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Abstract—The transmission-line modelling (TLM) method has
been widely applied to many areas including electromagnetic and
heat conduction problems. Its unstructured version, unstructured
TLM (UTLM), however, has not hitherto been fully exploited
in thermal diffusion problems. This paper derives in detail a
thermal UTLM scheme to solve the two-dimensional diffusion
equation numerically based on the optimal Delaunay triangular
(ODT) mesh.

Index Terms—simulation, diffusion equation, unstructured
transmission-line modelling, optimal Delaunay triangulation

I. INTRODUCTION

THE simulation of heat conduction is widely used in many
areas of scientific research from electronics to medical

applications. The heating happens as a result of another
process such as microwave signal or lightning, and in order to
fully describe the coupled electromagnetic (EM) and thermal
phenomena, time-domain numerical methods are needed. An
adequate choice of methodology within which to develop
the multiphysics coupling is therefore important in terms of
both numerical stability and computational efficiency. The
algorithms to solve the thermal diffusion equation numerically
in the time domain include the finite difference method [1],
the finite volume method [2, 3] and the transmission-line
modelling (TLM) method [4, 5]. Fully explicit finite differ-
ence schemes suffer from late time instability issues that are
typical for large-scale problems. The stability condition can be
improved using implicit schemes such as the Crank–Nicolson
method, but they require matrix-solving which can become
costly if the number of samples is large, especially when the
algorithm is applied in higher dimensions [1]. One of the main
advantages of the TLM method is its unconditional stability
[6]. As an explicit scheme, the TLM method is also easy to
parallelise and is therefore computationally efficient for large-
scale problems.

The TLM method, originally developed for microwave
applications, has been developed to solve diffusion equations
via modelling the diffusion process as low-frequency waves in
highly lossy media [4, 5]. Over the years, it has been applied
to a variety of thermal diffusion problems such as the mod-
elling of the heat conduction in transistors [7, 8], microwave
food heating [9, 10], biomedical applications [11, 12] and
nanoplasmonic heating [13]. Most of the reported methods
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use a structured grid for problem space discretisation. As the
problem space becomes complex, unstructured (e.g. triangular
or tetrahedral) meshes are preferred to describe the geometry
because of their capability to reduce staircase effects at curved
material interfaces and boundaries.

The application of the thermal unstructured TLM method on
the bio-heat thermal diffusion modelling has been reported in
[12], where the bio-energy equation was solved numerically;
however, a non-Delaunay finite element mesh (Gmsh [14]) was
used for space discretisation, which leads to two consequences:
(a) The mesh is not optimally Delaunay and is prone to sliver
triangles that typically cause numerical instabilities, and (b) the
link lines in the formulation along which the heat flux propa-
gates are not perpendicular to triangle edges. This discrepancy
is assumed to be small, but then small and regular-shaped
triangles are generally required, which is a limitation that
affects not only the stability but also nonphysical dissipation,
memory usage and accuracy (reported errors greater than 0.5%
when compared against the analytical solution [12]).

The main goal of this paper is to develop the two-
dimensional (2D) thermal version of the unstructured TLM
method based on an optimal Delaunay triangular (ODT) mesh.
The Delaunay mesh maximises the minimum angle among
all triangles in the mesh and thus avoids the sliver triangles
that typically occur in any practical mesh and cause numerical
instabilities [15]. The optimal Delaunay triangulation (ODT)
algorithm is applied after the initial Delaunay mesh generation
to optimise the minimum link-line length.

Our paper is built on the concept of the EM unstructured
TLM (UTLM) method using the 2D Delaunay mesh [16]. In
the UTLM, the node centre is set to be the circumcentre of
the triangle so that the link lines are perpendicular to the
triangle edge. The time-stepping process models the scattering
and connection of pulses at node centres and ports. The
recommended time step is related to the minimum link line
length in the mesh, which in many practical situations can be
close to zero. In order to increase the simulation time step, a
standard approach in the UTLM is to coalesce small cells with
link-line lengths below a specified clustering threshold into
a large cell in which scatterings and connections are solved
implicitly, and it is applied after the ODT. This approach can
increase the time step by one order of magnitude [16, 17].

The paper is organised as follows. Section II derives and
maps the 2D thermal diffusion parameters to the transmission-
line parameters for the case of the Delaunay triangular mesh.
The connection and scattering process at triangle nodes and
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ports are also introduced. Section III investigates the conver-
gence and the accuracy of this thermal 2D UTLM method.
A canonical test of the heat flow in a 2D square domain
is conducted, and the accuracy is compared against the ex-
plicit Cartesian five-point finite difference scheme. Finally,
the thermal UTLM is applied to characterise the temperature
distribution on a power transistor with a heat sink.

II. THEORY

A. Heat Diffusion Equation

We consider only the heat conduction here. If a substance is
calorifically ideal, then its total heat energy Q can be expressed
as

Q = cpρmT, (1)

where ρm is the mass density, and cp is the specific heat
capacity at constant pressure.

By Fourier’s law of thermal conduction in an isotropic
medium, the heat flux F is calculated as

F = −kth∇T, (2)

where kth is the thermal conductivity.
The conservation of the total heat energy gives

∂Q

∂t
+∇ · F = QV S , (3)

where QV S is the volume heat source.
Substituting (1) and (2) into (3) yields the thermal diffusion

equation (4).

∂T

∂t
=

kth
cpρm

∇2T +
QV S
cpρm

(4)

B. Derivation of Electric Component Quantities

In this section, we map the diffusion parameters onto the
electric circuit parameters using the two-dimensional Delaunay
[15] triangular mesh. Circumcentres of the Delaunay triangles
are chosen as computational node centres, and adjacent node
centres are connected by Voronoi [18] edges. The Voronoi
mesh edges become the transmission-line network along which
signals propagate. Fig. 1 shows two triangles with vertices A,
B, C and D. The node centres P and Q are connected by the
Voronoi mesh which also connects them to other neighbouring
nodes. Point N represents the port connecting these two node
centres and is positioned at the midpoint between P and Q.
X and Y are the midpoints of PN and QN respectively, and
they are used later in the midpoint rule approximation. The
length of both PN and QN are guaranteed to be positive by
the Delaunay mesh.

In the thermal TLM convention [4], the temperature is
analogous to the voltage (5).

V ↔ T (5)

The total two-dimensional heat flowing out of the quadri-
lateral AXCY from AXC (denoted as left boundaries in this
context) and AY C (denoted as right boundaries) are mapped
to the analogous current IL and IR respectively, which are
defined as (6) and (7), where n̂0 is the normal vector of

Fig. 1. Triangle ABC and triangle ADC are Delaunay triangles. P and Q
are circumcentres as computational node centres. N is the port connecting
two adjacent nodes. Dot-dashed lines are Voronoi edges. X and Y are the
midpoints of PN and QN respectively.

the edge AC facing towards P (without loss of generality),
and ∆l = |

−→
AC|. GL and GR are the equivalent uniform

temperature gradients to give the same two-dimensional heat
flowing out of two boundaries respectively, and this is to cope
with the integral forms of the heat diffusion equations. Note
that the subscripts L and R denote the left side (triangle ABC)
and the right side (triangle ACD) respectively.

IL ↔
ˆ X

C

(F · n̂) dl +

ˆ A

X

(F · n̂) dl

= −kth,L (GL · n̂0) ∆l

(6)

IR ↔
ˆ Y

A

(F · n̂) dl +

ˆ C

Y

(F · n̂) dl

= −kth,R (GR · −n̂0) ∆l

(7)

The integral forms of (2) and (3) are presented as (8) and
(9) respectively.

ˆ b

a

F · dl = −kth
ˆ b

a

∇T · dl = −kth [T ]
b
a (8)

d

dt

˚
V

Q · dV +

‹
∂V

F · dA =

˚
V

QV S dV (9)

We choose the midpoint of PQ as the position of the port,
and we firstly apply (8) from point N to point P . GL is used
to approximate the average temperature gradient along

−−→
NP .

ˆ P

N

F · dl ≈ −kth,L (GL · n̂0) |
−−→
NP |

= −kth,L (TP − TN )

(10)

Substituting (6) and (5) into (10) yields (11).

IL
|
−−→
NP |

kth,L∆l
= − (VP − VN ) (11)

According to IR = −∆V , the analogous resistance RL is
expressed as (12), where ∆L = |

−−→
NP |. Similarly, we apply (8)

from point N to point Q to get the analogous resistance RR,
where ∆R = |

−−→
NQ|.

RL =
∆L

kth,L∆l
(12) RR =

∆R

kth,R∆l
(13)

Applying (9) to the volume with the cross-section AXCY
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gives (14), where ∆z represents the fictitious unit length
perpendicular to the paper plane.

d

dt

((
QL
|
−−→
XN |

2
+QR

|
−−→
Y N |

2

)
∆l∆z

)

+

(˛
AXCY

(F · n̂) dl

)
∆z

=

(
QV S,L

|
−−→
XN |

2
∆l +QV S,R

|
−−→
Y N |

2

)
∆z

(14)

The area is calculated according to the fact that as a segment
connecting two circumcentres, PQ perpendicularly bisects
AC. Note that although the temperature TN at the port N
is not the same as the weighted average temperature of the
quadrilateral AXCY , it is an adequate first-order approxima-
tion.

Substituting (5), (6), (7) and (1) into (14) yields (15).

IL + IR = −

(
cp,L ρm,L

|
−−→
XN |

2
∆l

)
dVN
dt

−

(
cp,R ρm,R

|
−−→
Y N |

2
∆l

)
dVN
dt

+QV S,L
|
−−→
XN |

2
∆l +QV S,R

|
−−→
Y N |

2
∆l

(15)

Note that IL flows towards node centre P , and IR flows
towards node centre Q. According to ∆I = −C · dV/dt+ Is,
the analogous capacitance C and the analogous current source
Is are expressed as (16) and (17) if the heat flowing into the
two-dimensional domain due to the heat source is mapped to
the current source.

Ctot =
cp,L ρm,L|

−−→
XN |∆l

2
+
cp,R ρm,R|

−−→
Y N |∆l

2
(16)

Is,tot = QV S,L
|
−−→
XN |

2
∆l +QV S,R

|
−−→
Y N |

2
∆l (17)

To share the capacitance and the current source between
two adjacent nodes, they are split intentionally.

CL =
cp,L ρm,L ∆L∆l

2
(18)

CR =
cp,R ρm,R ∆R∆l

2
(19)

Is,L =
QV S,L ∆L∆l

2
(20)

Is,R =
QV S,R ∆R∆l

2
(21)

The transmission-line circuit for the triangular cell ABC,
as is used in Fig. 1, is shown in Fig. 2. The port voltages are
denoted as Vi, and other transmission-line parameters, namely
Ri, Ci and Is,i (i = 0, 1, 2 denotes the edge (port) index) are
obtained according to (12), (13), (18), (19), (20) and (21).

C. Transmission-Line Model

One UTLM node is connected to its neighbouring nodes via
ports. The equivalent circuit at the port is illustrated in Fig.

Fig. 2. Transmission-line Circuit of an Arbitrary Triangular Thermal UTLM
Node (Triangle ABC is the computational cell)

3a, where RL, RR represent the resistance of the transmission-
lines connecting two adjacent nodes, and CL, CR represent the
capacitance of each transmission-line. The series link lines are
used to replace capacitors in the thermal UTLM equivalent
circuit. The characteristic impedance [4] of the capacitive
series link lines is given as

ZC =
∆t

C
, (22)

and the introduced error is in the associated error inductance
of this link line which is expressed as

Le =
(∆t)

2

C
, (23)

where ∆t is the simulation time step.

(a)

(b)

(c)

Fig. 3. (a) Transmission-line Circuit at a Port (b) Classic Resistor-Link Model
(c) Alternative Link-Resistor Model

The transmission-line circuit (Fig. 3a) is turned into its
resistor-link model shown in Fig. 3b, where the shunt capaci-
tors are replaced by capacitive link lines with impedance given
in (22). The position of the capacitive link line and its adjacent
resistor in series could be exchanged, giving an alternative
link-resistor model shown in Fig. 3c which is one of the
optional ways to prevent the simulation data from excessively
oscillating (known as the jump-to-zero problem [19]).

The thermal UTLM is unconditionally stable for all positive
time step ∆t because all electric component quantities are
positive and hence physical. One only needs to consider
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whether the wave behaviour is much less significant than
the diffusion behaviour [4], which means that the inductive
reactance ωL due to the error inductance (23) should be much
less than the resistance in series (12) (13). Substituting the
capacitance (18) (19) into this relationship yields

ω (∆t)
2 � min

all triangles

{
∆2
i cpρm
2kth

}
, (24)

where ω is the frequency component of the solution, ∆i the
distance between a node centre and its port, and the subscript
i denotes the edge index within a triangle.

After the equivalent circuit has been set up, scatterings
and connections are executed alternately following the same
principle as the regular TLM [4] algorithm. The Thévenin
equivalent circuits used in the scattering computation at ports
and node centres are demonstrated in Fig. 4a and Fig. 4b
respectively, where VN represents the middle voltage at the
port, and VM represents the middle voltage at the node centre.

(a)

(b)

Fig. 4. Thévenin equivalent circuits used in the scattering and connection
process (a) at ports (b) at node centres

By applying nodal voltage analysis to the equivalent circuit
shown in Fig. 4a, the middle voltage VN at the port is
calculated as

VN =
Is,tot +

2V i
L

ZC,L
+

2V i
R

ZC,R

1
ZC,L

+ 1
ZC,R

. (25)

Then, the reflected voltages are obtained by

V rL = VN − V iL (26) V rR = VN − V iR (27)

In terms of the node centres, applying nodal voltage analysis
to the circuit in Fig. 4b gives the middle voltage

VM =

2V i
0

R0+Z0
+

2V i
1

R1+Z1
+

2V i
2

R2+Z2

1
R0+Z0

+ 1
R1+Z1

+ 1
R2+Z2

. (28)

The reflected voltages are obtained by

V r0 =

(
VM −

VM − 2V i0
R0 + Z0

R0

)
− V i0 , (29)

V r1 =

(
VM −

VM − 2V i1
R1 + Z1

R1

)
− V i1 , (30)

V r2 =

(
VM −

VM − 2V i2
R2 + Z2

R2

)
− V i2 . (31)

The connection process is simply that the reflected voltages
from the ports become the incident voltages towards their
adjacent node centres, and the reflected voltages from the node
centres become the incident voltages towards their ports.

D. Initial Conditions and Boundary Conditions

The initial temperature can be set up by specifying the
incident voltages towards either the node centres or the
ports before the scattering process of the first iteration. If
the incident voltages towards the ports are initialised, then
the scattering at the ports should be completed before the
scattering at node centres in each iteration; on the other hand,
if the incident voltages towards the node centres are initialised,
then the scattering at the node centres should be done first
instead. The initial incident voltage equals half of the initial
temperature at the node centre in terms of quantity because
the Thévenin equivalent circuit of the transmission-line has a
voltage source of twice the incident voltage. If the classic
resistor-link model (Fig. 3b) is used, we suggest that the
incident voltages towards the node centre should be initialised
to reduce small oscillations of the temperature during the
simulation.

The boundary temperature is controlled by specifying the
middle voltages at boundary ports during their scattering
processes. This voltage equals the boundary temperature itself
in terms of quantity and does not need to be halved.

E. Node Clustering and Mesh Optimisation

The suggested time step of the UTLM method is defined
by the minimum link-line length in the mesh, i.e. PN length
and QN length in Fig. 1. These lengths are always positive
because P and N never cross over each other. This feature
is guaranteed by the Delaunay mesh and is important for the
stability of the UTLM method. In the situation where a link
line length is very small or even zero, the cell resistance will
be exceedingly large and the suitable simulation time step will
be prohibitively small. To alleviate this problem, two adjacent
nodes that share a very short link line need to be combined
into a single quadrilateral node [16], which is illustrated in
Fig. 5.

A capacitive stub is used to replace the short capacitive link
lines. The characteristic impedance of the capacitive stub and
its associated error inductance [4] are given as

ZC =
∆t

2C
, (32) Le =

(∆t)
2

4C
. (33)

In a general Delaunay mesh, chances are that more than
two triangular nodes should be combined together due to
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Fig. 5. Quadrilateral Clustered Node

small link line lengths in a similar manner, and this will add
huge complexity to the code implementation. To mitigate this
problem, we prefer to use the optimal Delaunay triangulation
(ODT) mesh [20] [21] in practice which not only averages the
shape of triangles and minimises the interpolation error but
also maximises the minimum link line length [22]. When ODT
is in place, only quadrilateral nodes and normal triangular
nodes need to be considered as ODT eliminates the need
for higher-level clustering. The ODT algorithm is available
in detail in [21, 22].

Fig. 6 compares the Delaunay mesh of a 2D heat sink
model before and after the ODT iterations. Please note that
the structure is not coordinate-aligned along the y-axis and
that in both cases the Delaunay triangulation provides smooth
boundaries. These two histograms illustrate that the ODT mesh
(Fig. 6b) leads to more uniform link-line lengths compared
with the unoptimised mesh (Fig. 6a). The ratio between the
maximum link line length and the minimum link line length
can also be used as a measure of mesh uniformity, and it has
reduced from 4173.1 to 151.7. Furthermore, the ODT mesh
uses a smaller number of triangles (851) compared with the
normal Delaunay mesh (876).

III. RESULTS

A. Convergence Test using Unstructured Triangular Mesh

In this section, we evaluate the accuracy and convergence of
the thermal unstructured TLM method by comparing its results
against a known analytical solution. A canonical test is carried
out first within a square computational domain [−1, 1] (m)×
[−1, 1] (m). The physical parameters are specified as ρm =
1.225 kg ·m-3, kth = 0.0262 W ·m-1 · K-1 and cp = 1.005×
103 J · kg-1 · K-1. No heat source is placed in the domain.
The initial temperature profile is set to T (x, y, 0) = 298.15 +
75 cos

(
π
2x
)

cos
(
π
2 y
)
, and the boundary temperature is fixed

at 298.15 K. This test problem has an analytical solution given
as T (x, y, t) = 298.15+75 cos

(
π
2x
)

cos
(
π
2 y
)

exp
(
−απ

2

2 t
)

,
where α = kth/(ρmcp).

The square computational domain is triangulated using
different numbers of elements, and the ODT mesh optimisation
is applied before the simulation. A constant time step of
∆t = 2 × 10−1 s is used in this convergence test, and
the stop time tstop is set to 5 × 104 s. The thermal UTLM
algorithm runs with ODT meshes of different numbers of
elements respectively. The temperature at every UTLM node
centre is recorded and compared with the analytical solution,

and the RMS Error =
√

(
∑N
i=1 e

2
i )/N is used as the criterion

to assess the overall error, where ei is the absolute error of
temperature at each node centre, and N is the number of

(a)

(b)

Fig. 6. (a) Normal Delaunay Triangular Mesh (876 Triangles) (b) ODT
Mesh (851 Triangles). Histograms show the distributions of resultant link-
line lengths. Insets are the meshes.

nodes. The RMS error obtained from each mesh is plotted
in Fig. 7, and as is shown, it decreases as the mesh becomes
finer, i.e. as the number of triangles in the mesh increases.

Fig. 7. RMS error of temperature obtained using different number of triangles.

Fig. 8 shows the computational domain of the problem
with 122 and 1296 cells and the corresponding temperature
distribution at tstop = 5 × 104 s for these two meshes. It is
seen that the finer mesh provides much smoother field profiles.

A further error analysis is shown in Fig. 9, where the RMS
error at t = 104 s is plotted against the average distance
between adjacent node centres (∆x) in logarithmic scale. ∆x
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(a) (b)

(c) (d)

Fig. 8. ODT Meshes and Simulation Results (a) ODT Mesh (122 Triangles)
(b) ODT Mesh (1296 Triangles) (c) Final Temperature (122 Triangles) (d)
Final Temperature (1296 Triangles)

is approximated using the number of triangles and the total
area of the computational domain, and it is equivalent to the
average mesh element size. The gradient of the trendline in
Fig. 9 confirms the second-order average local spatial accuracy
of the thermal unstructured TLM (UTLM) method.

Fig. 9. RMS Error at t = 104 s of Different Mesh Resolutions in Logarithmic
Scale

B. Mesh with Quadrilateral Combined Nodes

To test the quadrilateral combined node, structured meshes
containing only right-angled triangles are deliberately created
for the thermal UTLM algorithm. Every pair of right-angled
triangles in a square unit become clustered, i.e. combined auto-
matically into a quadrilateral node because their circumcentres
coincide. The thermal UTLM results are compared against the

fully explicit five-point finite difference scheme as

Tn+1
i,j = Tni,j + α

∆t

∆x2
(Tni+1,j + Tni−1,j

+Tni,j+1 + Tni,j−1 − 4 · Tni,j)
(34)

with a time step limit of (α∆t)/∆x2 < 1/4.
The finite difference algorithm runs with two different grid

resolutions, namely 200×200 and 400×400 Cartesian nodes,
and the thermal UTLM runs with a 100×100 square-structured
mesh (20, 000 right-angled triangles). The time step used in
the finite difference method is 2× 10−2 s (under the stability
condition), and the time step used in the thermal UTLM is
kept as ∆t = 2× 10−1 s. The same canonical test as in Fig.
7 is used, and Fig. 10 shows the RMS errors obtained from
three simulations. Fig. 10 proves the correctness of the thermal
UTLM method with quadrilateral combined nodes, and it
also illustrates that the thermal UTLM method can achieve
slightly better accuracy with a lower gird resolution and a
larger time step compared with the fully explicit five-point
finite difference scheme, although more memory is required
for computation. The spike in Fig. 10 is due to the fact that
the numerical results from the UTLM method oscillate around
the exact solution, but as the simulation time increases the
envelope of the error is smoothly decreasing.

Fig. 10. RMS Error of Temperature obtained using the Fully Explicit Finite
Difference Scheme and the Thermal UTLM Scheme

C. Simulation of Power Transistor

The thermal UTLM has the advantage of being able to sim-
ulate real engineering cases particularly when non-Cartesian
boundaries and multiple materials are involved. This sec-
tion demonstrates an example simulation of the temperature
profile around a power transistor with a heat sink on top.
The schematic of the physical model and the layout of the
computational domain is shown in Fig. 11, where the power
transistor is modelled as silicon, and the heat sink is modelled
as copper. The physical parameters of silicon, copper and the
surrounding air taken in this simulation are listed in Table I [8],
and the volume heat source of the silicon region is specified as
QV S = 9× 105 W ·m-3 to describe a typical heat dissipation.

The initial temperature across the whole domain is set to
298.15 K, and the boundary temperature is fixed as 298.15 K.
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Fig. 11. Layout of a heat sink on top of a power transistor. The fins and
the air gaps have the same width and evenly divide the top and bottom
of the trapezoidal shape. The scale of the outer rectangular boundary is for
illustration purposes only and does not match the scale of the axes.

TABLE I
PHYSICAL PARAMETERS SETUP

Material kth ρm cp
(W/(m · K)) (kg/m3) (J/(kg · K))

Air 0.0262 1.225 1005
Silicon 148 2320 700
Copper 393 8960 276

The temperature distribution after 5 s and 300 s is shown in
Fig. 12a and Fig. 12b respectively. In this simulation, an ODT
mesh with 978649 triangles generated by the ODT algorithm
is used, and the time step is chosen as ∆t = 2 × 10−2 s.
It is seen that the thermal UTLM method based on the
ODT mesh can keep being stable and produce a reasonable
solution with smooth temperature transitions at all material
interfaces, which indicates the great reliability of our proposed
method particularly for unstructured complicated geometries
and multi-material heat transfers.

Note that the diffusion equation only models heat conduc-
tion, so convection and radiation are not considered in this
simulation. Although techniques such as using the equivalent
thermal conductivity with the Nusselt number [23] can be
applied, they are beyond the scope of this paper.

(a) (b)

Fig. 12. Temperature Distribution around the Transistor with a Heat Sink
after (a) 5 s (b) 300 s.

IV. CONCLUSION

The two-dimensional UTLM method using the ODT mesh
has been presented and applied to solve the thermal diffusion

equation numerically. The heat diffusion equation is mapped
onto the equivalent transmission-line parameters, and the spa-
tial second-order average local accuracy of this scheme has
been shown. This thermal UTLM method using the ODT
mesh is shown to be correct, stable and reliable when the
physical model involves complicated boundary shapes and
multi-material profiles. Also, this time-domain thermal UTLM
method is not limited by the CFL condition on the time step,
and as an explicit scheme, it does not require matrix-solving
either, which is the main advantage against both implicit
schemes and other explicit schemes. This makes it ideally
suitable for the modelling of coupled electrothermal problems.
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