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Abstract

We consider a class of processes describing a population consisting of k types

of individuals. The process is almost surely absorbed at the origin within finite

time, and we study the expected time taken for such extinction to occur. We

derive simple and precise asymptotic estimates for this expected persistence

time, starting either from a single individual or from a quasi-equilibrium state,

in the limit as a system size parameter N tends to infinity. Our process need not

be a Markov process on Zk
+; we allow the possibility that individuals’ lifetimes

may follow more general distributions than the exponential distribution.
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1. Introduction

A fundamental issue in modelling biological populations is the risk of a population

or species becoming extinct. The corresponding issue in modelling infectious spread is

extinction of infection from a population. In either case, a random variable of particular
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interest is the persistence time until extinction occurs.

A substantial body of recent research addresses the issue via the semi-rigorous WKB

(Wentzel, Kramers, Brillouin) approach, see review papers [20, 2]. Such work focuses

specifically on the supercitical case (defined precisely in section 2 below), so that the ex-

pected persistence time grows exponentially with population size. For many naturally

one-dimensional models (processes that can be approximated, in a sense made precise

in section 2.3, by the solution of a one-dimensional ordinary differential equation), it

can be shown that in the supercritical case, as a system size parameter N tends to

infinity, the expected persistence time τ starting from quasi-equilibrium satisfies

τ ∼ K√
N

exp(AN), (1)

where we use ∼ to denote that the ratio of the two sides converges to 1 as N →∞. Here

A and K are constants whose values do not depend upon N , with explicit formulae

available for A and K in terms of parameters of the process.

For multidimensional models, it is usually only possible to establish results of the

cruder form ln τ ∼ AN , and to evaluate the leading-order constant A via numerical

solution of a system of ordinary differential equations. An exception is provided by [9],

where a relation of the form (1) and explicit formulae for A and K are obtained using

the WKB approach for a susceptible-infectious-susceptible (SIS) infection model in a

heterogeneous population, a naturally multidimensional process.

In a different vein, a rather more rigorous approach is taken in [7]. For a general

class of multitype birth-death processes, the existence of a quasi-stationary distribution

is proved and a bound established for the total variation distance between the process

conditioned to non-extinction before time t and the quasi-stationary distribution, As a

by-product of this analysis, it is shown that there exist constants d1 > d2 > 0 such that

for all sufficiently large N , the mean persistence time τ starting from quasi-stationarity

satisfies exp(d2N) ≤ τ ≤ exp(d1N).

A limitation of both the WKB approach and the approach of [7] is that the mod-

els considered generally assume that individuals’ lifetimes or infectious periods are

exponentially distributed. This is not usually biologically realistic, the assumption

being rather for reasons of mathematical tractability. In [5] the effects of relaxing

this assumption were considered for a class of (one-dimensional) birth-death processes,
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via application of a network insensitivity result of [23]. The subcritical and critical

cases were considered in addition to the more widely-studied supercritical case. In

the critical case it was found that the expected persistence time τ0, starting from

one initial individual, depends logarithmically upon the system size parameter N as

N →∞, whereas in the subcritical case, τ0 was shown to converge to a finite limit as

N →∞. In [9], the multitype version of the insensitivity result of [23] was applied to

allow for non-exponentially distributed infectious periods in the SIS infection model in

a heterogeneous population, in the supercritical case.

In the current paper, we consider a particular class of multitype birth-death pro-

cesses, defined in Section 2. We build on the approach of [5], so we do not need to

assume exponentially distributed lifetimes. For this class of processes we are able to

obtain unusually precise results, including a result of the form (1) in the supercritical

case, with explicit formulae for the constants A and K. The only multidimensional

process for which such a precise result has previously been available is the heteroge-

neous population SIS model of [9]. Not only is the class of processes considered here

considerably more general than in [9], but the methods of proof are quite different,

and in contrast to [9] we consider the subcritical and critical cases as well as the

supercritical case. The class of processes is more restricted than that of [7] but unlike

in [7] our results do not require exponentially distributed lifetimes. In estimating the

mean persistence time starting from a single individual, our approach is fully rigorous,

unlike the WKB method of [9]. In estimating the mean persistence time starting from

quasi-stationarity, we present only a heuristic sketch proof, referring the reader to [4]

for full details of the proof in a specific one-dimensional setting.

The remainder of the paper is structured as follows. In section 2, we define our

general modelling framework and give two illustrative examples, before describing

two standard approximating processes that provide motivation and intuition for what

follows. In section 3, we define a re-started version of our general process and show

how this re-started process may be used to analyse extinction times for the original

process of interest. In sections 4 and 5, we consider the subcritical and critical

cases, respectively, obtaining limiting results (theorems 1, 2 and 3) for the expected

extinction time starting from a single initial individual. We move on in section 6 to the

supercritical case, for which we again obtaining a limiting result (theorem 4) for the
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expected extinction time starting from a single initial individual, before going on to

outline the corresponding result (formula (49)) for the expected extinction time starting

from quasi-equilibrium. Finally, in section 7 we present some concluding discussion.

2. The model

We consider a sequence of multitype birth-death processes indexed by N , where N

is an overall system size parameter, our interest being in the limiting behaviour as N →

∞. The state of the process at time t ≥ 0 is denotedX(N)(t) =
(
X

(N)
1 (t), X

(N)
2 (t), . . . , X

(N)
k (t)

)
∈

Zk+, where k is the number of types of individual, and for i = 1, 2, . . . , k, X
(N)
i (t) is the

number of type i individuals present at time t. We assume that the state space S is ei-

ther the whole of Zk+, or the finite set {x = (x1, x2, . . . , xk) : 0 ≤ xi ≤ Ni for i = 1, 2, . . . , k}

for some N = (N1, N2, . . . , Nk), and that the extinction state x = 0 is absorbing,

while C = S \ {0} forms a single communicating class. In the case of finite state

space, noting that Ni is the upper bound for the number of individuals of type i, we

take N = N1 + N2 + · · · + Nk, set fi = Ni/N for i = 1, 2, . . . , k, and assume that

f1, f2, . . . , fk are all strictly positive. For simplicity we assume that f1, f2, . . . , fk do

not vary with N , so when we write, for instance, N →∞, it is implicit that N increases

through a subsequence of integers such that Nfi is always integer-valued for all i. To

avoid overly cumbersome notation, we suppress the superscript N from now on.

We assume that all birth and death rates scale with N in the manner of the ‘density-

dependent’ processes of chapter 11 of [13], so that when N is large the scaled process

X(t)/N may be approximated by a deterministic process (see section 2.3 for details).

We allow the birth and death rates for type i individuals to depend upon (i) the (scaled)

number of type i individuals present; and (ii) the (scaled) total number of individuals of

all types. More precisely, denoting by ξ1, ξ2, . . . , ξk a set of independent homogeneous

Poisson processes of rate 1, then for i = 1, 2, . . . , k, new type i individuals are born at

the points of the time-transformed process

ξi

N ∫ t

u=0

b0

 k∑
j=1

Xj(u)/N

 bi (Xi(u)/N) du

 (2)

for some functions b0, b1, . . . , bk from R+ to R+. Each newly born type i individual is

assigned a ‘lifeforce’ distributed as a non-negative random variable Qi, independent of
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other individuals’ lifeforce variables and of the processes ξ1, ξ2, . . . , ξk, with E [Qi] = 1

for i = 1, 2, . . . , k. Each type i individual’s lifeforce reduces at rate

Nd0

 k∑
j=1

Xj(t)/N

 di (Xi(t)/N) /Xi(t) (3)

for some functions d0, d1, . . . , dk from R+ to R+, until it reaches zero, at which point

the individual is removed from the population (dies). Note that if d0(y) = 1 and

di(y) = y/αi for i = 1, . . . , k, for some constants α1, α2, . . . , αk > 0, then the time

that a type i individual remains alive in the population is distributed as αiQi, so the

lifeforce random variables are simply scaled lifetimes. More generally, the functions

d0, d1, . . . , dk may be interpreted as competition effects, so that d0 represents the effect

on an individual’s lifespan of competition from the entire population, while for i =

1, 2, . . . , k, di represents the effect on a type i individual’s lifespan of competition from

individuals of its own type. Alternatively, these could be ‘safety in numbers’ effects,

whereby the presence of others enhances an individual’s survival chances.

The model that we have defined may be regarded as a piecewise deterministic

Markov process [11], in which the state of the process at time t is given by X(t)

together with the remaining lifeforce values at time t for every individual alive in

the population at that time. However, our approach avoids the need for the general

machinery of piecewise-deterministic Markov processes, so we will not pursue this. In

the case that Qi is exponentially distributed for i = 1, 2, . . . , k, then {X(t) : t ≥ 0} is

a continuous-time Markov process with transition rates as follows (where ei denotes

the unit vector with ith element equal to 1 and all other elements equal to 0).

x→ x+ ei at rate Nb0

 k∑
j=1

xj

/
N

 bi(xi/N),

x→ x− ei at rate Nd0

 k∑
j=1

xj

/
N

 di(xi/N).

To see this, we use an argument based on a construction of [21]. Suppose thatX(t) = x

for some x ∈ Zk+. Since each Qi has constant hazard rate equal to 1, it follows from

expression (3) that the probability that a particular type i individual is removed in the

time interval [t, t+δt) is Nd0

(∑k
j=1 xj/N

)
(di (xi/N) /xi) δt+o(δt). Independence of
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the lifeforce random variables of different individuals then implies that the probability

that exactly one individual is removed in the time interval [t, t + δt), and they are of

type i, is Nd0

(∑k
j=1 xj/N

)
di (xi/N) δt + o(δt). Similarly, expression (2) together

with independence of the processes ξ1, ξ2, . . . , ξk implies that the probability that

exactly one individual is born in the time interval [t, t + δt), and they are of type i,

is Nb0

(∑k
j=1 xj

/
N
)
bi(xi/N)δt+ o(δt). Independence between the lifeforce random

variables and the processes ξi then yields the required result.

2.1. Examples

Two examples of processes that illustrate the biological usefulness of the framework

described above are as follows.

Example 1. The susceptible-infectious-susceptible (SIS) infection model of [8, 9] with

heterogeneous susceptibilities and infectious periods. This process has finite state

space, with Ni now representing the (constant) total number of type i individuals in

the population, while Xi(t) is the number of infectious type i individuals at time t.

Rate functions are b0(y) = βy, d0(y) = 1, and for i = 1, 2, . . . , k, bi(y) = µi(fi − y),

di(y) = y/αi. Here β is an overall infection rate parameter, while for i = 1, 2, . . . , k, µi

gives the level of susceptibility of type i individuals, αi is the mean infectious period

of type i individuals, and fi = Ni/N is the proportion of all individuals that are of

type i. We assume that β > 0 and that αi, µi, fi > 0 for i = 1, 2, . . . , k, and without

loss of generality we scale the µi values so that
∑k
i=1 µifi = 1.

Example 2. The multitype birth-death process with linear birth rates and quadratic

death rates described in section 2.2 of [7]. This process has state space Zk+, and may

be obtained by setting b0(y) = λy, d0(y) = µ + κy, and for i = 1, 2, . . . , k, bi(y) = 1,

di(y) = y, with parameters λ, µ, κ > 0. In [7] it is additionally assumed that the

lifeforce variables Qi are exponentially distributed.

2.2. Assumptions

In order to prove our results, we adopt the following assumptions throughout.

In the case that S = Zk+ we set C̃0 = C̃1 = · · · = C̃k = (0,∞), while in the case

of finite state space we set C̃0 = (0, 1) and C̃i = (0, fi) for i = 1, 2, . . . , k. To ensure
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that 0 is an absorbing state, that C = S \ {0} is a communicating class, and that the

process cannot leave S, we require that

b0(0) = 0, b0(y) > 0 for y ∈ C̃0, d0(y) > 0 for y ∈ C̃0, (4)

and for i = 1, 2, . . . , k,

bi(0) > 0, bi(y) > 0 for y ∈ C̃i, di(0) = 0, di(y) > 0 for y ∈ C̃i. (5)

In the case of finite state space, we additionally require

d0 (1) > 0 and for i = 1, 2, . . . , k, bi (fi) = 0, di (fi) > 0. (6)

We further assume that

b0, b1, . . . , bk, d0, d1, . . . , dk are differentiable throughout their domains, (7)

d0(0) > 0 and b′0(0), d′1(0), d′2(0), . . . , d′k(0) > 0. (8)

Finally, define

a(x) =
1

Nd0(1/N)

∑
j xj−1∏
r=1

(
b0(r/N)

d0((r + 1)/N)

) k∏
i=1

xi−1∏
r=0

(
bi(r/N)

di((r + 1)/N)

)
. (9)

In section 3 we will define a modified version of our process, re-started in a particular

way whenever the original process is absorbed at the state x = 0. The stationary

distribution of this re-started process is found to be proportional to {a(x) : x ∈ S},

see section 3. We assume that for all sufficiently large N ,

∑
x∈C

a(x) < ∞ (10)

and
∑
x∈C

a(x)b0

(∑k
j=1 xj

N

)
k∑
i=1

bi(xi/N) < ∞. (11)

The significance of conditions (10) and (11) is discussed in section 3. Note that in the

case of a finite state space, these two conditions are trivially satisfied. For example 2

of section 2.1, we verify condition (10) as follows. Recalling the multinomial formula
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kl = (1 + 1 + · · ·+ 1)l =
∑
{x∈Zk+:

∑
i xi=l}

l!∏k
i=1 xi!

, then we have

∑
x∈C

a(x) =
1

µ+ (κ/N)

∞∑
l=1

(
λ

κ

)l−1
(l − 1)!

l−1∏
r=1

(
1

(µ/κ) + ((r + 1)/N)

)

×
∑

{x∈Zk+:
∑
i xi=l}

k∏
i=1

1

xi!

=
k

µ+ (κ/N)

∞∑
l=1

(
λk

κ

)l−1
1

l

l−1∏
r=1

(
1

(µ/κ) + ((r + 1)/N)

)

<
k

µ+ (κ/N)

∞∑
l=1

(
λkN

κ

)l−1(
1

l

)(
1

l!

)
<

κ

λN (µ+ (κ/N))
(exp (λkN/κ)− 1) < ∞.

Condition (11) follows by similar arguments.

We assume conditions (4)-(8), (10), (11) throughout. For the supercritical case, we

require further assumptions (35)-(39), set out in section 6.

2.3. Deterministic and branching process approximations

We now describe two approximating processes, valid in different regimes, that are

useful in motivating our methods and giving some intuition behind our results.

Firstly, when N is large and for i = 1, 2, . . . , k, Xi(t) is of comparable order to N ,

then the scaled process X(t)/N may be approximated by the deterministic process

y(t) = (y1(t), y2(t), . . . , yk(t)) defined by

yi(t) =

∫ ∞
s=0

b0

 k∑
j=1

yj(t− s)

 bi(yi(t− s))

× P

Qi > ∫ s

u=0

d0

(∑k
j=1 yj(t− u)

)
di(yi(t− u))

yi(t− u)
du

 ds (12)

for i = 1, 2, . . . , k. That is, in the deterministic process, the (scaled) number of

individuals of type i at time t, yi(t), consists of all those individuals born into group i

at time t − s who remain alive at time t, integrated over s ≥ 0. Individuals are born

into group i at time t− s at rate b0

(∑k
j=1 yj(t− s)

)
bi(yi(t− s)). The proportion of

such individuals remaining alive at time t is equal to P
(
Qi >

∫ s
u=0

ηi(t− u) du
)
, where

ηi(t−u) is the rate of reduction of each type i individual’s lifeforce at time t−u, given

by ηi(t− u) = d0

(∑k
j=1 yj(t− u)

)
di(yi(t− u))

/
yi(t− u).
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When the Qi are exponentially distributed, then (12) is equivalent to the system

dyi
dt

= b0

 k∑
j=1

yj

 bi(yi)− d0

 k∑
j=1

yj

 di(yi) for i = 1, 2, . . . , k. (13)

Assumptions (4) and (5) ensure that the system (13) has an equilibrium point at

y = 0, corresponding to extinction. Assuming that X(0)/N → y0 as N → ∞,

where y0 6= 0, it follows immediately from section 11.2 of [13] that, if the Qi are

exponentially distributed, then under certain conditions on the functions b0, b1, . . . , bk

and d0, d1, . . . , dk, in the limit as N → ∞ the scaled process X(t)/N converges

in probability over finite time intervals to the process y(t) satisfying the ordinary

differential equations (13) with initial condition y(0) = y0. We will not need to make

use of this result, rather the approximating deterministic process is used merely to

provide intuitive motivation.

Secondly, when N is large and for i = 1, 2, . . . , k, Xi(t) is small compared to

N , then the process X(t) may be approximated by a (linear) multitype branching

process as follows. Suppose that X(t) = x for some x ∈ Zk+. Then, recalling

assumptions (5) and (7), the rate (3) at which each type i individual’s lifeforce reduces

may be approximated by

lim
x/N→0

d0

 k∑
j=1

xj/N

 di(xi/N)

xi/N
= d0(0)d′i(0).

Hence each type i individual in the approximating branching process lives for a time

distributed as (d0(0)d′i(0))
−1
Qi. During its lifetime, the rate at which each type i

individual gives birth to type j individuals in the approximating branching process is

given, from expression (2), recalling assumptions (4) and (7), by

lim
x/N→0

b0

(∑k
l=1 xl/N

)
∑k
l=1 xl/N

bj(xj/N) = b′0(0)bj(0)

for j = 1, 2, . . . , k.

The mean number of type j offspring produced by a type i individual over its lifetime

in this approximating process is

mij =
b′0(0)bj(0)

d0(0)d′i(0)
for i, j = 1, 2, . . . , k. (14)
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Denoting by M the matrix with elements mij , assumptions (5) and (8) ensure that

all elements of M are finite and strictly positive. Further, it follows from the expres-

sion (14) that M is of rank 1, with Perron-Frobenius eigenvalue R0 given by its trace,

viz.

R0 =
b′0(0)

d0(0)

k∑
j=1

bj(0)

d′j(0)
. (15)

This type of branching process approximation is made rigorous for certain epidemic

models in, for example, [3, 6]. We will not make use of such results, as we employ

the approximating branching process only for intuitive motivation and in the heuristic

argument of section 6.2. In the context of epidemic modelling, the matrix M is referred

to as the next generation matrix and its Perron-Frobenius eigenvalue, R0, as the basic

reproduction number. In general, the next generation matrix M need not be of rank 1;

this is a consequence of our model assumptions, in particular the fact that in the

approximating branching process, the rate at which type i individuals give birth to

type j individuals depends only upon j.

Denoting by ωi the probability that the multitype branching process initiated by

a single individual of type i produces a finite number of progeny, and by φi(·) the

moment generating function of the lifeforce random variable Qi, then from standard

theory of multitype branching processes, eg [19], the probabilities ωi satisfy

ωi = φi

− b′0(0)

d0(0)d′i(0)

k∑
j=1

(1− ωj)bj(0)

 for i = 1, 2, . . . , k. (16)

For R0 ≤ 1, we have ω1 = ω2 = · · · = ωk = 1, while for R0 > 1, ω = (ω1, ω2, . . . , ωk)

is the unique solution of equations (16) in [0, 1]k \ {1}, and ωi < 1 for i = 1, 2, . . . , k

([19], section 1.7).

This approximating multitype branching process can alternatively be viewed as a

single-type branching process, as follows. Each individual has lifetime distributed

according to a mixture distribution, distributed as (d0(0)d′i(0))
−1
Qi with probability

bi(0)/
∑
j bj(0) for i = 1, 2, . . . , k, and during its lifetime gives birth at rate b′0(0)

∑
j bj(0).

Denote by ω the probability that this single-type branching process produces a finite

number of progeny. Then for R0 ≤ 1, we have ω = 1, while for R0 > 1, ω is the unique
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solution in [0, 1) of

ω =
1∑k

j=1 bj(0)

k∑
i=1

bi(0)φi

− b′0(0)

d0(0)d′i(0)

 k∑
j=1

bj(0)

 (1− ω)

 . (17)

This single-type branching process is equivalent to the preceding multitype branching

process provided that the multitype process is initiated by a single individual which

is of type i with probability bi(0)/
∑
j bj(0) for i = 1, 2, . . . , k. Consequently, we have

the relationship

ω =

(
k∑
i=1

bi(0)ωi

)/
k∑
j=1

bj(0). (18)

Note that combining relationship (18) with equations (16) gives

ωi = φi

− b′0(0)

d0(0)d′i(0)

 k∑
j=1

bj(0)

 (1− ω)

 for i = 1, 2, . . . , k,

so that each probability ωi (i = 1, 2, . . . , k) can be expressed in terms of the single

probability ω.

A link between the approximating deterministic process and the approximating

branching process is as follows. Recalling assumptions (4) and (5), then with δij

denoting the Kronecker delta, the Jacobian J(0) of the deterministic system (13) at

y = 0 has elements

Jij(0) = b′0(0)bi(0)− d0(0)d′i(0)δij . (19)

From theorem A.1 of [12] or theorem 2 of [22], all eigenvalues of J(0) have strictly neg-

ative real part precisely when R0 < 1, and conversely J(0) has at least one eigenvalue

with strictly positive real part precisely when R0 > 1. That is, subcriticality of the

approximating branching process implies local stability of the extinction equilibrium

point y = 0 of the deterministic system (13), while supercriticality of the branching

process implies local instability of the extinction point.

3. The re-started process

In order to analyse the long-term behaviour of our process, we follow [14, 5] in

considering first the stationary behaviour of a modified process without extinction.
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Specifically, we introduce a regeneration step as follows. Whenever the process reaches

the state x = 0, it remains there for an exponentially distributed time of mean 1,

after which a birth occurs, being of type i with probability ρi for some distribution

ρ = (ρ1, ρ2, . . . , ρk), and the process then continues as before. Taking

ρi =
bi(0)∑k
j=1 bj(0)

for i = 1, 2, . . . , k (20)

ensures that for the case of exponentially distributed lifeforce variables Qi, the re-

started process is reversible [16]. We can then apply detailed balance conditions to

find its stationary distribution π = {π(x) : x ∈ S}. Recalling the definition (9) of

a(x), we find that

π(x) =
a(x)∑k
j=1 bj(0)

π(0) for x ∈ C, (21)

with

π(0) =

(
1 +

∑
x∈C a(x)∑k
j=1 bj(0)

)−1
. (22)

Assumptions (10) and (11) imply, respectively, that π is a proper distribution and

that condition (11) of [23] is satisfied. From theorem 2 of [23] it now follows that π

is the stationary distribution of numbers of individuals of each type in the system,

regardless of the distributions of the Qi (recall E[Qi] = 1 for i = 1, 2, . . . , k).

The stationary distribution π of the re-started process, restricted to C, may be used

to approximate the quasi-stationary distribution q of the original process (assuming

that a unique quasi-stationary distribution exists). For the classic (single type) SIS

epidemic model, this gives the approximation of section 3.1 of [17]. It has been

shown [15, 10] that for general single-type birth-death processes (with exponentially

distributed lifetimes), π restricted to C is a lower bound for q in the sense of likelihood

ratio ordering of distributions.

The mean time between regenerations is 1/π(0). Denoting by τi the mean time

taken for the process to first hit state 0 starting from a single type i individual (which

is the same for the original process as for the re-started version) and recalling the
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form (20) of the probabilities ρi and formula (22), we thus have

1

π(0)
= 1 +

k∑
i=1

ρiτi

⇒
k∑
i=1

bi(0)τi =

(
1

π(0)
− 1

) k∑
j=1

bj(0)

=
∑
x∈C

a(x). (23)

To investigate mean persistence time, we consider the asymptotic behaviour of the

sum (23) as N →∞.

4. The subcritical case

For the subcritical case R0 < 1, we have the following.

Theorem 1. Suppose that R0 < 1, that assumptions (4)-(8) are satisfied, and that

b′0, b1, b2, . . . , bk are non-increasing functions, while d0, d
′
1, d
′
2, . . . , d

′
k are non-decreasing

functions.

Then conditions (10), (11) are automatically satisfied, and recalling that τi denotes

the mean time to extinction starting from a single type i individual, we have

k∑
i=1

bi(0)τi → − 1

b′0(0)
log (1−R0) as N →∞.

Proof. First, note that the conditions of the theorem imply that

∑
x∈C

a(x) =
1

Nd0(1/N)

∞∑
l=1

l−1∏
r=1

(
b0(r/N)

d0((r + 1)/N)

)

×
∑

{x∈C:
∑
i xi=l}

k∏
i=1

xi−1∏
r=0

(
bi(r/N)

di((r + 1)/N)

)

≤ 1

d0(0)

∞∑
l=1

(l − 1)!

(
b′0(0)

d0(0)

)l−1 ∑
{x∈C:

∑
i xi=l}

k∏
i=1

1

xi!

(
bi(0)

d′i(0)

)xi
.
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Now from the multinomial theorem, we have(
k∑
i=1

bi(0)

d′i(0)

)l
=

∑
{x∈Zk+:

∑
i xi=l}

l!∏k
i=1 xi!

k∏
i=1

(
bi(0)

d′i(0)

)xi

≥ l!
∑

{x∈C:
∑
i xi=l}

k∏
i=1

1

xi!

(
bi(0)

d′i(0)

)xi

and so

∑
x∈C

a(x) ≤ 1

b′0(0)

∞∑
l=1

1

l

(
b′0(0)

d0(0)

)l( k∑
i=1

bi(0)

d′i(0)

)l

=
1

b′0(0)

∞∑
l=1

Rl0
l

= − 1

b′0(0)
log (1−R0) < ∞,

so that condition (10) is satisfied, and from equation (23) it follows that

lim sup
N→∞

k∑
i=1

bi(0)τi ≤ − 1

b′0(0)
log (1−R0) .

A similar argument shows that under the conditions of the theorem,

∑
x∈C

a(x)b0

 k∑
j=1

xj

/
N

 k∑
i=1

bi(xi/N)

≤ (1/N)

k∑
i=1

bi(0)R0/ (1−R0) < ∞,

so that condition (11) is satisfied.

Next, for any m ∈ N, we have

k∑
i=1

bi(0)τi ≥
1

Nd0(1/N)

m∑
l=1

l−1∏
r=1

(
b0(r/N)

d0((r + 1)/N)

)

×
∑

{x∈C:
∑
i xi=l}

k∏
i=1

xi−1∏
r=0

(
bi(r/N)

di((r + 1)/N)

)
.

Since m is fixed, then as N → ∞, for each r ≤ m we have Nb0(r/N) → rb′0(0)

and d0((r + 1)/N) → d0(0), and for i = 1, 2, . . . , k we have bi(r/N) → bi(0) and

Ndi((r + 1)/N) → (r + 1)d′i(0). Note also that for l ≤ m, for all sufficiently large N ,
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{x ∈ C :
∑
i xi = l} =

{
x ∈ Zk+ :

∑
i xi = l

}
. Hence

lim inf
N→∞

k∑
i=1

bi(0)τi ≥
1

d0(0)

m∑
l=1

(
b′0(0)

d0(0)

)l−1
(l − 1)!

×
∑

{x∈Zk+:
∑
i xi=l}

k∏
i=1

1

xi!

(
bi(0)

d′i(0)

)xi

=
1

b′0(0)

m∑
l=1

1

l

(
b′0(0)

d0(0)

)l( k∑
i=1

bi(0)

d′i(0)

)l

=
1

b′0(0)

m∑
l=1

Rl0
l
,

and letting m→∞ we obtain

lim inf
N→∞

k∑
i=1

bi(0)τi ≥ − 1

b′0(0)
log (1−R0) .

The result follows. �

Remark 1. Note that examples 1 and 2 of section 2.1 both satisfy the conditions of

theorem 1.

Remark 2. In the symmetric case that b1 = b2 = · · · = bk and d1 = d2 = · · · = dk,

then τ1 = τ2 = · · · = τk, and so for i = 1, 2, . . . , k we have

τi → − 1

kb′0(0)b1(0)
log (1−R0) as N →∞.

In particular, for example 2 of section 2.1, with R0 = λk/µ, we have that for i =

1, 2, . . . , k,

τi → − 1

λk
log

(
1− λk

µ

)
as N →∞.

Remark 3. For example 1 of section 2.1, the heterogeneous SIS model, with R0 =

β
∑k
i=1 αiµifi, theorem 1 yields that

k∑
i=1

µifiτi → − log (1−R0)

β
as N →∞. (24)

It seems intuitively clear that for this model, τi will depend upon i only through the

mean infectious period αi, and that larger αi values will correspond to larger values of

τi. Given the form of (24), a natural conjecture then is that τi → − (αi/R0) log (1−R0)

as N → ∞. For more general processes satisfying the conditions of theorem 1, we

correspondingly conjecture that τi → − (log (1−R0)) / (d0(0)d′i(0)R0) as N →∞.
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5. The critical case

For the critical case R0 = 1, we present results for two models, example 1 of

section 2.1 and an extension of example 2. The algebra is rather more intricate and

model-specific than in the subcritical case.

Theorem 2. For the SIS infection model with heterogeneous susceptibilities and in-

fectious periods, example 1 of section 2.1, if R0 = 1 then

k∑
i=1

µifiτi =

k∑
i=1

bi(0)τi ∼
logN

2β
as N →∞.

Proof. For x ∈ C and
∑k
i=1 xi = l,

a(x) =
1

N

l−1∏
r=1

(
β
r

N

) k∏
i=1

xi−1∏
r=0

(
αiµi

(
fi − r

N

)
r+1
N

)

=
βl−1

l

l!∏k
i=1 xi!

k∏
i=1

[
(αiµifi)

xi

xi−1∏
r=0

(
1− r

fiN

)]
. (25)

Now, ∑
x∈C

a(x) = AN +BN ,

where

AN =

b
√
Nc∑

l=1

∑
{x∈C:

∑
i xi=l}

a(x) and BN =

N∑
l=b
√
Nc+1

∑
{x∈C:

∑
i xi=l}

a(x).

(For x ∈ R, bxc denotes the greatest integer ≤ x and, for future reference, dxe denotes

the smallest integer ≥ x.) Using (25) and the multinomial theorem,

AN ≤
b
√
Nc∑

l=1

βl−1

l

(
k∑
i=1

αiµifi

)l
= β−1

b
√
Nc∑

l=1

1

l
, (26)

since R0 = β
∑k
i=1 αiµifi = 1.

Turning to BN , note that by the AM/GM inequality, if xi > 0 then

xi−1∏
r=0

(
1− r

fiN

)
≤

[
1

xi

xi−1∑
r=0

(
1− r

fiN

)]xi
=

(
1− xi − 1

2fiN

)xi
,
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and that this inequality holds trivially if xi = 0. Therefore,

∑
{x∈C:

∑
i xi=l}

l!∏k
i=1 xi!

k∏
i=1

[
(αiµifi)

xi

xi−1∏
r=0

(
1− r

fiN

)]

≤
∑

{x∈C:
∑
i xi=l}

l!∏k
i=1 xi!

k∏
i=1

(αiµifi)
xi

(
1− xi − 1

2fiN

)xi
. (27)

Further, if l > b
√
Nc and x1 + x2 + · · ·+ xk = l, then at least one of x1, x2, . . . , xk

is ≥
√
N/k. Hence, for all sufficiently large N , for such l,

k∏
i=1

(αiµifi)
xi

(
1− xi − 1

2fiN

)xi
≤

k∑
i=1

[
(αiµifi)

(
1− (

√
N/k)− 1

2fiN

)]xi k∏
j=1
j 6=i

(αjµjfj)
xj

and, using the multinomial theorem, it follows from (27) that

∑
{x∈C:

∑
i xi=l}

l!∏k
i=1 xi!

k∏
i=1

[
(αiµifi)

xi

xi−1∏
r=0

(
1− r

fiN

)]

≤
k∑
i=1

αiµifi
(

1− (
√
N/k)− 1

2fiN

)
+

k∑
j=1
j 6=i

αjµjfj


l

=

k∑
i=1

[
1

β
− [(
√
N/k)− 1]αiµi

2N

]l
,

since R0 = 1. Thus,

BN ≤
N∑

l=b
√
Nc+1

1

βl

k∑
i=1

(
1− βαiµi[(

√
N/k)− 1]

2N

)l

≤ 1

β
√
N

k∑
i=1

2N

βαiµi[(
√
N/k)− 1]

≤ 4k

β2

k∑
i=1

1

αiµi

for all sufficiently large N , which together with (26) implies

lim sup
N→∞

∑
x∈C a(x)

logN
≤ 1

2β
. (28)

Fix V > 0. Then it follows from (25) that for any x ∈ C with
∑k
i=1 xi = l, where
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l ≤ bV
√
Nc,

a(x) ≥

 k∏
i=1

bV
√
Nc∏

r=0

(
1− r

fiN

) βl−1
l

l!∏k
i=1 xi!

k∏
i=1

(αiµifi)
xi .

Thus, for l ≤ bV
√
Nc and R0 = 1, application of the multinomial theorem yields

∑
{x∈C:

∑
i xi=l}

a(x) ≥ 1

βl

 k∏
i=1

bV
√
Nc∏

r=0

(
1− r

fiN

) ,
whence

∑
x∈C

a(x) ≥
bV
√
Nc∑

l=1

∑
{x∈C:

∑
i xi=l}

a(x) ≥

 k∏
i=1

bV
√
Nc∏

r=0

(
1− r

fiN

) 1

β

bV
√
Nc∑

l=1

1

l
.

Straightforward analysis (see Appendix A) yields

lim
N→∞

k∏
i=1

bV
√
Nc∏

r=0

(
1− r

fiN

)
= exp

(
−V

2

2

k∑
i=1

f−1i

)
. (29)

Therefore,

lim inf
N→∞

∑
x∈C a(x)

logN
≥ 1

2β
exp

(
−V

2

2

k∑
i=1

f−1i

)
and letting V ↓ 0,

lim inf
N→∞

∑
x∈C a(x)

logN
≥ 1

2β
. (30)

Recalling (23), the theorem follows from (28) and (30). �

Remark 4. Theorem 2 for the case k = 1 corresponds to relation (3.7) of [5].

We consider now an extension of example 2 of section 2.1, in which d0(y) = µ+κyη,

where η > 0. Note from (15) that R0 = kλ/µ.

Theorem 3. For the above extension of example 2, if R0 = 1 then for i = 1, 2, . . . , k,

τi ∼
η logN

µ(1 + η)
as N →∞.

Proof. For x ∈ C and
∑k
i=1 xi = l,

a(x) =
1

N (1 + κ(1/N)η)

(
l−1∏
r=1

λ(r/N)

(µ+ κ[(r + 1)/N ]η

)
k∏
i=1

xi−1∏
r=0

(
1

(r + 1)/N

)

=
1

µ

(
λ

µ

)l−1
(l − 1)!∏k
i=1 xi!

1∏l
i=1 (1 + θ(i/N)η)

,
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where θ = κ/µ. Thus, using the multinomial theorem,∑
{x∈C:

∑
i xi=l}

a(x) =
1

µl

(
λ

µ

)l−1
kl∏l

i=1 (1 + θ(i/N)η)

and, since R0 = 1, ∑
x∈C

a(x) =
k

µ

∞∑
l=1

1

l
∏l
i=1 (1 + θ(i/N)η)

.

Now ∑
x∈C

a(x) = AN +BN ,

where

AN =
k

µ

dN
η

1+η e∑
l=1

1

l
∏l
i=1 (1 + θ(i/N)η)

and BN =
k

µ

∞∑
l=dN

η
1+η e+1

1

l
∏l
i=1 (1 + θ(i/N)η)

.

Clearly,

AN ≤
k

µ

dN
η

1+η e∑
l=1

1

l
. (31)

Also,

l∏
i=1

(1 + θ(i/N)η) ≥ 1 +
θ

Nη

l∑
i=1

iη ≥ 1 +
θ

Nη

∫ l

0

uη du ≥ θlη+1

(η + 1)Nη
,

so
∞∑

l=dN
η

1+η e+1

1

l
∏l
i=1 (1 + θ(i/N)η)

≤ (η + 1)Nη

θ

∞∑
l=dN

η
1+η e+1

1

lη+2

≤ (η + 1)Nη

θ

∫ ∞
dN

η
1+η e

u−(η+2) du ≤ θ−1.

Note that in conjunction with (31) this shows that condition (10) is satisfied and a

similar argument shows that condition (11) is satisfied. Further, it follows that

lim sup
N→∞

∑
x∈C a(x)

logN
≤ kη

µ(1 + η)
. (32)

Fix L > 0. Then

∑
x∈C

a(x) ≥ k

µ

bLN
η

1+η c∑
l=1

1

l
∏l
i=1 (1 + θ(i/N)η)

≥ k

µ

bLN
η

1+η c∑
l=1

1

l


 1∏bLN η

1+η c
i=1 (1 + θ(i/N)η)

 .
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Straightforward analysis (see Appendix A) yields that, for η, L > 0,

lim
N→∞

bLN
η

1+η c∏
i=1

(1 + θ(i/N)η) = exp

(
θLη+1

η + 1

)
, (33)

so

lim inf
N→∞

∑
x∈C a(x)

logN
≥ kη

µ(1 + η)
exp

(
−θL

η+1

η + 1

)
. (34)

From (32) and letting L ↓ 0 in (34) it follows that

k∑
i=1

τi =

k∑
i=1

bi(0)τi ∼
kη logN

µ(1 + η)
as N →∞.

Recalling remark 2, from the symmetry of the process we have τ1 = τ2 = · · · = τk, and

the result follows. �

6. The supercritical case

Our assumptions of section 2.2 ensure that system (13) has an equilibrium point

at y = 0. We now consider the supercritical case R0 > 1 under the following further

assumptions.

1. System (13) has a unique equilibrium point y∗ in C = S \ {0}, with y∗i > 0 for

i = 1, 2, . . . , k. (35)

2. The eigenvalues of the Jacobian of (13) at y∗ all have strictly negative real part.

(36)

3. The functions log

(
b0(u)

ud0(u)

)
and log

(
ubi(u)

di(u)

)
for i = 1, 2, . . . , k are twice dif-

ferentiable throughout their domains. (37)

4. For every y ∈ C̃0, sup
0≤u≤y

∣∣∣∣ d2du2 log

(
b0(u)

ud0(u)

)∣∣∣∣ <∞. (38)

5. For i = 1, 2, . . . , k, for every y ∈ C̃i, sup
0≤u≤y

∣∣∣∣ d2du2 log

(
ubi(u)

di(u)

)∣∣∣∣ <∞. (39)

We have already seen that when R0 > 1 the Jacobian of the system (13) at y = 0 has

at least one eigenvalue with strictly positive real part, so that the extinction equilibrium

point is locally unstable; condition (36) ensures that the equilibrium point y∗ is locally

stable.
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6.1. Time to extinction starting from a single individual

Corresponding to theorem 1 for the subcritical case, in the supercritical case we

have the following.

Theorem 4. Suppose that R0 > 1, and that assumptions (4)-(8), (10), (11) together

with assumptions (35)-(39) are all satisfied. With δij denoting the Kronecker delta,

denote by H the matrix with elements hij given by

hij =
b′0 (
∑
l y
∗
l )

b0 (
∑
l y
∗
l )
−
d′0 (
∑
l y
∗
l )

d0 (
∑
l y
∗
l )

+

(
b′i (y∗i )

bi (y∗i )
− d′i (y∗i )

di (y∗i )

)
δij (40)

for i, j = 1, 2, . . . , k. Recalling that τi denotes the mean time to extinction starting

from a single individual of type i, then as N →∞,

k∑
i=1

bi(0)τi ∼
K0√
N

exp(AN)

where

A =

∫ ∑
j y

∗
j

0

log

(
b0(u)

d0(u)

)
du+

k∑
i=1

∫ y∗i

0

log

(
bi(u)

di(u)

)
du (41)

and

K0 =

√√√√√ 2πd0(0)

b′0(0)b0

(∑
j y
∗
j

)
d0

(∑
j y
∗
j

)
det(−H)

k∏
i=1

bi(0)d′i(0)

bi (y∗i ) di (y∗i )
, (42)

with

det(−H) =
k∏
i=1

(
d′i (y∗i )

di (y∗i )
− b′i (y∗i )

bi (y∗i )

)

+

(
d′0 (
∑
l y
∗
l )

d0 (
∑
l y
∗
l )
−
b′0 (
∑
l y
∗
l )

b0 (
∑
l y
∗
l )

) k∑
i=1

∏
j 6=i

(
d′j
(
y∗j
)

dj
(
y∗j
) − b′j

(
y∗j
)

bj
(
y∗j
)) . (43)

Proof. Letting y = x/N and ã(y) = a(Ny), then formula (9) may be written as

ã(y) =
1

Nd0(1/N)

N
∑
j yj−1∏
r=1

(
b0(r/N)

d0((r + 1)/N)

) k∏
i=1

Nyi−1∏
r=0

(
bi(r/N)

di((r + 1)/N)

)
,



22 FRANK G BALL AND DAMIAN CLANCY

so that

log (ã(y)) = − log (Nd0(1/N)) +

N
∑
j yj−1∑
r=1

log

(
b0(r/N)

d0((r + 1)/N)

)

+

k∑
i=1

Nyi−1∑
r=0

log

(
bi(r/N)

di((r + 1)/N)

)

= − log (Nd0(1/N))− log

b0
(∑

j yj

)
d0(1/N)

+

N
∑
j yj∑

r=1

log

(
b0(r/N)

d0(r/N)

)

+

k∑
i=1

(
log

(
bi(0)

bi (yi)

)
+

Nyi∑
r=1

log

(
bi(r/N)

di(r/N)

))

= − log

Nb0
∑

j

yj

+

k∑
i=1

log

(
bi(0)

bi (yi)

)

+

N
∑
j yj∑

r=1

log

(
b0(r/N)

d0(r/N)

)
+

k∑
i=1

(
Nyi∑
r=1

log

(
bi(r/N)

di(r/N)

))
. (44)

For some i = 1, 2, . . . , k, consider the sum
∑Nyi
r=1 log (bi(r/N)/ di(r/N)) for large N .

We can approximate this sum by an integral via the trapezium rule, with the compli-

cation that di(0) = 0, so that the integrand diverges at the lower end. We deal with

this by regularising the integrand as follows.

Nyi∑
r=1

log

(
bi(r/N)

di(r/N)

)
=

Nyi∑
r=1

log

(
(r/N)bi(r/N)

di(r/N)

)
−
Nyi∑
r=1

log(r/N)

=

Nyi∑
r=1

log

(
(r/N)bi(r/N)

di(r/N)

)
− log ((Nyi)!) +Nyi logN

= N

∫ yi

0

log

(
ubi(u)

di(u)

)
du+

1

2
log

(
yibi (yi) /di (yi)

bi(0) limu→0(u/di(u))

)
− log((Nyi)!) +Nyi logN +O(1/N),

where we have made use of assumption (39) to control the order of the approximation

error in the trapezium rule. From assumption (8) we have that d′i(0) > 0, so applying

l’Hôpital’s rule to the term limu→0(u/di(u)) and Stirling’s formula to the factorial term
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yields

Nyi∑
r=1

log

(
bi(r/N)

di(r/N)

)
= N

∫ yi

0

log

(
ubi(u)

di(u)

)
du+

1

2
log

(
yibi (yi) /di (yi)

bi(0)/d′i(0)

)
−Nyi log (Nyi) +Nyi − (1/2) log (2πNyi) +Nyi logN + o(1)

= N

(∫ yi

0

log

(
bi(u)

di(u)

)
du+

∫ yi

0

log u du

)
+

1

2
log

(
yibi (yi) d

′
i(0)

bi(0)di (yi)

)
−Nyi log yi +Nyi − (1/2) log (2πNyi) + o(1)

= N

∫ yi

0

log

(
bi(u)

di(u)

)
du+N (yi log yi − yi) +

1

2
log

(
yibi (yi) d

′
i(0)

bi(0)di (yi)

)
−Nyi log yi +Nyi − (1/2) log (2πNyi) + o(1)

= N

∫ yi

0

log

(
bi(u)

di(u)

)
du+

1

2
log

(
yibi (yi) d

′
i(0)

bi(0)di (yi)

)
− (1/2) log (2πNyi) + o(1)

= N

∫ yi

0

log

(
bi(u)

di(u)

)
du+

1

2
log

(
bi (yi) d

′
i(0)

2πNbi(0)di (yi)

)
+ o(1). (45)

The term
∑N

∑
j yj

r=1 log (b0(r/N)/d0(r/N)) in equation (44) may be treated similarly,

noting that from assumptions (4), (8) we have b0(0) = 0, d0(0) > 0 and b′0(0) > 0,

and making use of assumption (38) in invoking the trapezium rule. Equation (44) now
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becomes

log (ã(y)) = N

∫ ∑
j yj

0

log

(
b0(u)

d0(u)

)
du+

1

2
log

2πNb0

(∑
j yj

)
d0(0)

b′0(0)d0

(∑
j yj

)


+

k∑
i=1

(
N

∫ yi

0

log

(
bi(u)

di(u)

)
du+

1

2
log

(
bi (yi) d

′
i(0)

2πNbi(0)di (yi)

))

− log

Nb0
∑

j

yj

+

k∑
i=1

log

(
bi(0)

bi (yi)

)
+ o(1)

= N

(∫ ∑
j yj

0

log

(
b0(u)

d0(u)

)
du+

k∑
i=1

∫ yi

0

log

(
bi(u)

di(u)

)
du

)

−
(
k + 1

2

)
logN −

(
k − 1

2

)
log(2π)

+
1

2
log

 d0(0)

b′0(0)b0

(∑
j yj

)
d0

(∑
j yj

)


+
1

2

k∑
i=1

log

(
bi(0)d′i(0)

bi (yi) di (yi)

)
+ o(1).

That is, as N →∞,

log (ã(y))

= Nf(y)−
(
k + 1

2

)
logN −

(
k − 1

2

)
log(2π) + g(y) + o(1), (46)

where

f(y) =

∫ ∑
j yj

0

log

(
b0(u)

d0(u)

)
du+

k∑
i=1

∫ yi

0

log

(
bi(u)

di(u)

)
du

and

g(y) =
1

2
log

 d0(0)

b′0(0)b0

(∑
j yj

)
d0

(∑
j yj

)
+

1

2

k∑
i=1

log

(
bi(0)d′i(0)

bi (yi) di (yi)

)
.

It is clear from the form of equation (46) that for large N , contributions to the

sum (23) will be dominated by terms a(Ny) = ã(y) where f(y) achieves its maximal

value. Recalling from equation (21) that the stationary distribution of the scaled

re-started process is proportional to {ã(y) : Ny ∈ S}, one would intuitively expect

this stationary distribution to be peaked around a unique mode that converges to
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the deterministic stable equilibrium point y∗ as N → ∞, and to become increasingly

strongly peaked as N increases. We will now show that f(y) does indeed have a unique

maximum point at y∗.

For i = 1, 2, . . . , k,

∂f

∂yi
= log

 b0

(∑
j yj

)
bi (yi)

d0

(∑
j yj

)
di (yi)

 ,

so the condition for a stationary point of f(y) is precisely the condition for an equilib-

rium point of the deterministic system (13). We have assumed that system (13) has

exactly two equilibrium points, at 0 and y∗. We now show that y∗ is a local maximum

of f(y), and hence the unique global maximum.

The elements hij = ∂2f
∂yi∂yj

of the Hessian matrix H of f(y) at y∗ are given by

equation (40). Since all off-diagonal elements of H are equal, application of the matrix

determinant lemma shows that the determinant det(−H) is given by formula (43).

Noting that y∗ is an equilibrium point of (13), then for i = 1, 2, . . . , k we have

b0 (
∑
l y
∗
l ) bi(y

∗
i ) = d0 (

∑
l y
∗
l ) di(y

∗
i ), and so

hij =
1

b0 (
∑
l y
∗
l ) bi (y∗i )

(
b′0

(∑
l

y∗l

)
bi (y∗i )− d′0

(∑
l

y∗l

)
di (y∗i )

+

(
b0

(∑
l

y∗l

)
b′i (y∗i )− d0

(∑
l

y∗l

)
d′i (y∗i )

)
δij

)

for i, j = 1, 2, . . . , k. That is, denoting by B the diagonal matrix with entries bii =

b0 (
∑
l y
∗
l ) bi (y∗i ) for i = 1, 2, . . . , k, then H = B−1J(y∗), where J(y∗) is the Jacobian

of system (13) evaluated at y∗. Setting Σ = −H−1 and noting that Σ = ΣT , it follows

that Σ satisfies the Lyapunov equation J(y∗)Σ+ΣJ(y∗)T = −2B. From theorem 13.21

of [18], this Lyapunov equation has a unique solution Σ. Since all diagonal elements

of B are strictly positive and, by assumption (36), the eigenvalues of J(y∗) all have

negative real part, it follows from theorem 13.24 of [18] that Σ is positive definite.

Hence H is negative definite, and y∗ is a local maximum point of f(y).
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Writing C̃ = C̃1 × C̃2 × · · · × C̃k, then as N →∞, from equation (46) we obtain

∑
x∈C

a(x) ∼ Nk

∫
C̃

ã(y) dy

= Nk

∫
C̃

exp

(
Nf(y)−

(
k + 1

2

)
logN −

(
k − 1

2

)
log(2π) + g(y) + o(1)

)
dy

=

(
N

2π

)(k−1)/2 ∫
C̃

exp (Nf(y) + g(y) + o(1)) dy. (47)

Now condition (10) implies that for sufficiently large N the integral on the right hand

side of equation (47) is convergent, and conditions (38), (39) ensure that the o(1) term

convergences uniformly to zero within a neighbourhood of y∗. We can therefore apply

the multivariate Laplace approximation to this integral, yielding

∑
x∈C

a(x) ∼

√
2π

Ndet(−H)
exp (Nf(y∗) + g(y∗)) .

So finally,

k∑
i=1

bi(0)τi =
∑
x∈C

a(x) ∼ K0√
N

exp(AN)

where

A = f(y∗),

K0 =

√
2π

det(−H)
exp(g(y∗)),

and the result follows. �

6.2. Time to extinction starting from quasi-equilibrium

In the supercritical case, under assumptions (35)-(36), as well as the mean time to

extinction starting from a single individual, another quantity of interest is the mean

time to extinction starting from close to the quasi-equilibrium state Ny∗. Denoting

by τ this mean extinction time starting close to quasi-equilibrium, we follow [5] in

outlining a heuristic derivation of the asymptotic form of τ .

Recall from section 2.3 that in its initial phase, the process initiated from a single

individual may be approximated by a multitype branching process. In the supercritical

case R0 > 1, this branching process either goes extinct quickly, or takes off to produce
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an infinite number of progeny. When the approximating branching process takes off, the

original multitype birth-death process will move quickly towards the quasi-equilibrium

state Ny∗, and spend a long time fluctuating close to this state before eventually going

extinct. This can be seen from the form of the equilibrium distribution π(x), since we

have seen in section 6.1 that for large N , the probability mass is concentrated close to

Ny∗.

For a process initiated by a single individual of type i (i = 1, 2, . . . , k), denote by ζi

the expected time to extinction of the process conditional upon rapid extinction, and

by σi the expected time taken to first attain a small neighbourhood of Ny∗ conditional

upon the process taking off, and recall that ωi denotes the extinction probability of

the approximating branching process. Then in the limit as N →∞, we have

τi ∼ ωiζi + (1− ωi) (σi + τ) ,

where both ζi and σi are negligible in comparison to τ , so

τi ∼ (1− ωi) τ. (48)

Recalling the relationship (18), then from theorem 4 we now obtain

τ ∼ K√
N

exp(AN) (49)

where A is given by equation (41), and

K =
K0

(1− ω)
∑
i bi(0)

, (50)

with K0 given by equation (42) and ω being the solution to equation (17).

The above heuristic argument is made rigorous for the case of the SIS infection model

in k = 1 dimension, with the additional condition that lifeforce random variables are of

finite variance, in Appendix B of [4]. The proof is rather lengthy, even in this particular

case. It is conjectured in [4] that the finite variance condition may not be necessary.

Example 1. For the heterogeneous-population SIS infection model (example 1 of

section 2.1), formula (49) reduces, after some algebraic simplification, to formula (6)

of [9].



28 FRANK G BALL AND DAMIAN CLANCY

Example 2. For example 2 of section 2.1, the multitype birth-death process with

linear birth rates and quadratic death rates, we obtain

A =
kλ− µ
κ

+
µ

κ
log
( µ
kλ

)
, (51)

K =

√
2πµκ

(1− ω) kλ (kλ− µ)
. (52)

Note that for this process, if lifeforce variables are exponentially distributed then

the total number of individuals
∑k
i=1Xi(t) is a 1-dimensional Markov process, and

formulae (51), (52) can alternatively be obtained from equation (57) of [1].

6.3. Exponentially distributed lifeforces

In the case that the lifeforce random variables Qi are exponentially distributed, so

that X(t) is a Markov process, equations (16) become

ωi =
d0(0)d′i(0)

d0(0)d′i(0) + b′0(0)
∑k
j=1(1− ωj)bj(0)

for i = 1, 2, . . . , k. (53)

Setting D = (b′0(0)/ d0(0))
∑k
j=1(1− ωj)bj(0), then equations (53) may be written

as

ωi =
d′i(0)

d′i(0) +D
for i = 1, 2, . . . , k. (54)

Substituting from (54) back into both sides of equations (53) and rearranging we find

that for R0 > 1, D is the unique positive solution of

b′0(0)

d0(0)

k∑
j=1

(
bj(0)

d′j(0) +D

)
= 1.

Recalling the relationship (18) it is then straightforward to show that

ω = 1− Dd0(0)

b′0(0)
∑
j bj(0)

,

so that equation (50) becomes

K =
K0b

′
0(0)

Dd0(0)
. (55)

Formula (49) with K given by equation (55) can alternatively be obtained via the

WKB approximation method, following the same steps as in [9]. Although neither the

argument of section 6.2 nor the WKB method is entirely rigorous, the fact that the

two methods are in agreement provides some reassurance.
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7. Discussion

In this paper, we have greatly extended the class of multidimensional processes

for which precise asymptotic formulae such as (1) are available. We have found that

in the subcritical case, expected persistence time remains bounded as the system size

parameter N grows to infinity; in the examples considered in the critical case, expected

persistence time grows logarithmically with N ; and in the supercritical case, expected

persistence time grows exponentially with N . This is as one might expect. What is

more surprising is that we were able to obtain such precise and explicit formulae as

those provided by theorem 4 and formula (49). The key to our approach is that the re-

started process of section 3 is time-reversible, although the details of our proofs are also

dependent upon the particular form of the transition rate functions. The extension of

our results to more general restart-reversible processes is the subject of ongoing work.

It is worth noting that while formulae such as (41) and (42) may appear formidable,

their evaluation is essentially trivial. This contrasts with the standard characterization

of mean persistence time from quasi-stationarity in terms of an eigenvalue of the

transition rate matrix, in which the eigenvalue equation appears simple, but evaluation

of the relevant eigenvalue can present a formidable computational challenge.

For supercritical processes, arguably of greatest interest is the mean extinction time

from quasi-equilibrium, τ . For the mean extinction time τi starting from a single

individual of type i, theorems 1, 2 and 4 provide limiting and asymptotic formulae

only for the linear combination
∑k
i=1 bi(0)τi. In the subcritical case, we conjectured in

section 4 that τi → − (log (1−R0)) / (d0(0)d′i(0)R0) as N → ∞ for i = 1, 2, . . . , k. In

the supercritical case, the heuristic arguments of section 6.2 imply that τi ∼ (1− ωi)τ

as N →∞ (relationship (48)), which together with formula (49) gives the asymptotic

form of τi for i = 1, 2, . . . , k.

We have focused here upon processes with a single absorbing state at the origin.

Another interesting class of population processes is those for which absorption occurs

at the boundary A0 = {x ∈ Zk+ : xi = 0 for some i}. The study of such processes is a

topic for future work.
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Appendix A. Proofs of equations (29) and (33)

Consider first equation (29). Fix V, γ > 0 and for N > (V γ)2 let

SN =

bV
√
Nc∏

r=0

(
1− rγ

N

)
,

so

logSN =

bV
√
Nc∑

r=0

log
(

1− rγ

N

)
.

By Taylor’s theorem with the Lagrange form of the remainder, for x ∈ (0, 1),

−x− x2

2(1− x)2
< log(1− x) < −x.

Hence,

lim sup
N→∞

logSN ≤ lim sup
N→∞

− γ

N

bV
√
Nc∑

r=0

r

 = −γV
2

2
. (56)

Also, 1− rγ
N ≥ 1− V γ

N
1
2

, for r = 0, 1, . . . , bV
√
Nc, so

lim
N→∞

bV
√
Nc∑

r=0

( rγ
N

1− rγ
N

)2

≤ lim
N→∞

 1

1− V γ

N
1
2

2

γ2

N2

bV
√
Nc(bV

√
Nc+ 1)(2bV

√
Nc+ 1)

6
= 0.

Thus,

lim inf
N→∞

logSN ≥ −
γV 2

2
,

which together with (56) implies

lim
N→∞

SN = exp

(
−γV

2

2

)
,

and (29) follows.

Turning to equation (33), recall that η, L > 0, let cN = bLN
η

1+η c and

RN =

bLN
η

1+η c∏
i=1

(1 + θ(i/N)η) .

For x > 0,

x− x2

2
< log(1 + x) < x,

so

dN −
eN
2
< logRN < dN ,
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where

dN =
θ

Nη

cN∑
i=1

iη and eN =
θ2

N2η

cN∑
i=1

i2η.

Now,

cη+1
N

η + 1
=

∫ cN

0

xηdx <

cN∑
i=1

iη <

∫ cN+1

0

xηdx =
(cN + 1)η+1

η + 1
.

Also, limN→∞N−ηcη+1
N = Lη+1, so limN→∞ dN = θLη+1

η+1 . Further,

0 < N−2ηc2η+1
N ≤ L2η+1N

η(2η+1)
η+1 −2η = L2η+1N−

η
η+1 ,

so limN→∞ eN = 0. Thus,

lim
N→∞

logRN =
θLη+1

η + 1

and (33) follows.
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