions
for the problem. The solutions in the Pareto front were
made up of teams containing either a majority of dis-
pensers (5), a majority of pharmacists (6), or an equal
number of each (3). Solutions from 1 to 4 were high
quality solutions, performing almost as well as the opti-
mal set up.

The solutions from 5 to 14, were of increasingly
worse quality, with solution 14 being significantly worse
than the rest. A general trend is: if money is not limited,
better teams will be those with a high number of staff,
with either an equal number of each staff type, or more
dispensers. However, if the budget for hiring staff is
limited, the best set-up may contain fewer staff, and it’s
likely that the best set-up will contain a majority of
pharmacists.

A Pareto set of solutions was developed for the
results of the exhaustive search. Solutions from 7 to 14
returned by the ACO algorithm appeared in exactly the
same order and position as in the set of Pareto solu-
tions generated by the exhaustive search. Solutions
from 1 to 6 from the ACO algorithm did not appear in
the exhaustive search Pareto front, although four solu-
tions were very close, that is solutions 1, 3, 4 and 6 all
appeared in the exhaustive Pareto front, but using the
alternative work pattern.

It was noted when looking at the results of the
exhaustive search that many solutions using the same
staff set up and checking strategy would return similar
objective values. Only solutions 2 and 5 from Table 5
made no appearance in the exhaustive Pareto front.
These may have been considered optimal by the ants
due to a lack of familiarity. For example, after a close
look at the results it is clear that solution 5 was tested
only once (1000 simulations) by the ants throughout all
three stages of the optimisation, and the strong evalua-
tion of this solution may be due to a small variation
due to the randomness inherent in CPN simulations.
On the other hand, in some cases, the preference of the
ants for alternative work patterns with the same set ups
may be justified. The ants evaluated solution 1 in
Table 5 to be preferable to the same set-up with a flex-
ible work pattern (the best solution from the exhaustive
search), and during the optimisation both variations
were tested 27 times (27,000 simulations). Hence the
ants indicating that this set-up is preferable in this
instance should be considered more valid than the
result of the exhaustive search since they have

Table 4. MMAS parameter settings.

Parameters 1 2 3

a 1 1 1
b 0 1 1
r 0.98 0.98 0.98
nij n/a 1

C if C . 0
1, if C = 0

�
1

Cmax�C if C 6¼ Cmax

1 if C = Cmax

�

m 4 4 4
t_0 48.2 48.2 48.2

Figure 6. Objective state space for combined stages 1–3.
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simulated both solutions more times. In summary, the
optimisation results compare well to the results gener-
ated by the exhaustive search, although results that the
ants consider optimal that have only been tested a
small number of times should be verified by further
simulations before being put into practice.

The Pareto front is only a small subsection of the
results generated during the optimisation. If a decision
maker were to specify a price, it would be possible to
provide a large variety of non-Pareto optimal solutions
at that price point. The set ups would not be optimal,
however having a set of options to choose from would
allow for alternative configurations when there are staff
or resource shortages.

Conclusion

In conclusion, this paper has shown that Max-Min Ant
System is a viable algorithm for optimising a commu-
nity pharmacy Coloured Petri Net simulation model.
Furthermore, the CPN model has shown to be a suit-
able way to describe community pharmacy dispensing
processes. The rules of the ACO algorithm have been
presented, along with an explanation of how to apply
the algorithm to a community pharmacy problem.
Quantitative data collected from two UK pharmacies
has been reported and incorporated into the CPN. A
novel three stage heuristic inversion search was pro-
posed and implemented in the MMAS algorithm. The
cost heuristic inversion method was useful for identify-
ing novel strong solutions, as every stage of the algo-
rithm contributed at least one solution to the combined
Pareto front, that were not found in any other stage.
This model would be able to support pharmacy deci-
sion makers to choose the lowest cost pharmacy set ups
that meet specific safety and efficiency requirements.

The paper aims to lay a blueprint for how more tar-
getted simulation work would aid decision makers
when choosing how to run community pharmacies. An
issue to be aware of when modelling pharmacies, is that

no two community pharmacies are exactly alike. Thus
findings from this set of simulations may not apply to
all pharmacies. It is suggested that more targetted mod-
elling would be the way to best inform actual on the
ground policy changes within pharmacies. In larger
chain pharmacies, many of their stores are of a similar
nature, using similar work patterns. It is possible that a
more targetted model focusing on modelling a phar-
macy from a larger chain would be able to support
decision making about staffing levels, work patterns,
and checking strategies.

The paper has shown that a pharmacy can be simu-
lated and optimised using a CPN model and an ACO
algorithm. Here we have modelled a generic pharmacy
which is an amalgam of the four sites visited during
data collection. To provide actionable decisions, the
modelling should be tailored to a specific pharmacy.
This could include measuring how many prescriptions
they process throughout the day, how many of them
are walk-ins versus delivery prescriptions, and record-
ing how many of each of the advanced pharmacy ser-
vices they complete. If the CPN were tailored to very
accurately match the working processes of one specific
pharmacy, the results produced by the optimisation
would be more appropriate for decision makers to
consider.

Comparing the results produced by the exhaustive
search with those produced by the ACO algorithm
showed that the ACO algorithm found the majority of
the best solutions available to the problem. In total, 9
of the setups found to be Pareto optimal by the ACO,
were also in the Pareto front of the exhaustive search.
Solutions 1–4, and solution 6 were not in the Pareto
front of the exhaustive search. The ACO algorithm was
not so effective at distinguishing between solutions that
have very similar objective values. In particular, it
seems that set-ups containing large numbers of staff
would produce very similar objective values when using
the alternative work patterns. Using the ACO algo-
rithm was more computationally efficient than testing

Table 5. Pareto optimal solutions.

Solution Dispensers Pharmacists Checking
Strat

Work
Pattern

Waiting
time (s)

Errors Completed Cost
(£ per year)

Objective

1 5 4 2 0 282.4 0.18 251.6 271,670 43.7
2 4 4 2 0 290.5 0.17 251.5 250,536 44.3
3 5 3 2 1 286.8 0.18 251.5 230,170 44.3
4 4 2 2 1 306.1 0.15 251.7 167,536 44.4
5 0 4 2 1 314.3 0.18 251.6 166,000 47.2
6 3 2 2 0 323.7 0.18 250.9 146,402 47.8
7 1 3 2 1 325.5 0.19 251.5 145,634 48.6
8 2 2 2 1 346.2 0.19 251.6 125,268 50.7
9 0 3 2 1 364.1 0.18 248.6 124,500 52.4
10 1 2 2 1 397.9 0.19 246.1 104,134 56.3
11 2 1 3 1 466.1 0.2 228.7 83,768 66
12 0 2 3 1 456.2 0.19 186.1 83,000 68.4
13 1 1 3 1 656.6 0.17 178.2 62,634 88.3
14 0 1 3 1 2766.1 0.09 88.9 41,500 303
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the state space exhaustively (750,000 simulations vs
1,980,000). Future work could look at how best to
choose the optimisation parameters, investigate the
convergence rate of the algorithm, and as some data
samples in this study are small, further data could be
collected to obtain larger samples.

In addition to the above technical contributions in
this area of work, this study also demonstrated how
some reliability modelling and assessment methods,
which are commonly used in modelling industrial sys-
tems, can be successfully applied in the area of health-
care systems, when the reliability and efficiency of their
procedures are of paramount importance to society.
Future studies could explore the potential of such tech-
niques in other more complex healthcare settings, where
procedures are carried out by clinical teams.

Future work could also include extending the state
space of the optimisation problem. This could be
achieved by either including more variables in the set-
up configurations, or by increasing the current range of
values. Two candidate variables to include in an
extended optimisation are: the number of labelling sta-
tions available, and which tasks should be given prior-
ity when staff are working.

The work could be further extended by considering
how to best set-up multiple pharmacies. Additionally,
data collection on different types of staff perform tasks
could be easily incorporated into the model.
Investigation into the efficacy of different types of
accuracy check, comparing ACT’s with pharmacists for
example, could allow for a more effective optimisation
between cost and safety.
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