
A preliminary study on Hybrid Spill-Tree Fuzzy
k-Nearest Neighbors for big data classification

Jesus Maillo, Julián Luengo, Salvador Garcı́a, Francisco Herrera
Department of Computer Science and Artificial Intelligence

University of Granada, Granada, Spain, 18071
Email: {jesusmh, julianlm, salvagl, herrera}@decsai.ugr.es

Isaac Triguero
School of Computer Science

University of Nottingham, Jubilee Campus
Nottingham NG8 1BB, United Kingdom
Email: Isaac.Triguero@nottingham.ac.uk

Abstract—The Fuzzy k Nearest Neighbor (Fuzzy kNN) clas-
sifier is well known for its effectiveness in supervised learning
problems. kNN classifies by comparing new incoming examples
with a similarity function using the samples of the training
set. The fuzzy version of the kNN accounts for the underlying
uncertainty in the class labels, and it is composed of two different
stages. The first one is responsible for calculating the fuzzy
membership degree for each sample of the problem in order to
obtain smoother boundaries between classes. The second stage
classifies similarly to the standard kNN algorithm but uses the
previously calculated class membership degree. To deal with very
large datasets, distributed versions of the Fuzzy kNN algorithm
have been proposed. However, existing approaches remain not
fully scalable as they aim to replicate the exact behavior of
the Fuzzy kNN. In this work, we present an approximate and
distributed Fuzzy kNN approach based on Hybrid Spill-Tree
implemented under Apache Spark. The aim of this model is
to alleviate the scalability problems and to deal with big datasets
maintaining high accuracy. In our experiments, we compare in
precision and runtime with the Fuzzy kNN for big data problems
existing in the literature, running with datasets of up to 11 million
instances. The results show an improvement in the runtime and
accuracy with respect to the previous exact model.

I. INTRODUCTION

The algorithm of the k Nearest Neighbors (kNN) [1] belongs
to the family of instance-based classifiers. To classify, it com-
pares unseen samples with the labeled instances of the training
set. The kNN algorithm does not create a classification model,
and it postpones the computation until the classification stage.
It classifies by similarity, usually with a distance function
(which used to be the Euclidean or Manhattan distance). In
addition to its simplicity, the kNN classifier stands as one of
the top ten most relevant classification algorithms [2].

However, kNN does not distinguish between the selected
neighbors, affecting all the neighbors equally in the classi-
fication, accepting that all boundaries are perfectly defined
between the classes. There are different proposals that al-
leviate this problem through the use of fuzzy sets. In [3],
the classical Fuzzy kNN algorithm [4] highlights as one of
the best performing approaches. Notice a novel Evolutionary
Fuzzy kNN algorithm [5], which improves on the previous
ones as an evolutionary proposal for small groups. We are
going to focus on classical Fuzzy kNN algorithm because
of its computational efficiency. This algorithm performs two
different stages. First, it switches the class label for a class
membership degree regarding of the k nearest neighbors.

After that, it computes the kNN with the membership degree
knowledge. Thus, it get softer edges getting better at kNN
in most classification problems. In addition, Fuzzy kNN is
present in current applications in different fields such as
medicine [6] or prediction of landslides [7].

The kNN and Fuzzy kNN algorithms face two main prob-
lems to handle big datasets because of postponing the whole
computation until the classification stage. These are the run-
time and the memory consumption. Fuzzy kNN is even more
affected, since the membership calculation stage requires the
double of main memory than kNN because it calculates kNN
with the training set against itself.

To alleviate these two problems we can make use of cloud-
based technologies. Specifically, the MapReduce [8] paradigm
and the Spark framework [9]. It outstand by his distributed file
system and the fault tolerance mechanism.

Based on MapReduce and Spark, we currently find an exact
proposal of the kNN algorithm that can deal with large-scale
problems, reporting the same results as the original kNN, and it
is called k Nearest Neighbor - Iterative Spark (kNN-IS) [10].
Its workflow has two stages: the map stage and the reduce
stage. The first stage splits the training set and calculates the
kNN of each test example. In the reduce stage, all candidates
are grouped and after that, the k closest according to their
distance are selected. Thus, it is allowed to address large
training and test sets, obtaining good execution times while
maintaining the results of the original kNN algorithm.

However, in the big data environment, it is interesting to
pursue an approximation of the algorithm to accelerate the
execution times, since the high number of samples usually
causes redundancy in the data, making the approximate algo-
rithms less affected than in classic problems. As examples of
approximated kNN we find the LSH algorithm [11], Metric-
Tree [12] or Spill-Tree. In [13], the authors study these models
and show that Hybrid Spill-Tree (HST) is the best for their
runtime and results obtained.

Regarding Fuzzy kNN to tackle big data problems, we
can find a proposal of the algorithm that obtains the same
result as the original version. It is called Exact Fuzzy k
Nearest Neighbors (EF-kNN) [14], which has two phases:
class membership degree phase and classification phase. The
first calculates the class membership degree. It computes the
kNN with the same MapReduce-scheme that kNN-IS does.

Once we have the kNN, the class label is changed by a class
membership degree vector. The second stage classifies the
unseen samples with the class membership degree information,
also following the kNN-IS workflow. Although it is capable
of scaling up to very large data sets, the execution times for
calculating the class membership degree are substantially high.

In this preliminary contribution, we propose a fuzzy varia-
tion of the Hybrid Spill-Tree-based Nearest Neighbor Search
and we will call through the text Hybrid Spill-Tree Fuzzy
kNN (HSTF-kNN). It has been developed in Spark, taking
advantage of its in-memory primitive to address large datasets
by dividing the data and distribute the computation between
the different compute nodes. As we explained briefly, Fuzzy
kNN has 2 stages: class membership degree and classification.
The first stage starts partitioning the data and generating the
HST structure. Then, it computes the kNN and changes the
label with a vector of membership degree. The second stage
is responsible for the classification. It performs the same steps
as the first one, with the difference that it will calculate the
k nearest neighbors for each sample of the test set according
to the membership degree. Finally, it will decide the predicted
class according to the membership degree of each neighbor.

In summary, the main contributions of this work are as
follow:

• Design and develop an approximate model of Fuzzy
kNN based on Hybrid Spill-Tree taking advantage of the
Apache Spark framework.

• A experimental study of the scalability and accuracy of
this model and a comparison against EF-kNN algorithm.

The remainder of this contribution is organized as follows.
Section II introduces the state-of-art in Fuzzy kNN, the Hybrid
Spill-Tree algorithm and big data technologies. Then, Section
III details the proposed Hybrid Spill-Tree Fuzzy kNN model.
The experimental study is described in Section IV. Section V
concludes the paper and outline the future work.

II. PRELIMINARIES

This section supplies the necessary background information
on the Fuzzy kNN algorithm (Section II-A) and Hybrid
Spill-Tree (Section II-B). The big data technologies used are
described in Section II-C.

A. Fuzzy k-Nearest Neighbors algorithm and complexity

The Fuzzy kNN algorithm [4] is proposed as an improve-
ment of the kNN algorithm. It has been shown to improve
kNN and other Fuzzy approaches in terms of accuracy. It needs
a pre-calculation stage on the training set, which consists of
calculating the class membership degree. Then, it calculates
kNN for each unseen sample. A formal notation for the Fuzzy
kNN algorithm is the following:

Let TR be a training set and TS a test set, composed of
several instances n and t respectively. Each instance xi is a
vector (xi1, xi2, xi3, . . . , xij), where xij is the value it takes
for the i-th instance and j-th feature. Every sample of TR
belong to a known class ω. However, for TS it is unknown.

Fuzzy kNN has two stages: class membership degree and
classification. The first stage calculates the k nearest neighbors
of TR against itself, maintaining a leave-one-out scheme. For
that, calculate the distance of each sample and select the
k closest. Then, create the class membership following the
Equation 1. The output of the first stage will be TR changing
the class label ω, for the class membership (ω1, ω2, . . . , ωl)
where l is the number of classes. This new set will be called
Fuzzy Training Set, FTR.

uj(x) =

 0.51 + (nj/kmemb) · 0.49 if j = i

(nj/kmemb) · 0.49 if j 6= i
(1)

The classification stage computes the kNN as described in
the first stage. However, the kNN algorithm is computed for
each sample of TS in the FTR and it is obtained the class
membership degree. After that, it decides the resulting class
as the Equation 2.

ui(x) =

∑K
j=1 uij(1/|x− xj |2/(m−1))∑K

j=1(1/|x− xj |2/(m−1))
(2)

The Fuzzy kNN method improves in accuracy the kNN
algorithm in most classification problems. However, this sup-
poses an increase of the algorithmic complexity which involves
two problems to be addressed in the area of big data:

• Runtime: The complexity of calculating kNN from a
single sample is O(n · F) where n is the number of
training instances and F the number of features. For
multiple neighbors, the algorithmic complexity increases
to O(n · log(N)). In addition, we must remember that
the first stage executes kNN on TR against itself. In the
second stage calculates kNN of the TS versus FTR.

• Memory consumption: Fuzzy kNN needs to store in the
main memory the TR and the TS to accelerate the
computation. If both sets are large, they might easily
exceed the available main memory.

These difficulties lead us to design an approximate model
based on Hybrid Spill Tree, obtaining a distributed model of
Fuzzy kNN and using the MapReduce paradigm and the Spark
platform as big data technologies.

B. Hybrid Spill-Tree search

The Hybrid Spill-Tree algorithm [15] is an approximate
proposal to calculate the kNN algorithm in a distributed way.
It partitions the search space with two types of tree structures:
Metric-Tree and Spill-Tree. Therefore, it is necessary to briefly
describe these models.

Metric-Tree (MT) is a data structure that organizes a set
of points through a spatial hierarchy. It is a binary tree where
the root node contains all the elements and each child node
represents a set of points. Figure 1 shows how to split the data
into the right and left children. Each child represents a subset
of samples of the parent node, taken as far apart as possible (at
the figure, the sample represented with circles). MT ensures

Right Node Left Node
τ τ

Overlapping Area

o o

+

+
+

+

+

+

+

+

+

+

+ +

Fig. 1: Partitioning in a Metric-Tree and Spill-Tree

that the children of a node are two disjoint sets, that is, they
do not have repeated instances (represented by symbols +) in
their child nodes. The overlapping area does not exist for MT .
Therefore, each leaf node contains very few samples. The tree
will take a depth of O(log(N)). To perform the search, it
keeps a candidate to be the closest Nearest Neighbor (NN),
and its distance d. If the distance to a branch is greater than d,
it prunes this branch and continues searching. After analyzing
the whole structure, it returns the NN and d. However, the
most of the runtime is consumed in making sure that it is
selected the NN , performing backtracking if it is necessary.
Therefore, Spill-Tree emerges to speed up the computation.

Spill-Tree (SP) is a variant of a Metric-Tree in which the
child of one node can “spill over” on another child node and
share samples. In other words, the split criterion of SP enables
two child nodes to have repeated instances. Figure 1 presents
how the data is divided with the same procedure as MT ,
but an overlapping area according to the distance value τ is
allowed. The samples inside the overlapping area are shared
for the right and left children. If τ is 0, it is a MT . However,
if the parameter τ is too high, the overlap between nodes
is high and the depth of the tree tends to O(log(∞)). Due
to the overlapping area, it can sacrifice not having the exact
NN . To do this, backtracking is avoided in the search and an
approximate NN is obtained with faster runtimes than MT .

Hybrid Spill-Tree appears with the aim of obtaining high
accuracy and even lower runtimes. To achieve this, it merges
both models. Selecting the use of MT when required to
warrant the NN . and in another case, speed up the execution
time with SP . It defines a Balance Threshold (BT), which
is a percentage that usually takes the value of 70%. To build
the tree structure, start by forming a SP , and if the number
of samples that are repeated at the nodes is greater than
BT , the tree for those nodes is rebuilt as MT and will be
marked as non-overlapping. In the other case, the tree for
those nodes is kept as SP and will be marked as overlapping.
The search for the nearest neighbors is also done in a hybrid
way. Backtracking will be done on the nodes marked as non-
overlapping, which are of the MT type. Backtracking will not
be done on the nodes marked as overlapping, which is of the

Input Data

Key 1 Value

Key 2 Value

· · · · · · · · · ·

Key T Value

Key 1 Value

Key 2 Value

· · · · · · · · · ·

Key T Value

· · ·

Split 1 Split N

Key 1

Value from Split 1

· · · · ·

Value from Split N

· · ·

Output Data

Key T

Value from Split 1

· · · · ·

Value from Split N

Map

Shuffle

Reduce

Fig. 2: MapReduce data flow overview

SP type.
Notice the implementation available in the free software

repository accessible in spark-package1, that is our starting
point in the development stage.

C. MapReduce programming model: Apache Spark

For the development of the proposed algorithm in this paper,
the programming paradigm MapReduce [16] will be used.
This paradigm was designed by Google in 2003 and it is
a scalable data processing tool. Its aim is to process big
datasets by distributing storage and execution through a group
of machines.

The MapReduce paradigm has three stages: Map, Shuffle
and Reduce. Map stage reads the dataset in form of <key-
value> pairs, and it distributes through the nodes for parallel
computation. The Shuffle is responsible for merging all the
values with the same key. Finally, the Reduce stage combines
those coincident pairs and it aggregates it into smaller <key-
value> pairs. The MapReduce scheme of this process is
represented in Figure 2. In [17], authors expose an exhaustive
review of this framework and other distributed paradigms.

Apache Spark [9] is a novel implementation of MapRe-
duce that parallelizes the computations in a transparent way
through a distributed data structure called Resilient Distributed
Datasets (RDDs). In addition, RDDs allow us to persist and
reuse data, cached in memory. Recently, Spark has incorpo-
rated a new distributed data structure called DataFrame. It
maintains the advantages of the RDDs, incorporating opti-
mization improvements and allowing SQL queries on the data.
We incorporate DataFrame in our implementation. Moreover,
Spark was developed to cooperate with the distributed file

1k-Nearest Neighbors using Hybrid Spill-Tree. https://spark-
packages.org/package/saurfang/spark-knn

Algorithm 1 Membership Degree Stage
Require: TR, k

1: sampled ← sample(TR,0.2%)
2: TopTree ← buildMetricTree(sampled)
3: τ ← estimateTau(TopTree)
4: trees ← repartition(TR, TopTree, τ , BT = 70%)
5: model ← (Broadcast(TopTree),trees)
6: for y: TR do
7: Neigborsy ← computekNN (model, k, y)
8: Membershipy ← computeMembership (Neigborsy)
9: resulty ← join(y, Membershipy)

10: end for
11: return result

system of Apache Hadoop2 (Hadoop Distributed File System).
With this configuration, it can take advantage of the data
splitting, fault-tolerance and job communication provided by
the Spark framework.

Spark includes a scalable machine learning library called
MLlib3. It has a multitude of machine learning algorithms
and statistical techniques from different areas of KDD such as
classification, regression, clustering or data preprocessing.

III. HSTF-KNN: HYBRID SPILL-TREE FUZZY-KNN FOR
BIG DATA CLASSIFICATION

In this section, we present an approximate and distributed
proposal of the Fuzzy k Nearest Neighbor algorithm based
on the structure and search of the Hybrid Spill-Tree method
to address big data problems using Spark. We will make
use of the speed and effectiveness of the Hybrid Spill-Tree
algorithm in comparison with the exact and distributed kNN
algorithm (kNN-IS). The goal is to design and develop a
fuzzy variant that improves Hybrid Spill-Tree accuracy and
EF-kNN runtimes. The general scheme of our proposal has
the same two stages as the Fuzzy kNN model: Membership
stage (Section III-A) and Classification stage (Section III-B).

A. Class membership degree stage

This section explains the workflow process that calculates
the class membership degree. Figure 3 shows the flowchart
of the HSTF-kNN, dividing the computation into two parts:
Model Fit phase and Membership phase. The first forms the
tree-based structure and divides the data between the compute
nodes. The second searches for the kNN of each TR sample
and computes the class membership degree. The output is the
TR changing the class label by the class membership degree
vector. It will be called Fuzzy Training Set (FTR).

Algorithm 1 outlines the steps of the membership stage.
In it, Lines 1-5 correspond to the Model Fit stage, and the
remaining lines describe the calculation of the membership
phase.

The Model fit phase starts by reading the TR from HDFS
as a DataFrame data type from Spark. First of all, it gets
a random sub-sample (the authors recommend the 0.2% of
samples) to build a MetricTree, as described in Section II-B.

2Apache Hadoop. Web: http://hadoop.apache.org/
3Machine Learning Library for Spark. Web: http://spark.apache.org/mllib/

Training Set (TR)

With N samples

ft1 ft2 · · · ftn ω

ft1 ft2 · · · ftn ω1 · · · ωg

Sample X% and
build a metric tree

(As a broadcast)

TopTree

Repartition

Hybrid Spill Tree
Training set

FlatMap
searchIndices

FlatMap
getNeighbors

ZipPartition

TR with Neighbors

topByKey
(to sort the
neighbors)

Map
computeMembership

Fuzzy Training
Set (FTR)

ft1 ft2 · · · ftn ω

ft1 ft2 · · · ftn ω

ft1 ft2 · · · ftn ω

ft1 ft2 · · · ftn ω

Model Fit
Phase

Membership Phase

neighbors

Training sample

· · ·

Fig. 3: Flowchart of the class membership phase

This MetricTree is the TopTree (TT) and is used to estimate
the value of the parameter τ and split all the TR. A good
estimate of the value of τ should get the nearest neighbors with
high accuracy. Therefore, the appropriate value is the average
distance between the samples. To accelerate the estimate of τ ,
it will be done only with the sample of TT , so as not to make
the calculation with the whole TR.

The next step is to repartition the TR, taking TT as a
reference to distributing the instances in the space. τ will be
key to define the overlapping area of instances between the
nodes. The authors recommend a value of 70% (BT < 70%)
to discern if a node will be Metric-Tree or Spill-Tree. It
starts by forming a SP , and it checks if BT < 70%, it
is marked as overlapping, and the search will not perform
backtracking. In another case, a MT is re-built and marked
as non-overlapping, performing backtracking in the search.
Performing backtracking involves going back into the tree to
make sure that another branch does not contain any closer
instances. If the closest instance of that node is larger than the
one we have already found, this child is pruned. The Model
Fit stage ends by broadcasting TT and distributing the HST
structure.

The Membership stage is shown from lines 6 to 10. For each
sample of TR, the k nearest neighbors are calculated using the
HST. Algorithm 2 describes how the search of the neighbors
is done through the tree structures. With a flatMap operation,
the indexes of the k nearest neighbors for each element of the

Algorithm 2 Compute kNN
Require: model, k, x

1: Indexes ← x.flatMap (searchIndexes(model.tree))
2: Neighbor ← Query(model.tree, Indexes, k)
3: return Neighbors
4:
5: BEGIN searchIndexes
6: distLeft ← nodeLeft.dist(x)
7: distRight ← nodeRight.dist(x)
8: if node! = LEAF then
9: if distLeft < distRight then

10: searchIndexesnodeLeft, ID)
11: else
12: searchIndexes(nodeRight, ID + leftChild)
13: end if
14: else
15: return Indexes
16: end if
17: END searchIndexes

Algorithm 3 Classification Stage
Require: FTR, TS, k

1: sampled ← sample(FTR,0.2%)
2: TopTree ← buildMetricTree(sampled)
3: τ ← estimateTau(TopTree)
4: trees ← repartition(FTR, TopTree, τ , BT = 70%)
5: model ← (Broadcast(TopTree),trees)
6: for x: TS do
7: NeigborsMembx ← computeFuzzykNN (model, k, x)
8: Predictionx ← computePrediction (NeigborsMembx)
9: resultx ← join(x, Predictionx)

10: end for
11: return result

TR are calculated. To do this, it calculates the distance to the
right and left nodes, and continue through the node with the
shortest distance. When it reaches a leaf node, it returns the
index of the neighbor found.

Once we have the neighbors, we change the class label
with the vector of class membership degree by applying the
Equation 1 (Line 8). The output of this phase is the TR,
changing the class label by a class membership degree vector,
receiving the name of Fuzzy Training Set, FTR.

B. Classification stage

This section describes the steps to calculate fuzzy kNN.
Figure 4 presents the flowchart of the classification stage,
which is also divided into two phases: Model Fit phase and
Classification phase. The workflow of the Class membership
degree and Classification stages are very similar. For this
reason, this section will be focused on presenting the main
differences between them.

Algorithm 2 describes the steps during the classification
stage. We will specify the differences with respect to the
previous stage since the main scheme is the same and only
slight details of the data structure and the final result are
affected.

The first difference is found in the input sets. In this case,
FTR and TS will be used. The use of FTR does not affect
the Model Fit phase, since the change with respect to TR

With N samples

Sample X% and
build a metric tree

(As a broadcast)

TopTree

Repartition

Hybrid Spill Tree
Training set

FlatMap
searchIndices

FlatMap
getNeighbors

ZipPartition

FTR with Neighbors

topByKey
(to sort the
neighbors)

Map classify

Output

Model Fit
Phase

Classification Phase
neighbors

Training sample

· · ·

Fuzzy Training
Set (FTR)

ft1 ft2 · · · ftn ω1 · · · ωg

ft1 ft2 · · · ftn ω1 · · · ωg

ft1 ft2 · · · ftn ω1 · · · ωg

ft1 ft2 · · · ftn ω1 · · · ωg

ft1 ft2 · · · ftn ω1 · · · ωg

Classification criteria
with class membership

Test Set (TS)

Fig. 4: Flowchart of the classification phase

affects the class label, which has been replaced by a class
membership degree vector. This does not disturb the distances
of the samples and the model is built with the same method.

The calculation of Fuzzy kNN is done in the same way, with
the difference that instead of returning the class label for each
neighbor, class membership degree is returned (Line 7). Line
8 presents a difference with respect to the previous stage. It
performs the Compute Prediction operation, which will apply
the Equation 2 to decide the predicted class label. The final
output of the HSTF-kNN algorithm is the predicted class for
each sample of TS.

IV. EXPERIMENTAL FRAMEWORK AND PRELIMINARY
RESULTS

In this section, we present all the questions related to the
experimental study. Section IV-A establishes the experimental
set-up and Section IV-B discusses the results achieved.

TABLE I: Description of the used datasets

Dataset #Samples #Features #ω
PokerHand 1,025,010 10 10

Susy 5,000,000 18 2
Higgs 11,000,000 28 2

A. Experimental set-up

For this experimental study, we have selected three large
datasets from the UCI machine learning repository [18] to
evaluate our model: PokerHand, Susy and Higgs. Table I
presents the number of samples, features, and classes (#ω). In
our experiments, we follow a 5 fold cross-validation scheme.

TABLE II: Influence of the k value

Dataset k Membership Runtime (in seconds) Classification Runtime (in seconds) Accuracy
EF-kNN HSTF-kNN EF-kNN HSTF-kNN EF-kNN HSTF-kNN

3 397.1361 35.4365 114.0275 34.3035 0.5257 0.5233
Poker 5 444.1799 35.9263 128.8338 34.5083 0.5316 0.5371

7 503.1163 37.5005 143.8841 34.6973 0.5338 0.5459
3 11521.7479 64.8935 3956.3381 59.1125 0.7301 0.7302

Susy 5 15853.2564 69.4081 4023.5556 59.8742 0.7306 0.7457
7 16934.5319 72.0451 4026.3059 61.2118 0.7268 0.7510
3 - 261.6500 - 131.5073 - 0.5968

Higgs 5 - 273.5462 - 137.8146 - 0.6081
7 234431.8347 288.7636 17137.3216 140.5870 0.5904 0.6162

TABLE III: Influence of the number of maps

Dataset #Maps Membership Runtime (in seconds) Classification Runtime (in seconds) Accuracy
EF-kNN HSTF-kNN EF-kNN HSTF-kNN EF-kNN HSTF-kNN

Poker 128 623.4500 36.6495 166.2626 33.1551 0.5371 0.5451
256 503.1163 37.5005 143.8841 34.6973 0.5338 0.5459

Susy 128 20071.0198 80.2774 6446.3527 61.2445 0.7320 0.7514
256 16934.5319 72.0451 4026.3059 61.2118 0.7268 0.7510

Higgs 128 - 296.8639 - 154.6719 - 0.6163
256 234431.8347 288.7636 17137.3216 140.5870 0.5904 0.6162

This means that each partition includes 80% of training
samples and the remaining samples will from the test set.

To evaluate the efficiency and scalability of the proposed
algorithms, we used the following measures:

• Accuracy: It represents the number of unseen samples
correctly classified against the total number of them.
This metric shows the performance of the algorithm and
is the measure most commonly used for assessing the
performance of classification problems [19].

• Total Runtime: This measure collects the total time spent
by the algorithms. The runtime includes reading and
distributing the dataset over the compute cluster and also
the two stages of the Fuzzy kNN.

The most well-known parameter for the original Fuzzy-kNN
algorithm is the number of neighbors (k) to be considered for
classifying. k could be different at each stage, but we will
keep both equal for simplicity. In our experiments, parameter
k is set to 3, 5 and 7. An extra parameter is needed due to
its distributed behavior. This is the number of partitions of the
training set, which matches the number of map tasks. In this
preliminary experimentation, we will run with 128 and 256
map operations.

HSTF-kNN has two extra parameters: Sample to build the
Top Tree and the Balance Threshold. The first one is the
number of samples to build the TT , used to split and distribute
the data. The second is the BT . It is a percentage that specifies
the intersection to decide if the tree constructed for each split
will be a Spill-Tree or a Metric-Tree. For this preliminary
study, we will focus on the recommended values, TT equal
to 0.2% and BT equal to 70%.

All the experiments have been run on a cluster composed
of 14 computing nodes managed by the master node. All the
nodes have the same configuration. They have 2 Intel Xeon
CPU E5-2620 processor, 6 cores (12 threads) per processor, 2
GHz and 64 GB of RAM. The network is Infiniband 40Gb/s.
This hardware was configured providing a maximum number

of current tasks to 256. Each task has 2 GB of main memory
available. Every node runs with Cent OS 6.5 as operating
system and was configured with Spark 2.2.1.

B. Results and discussion

This study compares the results obtained by our preliminary
HSTF-kNN approach and the EF-kNN model. We will explore
different aspects of the proposed method, such as the influence
of the k parameter, how it affects the number of maps
operations and its behavior compared to the exact version.
For this purpose, the three datasets (Poker, Susy and Higgs),
described in the experimental setup will be used. Due to the
large number of instances given by the Higgs datasets, the
EF-kNN algorithm cannot be run in a bounded time. For this
reason, the experiment in this dataset will be limited to k = 7
and 256 map tasks.

Table II shows the Membership and Classification Runtime
(in seconds) and the Accuracy, with the Poker and Susy
datasets. The objective is to analyze the influence of the value
of k in HSTF-kNN algorithm and compare it with EF-kNN.
Thus, the number of maps will be set to 256.

Table III presents the Accuracy and Membership and Clas-
sification Runtime (in seconds), with Poker and Susy datasets.
We select the same value of k equal to 7, since with this
value we obtain the best accuracy, enabling us to focus on the
analysis of the influence of the number of maps (#Maps).

Figure 5 shows a comparison with Poker, Susy and Higgs.
The Figures 5a and 5b present the Total Runtime (in seconds)
and the Accuracy respectively. The number of maps is set to
256 and the number of neighbor to 7.

According to these tables and plots, we can conclude that:
• Regarding k parameter and according to the Table II,

the total runtime does not increase too much, despite
the increase of the network traffic and the calculation
of the neighbors, due to the design performed in both
models. Although HSTF-kNN is an approximate version,

100

1000

10000

100000
300000

Poker

Susy
H

iggs

T
o
ta

l
R

u
n
ti

m
e

(s
ec

o
n
d
s)

Dataset

HSTF-kNN
EF-kNN

(a) Total Runtime

0.55

0.65

0.75

Poker

Susy
H

iggs

A
cc

u
ra

cy

Dataset

HSTF-kNN EF-kNN

(b) Accuracy

Fig. 5: Total Runtime and Accuracy with all datasets

it obtains better results than EF-kNN and as the value of
k increases, an improvement in accuracy is appreciated.

• We can observe in Table III how the number of maps does
not affect drastically the runtime in the algorithm HSTF-
kNN. However, EF-kNN is highly affected, doubling
the time in relation to hardware features that we have.
Regarding accuracy, there is a slight change depending
on the number of maps in both methods. This is caused
by some test examples that are identical to several train-
ing data points. When it is a distributed execution, the
definitive neighbors will depend on the order in which
they arrive from each map output.

• According to Figures II and III, it can be seen how
the execution time of the Membership stage is higher
than in the Classification stage. EF-kNN presents a clear
bottleneck, while HSTF-kNN manages it better, obtaining
much shorter times due to its model adjustment phase and
the use of Hybrid Spill-Tree.

• Analyzing Figure 5a, the runtime on Higgs dataset is
pretty high, and reveals a weakness of the EF-kNN
algorithm. However, HSTF-kNN obtains lower runtime
that demonstrates its scalability potential. This potential
makes us pay special attention to the precision in the
figure 5b. In this Figure, we see how HSTF-kNN im-
proves the accuracy of EF-kNN in all the datasets of the
experimental study.

V. CONCLUSIONS AND FURTHER WORK

In this contribution, we have developed a scalable and dis-
tributed model for the Fuzzy kNN algorithm based on Hybrid
Spill-Tree on the Spark framework. The biggest contribution
is to improve the scalability of the existing method, EF-
kNN, also adding an improvement in accuracy. In addition,
k and the number of maps does not affect drastically the
accuracy or the runtime. As future work, we will focus on
the bottleneck, the membership calculation stage. We will try

to reduce the runtime and the memory consumption, without
having a decrement in accuracy.

ACKNOWLEDGMENT

This work has been supported by the projects TIN2017-
89517-P, TIN2014-57251-P and P11-TIC-7765. J. Maillo
holds a FPU scholarship from the Spanish Ministry of Ed-
ucation.

REFERENCES

[1] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1) (1967) 21–27.

[2] X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining,
Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.

[3] J. Derrac, S. Garcı́a, F. Herrera, Fuzzy nearest neighbor algorithms:
Taxonomy, experimental analysis and prospects, Information Sciences
260 (2014) 98 – 119.

[4] J. M. Keller, M. R. Gray, J. A. Givens, A fuzzy k-nearest neighbor
algorithm, IEEE Transactions on Systems, Man, and Cybernetics SMC-
15 (4) (1985) 580–585.

[5] J. Derrac, F. Chiclana, S. Garcı́a, F. Herrera, Evolutionary fuzzy k-
nearest neighbors algorithm using interval-valued fuzzy sets, Information
Sciences 329 (2016) 144 – 163, special issue on Discovery Science.
doi:https://doi.org/10.1016/j.ins.2015.09.007.

[6] H. L. Chen, C. C. Huang, X. G. Yu, X. Xu, X. Sun, G. Wang, S. J. Wang,
An efficient diagnosis system for detection of parkinsons disease using
fuzzy k-nearest neighbor approach, Expert Systems with Applications
40 (1) (2013) 263 – 271.

[7] D. Tien Bui, Q. P. Nguyen, N.-D. Hoang, H. Klempe, A novel fuzzy k-
nearest neighbor inference model with differential evolution for spatial
prediction of rainfall-induced shallow landslides in a tropical hilly area
using gis, Landslides 14 (1) (2017) 1–17. doi:10.1007/s10346-016-0708-
4.

[8] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing, in: Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, 2012, pp. 1–14.

[10] J. Maillo, S. Ramı́rez, I. Triguero, F. Herrera, kNN-IS: an it-
erative spark-based design of the k-Nearest Neighbors classi-
fier for big data, Knowledge-Based Systems 117 (Supplement C)
(2017) 3 – 15, volume, Variety and Velocity in Data Science.
doi:https://doi.org/10.1016/j.knosys.2016.06.012.

[11] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions, in: 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), 2006, pp.
459–468. doi:10.1109/FOCS.2006.49.

[12] J. K. Uhlmann, Satisfying general proximity / similarity queries with
metric trees, Information Processing Letters 40 (4) (1991) 175 – 179.
doi:https://doi.org/10.1016/0020-0190(91)90074-R.

[13] T. Liu, A. W. Moore, K. Yang, A. G. Gray, An investigation of
practical approximate nearest neighbor algorithms, in: Advances in
neural information processing systems, 2005, pp. 825–832.

[14] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, I. Triguero, Exact fuzzy
k-nearest neighbor classification for big datasets, in: 2017 IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE), 2017, pp. 1–6.
doi:10.1109/FUZZ-IEEE.2017.8015686.

[15] T. Liu, C. J. Rosenberg, H. A. Rowley, Performing a parallel nearest-
neighbor matching operation using a parallel hybrid spill tree, uS Patent
7,475,071 (Jan. 6 2009).

[16] J. Dean, S. Ghemawat, Map reduce: A flexible data processing tool,
Communications of the ACM 53 (1) (2010) 72–77.

[17] A. Fernández, S. Rı́o, V. López, A. Bawakid, M. del Jesus, J. Benı́tez,
F. Herrera, Big data with cloud computing: An insight on the computing
environment, mapreduce and programming frameworks, WIREs Data
Mining and Knowledge Discovery 4 (5) (2014) 380–409.

[18] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

[19] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical
machine learning tools and techniques, Morgan Kaufmann, 2016.

