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Abstract. The total photoionization cross section of planar helium has been

calculated up to the single ionization threshold I22 of triple P states. The cross section

shows chaotic fluctuations as the energy E approaches the double ionization threshold

E = 0. By analyzing the fluctuating part of the cross section, we show that its

amplitude decreases as |E|µ for E → 0− as predicted in [C. Byun et al., Phys. Rev.

Lett. 98, 113001 (2007)]. The Fourier transform of the fluctuating part reveals peaks at

the classical actions of closed triple collision orbits. Furthermore, the relative height of

the peaks are consistent with the semiclassical predictions. Our findings underline that

the fluctuating part of the photoionization cross section can be described by classical

triple collision orbits in the semiclassical limit. These orbits all lie in the collinear eZe

subspace, demonstrating that the fluctuations are dominated by the dynamics of this

low dimensional phase space.
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1. Introduction

Since Madden and Codling observed auto-ionization of helium from the ground state

to doubly excited state in 1963 [1], two-electron atoms have served as a prototype for

understanding electron-electron correlations in atomic systems. To describe two-electron

atoms fully quantum mechanically, many efficient numerical methods, such as exterior

complex scaling [2, 3], convergent closed coupling methods [4, 5], time-dependent close-

coupling method [6, 7, 8, 9, 10] or advanced hyperspherical R-matrix techniques using

semiclassical outgoing waves [11, 12, 13], have been applied.
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In recent years, the photoionization cross section has been fully explored

experimentally up to the N ≈ 15 ionization threshold by virtue of the experimental

advances in synchrotron radiation sources and detector technology [14, 15]. However,

only the spectrum of the bound states and the low-lying doubly excited resonances

is well understood, see for example Ref. [11] for an overview. Furthermore, as one

approaches the double ionization threshold E = 0 from below, the photoionization cross

section shows a highly chaotic behavior in the region of overlapping Rydberg series

[11]. In Refs. [16, 17], based on the extended semiclassical closed orbit theory, it

is shown that this behavior is intricately linked to the complexity of the underlying

classical dynamics of the three-body Coulomb problem helium. In particular, the paper

predicts two semiclassical results: (i) the Fourier spectrum of the fluctuating part of the

photoionization cross section shows distinct peaks at the positions of the actions of so-

called closed triple collision orbits (CTCO), that is, classical trajectories of the coupled

two-electron dynamics starting and ending in the nonregularizable triple collision; (ii)

the amplitude of the fluctuations in the total and partial cross sections for single electron

photoionization in two-electron atoms decays algebraically in terms of a threshold law

|E|µ as E → 0, where the exponent µ is given as

µ =
1

4
Re

[√
100Z − 9

4Z − 1
+ 2

√
4Z − 9

4Z − 1

]
(1)

with Z, the charge of the nucleus. The exponent is related to the stability exponents

of the CTCO’s and differs from Wannier’s exponent [18] dominating double ionization

processes. The prediction implies that the photoionization cross section can be described

semiclassically in terms of classical triple collision orbits all lying in the collinear eZe

space.

By numerically calculating the total photoionization cross section (TPICS) of

collinear eZe helium up to the 50th single ionization threshold, I50, the semiclassical

predictions have been confirmed in Refs [16, 17]. For fully three dimensional helium,

however, a verification of these semiclassical results based on numerical computations

or experiments has been missing so far. By analysing the experimental data in [14]

on partial photoionization cross sections (PPICS) for helium up to N ≈ 13, it could

be shown in [19] that the fluctuations in the PPICS are semiclassically dominated by

the contributions from closed triple collision orbits. The threshold laws could, however,

not be extracted due to lack of data. In Ref. [15], Jiang et. al. have measured the

total photoionization cross section up to single ionization threshold I15 of He+ and

computed the spectrum up to I17 numerically by using the complex rotation method

[20]. It was shown that the spectra are dominated by principal Rydberg series, however,

semiclassical results could not been extracted due to lack of resolution.

For planar helium, the fluctuating part of TPICS have been calculated up to the

20th single ionization threshold of triplet P states using the complex rotation method

[21]. The authors of [21] argued that the fluctuations in the low energy region are mainly

due to a dominant series of resonances associated with an approximate quantum number
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F = N − K, related to the collinear eZe dynamics. But as the energy increases, new

series start to contribute significantly to the cross section, and it is suggested that the

scaling law starts to become invalid. This is in contrast to findings in [16, 17], where it

is predicted that planar helium should also follow the scaling law and other semiclassical

results stated above.

Based on ab initio numerical calculation for the total photoionization cross section

of planar helium and by employing a quantum map approach [16, 17], we will show in

this paper, that the above mentioned semiclassical results are indeed valid. The paper

is organized as follows. In Sec. II, we will briefly describe the semiclassical theory and

the numerical implementation of the ab initio method. In Sec. III, the numerical result

of the photoionization cross section of the planar helium up to I22 is presented. By

analysing the numerical data, the semiclassical results are confirmed for the first time

in higher dimensions. Sec. IV concludes the paper. Unless stated otherwise, the atomic

units are used throughout this paper.

2. Theory

2.1. A Quantum map approach to the total photoionization cross section

In the Poincare map approach introduced in [17], one starts from writing the

photoionization cross section σ(E) in terms of the retarded Green function G(E),

σ(E) = −4π

c
ω Im〈Dφ0|G(E)|Dφ0〉. (2)

Here, φ0 is the wave function of the initial state and D = ε · (r1 + r2) is the dipole

operator with ε, the polarization of the incoming photon and ri, the position of i-th

electron. The direction of the polarization is taken along the z-axis.

Partitioning the whole configuration space into inner and outer regions by

introducing a dividing surface Σ, we can express the cross section σ(E) in terms of the

local scattering matrices r, s and the scattering solutions of the half-space Hamiltonians

related to the inner and outer regions as

σ(E) = σbg + σfl =
4π2

c
ω
[
d†odo + 2Re[d†(1− rs)−1rd∗]

]
, (3)

where Σ is taken here at a fixed hyperradius R = R0 with R =
√
r2

1 + r2
2. Furthermore,

d = 〈Ψ+|D|φ0〉 with Ψ+(E), the solutions of the Schrödinger equation (HI −E)Ψ = 0

satisfying outgoing boundary condition, where HI is the Hamiltonian for the inner space.

The subscript o denotes open channels for the scattering system described by HI . The

merit of this formula is that one can divide σ(E) into a smooth background signal σbg
and a fluctuating part of the photoionization cross section. The latter contains the

information about doubly excited states and thus most of the resonance states making

up the chaotic fluctuations in the cross section for E → 0−. Starting from Eq. (3), one

can now derived the semiclassical results described in the introduction as detailed in

[17].
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2.2. Quantum mechanical treatment in hyperspherical coordinates

The Hamiltonian of the helium atom with infinite nucleus mass fixed at the origin is

written as

H =
(p2

1 + p2
2)

2
− Z

r1

− Z

r2

+
1

|r1 − r2|
, (4)

where ri and pi, i = 1, 2, denote the positions and the conjugate momenta of electron

i respectively. Z is the nuclear charge. We will consider in the following the planar

helium atom restricted to the x-y plane, that is, both electrons move in the z = 0 plane.

This is an invariant sub-space of the full classical dynamics for initial conditions zi = 0,

pzi = 0 and is considered here as a lower-dimensional problem quantum mechanically

exhibiting the proliferation of Rydberg-series typical for the full helium problem.

In hyperspherical coordinates (R,α, θ1, θ2) with R =
√
r2

1 + r2
2, α = tan−1 (r2/r1) ,

and θ1 and θ2, the polar angles with respect to the x-axis, the Schrödinger equation is

written as (
−1

2

∂2

∂R2
+HR

)
Ψ = EΨ (5)

with Ψ(R,Ω) = R3/2Ψ̄. Here, Ψ̄ is a solution of the Schödinger equation (H −E)Ψ̄ = 0

and HR is the adiabatic Hamiltonian for angle variables Ω = (α, θ1, θ2). The adiabatic

Hamiltonian HR is written as

HR =
1

2R2

(
Λ2 +

3

4
+ 2RC(α, θ1, θ2)

)
, (6)

where

Λ2 = − 1

sin(2α)

∂

∂α

[
sin(2α)

∂

∂α

]
+

l21
cos2 α

+
l22

sin2 α
(7)

with azimuthal angular momentum operators of the electrons 1 and 2, l1 = 1
i
∂
∂θ1
, l2 =

1
i
∂
∂θ2
, and the potential C is given as

C(α, θ) = − Z

cosα
− Z

sinα
+

1√
1− sin(2α) cos θ

, (8)

where θ = θ2 − θ1. The total angular momentum is l = l1 + l2. The wave function

Ψ(R,Ω) is expanded in terms of adiabatic channel basis functions Φn(Ω;R) in the form

Ψ(R,Ω) =
∑
n

Fn(R)Φn(Ω;R) (9)

where Φn(Ω;R) are the eigenfunctions of the adiabatic Hamiltonian, that is,

HRΦn(Ω;R) = Un(R)Φn(Ω;R). (10)

Substitution of the expansion Eq. (9) into the Schrödinger equation (5) produces a

set of NCH × NCH coupled-channel equations about F (R), where NCH is the number

of channels included in Eq. (9). The coupled-channel equations are solved using

the SVD generalized log-derivative propagation method, called L-matrix propagation

[17, 22, 23, 24], which is highly suitable for parallel computation. The dividing surface
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Σ is taken at hyperradius R0 = 20. Note that if R0 is greater than the support of the

initial wave function φ0, the TPICS results become independent of R0. By solving the

Schödinger equation for the half-space Hamiltonians, the scattering matrices s, r, and

the dipole transition amplitude d, necessary for Eq. (3), are obtained.

For the Hamiltonian (4), there are 5 symmetry operators, namely Πx,Πy,Π, P12,

Lz [25]. Here, Πx and Πy are parity operators about the x and y-axis respectively, Π

is a point reflection (r1 → −r1, r2 → −r2), Lz coincides here with the total angular

momentum operator, and P12 is the particle exchange operator. The spectrum of H are

classified by taking the mutual commuting operators P12,Πx, and Lz,

For a given total angular momentum l the adiabatic function Φ(Ω;R) can be

expanded as Φl(Ω;R) =
∑

m Φm(α;R)ei((l−m)θ1+mθ2), where Φm(α;R) is a function of

α at fixed R. By rearranging the basis, we can write the function Φl(Ω;R) in terms

of fixed quantum numbers also for of Πx and P12. For example, the triplet states with

Πx = 1, P12 = 1 and l = 1 or l = 0 can be written as

Φ
triplet
l=1 (Ω;R) =

∑
m

[
A−m(α;R) cos(θ̄) cos(m− 1

2
)θ

+ A+
m(α;R) sin(θ̄) sin(m− 1

2
)θ

]
, (11)

and

Φ
triplet
l=0 (Ω;R) =

∑
m

B+
m(α;R) cos(mθ), (12)

respectively. Here θ̄ = (θ2 + θ1)/2 and

A±m(α;R) = Am(α;R)± Am(
π

2
− α;R), (13)

B+
m(α;R) = Bm(α;R) +Bm(

π

2
− α;R), (14)

where Am(α;R) and Bm(α;R) are functions of α at a given R. We expand Am(α;R)

and Bm(α;R) in terms of B-spline basis function [26]. In this basis, the adiabatic

Hamiltonian HR is represented by a banded matrix of large size, e.g., 9572 × 1055 for

triple state in the range I19 to I20. We calculate the adiabatic potential Un(R) and the

channel functions Φn(Ω;R) up to NCH by using the ARPACK package [27].

3. Numerical Results

The initial state is taken as the lowest lying triplet bound state, with angular momentum

l = 0 and Πx = +1 as done in Ref. [21]. In order to get the initial state, we use the

matching method introduced in Ref. [17] with the boundary conditions F (0) = F (R0) =

0 for F (R) and by imposing the condition Φn(π/2 − α, θ1, θ2;R) = Φn(α, θ1, θ2;R). As

a searching algorithm. we use the bisection method for simplicity. For the parameters,

h = 0.1, nbps = 100,Mmax = 20, and NCH = 20, the ground energy is obtained as

E0 = −8.295967, which is very close to the value given in Ref. [21]. Here nbps is the
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Table 1. Parameters used in the calculation of the TPICS. hinner and houter denote

the step size of the inner (R < R0) and outer region (R > R0) in the R direction.

N R∞ NCH hinner houter nbps Mmax

1-10 1000 200 0.1 0.1 200 20

10-15 3000 400 0.1 0.1 300 20

15-20 6000 600 0.05 0.1 150 30

20-21 6000 746 0.05 0.1 170 40

21-22 6000 820 0.05 0.1 170 40

number of B-spline basis functions for α, Mmax denotes the number of basis functions

for θ, and h is the step size in the R direction.

The final state Ψ+
f (E) is taken as the scattering state satisfying outgoing boundary

conditions with l = 1,Πx = +1, and P12 = 1 (triplet state). By employing the mixed

L- and S-matrix propagation method [17], we obtain the scattering matrix r for the

outer region (R > R0) and Ψ+
f (E) in the inner region (R < R0). The outgoing

boundary condition for r is applied at a sufficiently large R = R∞. The dipole transition

amplitude d is obtained using the J-integral algorithm [28] for parallel computation.

The parameter values used are varied with the energy region considered as shown in

Table 1. We used 500 CPUs in the KISTI supercomputing center [29]. As a test of the

program, we calculate the lowest state energy of l = 1 triplet state with Πx = 1 and

P12 = 1, which is given by −8.225774 for h = 0.05, R0 = 100,Mmax = 20, nbps = 200,

and NCH = 200. The value is in good agreement with Ref. [30]. Note that the state is

different from the initial ground state mentioned above, of which the angular momentum

is not l = 1 but l = 0.

In Fig. 1, the total photoionization cross section (TPICS) is presented as a function

ofN for the energy region of I1 to I15, where IN andN are related by IN = −2/(N−1/2)2

for Z = 2. We can see some peaks in the smooth part σbg at low energies with N < 4,

which are related to resonant states localized in the region R < R0. However, σbg
is smooth for N > 4 and the high lying resonances are indeed all contained in the

fluctuating part of σ as expected. This is because the support of the resonant wave

functions expands far beyond the boundary R = R0 and their contribution to σbg
becomes negligible. σbg converges to a constant value as N increases. σfl, on the

other hand, is highly fluctuating for N > 4 with decreasing amplitude of fluctuation

as N increases. We note a slight overall increase of the average value of σfl which is a

remanent of the smooth part contributing to the R > R0 region. Such a behavior has

been also seen in the cross section σfl of eZe collinear helium [17].

In Fig. 2, the TPICS and its fluctuating part are plotted from I10 to I22. Because

of the non-zero average for σfl, a smooth part is subtracted directly from total the cross

section σ(E). This smooth part is obtained by fitting the function f(N) = a+ b/N2 to

σ(E) and subtracting it to obtain σfl(E) as shown in Fig.2(b). We note again that the

amplitude of the fluctuating signal decreases as |E| → 0 from below. Hereafter, σfl will
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Figure 1. Total photoionization cross section σ(E) of planar helium atom for

N = [1, 15] as a function of N(E) =
√

2/|E| + 1/2. (a) the smooth part σbg(E).

(b) the fluctuating part σfl(E). (c) the total cross section σ(E) = σbg(E) + σfl(E).

Here σbg(E) and σfl(E) mean what are defined in Eq. (3).

mean the fluctuation part obtained by the above fitting method.

-3x10-5

-1x10-5
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σ f
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N

0.01838
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0.01848 (a)

σ(
E
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Figure 2. (a) Total photoionization cross section for range N = [10, 22] and (b)

its fluctuating part σfl(E). The smooth part is here obtained by fitting the function

f(N) = a+ b/N2 to the signal in (a).

In order to confirm the semiclassical prediction (i) stated in Sec. 1, we calculate the

Fourier transform (FT) of the signal in the from

G(S) =

∫
F (z)eiSzdz

with F (z) defined as

F (z) =
1

4πα(E − E0)|E|µ
σfl(z), (15)

where z = 1/
√
|E|, µ is the scaling exponent given in Eq. (1) with µ = 1.306 for Z = 2,

and E0 is the energy of the initial state. The factor |E|−µ is introduced to compensate
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for the decrease in amplitude. In Fig. 3, the Fourier transform of F (z) with respect to z

is plotted as a function of the scaled variable S̃ = S
√
|E|; note that the variable S can be

identified with a classical action. When comparing the position and height of the peaks

in the FT of the total cross sections (obtained from a full quantum calculation) with the

semiclassical results deduced from the actions and stabilities of closed triple collision

orbits (CTCO) shown as blue circles, one finds excellent agreement. The position of

the circles represents the scaled classical action of a specific CTCO whose trajectory is

shown as an inset above the peak in Fig. 3. The heights are obtained by considering

the stability matrix of the orbit as described in [17]. In the figure, the relative heights

are plotted. For the range below S̃/(2π) ≈ 8.6 we can see that there is a one to

one correspondence between the peaks of the quantum results and the positions of the

classical actions of CTCO’s. For larger actions, the correspondence deteriorates due

to the finite width of the quantum signal σ(E) and thus finite resolution of the FT.

We expect that further peaks will be resolved if the TPICS is obtained for higher N

such as has been demonstrated in the lower dimensional eZe collinear helium in [16, 17];

here TPICS data were obtained up to N = 50 and peaks were well resolved up to

S̃/(2π) ≈ 15. The FT result for planar helium is almost identical to one for eZe collinear

helium, except for the resolution.

3 5 7 9 11 13 15

|F
ou

rie
r 

T
ra

ns
fo

rm
| (

ar
bi

tr
ar

y 
un

its
)

Scaled action /(2π)

Figure 3. The Fourier spectrum of the fluctuating part of the cross section of planar

helium rescaled according to Eq. (15); the position and height of the circles denote

the action and (relative) size of the stability matrix of the corresponding CTCO’s with

S̃/2π < 15. In the insets the CTCO trajectories in configuration space are shown for

some of the peaks.

A validation of the scaling law, the second semiclassical prediction in Sec. 1, is

obtained by extracting a decay exponent µ from the strongly fluctuating signal shown

in Fig. 2. This is a somewhat delicate task and is done here by fitting a decay law

directly to the signal σfl after suitable smoothing. In order to avoid artifacts due to the

variation in curvature in the original signal σfl(N) when using large averaging intervals,

we average the absolute value of σfl(N) over fixed intervals of size ∆N , that is, we
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Figure 4. The averages of the absolute value of |σfl| over intervals ∆N = 0.1

(red line), ∆N = 0.5(blue line), and ∆N = 1.0(yellow line) on a log-log scale; inset:

extracted values of the decay exponent from three different sets of data (N = [10, 16]:

red line: N = [16, 22]: blue line) and the expected value for planar He, µ = 1.306

(dashed line).

consider

〈|σfl(N)|〉∆N =
1

∆N

∫ N+∆N/2

N−∆N/2

|σfl(N)|dN . (16)

The results are shown in Fig. 4 on a log-log scale, here for ∆N = 0.1, 0.5, 1.0. The

smoothed data show a linear behavior on the log-log scale indicating a single-valued

decay law. We extract the slope of the curve in Fig. 4 using a linear regression model

with least-square fitting, that is, log10〈|σfl(N)|〉∆N ≈ a−2blog10(N) with fit parameters

a and b. The parameter b is compared with the theoretically predicted decay exponent µ,

see inset in Fig. 4 . We would expect that b is independent of N if N is sufficiently large,

thus b should be independent of the fitting range. We take two regions N = [10, 16] and

N = [16, 22] from the whole region N = [10, 22], and then determined the slope of the

averaged |σfl| for each regions separately. The results for the fit parameter b for each

of these intervals are shown in the inset of Fig. 4 for different averaging intervals ∆N .

The data coincide with the expected value within ±6%, that is, we obtain an exponent

of the order µ = 1.3± 0.08.

4. Conclusions

By using an ab initio numerical method, the total photoionization cross section has

been calculated for planar helium up to I22 for the first time. The analysis of the

fluctuating part of the TPICS confirms the semiclassical predictions in Ref. [16]. This

is further strong evidence, that the fluctuation is completely dominated by the classical

triple collision orbits all lying in the collinear eZe subspace embedded in the three-

dimensional space. Although an analysis of the full 3D helium problem is still out of

reach both theoretically and experimentally due to the limitations in resolving the full

spectrum for higher energies up to N ≈ 20, this gives further confidence in expecting
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that the semiclassical predictions are also valid in the case of the full helium problem

as well as other two-electron atoms.
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