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Posterior Predictive Checking for Partially
Observed Stochastic Epidemic Models

Georgios Aristotelous∗, Theodore Kypraios† and Philip D. O’Neill‡

Abstract. We address the problem of assessing the fit of stochastic epidemic mod-
els to data. Two novel model assessment methods are developed, based on disease
progression curves, namely the distance method and the position-time method.
The methods are illustrated using SIR (susceptible-infective-removed) models. We
assume a typical data observation setting in which case-detection times are ob-
served while infection times are not. Both methods involve Bayesian posterior pre-
dictive checking, in which the observed data are compared to data generated from
the posterior predictive distribution. The distance method does this by calculat-
ing distances between disease progression curves, while the position-time method
does this pointwise at suitably selected time points. Both methods provide visual
and quantitative outputs with meaningful interpretations. The performance of the
methods benefits from the development and application of a time-shifting method
that accounts for the random time delay until an epidemic takes off. Extensive
simulation studies show that both methods can successfully be used to assess the
choice of infectious period distribution and the choice of infection rate function.
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1 Introduction

Stochastic epidemic models are vital public health tools for understanding and pre-
dicting progression of an outbreak and formulating control strategies. However, such
models have limited practical use unless they sufficiently represent key features of real-
life outbreaks. Although there has been significant progress in the area of parameter
estimation for stochastic epidemic models (e.g. O’Neill and Roberts, 1999; Kypraios,
2007; Streftaris and Gibson, 2012; Xiang and Neal, 2014; Nguyen-Van-Yen et al., 2021),
model assessment methods remain less developed. This paper is concerned with the
problem of assessing the fit of stochastic epidemic models, fitted to partially observed
temporal outbreak data. We employ a Bayesian framework and develop methods based
on the notion of posterior predictive checking, whereby one or more aspects of a model
are examined for departure from their posterior predictive distribution (Gelman et al.,
2013). Note that our sole focus is assessing whether or not a proposed epidemic model
adequately describes the data to hand, rather than choosing between a collection of
competing models as addressed by Alharthi et al. (2019).
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2 Posterior Predictive Checking for Stochastic Epidemic Models

Analysing data from infectious disease outbreaks contains inherent challenges, since
typically data are not independent, the infection process is unobserved, and an out-
break is only realized once. This in turn makes standard methods for assessing model
fit inapplicable. An unsurprising consequence is that the literature on model assess-
ment for stochastic epidemic models is rather limited. In the Bayesian setting, existing
approaches can broadly be divided into two categories. In the first, the posterior distri-
bution of a set of stochastic residuals is assessed for consistency against the reference
sampling distribution (e.g. Jewell et al., 2009; Streftaris and Gibson, 2012). The sec-
ond is based on posterior predictive checking (e.g. Gardner et al., 2011; Parry et al.,
2014). Although these approaches have proved useful as a means of excluding models
on the basis of their inability to reproduce key aspects of observed epidemics, they have
considerable drawbacks and have failed to provide model assessment methods that are
well-established among the epidemic community. Approaches based on residuals rely
heavily on information imputed from the model itself, thus reinforcing the model being
assessed (Gibson et al., 2018) and the choice of which residuals to use can be some-
what arbitrary (O’Neill, 2010). Posterior predictive checking approaches have not been
employed to their full potential, often assessing only non-temporal features of a model
(e.g. Lekone and Finkenstädt, 2006), or when assessing temporal features, failing to
consider important peculiarities of the epidemic modelling setting, a point we return to
in Section 3.

In this paper we focus on posterior predictive checking methods based on disease
progression curves which represent the temporal features of an outbreak. We develop
two novel computational methods, namely the distance method and the position-time
method. Both methods provide visual and quantitative outputs with meaningful inter-
pretations. The methods greatly benefit from the application of a time-shifting interven-
tion which we also develop. This intervention adjusts for a peculiar feature of stochastic
epidemics, related to the randomness of their take-off time, and facilitates better con-
ditions for model assessment. Throughout this paper, we assume a partial observation
setting that commonly occurs in practice, where case-detection times are observed while
actual times of infection are unknown, though the methods we develop are in princi-
ple applicable to any temporal data setting. We demonstrate the performance of our
methods via extensive simulation studies that address two specific problems, namely the
choice of infectious period distribution and the choice of infection process mechanism in
SIR (susceptible-infective-removed) models. In addition to simulated data, the methods
are also illustrated on real data via two influenza outbreak examples.

This paper is structured as follows. Section 2 contains relevant preliminary infor-
mation. Section 3 motivates and describes the time-shifting method we employ. In Sec-
tions 4 and 5, respectively, we develop and illustrate our two methods for model as-
sessment, and present extensive simulation studies in Sections 6 and 7. In Section 8 we
apply the methods to real data. Finally, in Section 9 we give some additional perspec-
tives and commentary on the work in this paper. All computer code used to produce
the results in this paper was conducted using the statistical programming language R
Core Team (2019). The code to implement the methods has been deposited in Github
(https://github.com/kypraios/post-pred-check-epi).

https://github.com/kypraios/post-pred-check-epi
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2 Preliminaries

2.1 Posterior predictive checking

Posterior predictive checking (Gelman et al., 2013) is an intuitive and natural way to
assess model fit within a Bayesian framework. The key idea is that replicated data,
generated under the model, should look similar to the observed data. Let yobs denote
the observed data, π(y | θ) the sampling density of an assumed model with parameter θ
and π(θ | yobs) the posterior density of θ. Then replicated data yrep are data generated
from the posterior predictive density of the model, denoted π(yrep | yobs), and given by

π(yrep | yobs) =

∫
π(yrep | θ)π(θ | yobs)dθ. (2.1)

Since direct comparison of yobs and yrep can be complicated unless both are low-
dimensional, it is instead common to focus on real-valued test statistics. A test statistic
T assumes its observed value T obs := T (yobs) whereas T rep := T (yrep) is a random vari-
able. Assessment for the aspect of the data represented by T is conducted by comparing
the posterior predictive distribution of T rep to its observed value T obs.

In practice, and for all models considered in this paper, the posterior and the pos-
terior predictive distributions are not known analytically and so we instead conduct
assessment via samples. A sample from the posterior predictive distribution of T rep can
be obtained as follows. First, draw a sample {θ(1),θ(2), . . . ,θ(S)} from the posterior
density of the model, π(θ | yobs), using a method such as Markov chain Monte Carlo

(MCMC). For each posterior value θ(s), s = 1, 2, . . . , S, simulate a replicated dataset

yrep(s) from the sampling density of the model π(y | θ(s)). It follows from equation (2.1)
that {yrep(1),yrep(2), . . . ,yrep(S)} is a sample from the posterior predictive distribution
of the model. Finally, calculate T rep(s) := T (yrep(s)), for each s = 1, 2, . . . , S, to pro-
duce a sample, {T rep(1), T rep(2), . . . , T rep(S)}, from the posterior predictive distribution
of T rep.

Given {T rep(1), T rep(2), . . . , T rep(S)}, posterior predictive checking can be conducted
both quantitatively and visually. Quantitatively, the quantity of interest is the poste-
rior predictive p-value (ppp-value), which for continuous T is defined as ppp-value :=
P (T rep < T obs) and calculated as

ppp-value = P (T rep < T obs) = E(1{T rep<T obs})

=

∫
1{T rep<T obs}π(y

rep | yobs)dyrep ≈ 1

S

S∑
s=1

1{T rep(s)<T obs},
(2.2)

where 1A denotes the indicator function of the event A. Extreme ppp-values, close to 0
or 1, imply evidence for lack of fit, in the sense that the discrepancy between model and
data can not be reasonably explained by chance, whereas values near 0.5 indicate good-
ness of fit, suggesting that the model adequately captures the aspect of the data in ques-
tion (Gilks et al., 1996; Gelman et al., 2013). Visually, the observed value T obs can be
imposed on a histogram of the sampled replicated values {T rep(1), T rep(2), . . . , T rep(S)}.
An observed value near the middle of the histogram would indicate goodness of fit.
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2.2 Standard and non-linear infection rate SIR models

Recall the standard SIR model (see e.g. Andersson and Britton, 2000), defined as fol-
lows. Consider a closed population consisting of individuals, each of which can, at any
time t, be either susceptible (S), infective (I) or removed (R). Initially, N individuals
are susceptible, m are infective and none are removed. A susceptible individual can po-
tentially contract the disease. An infective individual has the disease and can transmit
it to others. A removed individual can no longer transmit the disease and is also not
susceptible. The removal state might correspond to different things in practice such as
immunity, death, isolation or the appearance of symptoms which make the individual
too ill to continue interacting with the population as usual. The common characteris-
tic of all removed individuals is that they play no part in the spread of the epidemic.
Individuals can only transition from susceptible to infective (S → I) and infective to
removed (I → R). Let Xt and Yt respectively be the numbers of susceptible and infective
individuals in the population at time t. Transitions may occur as follows.

S → I: A given infective individual makes contacts with any other individual at the
time points of a homogeneous Poisson process of rate β. If a contacted individual is
susceptible they immediately become infective. All Poisson processes are assumed to be
mutually independent. Thus the all-to-all infection rate is βXtYt.

I → R: Upon infection an individual starts their infectious period, in which they
remain until they become removed. The infectious periods of individuals are assumed to
be independent and identically distributed according to a specified random variable TD.

In the rest of this paper we assume for simplicity that m = 1 but this assumption
can easily be relaxed. The epidemic ends when no infectives are left in the population.
The total number of susceptibles that ever become infected is known as the final size
of the epidemic.

A key parameter associated with the standard SIR model is the basic reproduction
number R0. This is loosely defined as the average number of new infections caused by
a typical infective in a large susceptible population, and is given by

R0 = NβE(TD). (2.3)

The value of R0 can be thought of as quantifying the infective potential of the disease,
with more infections occurring overall as R0 increases.

The non-linear infection rate SIR model (Severo, 1969; O’Neill and Wen, 2012) is
an extension of the standard SIR model, obtained by modifying the all-to-all infection
rate to be βXtY

p
t , for p ∈ [0, 1]. The parameter p controls the level of exposure of

susceptibles to infectives, so the smaller the p the less the exposure.

In this paper, we consider two specific choices of infectious period distribution,
namely Exponential, with rate parameter γ and probability density function (p.d.f.)
f(x; γ) = γ exp(−γx), x ≥ 0; γ > 0, and Gamma, with shape parameter ν, rate param-
eter λ and p.d.f. f(x; ν, λ) = λν

Γ(ν)x
ν−1 exp(−λx), x ≥ 0; ν, λ > 0. Both these choices

appear frequently in the epidemic modelling literature. We will consider the standard
SIR model using both Exponential and Gamma infectious periods and denote these
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versions of the model by Exp-HM and Gamma-HM, respectively, where HM denotes
Homogeneous Mixing. We also consider the non-linear infection rate SIR model with
Exponential infectious period distribution, and denote this as Exp-NL.

2.3 Data assumptions

We shall assume we have data on a single epidemic outbreak in which case-detection
times are observed but infection times are not. In addition, we assume that upon ap-
pearance of symptoms an individual stops interacting with the population so that case-
detection times correspond to removal times. These assumptions are reasonable for
many real-life settings, and are common in the modelling literature (e.g. O’Neill and
Roberts, 1999; Neal and Roberts, 2005; Xiang and Neal, 2014).

We write r = (r1, r2, . . . , rn) to denote a vector of time-ordered removal times,
so that r1 < r2 < . . . < rn. This may refer to observed removal times, or to repli-
cated removal times generated under the posterior predictive distribution of a particu-
lar model. To distinguish these cases, we write robs = (robs1 , robs2 , . . . , robsn ) and rrep =

(rrep1 , rrep2 , . . . , rrepn ) in the obvious manner, and write rrep(s) = (r
rep(s)
1 , r

rep(s)
2 , . . . ,

r
rep(s)
n ) to denote the realisation of rrep corresponding to a specific replication s.

We impose a condition on replicated data, namely that they must be of equal di-
mension to the observed data, or equivalently, that they must have the same final size
as the observed data. This is achieved by employing a rejection sampling algorithm (e.g.
Ripley, 2009) via which we sample realisations from the fitted model and only keep those
whose final size is the same as in the observed data. The ability of a model to reproduce
the observed final size can be assessed separately, for example via posterior predictive
checking as in Alharthi (2016, chapter 3). The motivation for this assumption is that
it is more natural to compare vectors of the same dimension. It is however possible to
relax this assumption, a point we return to in Section 9.

In what follows we assume that, given some data and a model, the model has already
been fitted to the data and a sample from the posterior distribution has been obtained.
A sample from the posterior predictive distribution of the model can be obtained as
described in Section 2.1. We will consider a sample from the posterior predictive dis-
tribution of the model to be the starting point for the model assessment procedures we
describe. To fit the models considered in this paper we use MCMC methods (O’Neill
and Roberts, 1999). The MCMC algorithms used to fit these models, and their run
conditions, are described in Aristotelous (2020, section 1.3.5) and Aristotelous (2020,
section 2.7.1).

2.4 Removal curve

The removal curve, denoted zt, is defined as the cumulative number of removals at time
t, i.e. zt(r) :=

∑n
k=1 1{rk≤t}. Removal curves are frequently used in the literature to

assess disease progression dynamics, when only removal data are available (e.g. Gibson
et al., 2018). In the context of posterior predictive checking, assessment based on removal
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curves can be conducted visually by imposing the observed removal curve on a pack of
replicated removal curves drawn from the posterior predictive distribution of a fitted
model (e.g. Stockdale et al., 2017). In this paper we will additionally develop quantitative
measures of fit based on removal curves.

Note that zt is a function of time and is therefore potentially much more informative
for model assessment purposes than scalar quantities such as the final size or duration
of an outbreak. It is easy to see that, given zt(r) for each t ∈ R, one can reconstruct the
removal data vector r, and thus, the removal curve statistic is another way of viewing
the data. This property is what makes zt the focus of the methods developed in this
paper. An illustrative example, demonstrating the clear advantage that the removal
curve has in assessing temporal dynamics, compared to the final size and the duration
statistics, is provided in Aristotelous (2020, section 2.2.4). We use the notation zobst ,

zrept and z
rep(s)
t to denote zt(r

obs), zt(r
rep) and zt(r

rep(s)), respectively.

3 Time-shifting of removal curves

3.1 Motivation

Many stochastic epidemic models, at least in large populations, have the feature of a
“random time” until take-off, followed by a more-or-less deterministic phase (see e.g.
Andersson and Britton, 2000; Aristotelous, 2020, section 2.4.1). In our setting, this
means that different realisations of an SIR model may look like time-shifted versions
of each other, which complicates any attempt to see if they appear similar to observed
data. Moreover, the stochasticity of the take-off time can be large enough to make
it hard to extract meaningful conclusions from any visual or quantitative assessment.
To our knowledge, none of the existing approaches in the literature for model fit or
assessment for epidemic models take random take-off time into account.

We demonstrate these issues visually in Figures 1a and 1c via two examples. For
visual aid, the plots also show mean removal curves, defined formally in Section 4.1.
The first example illustrates that high stochasticity in the take-off time can lead to a
misspecified model being plausible for observed removal data. We generate event times
from a homogeneous Poisson Process (HPP) with rate ρ = 1 during the time interval
[Ton, Toff] = [0, 170], treat these times as the removal data, and fit a Gamma-HM model
(Figure 1a). Here the level of model misspecification is considerable, since the Gamma-
HM model assumes that removals occur at a rate that varies as the epidemic progresses,
while event times generated under a HPP occur at a constant rate. Despite this, the
variability in take-off time makes the pack of replicated removal curves too wide for the
misspecification to be apparent.

The second example shows undesired implications even when the epidemic model
is correctly specified, even for large datasets. We fit the Gamma-HM model to data
generated from itself (Figure 1c). The replicated removal curves have very similar shape
to the observed curve, due to the correctly specified process dynamics. However, the
observed curve is atypical with respect to the take-off time, and it therefore lies on the
tails of the replicated pack, raising doubts for the fit of the model.
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Figure 1: Plots of 500 replications from the posterior predictive distribution of the
removal curve, zrept , with its mean removal curve, z̄rept (red, dashed line), and the
observed removal curve, zobst (black, solid line), imposed. In the top row Gamma-HM
(ν = 10) is fitted to data generated from a HPP (ρ = 1, Ton = 0, Toff = 170). In the
bottom row Gamma-HM (ν = 10) is fitted to data generated from the same model
(N = 1000, R0 = 2.5, ν = 10, λ = 1). Left and right columns are without and with
applying time-shifting, respectively.

3.2 Procedure and implementation

To deal with the issues related to the randomness of the take-off time, we propose an

intervention, referred to as time-shifting. The purpose of this intervention is to remove

the stochasticity of the take-off time, and thus allow a like-for-like comparison between

removal curves. The idea is to shift each removal curve in order to minimize its distance

from the observed removal curve, according to some specified distance function.

Given c ∈ R, the removal vector r + c := (r1 + c, r2 + c, . . . , rn + c), is a shift by c

time units of the removal vector r, and the removal curve zt(r+ c) is the corresponding

shift of the removal curve zt(r). Suppose that a model has been fitted to robs and that

a sample {rrep(1), rrep(2), . . . , rrep(S)} has been obtained. The time-shifting is applied
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as follows. For each replication s = 1, 2, . . . , S, we calculate a shifting constant

c(s) = argmin
c∈R

d(zt(r
obs), zt(r

rep(s) + c)),

where d is a distance function between removal curves, the choice of which is discussed
in Section 4.1. We then replace each replication, rrep(s), with its shifted counterpart,
rrep(s) + c(s), s = 1, 2, . . . , S. Algorithm 1 describes the steps in the time-shifting inter-
vention.

Algorithm 1 Time-shifting.

Let robs be the observed removal data and {rrep(1), rrep(2), . . . , rrep(S)} a sample of
replicated removal data, drawn from the posterior predictive density of the model,

π(rrep | robs).
1. Calculate c(s) = argmin

c∈R

d(zt(r
obs), zt(r

rep(s) + c)), s = 1, 2, . . . , S.

2. Apply the time-shifting to each replication by replacing rrep(s) with rrep(s) + c(s),
s = 1, 2, . . . , S.

To illustrate the effect of time-shifting, we return to the two examples presented in
Section 3.1. Figure 1b shows that for the example where the model is clearly misspecified,
application of time-shifting gives increased power to detect the misspecification. After
time-shifting, the pack of replicated removal curves becomes much narrower and the
observed curve lies on the tails and even outside the pack. For the example of the
correctly specified model, Figure 1d shows that time-shifting effectively removes the
undesired noise around the take-off time of the observed removal curve and allows the
ability of the model to reproduce the observed data dynamics to be revealed. Typically,
when applying time-shifting, the observed removal curve is placed in the middle of the
pack of replicated removal curves with the mean removal curve being on top of the
observed. We note that, although our motivation for time-shifting of the removal curves
is to overcome the random time until take-off, it also helps to visualise the ensemble of
removal curves in the same way that alignment is typically used to visualise functional
data in general (e.g. Ramsay and Silverman, 2005).

Moreover, an alternative method of time-shifting, which only considers the early
stages of the outbreak, can be implemented and this is referred to as theoretical shifting
in Aristotelous (2020). This approach is based on the result that the initial stage of a
standard SIR model in a large population can be approximated by a branching process
(Ball and Donnelly, 1995) and it works by essentially pinning all replicated curves so
that the time until

√
N individuals become removed is the same among them and that

of the observed curve. Extensive simulation studies are presented in Aristotelous (2020,
section 2.7.1) where the different approaches to time-shifting are compared under a
range of different scenarios (e.g. when a model is correctly specified as well as when it
is misspecified). The results reveal both approaches of time-shifting have the desirable
effect under all cases of (mis)specification and that the theoretical shifting is inferior to
the presented time-shifting above. Therefore, all methods developed in this paper make
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use of the time-shifting method described above, while the theoretical shifting is not
considered any further.

4 Distance method

4.1 Procedure

We now introduce the distance method for assessing model fit. Consider a real-valued
statistic Td on the space of removal curves L such that Td(zt) = d(zt,Ez

rep
t ), where d is

a distance function on L and Ezrept is the mean of zrept . The choice of d and definition of
Ezrept are addressed below. Then Td(z

obs
t ) = d(zobst ,Ezrept ) is the distance of the observed

removal curve zobst from the mean Ezrept . The test statistic Td(z
rep
t ) = d(zrept ,Ezrept ) is

a random variable, having the posterior predictive distribution of replicated distance,
which is the distance of zrept from the mean Ezrept . To simplify notation let T obs

d :=
Td(z

obs
t ) and T rep

d := Td(z
rep
t ). Model assessment can be conducted, quantitatively and

visually, in the usual fashion of posterior predictive checking by calculating the tail-area
probability P (T rep

d < T obs
d ) and by overlaying T obs

d on a histogram of sampled replicated
values of T rep

d . The idea is that if a model fits the data, zobst must not be further from
the mean Ezrept than zrept is, i.e. T obs

d must look plausible under T rep
d .

In this paper, we set d as the Euclidean distance on L,

d(zt, z
∗
t ) =

(∫ max(rn,r
∗
n)

min(r1,r∗1 )
(zt − z∗t )

2
dt

) 1
2

,

where zt, z
∗
t ∈ L, with corresponding time-ordered removal vectors r, r∗ ∈ R

n. Note
that other choices of d can be considered, such as the area between removal curves or
the Euclidean distance between removal vectors. A thorough comparison between these
distances is conducted in Aristotelous (2020, section 2.7.1), with the distance method
exhibiting similar performance under all choices.

To define the posterior predictive mean removal curve, Ezrept , we follow Alharthi
(2016). First, define Errep := (E(rrep1 ),E(rrep2 ), . . . ,E(rrepn )), where

E(rrepk ) =

∫
rrepk π(rrepk | robs)drrepk , k = 1, 2, . . . , n.

Then define Ezrept := zt(Er
rep) =

∑n
k=1 1{E(rrepk )≤t}. It is easy to see that, as con-

structed above, Ezrept ∈ L and thus all distance calculations required to implement the
distance method are well defined.

4.2 Folded ppp-value and the assumption of symmetry

The key idea in the distance method is to calculate distances from the posterior pre-
dictive mean removal curve Ezrept . This section explains the precise involvement that
Ezrept has in the procedure, the assumptions that are imposed, and how the procedure
can be interpreted.
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Consider a simplified version of our setting in which all random quantities are random
variables. Suppose the observed data consist of a single real number yobs. Let yrep be a
random variable having the posterior predictive distribution of a proposed model that
has been fitted to yobs. Then, using as test statistic the identity function T (y) = y, from
equation (2.2) we have ppp-value = P (yrep < yobs). Next, define the folded ppp-value as
fppp-value := P (|yrep−E(yrep)| < |yobs−E(yrep)|), its name coming from the fact that
|yrep −E(yrep)| is a fold of yrep at its mean E(yrep). Then, under the assumption that
yrep has a symmetric distribution, it is easy to see that fppp-value = 2|ppp-value−0.5|.
This simple relationship that connects the folded ppp-value with the ppp-value implies
that the former can also be used as a sensible and interpretable measure of model fit.
More specifically, folded ppp-values near 0 would indicate goodness of fit, since they
correspond to ppp-values near 0.5, while extreme folded ppp-values near 1 would imply
evidence of lack of fit, since they correspond to ppp-values near 0 or 1.

In settings such as those above, where all random quantities are random variables
and the ppp-value is clearly defined by utilizing the natural order of R, working with
the folded ppp-value and requiring symmetry for the posterior predictive distribution is
unnecessary. However, in spaces such as the space of removal curves L with no natural
ordering, it is not immediately obvious how to define a ppp-value. Instead it appears
more natural to extend the definition of the folded ppp-value, by replacing the absolute
value distance on R with some distance function on that space, and by requiring the
posterior predictive distribution to be symmetric, in some sense, around its mean. For
the space L, the extended folded ppp-value is then P

(
d (zrept ,Ezrept ) < d

(
zobst ,Ezrept

))
where, as in Section 4.1, d is our chosen distance function on L, and Ezrept a suitably
defined mean of zrept .

From the definition of Td in Section 4.1, it is clear that the extended folded ppp-
value coincides with the tail-area probability P (T rep

d < T obs
d ) of a posterior predictive

check using the statistic Td. Thus this probability is actually a folded ppp-value and,
under the assumption that the posterior predictive distribution of the removal curve is
symmetric, it can be interpreted as explained above.

The connection between the ppp-value and the folded ppp-value in R arises in the
context of observing a single realization, and the test statistic being the identity function.
A subtle point to note is that when extending to L these conditions are not violated,
since the observed data still consist of a single realization, and the test statistic is still
the identity function, since the removal curve is equivalent to the observed data as
explained in Section 2.4.

By construction, for the folded ppp-value P (T rep
d < T obs

d ) to be interpretable, we
require the posterior predictive distribution to be symmetric. In the space L, it is not
obvious how to explicitly define or verify symmetry. Even if a definition was proposed,
the posterior predictive distributions of our models do not have known closed forms
and thus analytically checking for symmetry appears to be infeasible. For these reasons,
we adopt a pragmatic approach and assess the assumption of symmetry by visually
inspecting whether the mean removal curve lies in the center of the pack of sampled
replicated removal curves.
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4.3 Implementation

The implementation steps for the distance method are given in Algorithm 2. To illustrate
the method, we use it to assess the fit of three models, the Exp-HM model, the Gamma-
HM model with shape parameter fixed at ν = 10, and the Exp-NL model with power
parameter fixed at p = 0.5, all fitted to the same dataset, itself generated from the
Exp-HM model with N = 500, R0 = 2.5 and γ = 0.1. Our intention is to create
three cases of model specification, namely correct specification, misspecification due to
the infectious period, and misspecification due to the infection rate form. The Exp-
HM model represents the case of correct specification, being fitted to data generated
from itself. The Gamma-HM model has the same infection process as the Exp-HM but
with a different infectious period. The Exp-NL model has the same infectious period
specification as the Exp-HM, but a different infection process. Notice that, for ν = 1 and
for p = 1, the Gamma-HM model and the Exp-NL model, respectively, reduce to the
Exp-HM model. Thus, fixing ν = 10 and p = 0.5 when fitting these models, rather than

Algorithm 2 Distance method.

Let robs be the observed removal data and {rrep(1), rrep(2), . . . , rrep(S)} a sample of
replicated removal data, drawn from the posterior predictive density of the model,

π(rrep | robs).
1. Apply the time-shifting: Apply Algorithm 1 and note that for all following steps

{rrep(1), rrep(2), . . . , rrep(S)} refers to the sample of shifted replicated removal data

and {zrep(1)t , z
rep(2)
t , . . . , z

rep(S)
t } refers to the corresponding sample of shifted repli-

cated removal curves.
2. Calculate the mean removal vector and the mean removal curve: Calcu-

late the expected value of each replicated removal time, under its marginal poste-
rior predictive distribution, using Monte Carlo (MC) approximation as E(rrepk ) =∫
rrepk π(rrepk | robs)drrepk ≈ 1

S

∑S
s=1 r

rep(s)
k = r̄repk , k = 1, 2, . . . , n. Then the

mean removal vector is approximated as Errep := (E(rrep1 ),E(rrep2 ), . . . ,E(rrepn )) ≈
(r̄rep1 , r̄rep2 , . . . , r̄repn ) =: r̄rep and the mean removal curve as Ezrept := zt(Er

rep) ≈
zt(r̄

rep) =: z̄rept .
3. Calculate the required distances: Calculate the (approximate) observed value of

Td as T obs
d := Td(z

obs
t ) = d(zobst ,Ezrept ) ≈ d(zobst , z̄rept ) and obtain an (approximate)

sample {T rep(1)
d , T

rep(2)
d , . . . , T

rep(S)
d } from the posterior predictive distribution of

T rep
d = Td(z

rep
t ) = d(zrept ,Ezrept ), by calculating the (approximate) replicated dis-

tances as T
rep(s)
d := d(z

rep(s)
t ,Ezrept ) ≈ d(z

rep(s)
t , z̄rept ), s = 1, 2, . . . , S.

4. Assess the model: Assess the model quantitatively by calculating
the folded ppp-value using MC approximation as P (T rep

d < T obs
d ) ≈

1
S

∑S
s=1 1{T rep(s)

d <T obs
d } and visually by inspecting the histogram of replicated

distances {T rep(1)
d , T

rep(2)
d , . . . , T

rep(S)
d } with T obs

d imposed, as well as by inspecting

the plot of replicated removal curves {zrep(1)t , z
rep(2)
t , . . . , z

rep(S)
t } with zobst and z̄rept

imposed.
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Figure 2: Example of posterior predictive checking using the distance method. Observed
data are generated from an Exp-HM model (N = 500, R0 = 2.5, γ = 0.1). Left, middle
and right columns correspond to fitted model being the Exp-HM (correctly specified),
the Gamma-HM (ν = 10) (misspecified due to the infectious period) and the Exp-NL
(p = 0.5) (misspecified due to the infection rate form), respectively. Top row are plots
of 500 replications from the posterior predictive distribution of the removal curve, zrept ,
with the mean removal curve, z̄rept (red, dashed line), and the observed removal curve,
zobst (black, solid line), imposed. Bottom row are histograms of 500 replications from
the posterior predictive distribution of the distance, T rep

d , with the observed distance,
T obs
d (black, dashed line), overlaid and the corresponding folded ppp-value stated.

estimating these parameters, prevents the models from being reduced to the Exp-HM
model, and thus creates the desired model misspecification.

Typical output of the assessment is given in Figure 2. The distance method behaves
appropriately since it yields a small folded ppp-value, 0.23, for the Exp-HM model and
large ones for the Gamma-HM and the Exp-NL models, 0.95 and 0.93 respectively.
Based on its outputs, the distance method suggests that the Exp-HM fits the data,
whereas the other two models are highly likely to be misspecified, which is indeed the
case.

Looking at the removal curve plots (top row of Figure 2), it is evident that curves
produced by the Gamma-HM model tend to peak faster, compared to curves produced
by the Exp-HM, which in turn, tend to peak faster compared to curves produced by
the Exp-NL model. This explains why in such cases, where data are generated from the
Exp-HM model, the Gamma-HM and the Exp-NL models struggle to produce replicated
curves that are similar to the observed curve. Based on the folded ppp-values, the
distance method provides an accurate quantification of the differences in the removal
curve behaviour of these models.

The results of this example are indicative of the distance method’s ability to suc-
cessfully assess both the infectious period assumption and the infection rate form as-
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sumption of epidemic models. A much more detailed depiction of this ability is given in
the extensive simulation studies of Sections 6 and 7.

5 Position-time method

5.1 Rationale and procedure

The distance method provides a quantitative measure of goodness of fit via the use of
a distance function that integrates over time. In a stochastic process setting however, it
is natural and informative to also consider methods that provide quantitative measures
of fit that are functions of time. Below, we develop one such method, which we refer
to as the position-time method. The method works by specifying the position of the
observed curve, with respect to the pack of replicated curves, at the time points of an
appropriately chosen time interval.

The procedure of the position-time method is as follows. Fix a time point t, such
that t ∈ [robs1 , robsn ]. Specify the position of zobst , with respect to the distribution of zrept ,
by calculating the time-dependent (mid) ppp-value, given by ppp-value(t) = P (zrept <
zobst )+ 1

2P (zrept = zobst ). This modification from our definition of the ppp-value as given
in equation (2.1) accounts for the fact that zrept is a discrete random variable. Values
closer to 0.5 provide indication for goodness of fit, as they correspond to the observed
curve lying in the middle of the pack of replicated curves, and values near 0 or 1 provide
evidence against the model’s fit, as they correspond to the observed curve lying on the
lower or upper tail of the pack of replicated curves, respectively.

Given the value of ppp-value(t) for every t ∈ [robs1 , robsn ], there is flexibility for a
range of visual and quantitative assessments. Visually, one can plot a histogram of
time dependent ppp-values calculated at a collection of equally spaced time points of
[robs1 , robsn ]; more mass near 0.5 would indicate better fit while more mass near 0 or 1 a
bad fit. Another option, arguably more informative, is to plot the function ppp-value(t)
against time; a good fit would be indicated in the cases that the function is consistently
close to 0.5, while a lack of fit in the cases that the curve is consistently near 0 or 1.
Quantitatively, statements for any interesting quantity, with respect to the posterior
predictive distribution, can be made, by integrating the indicator function of the desired
event over time. We particularly consider quantities such as the proportion of time that
zobst spends in a specified inverse quantile interval, [p1, p2], of z

rep
t , where 0 ≤ p1 <

p2 ≤ 1. For example, choosing [p1, p2] = [0.4, 0.6] gives the proportion of time that
zobst spends in the central interval [0.4, 0.6]. The analytic expression for calculating

such proportions is (robsn − robs1 )−1
∫ robsn

robs1
1{ppp-value(t)∈[p1,p2]}dt. Such information can

be conveniently summarized by partitioning the space of inverse quantiles, [0, 1], into
intervals of length 0.1 and calculating the proportion of time that zobst spends in each
of these intervals.
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5.2 Implementation

The position-time method can be implemented as described in Algorithm 3. To illustrate

the method we use the same example dataset and the same fitted models as used to

illustrate the distance method in Section 4.3. We also use K = 500 throughout the

paper. Figure 3 and Tables 1 to 3 contain the results of the assessment. As for the

distance method, the position-time method delivers appropriate assessments. For the

Gamma-HM model, the method yields that the observed curve spends a proportion of

0.6 of its time at the lower tail interval [0, 0.1] of the pack of replicated curves, giving

strong reasons to doubt the adequacy of the model fit to the data (see Table 2). Similar

doubts are raised for the fit of the Exp-NL model, for which the observed curve is

found to spend a proportion of around 0.6 of its time at the upper tail interval [0.9, 1]

of replicated curves. Conversely, for the Exp-HM model, the observed curve spends a

proportion of 0.8 of its time in the central interval [0.2, 0.8] of replications (see Table 1),

suggesting that the model is a good fit to the data.

As for the distance method, the position-time method appears to accurately capture

the differences between the models, as far as the peaking tendency of their removal

curves, as discussed in Section 4.3. This feature of the method is illustrated by looking

Algorithm 3 Position-time method.

Let robs be the observed removal data and {rrep(1), rrep(2), . . . , rrep(S)} a sample of
replicated removal data, drawn from the posterior predictive density of the model,

π(rrep | robs).
1. Apply the time-shifting: Apply Algorithm 1 and note that for all following steps

{rrep(1), rrep(2), . . . , rrep(S)} refers to the sample of shifted replicated removal data

and {zrep(1)t , z
rep(2)
t , . . . , z

rep(S)
t } refers to the corresponding sample of shifted repli-

cated removal curves.
2. Calculate, pointwise, the position of the observed removal curve with re-

spect to its posterior predictive distribution: Discretize the interval [robs1 , robsn ]
by choosing a collection of equally spaced points as robs1 = t1 ≤ t2 ≤ · · · ≤ tK = robsn

withK large enough so that the numerical approximation is accurate. For each tk cal-
culate the time dependent ppp-value(tk) using MC approximation as ppp-value(tk) =

P (zreptk
< zobstk

)+ 1
2P (zreptk

= zobstk
) ≈ 1

S

∑S
s=1 1{zrep(s)

tk
<zobs

tk
} +

1
2S

∑S
s=1 1{zrep(s)

tk
=zobs

tk
},

k = 1, 2, . . .K.
3. Assess the model: Assess the model quantitatively by calculating the pro-

portion of time that zobst spends in specified (inverse) quantile intervals [p1, p2]
of zrept , where p1, p2 ∈ [0, 1], p1 ≤ p2, using numerical approximation as

1
robsn −robs1

∫ robsn

robs1
1{ppp-value(t)∈[p1,p2]}dt ≈ 1

K

∑K
k=1 1{ppp-value(tk)∈[p1,p2]} and visually

by plotting the function ppp-value(t) against time t (a ppp-value(t) history plot),
at the time points tk, k = 1, 2, . . . ,K, as well as by inspecting the plot of replicated

removal curves {zrep(1)t , z
rep(2)
t , . . . , z

rep(S)
t } with zobst imposed.
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Figure 3: Example of posterior predictive checking using the position-time method.
Left, middle and right columns correspond to fitted model being the Exp-HM (correctly
specified), the Gamma-HM (ν = 10) (misspecified due to the infectious period) and the
Exp-NL (p = 0.5) (misspecified due to the infection rate form), respectively. Top row
are plots of 500 replications from the posterior predictive distribution of the removal
curve, zrept , with the mean removal curve, z̄rept (red, dashed line), and the observed
removal curve, zobst (black, solid line), imposed. Bottom row are history plots of the
ppp-value(t) with the 0.05, 0.5 and 0.95 inverse quantiles (red, dashed lines) imposed.
The proportion of time that zobst spends at the inverse quantile intervals of zrept , for
each model, is given in Tables 1 to 3.

interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
time proportion 0.050 0.092 0.190 0.158 0.192

interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
time proportion 0.148 0.084 0.032 0.036 0.018

Table 1: Proportion of time that zobst spends in the inverse quantile intervals of zrept from
the position-time method for the Exp-HM model (correctly specified), for the example
dataset of Figure 3.

interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
time proportion 0.610 0.106 0.044 0.030 0.020

interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
time proportion 0.016 0.018 0.014 0.040 0.102

Table 2: Proportion of time that zobst spends in the inverse quantile intervals of zrept

from the position-time method for the Gamma-HM (ν = 10) model (misspecified due
to the infectious period), for the example dataset of Figure 3.
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interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
time proportion 0.166 0.028 0.026 0.022 0.010

interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
time proportion 0.014 0.012 0.028 0.100 0.594

Table 3: Proportion of time that zobst spends in the inverse quantile intervals of zrept

from the position-time method for the Exp-NL (p = 0.5) model (misspecified due to the
infection rate form), for the example dataset of Figure 3.

at the ppp-value(t) history plots (bottom row of Figure 3). Specifically, it can be seen
that the observed curve, being generated from the Exp-HM model systematically lies on
the lower (upper) tail interval of replicated curves produced by the Gamma-HM (Exp-
NL) model, reflecting the fact that it peaks slower (faster) compared to most of the
replicated curves. As for the distance method, the ability of the position-time method
to assess the infectious period and the infection rate form assumptions of epidemic
models is further illustrated in the simulation studies of Sections 6 and 7.

5.3 A scalar output for simulation studies

For the purposes of simulation studies in Sections 6 and 7, it is necessary in practice to
restrict the output of the position-time method to a single scalar, in order to facilitate
comparisons across multiple datasets. A natural choice for this output is the square
root of the mean square error (MSE) of the collection of time-dependent ppp-values

from the optimal value of 0.5,
√
MSE =

(
1
K

∑K
k=1 (ppp-value(tk)− 0.5)

2
) 1

2

, where tk

and ppp-value(tk) are defined and calculated, respectively, as in step 2 of Algorithm 3,
k = 1, 2, . . . ,K. We note that we combine the pointwise ppp-values to produce this
scalar only for manipulating the results from multiple datasets in the simulation stud-
ies and that is not a general suggestion. As we discuss in Section 9, we envisage the
position-time method as a complementary type of assessment to the distance method
and what makes it such is its capability to provide non-scalar, pointwise quantitative
outputs.

Two useful reference points that can aid interpretation of
√
MSE values are (i)√

1/2 ≈ 0.29, the value of the
√
MSE in the case that the collection of time-dependent

ppp-values follows a uniform distribution in [0, 1] (i.e. the observed curve assumes po-
sitions, with respect to the replicated, uniformly across time), and (ii) 0.5, the upper
bound for

√
MSE that occurs when the time dependent ppp-value is fixed at the least

optimal value of 0 or 1 (i.e. the observed curve lies outside of the pack of replicated re-
moval curves at all time points). For example, the

√
MSE values for the example dataset

of Section 5.2 are 0.22, 0.43 and 0.42 for the Exp-HM model (correctly specified), the
Gamma-HM model (misspecified due to the infectious period), and the Exp-NL model
(misspecified due to the infection rate form), respectively.
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6 Simulation study A: Assessing the infectious period
distribution assumption

6.1 Simulation and run conditions

For simulation study A, we consider the fit of the Exp-HM and Gamma-HM models
under two scenarios. In scenario 1, data are generated from the Exp-HM model, and in
scenario 2, data are generated from the Gamma-HM model. The simulation conditions
are given in Table 4. Our intention is to create cases of model specification that are
of interest, here being correct specification and misspecification due to the infectious
period, and then check if the proposed methods perform appropriate assessments. To
this end, we fix ν = 10 whenever the Gamma-HM model is used to either generate data
or be fitted to data. As explained in Section 4.3, this maintains distinction between
the two models so that in scenario 1 the Exp-HM model is correctly specified and the
Gamma-HM model is misspecified, and in scenario 2, the roles of the two models are
reversed. Notice from Table 4 that the values of the parameters γ and λ are set so that
the mean infectious period, E(TD) = 10, is the same under both scenarios. The same
applies to the basic reproduction number R0, which is set at 2.5 for both scenarios.
Specifying the parameters in such a way ensures that datasets generated under the two
scenarios only differ as a result of the different infectious period distribution.

Data generating process Parameter values
Scenario 1 Exp-HM R0 = 2.5, γ = 0.1
Scenario 2 Gamma-HM R0 = 2.5, ν = 10, λ = 1

Table 4: Conditions for simulation study A. Each simulation scenario consists of 4
rounds, where the number of initial susceptibles N is set at 100, 200, 500 and 1000,
respectively. For each round 24 datasets are generated.

Each simulation scenario consists of four rounds, with the number of initial sus-
ceptibles, N , being set at 100, 200, 500 and 1000, respectively. The number of initial
susceptibles can be thought of as quantifying the dimension of the observed data inso-
far as the total number of removed individuals, n, is likely to increase with N . Thus
the different rounds are used to examine if and how the performance of the methods
changes, as the dimension of the observed data increases. For each round, we generate
24 datasets, to account for sampling variability.

To each generated dataset we fit both models and draw 500 replicated removal
datasets from their respective posterior predictive distributions. As mentioned in Sec-
tion 2.3, the replicated datasets are conditioned on having the same final size as the
observed data. The runtime allowed to produce the required number of replications,
under this condition, is set at 15 hours.

6.2 Results

First, from the 384 (2 scenarios × 4 rounds × 24 datasets × 2 fitted models) attempts
to produce 500 replications of the same dimension as the observed data, only 2 failed
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to be completed within the 15 hour limit. This is a reflection of the fact that stan-
dard SIR models accurately capture the final size when fitted to data produced from a
standard SIR model, even if the infectious period distribution is not correctly specified
(see Alharthi (2016, chapter 3) and Aristotelous (2020, chapter 2) for simulation studies
supporting this claim).

For each model, we visualise the results by plotting medians and 95% quantile inter-
vals for the folded ppp-value and the

√
MSE, for each value of N and model specification

scenario (Figure 4). Plots of all folded ppp-values and all
√
MSE values from the sim-

ulation study are provided in Appendix A (Aristotelous et al., 2022). Before turning
to the results, recall that the folded ppp-value takes values in [0, 1] and

√
MSE takes

values in [0, 0.5], and in both cases a higher value means more evidence of lack of fit.

Under correct specification

We first consider results when the two models are correctly specified, namely scenario
1 for the Exp-HM model and scenario 2 for the Gamma-HM model. For the distance
method, it can be seen from Figure 4 that the folded ppp-values are generally closer to
0 than 1 which, as appropriate, is an indication of goodness of fit. Furthermore, as N
increases the folded ppp-values decrease and move closer to the optimal value of 0.

Results for the position-time method are similar to those for the distance method,
as can be seen from Figure 4. The median (95% quantile interval) of the

√
MSE values

(pooling over N as trend was similar between rounds) was 0.21 (0.13, 0.35) and 0.19
(0.13, 0.32) for the Exp-HM and the Gamma-HM model, respectively, which is well
below the least favourable value of 0.5. Unlike the distance method, it appears that N
does not have an effect on the results, since the sampling distribution of the

√
MSE

is similar for all values of N . This in itself is not an issue; for example, the p-value
in the classical setting has a uniform sampling distribution when the model is true,
independently of the dimension of the data.

Under misspecification

We now discuss results when the two models are misspecified, namely scenario 2 for the
Exp-HM model and scenario 1 for the Gamma-HM model. For the distance method,
results appear reasonable in the sense that the folded ppp-values are generally higher
under misspecification compared to correct specification (see Figure 4). For example,
for the Gamma-HM model with N = 500, the median (95% quantile interval) folded
ppp-value is 0.11 (0.01, 0.37) and 0.65 (0.10, 0.95), under correct specification and
misspecification, respectively. Note however that particularly for smaller values of N
(N = 100 and N = 200), the folded ppp-values are not high enough to systematically
raise serious concerns for the fit of the models. However, for both models, as N increases,
the folded ppp-values increase as well, implying that the lack of fit can be detected for
larger values of N (see Figure 4). Notice that the values for the Exp-HM model are
slightly lower than those of the Gamma-HM model. This is due to the fact that, in
single realization settings such as ours, the more stochasticity a model has the harder
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Figure 4: Folded ppp-values (top row) from the distance method and
√
MSE values (bot-

tom row) from the position-time method for the Exp-HM (left column) and Gamma-HM
(right column) models, for simulation study A. The vertical lines represent 95% quan-
tile intervals and the filled circles represent medians. Results under correct specification
(CS) are coloured in blue and under misspecification (MS) in red. Simulation conditions
are given in Table 4.

it is to detect misspecification. Here the Exp-HM model has more stochasticity than
the Gamma-HM model due its infectious period distribution having a higher variance.
Further discussion of this feature and an illustrative example are given in Aristotelous
(2020, section 2.2.3).

For the position-time method, comments and conclusions are the same as for the
distance method, both regarding results and the effect of N (see Figure 4).

7 Simulation study B: Assessing the infection rate form
assumption

7.1 Simulation and run conditions

For simulation study B, we consider the Exp-HM and Exp-NL models. These two models
have the same infectious period but different infection rate forms. We assess the fit of
the two models under two simulation scenarios, scenario 1, where the data come from
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Data generating process Parameter values
Scenario 1 Exp-HM R0 = 2.5, γ = 0.1
Scenario 2 Exp-NL p = 0.5, γ = 0.1,

βN = 0.85, 1.05, 1.35, 1.65

Table 5: Conditions for simulation study B. Each simulation scenario consists of 4
rounds, where the number of initial susceptibles N is set at 100, 200, 500 and 1000,
respectively. For each round 24 datasets are generated.

the Exp-HM model, and scenario 2, where data come from the Exp-NL model (see
Table 5). We set the power parameter in the Exp-NL model as p = 0.5 to ensure a clear
distinction from the Exp-HM model.

For both scenarios we set γ = 0.1 for both models so that the infectious period
distribution is always the same. For scenario 1 we set R0 = 2.5 as for simulation study A.
The Exp-NL model does not have an equivalent reproduction number (O’Neill and Wen,
2012), so instead we set β so that the final size distribution peaks at similar values for
different values of N .

We fit both the Exp-HM and Exp-NL models to each generated dataset, and produce
500 replicated removal datasets from their respective posterior predictive distributions.
As in simulation study A, the replicated datasets are produced conditioned on having
the same final size as the observed data, a procedure for which we set a runtime limit of
15 hours. If the required number of replications is not achieved within that time limit
then the methods are not applied.

7.2 Results

For the rounds of N = 100, 200 and 500, the procedure of producing 500 replications
within the required runtime was completed in nearly all instances, even when a model
was misspecified. However, for N = 1000, under misspecification, the procedure was
completed for only 2 out of 24 datasets for the Exp-NL model, and for 7 out of 24
datasets for the Exp-HMmodel. These findings show that when the infection rate form is
misspecified, the ability of these models to reproduce the final size becomes increasingly
low as the dimension of the observed data increases. For a further illustration of this
pattern see Aristotelous (2020, section 2.8.1).

As for simulation study A, the performance of the methods is assessed via looking at
medians and 95% quantile intervals of folded ppp-values and

√
MSE values, while plots

of all folded ppp-values and all
√
MSE values are provided in Appendix B (Aristotelous

et al., 2022).

Under correct specification

Results for the Exp-HM model under correct specification have already been discussed
in simulation study A. When the Exp-NL model is correctly specified, Figure 5 shows
that the folded ppp-values are typically closer to 0 than 1, indicating goodness of fit. It
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Figure 5: Folded ppp-values (top row) from the distance method and
√
MSE values

(bottom row) from the position-time method for the Exp-HM (left column) and Exp-NL
(right column) models, for simulation study B. The vertical lines represent 95% quantile
intervals and the filled circles represent medians. Results under correct specification (CS)
are coloured in blue and under misspecification (MS) in red. Simulation conditions are
given in Table 5.

appears that the dimension of the data does not have any apparent effect on the sampling
distribution of the folded ppp-values, which is sensible under correct specification.

For the position-time method, results and the influence of N are very similar to the
distance method, as can be seen from Figure 5.

Under misspecification

We now consider results when the fitted models are misspecified. For the distance
method, Figure 5 shows that the folded ppp-values increase towards the optimal value
of 1 for both models. This suggests that the methods are able to detect misspecification,
at least for moderate sized outbreaks. As mentioned above, for N = 1000 only a limited
number of datasets were available, but nevertheless the results were consistent enough
for us to draw meaningful conclusions.

Conclusions regarding the performance of the position-time method under misspec-
ification are essentially the same as for the distance method, for both models (see
Figure 5).
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8 Application of the methods to two real data examples

In this section we apply our methods to two real datasets, both from outbreaks of
influenza A (H1N1) in schools. Our intention here is not to conduct a detailed and
realistic analysis of these datasets but rather to provide an illustration of our methods
on real data. The first outbreak (Smith et al., 2009) occurred in a boarding school in
England and led to 102 cases among 1307 students. The second outbreak (Huai et al.,
2010) took place in a primary school in China and resulted in 105 cases among 1314
students. The duration of the England outbreak was 33 days, while for the China one
it was 17 days. For both of these outbreaks the schools were closed to contain the
spread, at day 27 and at day 10, respectively. For both outbreaks data are provided in
the form of new daily cases (see Smith et al. (2009, Figure 1) and Huai et al. (2010,
Figure 1)) which we can transform to individual removal times, under our assumption
that case-detections correspond to removals.

To each of these datasets we fitted the Exp-HM model and produced 500 replicated
removal datasets from their respective posterior predictive distributions, conditioning
on the final size being the same as for the observed data. We then applied the distance
and the position-time methods, for which the results are given in Figure 6 and Tables 6
and 7. For the England outbreak, the two methods do not provide strong evidence for
lack of fit. Neither the folded ppp-value nor the proportion of time that the observed
curve spends at the lower or upper tail intervals of replications, [0, 0.1] and [0.9, 1], are
considered too extreme, being 0.55 and 0.12 (see Table 6), respectively. The methods
yield different results for the China outbreak, where there is a rather strong suggestion
for lack of fit from both methods. For the distance method, the folded ppp-value is
quite extreme, 0.96. Similarly, for the position-time method, the observed curve spends
a proportion of 0.76 of its time at the lower or upper tail intervals of replications, [0, 0.1]
and [0.9, 1] (see Table 7).

It is worth noting that the Exp-HM model does not account for the change in dynam-
ics known to have taken place for both outbreaks with the schools closing. Interestingly

interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
time proportion 0.050 0.066 0.042 0.060 0.098

interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
time proportion 0.138 0.100 0.140 0.238 0.068

Table 6: Proportion of time that zobst spends in the inverse quantile intervals of zrept

from the position-time method for the Exp-HM model, for the England outbreak.

interval [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]
time proportion 0.316 0.044 0.032 0.028 0.020

interval (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]
time proportion 0.026 0.016 0.038 0.038 0.442

Table 7: Proportion of time that zobst spends in the inverse quantile intervals of zrept

from the position-time method for the Exp-HM model, for the China outbreak.
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Figure 6: Posterior predictive checking using the distance and the position-time methods
for the two influenza outbreak examples. Fitted model for both is the Exp-HM. Top
row corresponds to the England outbreak and bottom row to the China outbreak.
Left column are plots of 500 replications from the posterior predictive distribution of
the removal curve, zrept , with the mean removal curve, z̄rept (red, dashed line), and
the observed removal curve, zobst (black, solid line), imposed. Middle column (distance
method) are histograms of 500 replications from the posterior predictive distribution
of the distance, T rep

d , with the observed distance, T obs
d (black, dashed line), overlaid

and the corresponding folded ppp-value stated. Right column (position-time method)
are history plots of the ppp-value(t) with the 0.05, 0.5 and 0.95 inverse quantiles (red,
dashed lines) imposed.

though, the evidence against the fit of the model is evidently stronger for the China
outbreak. This might be explained by the fact that for the England outbreak, school
closure was applied at the last stages of the outbreak, day 27 out of 33, whereas for the
China outbreak, it was applied relatively earlier, day 10 out of 17.

9 Discussion

The two model assessment methods we developed in this paper offer a much needed
addition to the rather sparse currently existing toolkit. Both methods are based on
removal data, which are typically observed in practice and thus they do not have the
drawback of relying on information imputed from the model itself, like many existing
stochastic residual approaches. Moreover, they effectively incorporate temporal dynam-
ics into the assessment, an aspect which is not assessed by the commonly used final size
and duration statistics. Finally, via the application of time-shifting, both methods ac-
knowledge and account for a peculiar random take-off time feature of epidemic models,
something which none of the currently existing methods do.



24 Posterior Predictive Checking for Stochastic Epidemic Models

A key difference between the distance and the position-time methods is that for the
latter no dimension reduction takes place. For the distance method, the information from
the multidimensional space of removal curves L is compressed into the one-dimensional
space R≥0, via the use of a distance statistic Td. The effectiveness of the method relies
on how effectively Td can carry out this transfer of information and on the assumption
that the posterior predictive distribution of the removal curve is symmetric around
its mean. Conversely, the position-time method does not use a statistic nor does it
require an assumption of symmetry. In fact it does not even need a mean removal
curve to be defined. Also, it gives the possibility of determining whether the observed
curve lies on the lower or the upper tail with respect to the distribution of predictive
curves, corresponding to a ppp-value(t) near 0 or 1, respectively, and at which specific
time points this happens. These types of information are not provided by the distance
method.

Another important difference between the two methods is how the information from
each replication is utilized. The distance method does not combine the information
from different replications. Instead, a distance between each replicated curve and the
mean curve is calculated, and then assessment is based on comparing these distances.
Conversely, the position-time method is a pointwise approach and it gives the position
of the observed curve, with respect to the pack of replicated curves, by combining the
information from the replicated curves at each given time point. We perceive the fact
that the two methods manage this information differently as useful, since our view is
not to encourage choosing one of the methods over the other, but rather to employ both
in order to provide complementary types of assessment regarding the fit of a model e.g.
if the distance method provides an indication that the model might be lacking in fit,
then the position-time method might be able to additionally pinpoint at which time
points this happens.

The ability of the methods to assess the infectious period and infection rate form
assumptions increases with the scale of the outbreak, as shown by the simulation studies.
This implies that the methods are of practical utility, since in real-life applications
interest is mainly in large-scale outbreaks. The methods could be used to assess other
aspects of epidemic models as well.

We have focused solely on single-population SIR models. The main reason to do this
was to facilitate an assessment of our proposed methods without possible confounding
arising from other facets of the epidemic model. Nevertheless, our methods can in prin-
ciple be applied to far more general models, such as those incorporating a latent period
or those with structured populations.

Although in this paper we have restricted to the use of replications of the same
final size as the observed data, it is possible to apply the methods using replications of
varying final sizes. The benefit of using the latter type of replications, compared to using
the former, is that the computational cost of producing replications is significantly less.
Simulation studies in Aristotelous (2020, chapter 2), suggest that, when the dimension
of the observed data is sufficiently large, the methods can still be successful in assessing
the infectious period and the infection rate form assumptions.
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The approach taken in this paper was to examine the performance and properties
of our model assessment methods via simulation studies. Ideally, one would like to con-
duct such examinations theoretically, as well. However, the complexity of the epidemic
setting, and the fact that the closed forms of the posterior and the posterior predictive
distributions of the models are analytically intractable in practice make this task very
challenging.

Furthermore, it is worth noting that some of the tools developed in this paper may
prove fruitful in the context of approximate Bayesian computation (ABC) inference for
epidemic models (Kypraios et al., 2017; McKinley et al., 2018). For example, it is worth
investigating whether the Euclidean distance between removal curves, used in this paper,
is a preferable alternative to the Euclidean distance between removal vectors, which is
typically used in the context of stochastic epidemic modelling (e.g. Kypraios et al.,
2017; McKinley et al., 2018), particularly because the former is computationally much
cheaper, since, unlike the latter, it does not require for the removal data to be of the
same dimension. It is also possible that the application of time-shifting would improve
the efficiency of ABC algorithms. Finally, although the recent advances in constructing
boxplot-type displays for functional data (Sun and Genton, 2011; Xie et al., 2017) were
primarily developed for visualising variability in functional data, they appear to offer a
promising framework via which one could perform model assessment, e.g. by being able
to identify outliers from a sample of curves.

Supplementary Material

Supplementary material of “Posterior Predictive Checking for Partially Observed Sto-
chastic Epidemic Models” (DOI: 10.1214/22-BA1336SUPP; .pdf). This consists of Ap-
pendices A and B, which contain plots of all folded ppp-values and all

√
MSE values,

for each model, round and scenario, for simulation studies A and B, respectively.
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