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Abstract Despite the broad range of Machine Learning (ML) algorithms, there are
no clear baselines to find the best method and its configuration given a Short-Term
Traffic Forecasting (STTF) problem. In ML, this is known as the Model Selection
Problem (MSP). Although Automatic Algorithm Selection (AAS) has proved suc-
cess dealing with MSP in other areas, it has hardly been explored in STTF. This
paper deepens into the benefits of AAS in this field. To this end, we have used
Auto-WEKA, a well-known AAS method, and compared it to the general approach
(which consists of selecting the best of a set of algorithms) over a multi-class imbal-
anced classification STTF problem. Experimental results show AAS as a promising
methodology in this area and allow important conclusions to be drawn on how to
improve the performance of ASS methods when dealing with STTF.

1 Introduction

Urban development and population growth have risen the levels of congestion that in
turn generate socio-economic and environmental issues. One contemporary policy
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to deal with congestion is the development of STTF systems. STTF is the prediction
of near future traffic measures for fixed locations, road segments, or entire links [15];
which in consequence allows users to plan ahead their movements along the roads.

The recent emergence of telecommunications technologies integrated to trans-
portation infrastructure generates vast volumes of traffic data. Such unprecedented
data availability and growing computational capacities have increased the use of ML
to approach STTF. The main strength of ML, with respect to traffic theory models,
is its ability to predict short-term traffic using current and historical data without the
need of knowing theoretical traffic mechanisms.

The literature on STTF reports a great variety of ML algorithms applications as
Neural Networks (NNs), Support Vector Machines (SVMs), k-Nearest Neighbors
(k-NN) or Random Forest (RF) [5, 15]. Nevertheless, given the broad range of ML
methods there are no baselines to select the most appropriate algorithm and its best
hyper-parameter setting given the characteristics of an STTF problem. In ML, this
is known as the MSP, and AAS has been one of the most successful approaches
to address it so far. It aims at automatically finding the ML algorithm and hyper-
parameters configuration pair which maximize a performance measure on given
data, using an optimization strategy that minimizes a predefined loss function.

Although AAS methods have approached the MSP with high performance in
other research areas [7], to the best of authors’ knowledge only the work in [14] has
tackled the MSP in STTF. The proposed AAS method aims at predicting average
speed in a time horizon of 5 minutes using a time series regression approach. In
this research, we conduct a preliminary study to keep exploring the benefits of AAS
in STTF focusing on a classification STTF problem in multiple time horizons and
using a different AAS method, Auto-WEKA. To this end, we compare the AAS
method versus the general approach in STTF, which consists of selecting the best
of a set of commonly used ML algorithms. Concretely, we compare Auto-WEKA
with four state-of-the-art ML algorithms (NN, SVM, k-NN and RF) in the task of
forecasting traffic Level of Service (LoS) using real data.

The rest of this paper is structured as follow. Section 2 presents related work in
ML and AAS algorithms applied to STTF. Section 3 shows the methodology of this
research. Then, Section 4 exposes results followed by the Conclusions in Section 5.

2 Related Work

This section reviews literature related to ML and AAS in the context of STTF. We
start by describing how STTF can be addressed from a ML perspective. Then, ML
methods for STTF are discussed, and finally we review existing AAS methods.

Short-Term Traffic Forecasting from a Machine Learning perspective

In recent years, STTF is being influenced by the great availability of data provided
by Intelligent Transportation Systems. Some technologies, such as Automatic Ve-
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hicle Identification, Electronic Tolls, and GPS, collect individual traffic data related
to each vehicle on the road; meanwhile, others collect macroscopic traffic measures
(averages of many vehicles) as Vehicle Detection Stations (VDS). These technolo-
gies and contemporary computational advances have caused a leap in the way STTF
is approached switching from a traffic theory-based perspective to a data-driven one,
with a special focus on ML. In this work, we center on ML applied to VDS data,
because it is the most common type of data available and used in literature [9].

From a ML perspective, STTF is approached by building a model from traffic
historical data to make predictions on new and unseen data. Depending on the type
of input and output (predicted) data, different ML approaches can be used. When
the traffic measure to be forecasted is continuous (e.g. speed or flow) it should be
dealt as a regression problem. In the case that input variables are ordered by time,
the approach is time series regression, which requires defining the prior time steps
and the number of lagged variables to predict the forecasted traffic measure. On the
other hand, when the predicted value is discrete, the prediction should be addressed
as a classification problem (e.g. Traffic LoS).

ML algorithms for STTF using VDS data

ML methods applied to STTF can be categorized into single or hybrid. The first
type corresponds to adaptations of existing ML algorithms and in turn, they can be
classified as parametric and non-parametric. The parametric category assumes the
relationship between the explanatory and response variables as known; meanwhile,
the non-parametric ones are able to model nonlinear relationships without requiring
the mentioned assumptions. Commonly non-parametric algorithms used are NNs,
SVMs, k-NN, and RF [15]. As mentioned before, the other approach of ML algo-
rithms is hybridization. Within it, two or more algorithms, from ML or even other
areas, are combined to find synergies that improve their isolated performance. Some
recent examples are [8], where authors integrate a Boltzmann Machine with Recur-
rent NNs, and [6], where Genetic Algorithms are integrated with Fuzzy Systems.

Nevertheless, despite the great variety of ML methods, dealing with the MSP in
STTF is not a trivial task, as mentioned before. The general approach to tackle the
MSP in STTF consists of testing a set of algorithms with multiple hyper-parameter
combinations and select the best one. This requires expert knowledge and a lot of
human effort. Nowadays, AAS has received a lot of attention in ML because of its
promising results in dealing with the MSP with low human intervention.

Automatic ML algorithm selection in STTF

As stated above, AAS method deals with MSP as an optimization problem whose
objective consists of finding the ML algorithm, from a pre-defined base of algo-
rithms, and its hyper-parameter configuration that maximizes an accuracy measure
on a given ML problem. The first method in tackling simultaneously the selection
of algorithm and hyper-parameters in ML was Auto-WEKA [13]. It uses Bayesian
optimization to search for the best pair (algorithm, hyper-parameter setting) and
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its base of algorithms are the 39 ML methods implemented in WEKA (a well-
known open-source ML software that contains algorithms for data analysis and
predictive modelling). Subsequently, Komer et al. [3] and Feurer et al. [1] devel-
oped Hyperopt-sklearn and Auto-sklearn, respectively. They automatically select
ML algorithms and hyper-parameter values from scikit-learn1. In the case of [3],
the AAS method uses Hyperopt Python library for the optimization process, con-
cretely a Bayesian optimization method as Auto-WEKA. Meanwhile, Auto-sklearn
stores the best combination of ML algorithm and hyper-parameters that have been
found for each previous ML problem and using meta-learning chooses a starting
point for a sequential optimization process. More recently, Sparks et al. [12] pro-
posed a method that supports distributed computing for AAS, and Sabharwal et al.
[10] developed a cost-sensitive training data allocation method that assesses a pair
(algorithm, hyper-parameters setting) on a small random sample of the data-set and
gradually expands it over time to re-evaluate it when the combination is promising.
For this research, we select Auto-WEKA because of the wider variety of the base of
algorithms in comparison with the others approaches reviewed. Furthermore, unlike
the methods presented by Sparks et al. and Sabharwal et al. that only consider a
pre-defined set of hyper-parameters combinations, Auto-WEKA has no limitations
in the hyper-parameter space to be explored.

To the best authors’ knowledge, only one work has tackled the MSP in STTF
[14]. In this work, Vlahogianni proposed a meta-modelling technique that, based on
surrogate modelling and a genetic algorithm with an island model, optimizes both
the algorithm selection and the hyper-parameter setting. The AAS task is performed
from an algorithms base of three ML methods (NN, SVM and Radial Base Func-
tion) that forecast average speed in a time horizon of 5 minutes using a time series
regression approach. The main differences between this work and Vlahogianni’s
one lay on the addressed problem and the AAS method. Regarding the problem, we
predict traffic LoS along multiple time horizons using a classification approach; and
with respect to the method, we use an AAS method that considers a much broader
base of algorithms, which is an important aspect in the MSP as we will discuss later.

3 Methodology

This research seeks to keep exploring the benefits AAS can bring to STTF. To ac-
complish this, we compare to what extent the results of AAS differ from the general
approach in STTF, in which a set of Reference Algorithms (RAs) is tested over the
forecasting problem in hand and the one with best performance metrics is chosen.
We select Auto-WEKA as AAS method for the reasons explained above; and NN,
SV M, k−NN, and RF as the RAs that represent the general approach. These al-
gorithms are the most commonly used one in recent STTF literature. Due to space
limitations, the details of Auto-WEKA are omitted. The interested reader is referred

1 Scikit-learn is a Python library of ML algorithms: http://scikit-learn.org



Automatic Algorithm Selection for Short-Term Traffic Forecasting 5

Table 1 Speed and Density data sets
Data-sets # Instances # Attributes # Instances per class Imbalance Ratios

SD 5m 5, SD 5m 15, SD 5m 30,
SD 5m 45, SD 5m 60 9979 12

A = 4534, B = 3681,
C = 867, D = 891, E = 6

A/B=1.2; A/C=5.2;
A/D=5.1; A/E=755.7

SD 1h 60,SD 1h 120 2159 7
A = 984, B = 790,
C = 268, D = 117

A/B=1.2;
A/C=3.7; A/D=8.4

DD 5m 5, DD 5m 15, DD 5m 30,
DD 5m 45, DD 5m 60 9979 14

A = 2194, B = 559,
C = 1075, D = 3541, E = 261

D/A=1.61; D/B=6.3;
D/C=3.3; D/E=1.3

DD 1h 60,DD 1h 120h 2158 9
A = 471, B = 125,

C = 267, D = 822, E = 473
D/A=1.7; D/B=6.6;
D/C=3.07; D/E=1.7

to [13] for further details. The following part of the section is devoted to expos-
ing how short-term forecasting of traffic LoS can be approached as a classification
problem; as well as to describe the data-sets and the experimental set-up used.

Short-term forecasting of traffic service quality as a classification problem

In this work, STTF is focused on predicting the quality of traffic service, at a specific
location, through a categorical measure named LoS. For freeways, LoS is used to
categorize the quality levels of traffic, through letters from A to E in a gradual way2,
based on performance measures such as speed, density, and volume/capacity [11].

In this sense, we are approaching the forecasting of traffic service quality from a
classification approach, concretely, as a multi-class classification problem. Based on
speed and density data (calculated as flow/speed), which are continuous variables,
we estimate how congested will be the road at the detector location, in different
short-term time horizons through the LoS measure. This categorical measure is es-
timated from two univariate approaches, which means that speed and density are
independently used to predict LoS using the intervals defined for them in [11].

It is important to clarify that the forecasting of LoS could be also addressed
as a regression or time series problem predicting either speed or density and then
discretizing the results to obtain a categorical interval of LoS. However, we chose
the classification approach to explore a different problem to the one published in
[14], to deepen into the benefits of AAS in a different area of STTF.

Data-sets and Experimental set-up

Data used in this work is provided by PeMS3. According to recent literature, this
data source is highly used in the area of STTF because of its high quality data,
availability of various traffic measures and its public accessibility. The route selected
for our experiments is the California Interstate I405-N. Particularly, we focus on the
detector VDS 771826 located at the post-mile 0.11 on this freeway. Traffic measures
collected from the detector are speed and flow in aggregation times of 5 minutes and
1 hour for both measures.

2 Category A indicates light to moderate traffic, whereas a category E means extended delays
3 http://pems.dot.ca.gov



6 Juan S. Angarita-Zapata, Isaac Triguero and Antonio D. Masegosa

From this data, we generate 14 data-sets: seven using speed and seven using
density as traffic data, respectively. Time horizons in which LoS is predicted are
5, 15, 30, 45, 60, and 120 minutes using data granularity of 5 minutes or 1 hour
depending on the case (granularity means how often the traffic measures are taken
and aggregated). To better identify the data-sets, they are named following the next
structure: TrafficData Granularity TimeHorizon.

Attributes of data-sets with 5 minutes granularity are Day of the week; Hour of
the day; Minute of the Hour; Quarter hour of the day; traffic measure at past 5,
15, 30, 45, and 60 minutes; current traffic measure; and current LoS, where traffic
measure could be average speed or density depending on the respective data-set. In
the case of data-sets with 1 hour granularity, these are Day of the week; Hour of
the day; traffic measure at past 1 and 2 hours; current traffic measure; and current
LoS; again, the traffic measure could be average speed or density. In addition, Table
1 presents the number of instances and attributes of each data-set, together with the
Imbalance Ratios (IRs) calculated dividing the number of instances of the majority
class over the number of instances of each of the rest of classes. IR values show that
the generated data-sets are imbalanced, although with different degrees.

For the experimentation with Auto-WEKA, three execution times were consid-
ered: 15, 150, and 300 minutes. These correspond to the time that the method can
take to find the best ML algorithm and its hyper-parameter configuration for a given
data-set. Furthermore, five repetitions with different initial seeds were carried out for
each execution time. In the case of the RAs, we test them using WEKA. The pro-
cess of evaluating every RA over a data-set was done with 20 repetitions with differ-
ent initial seeds, and using the default hyper-parameter setting offered by WEKA.
We have not performed any optimization or extra-adjustment of the RAs’ hyper-
parameters because our aim is to compare the performance of AAS versus RAs
using the same human effort for both of them in order to make a fairer comparison.

4 Results

This section presents the results obtained with the experimental set-up proposed
in the previous section. We evaluated the performance of the AAS method and
the RA using the metric G-measure (mGM) that is applied for multi-class imbal-
anced data in classification problems [4]. Its calculation is expressed as mGM =
M
√

∏
M
i=1 precisioni · recalli wherein G−measure on i− th class is estimated as

GMi =
√

precisioni · recalli, and M is the total number of classes.
Table 2 shows the mean and standard deviation (between brackets) of the mGM

values obtained by both the RAs and Auto-WEKA over all repetitions for each data-
set. mGM values in bold indicate the best result in every data-set achieved from
either any of the RAs or any of the Auto-WEKA’s execution times. As it can be
seen, in general, the AAS method performs better than k−NN, NN and SV M; but
worse than RF that is the best RA along most of the data-sets. Nevertheless, the
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Table 2 Mean mGM values and their standard deviations (in brackets) obtained for density and
speed data-sets by RA and AAS method.

Reference Algorithms Auto-WEKA
Data-sets k-NN NN RF SVM 15mET 150mET 300mET
DD 5m 5 0.485 (0.02) 0.577 (0.03) 0.585 (0.02) 0.523 (0.02) 0.564 (0.02) 0.563 (0.02) 0.563 (0.02)
DD 5m 15 0.47 (0.02) 0.531 (0.03) 0.559 (0.01) 0.465 (0.02) 0.495 (0.02) 0.485 (0.01) 0.529 (0.02)
DD 5m 30 0.433 (0.01) 0.472 (0.03) 0.535 (0.01) 0.339 (0.02) 0.462 (0.02) 0.451 (0.02) 0.463 (0.04)
DD 5m 45 0.424 (0.02) 0.460 (0.03) 0.530 (0.01) 0.332 (0.03) 0.460 (0.02) 0.478 (0.03) 0.479 (0.03)
DD 5m 60 0.436 (0.01) 0.441 (0.03) 0.531 (0.01) 0.356 (0.01) 0.427 (0.03) 0.455 (0.06) 0.481 (0.05)
DD 1h 60 0.601 (0.02) 0.568 (0.05) 0.679 (0.02) 0.476 (0.13) 0.622 (0.01) 0.637 (0.03) 0.646 (0.03)
DD 1h 120 0.498 (0.03) 0.445 (0.04) 0.576 (0.03) 0.36 (0.03) 0.543 (0.02) 0.557 (0.02) 0.578 (0.01)
SD 5m 5 0.671 (0.04) 0.773 (0.01) 0.775 (0.02) 0.756 (0.01) 0.746 (0.03) 0.763 (0.03) 0.764 (0.03)
SD 5m 15 0.587 (0.04) 0.557 (0.03) 0.610 (0.02) 0.499 (0.02) 0.572 (0.01) 0.571 (0.02) 0.572 (0.02)
SD 5m 30 0.528 (0.02) 0.394 (0.06) 0.566 (0.02) 0.322 (0.02) 0.453 (0.07) 0.469 (0.07) 0.452 (0.05)
SD 5m 45 0.454 (0.05) 0.356 (0.06) 0.545 (0.01) 0.572 (0.07) 0.408 (0.0) 0.471 (0.08) 0.453 (0.06)
SD 5m 60 0.467 (0.02) 0.368 (0.10) 0.550 (0.01) 0.538 (0.01) 0.461 (0.0) 0.469 (0.02) 0.482 (0.03)
SD 1h 60 0.424 (0.03) 0.473 (0.03) 0.482 (0.04) 0.40 (0.03) 0.532 (0.02) 0.553 (0.03) 0.462 (0.03)
SD 1h 120 0.286 (0.03) 0.322 (0.08) 0.366 (0.03) 0.259 (0.13) 0.372 (0.03) 0.422 (0.03) 0.399 (0.03)

improvement of RF w.r.t Auto-WEKA is small in most cases, ranging from 0.02 to
0.097, being even negative in three cases (DD 1h 120,SD 1h 60,SD 1h 60) where
the AAS method obtains better mGM values than RF . This result is interesting be-
cause, in order to get to the conclusion that RF is the best RA, the user should run
all RAs over all data-sets and compare their performance. However, according to
these results, running Auto-WEKA only once, and therefore employing less human
effort, the user can expect results very similar to the best RA and even better in some
cases. Regarding data-sets characteristics, we can see that they do influence the dif-
ferences between results of Auto-WEKA and RF . Concretely, for data-sets with a
granularity of 5 minutes, for both traffic and density data-sets, the divergences be-
tween these two methods are greater for long-term time (in favour of RF). If we take
into account the granularity of the data-sets, Auto-WEKA works especially well on
those with 1 hour granularity improving RF in all cases except DD 1h 120.

Another interesting aspect is the relation between the execution time and the
performance of the models provided by Auto-WEKA. For density data-sets, longer
execution times contribute to obtaining better results although the improvements are
very small. In the case of speed data-sets, results improve when the Auto-WEKA’s
execution time increases from 15 to 150 minutes, but they are worse when we pass
from 150 to 300 minutes. Through some analyses, we observed that this worsen-
ing is due to the over-fitting produced by the hyper-parameters selected by Auto-
WEKA. This result indicates that it is necessary to introduce mechanisms in the
AAS method to deal with over-fitting, especially when execution times are high.

Another important aspect is the low performance of Auto-WEKA and the RAs,
with mGM values below 0.7 in all data-sets, except for SD 5m 5. In analyses that are
not included here because of space limitations, we corroborated that this behavior
is mainly due to the high imbalance of the data-sets, especially in density ones, and
the poor accuracy and recall of the methods when predicting the minority classes.
This situation shows us that in the design of AAS methods for STTF problems, it
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Table 3 Average Rankings of Friedman Test and Adjusted p-Values obtained through Holm post-
hoc test

Friedmans’s Avg. Ranking Holm’s adj. p-values
Algorithms ET15min ET150min ET300min ET15min ET150min ET300min

k-NN 3.5 3.7143 3.6429 3.93e-4 8.6e-5 1.45e-4
NN 3.1786 3.2857 3.2143 2.026e-3 1.056e-3 1.636e-3
RF 1.2143 1.2143 1.2143 - - -

SVM 4.2857 4.3571 4.3571 1e-6 1e-6 1e-6
Auto-WEKA 2.8214 2.4286 2.5714 7.161e-3 4.2165e-2 2.3151e-2

is necessary to include mechanisms that allow addressing imbalance either by data
pre-processing techniques or by adjusting the hyper-parameters of the ML methods.

To assess whether the differences in performance observed among the RAs and
Auto-WEKA variants are significant or not, we made use of non-parametric statisti-
cal tests. Two statistical tests have been applied, following the guidelines proposed
in [2]. First, the Friedman’s test for multiple comparisons has been applied to check
whether there are significant differences among the studied methods. Given that the
p-value returned by these tests is 0, the null hypothesis can be rejected in all cases.
The mean ranking returned by this test is displayed in Table 3, confirming the better
global results of RF against both the rest of RAs and Auto-WEKA, and also the
better global results of Auto-WEKA versus k−NN, NN and SV M.

Holm post-hoc test has also been applied using RF as control algorithm (because
it is the method that achieved the best overall performance) to assess the significance
of the differences with respect to the other RAs and Auto-WEKA. Table 3 also
presents the adjusted p-values returned by this test. In order to highlight significant
differences, those p-values lower than 0.05 are in bold. Looking the Table 3 there are
important differences in the test’s outcomes. It can be said that RF results improve
significantly all the RAs including Auto-WEKA with their three execution times,
although their p-values are greater than the ones of the other RAs.

To finalize with this section, we analyze the classifiers selected by Auto-WEKA
over all data-sets. Table 4 summarizes how many times an algorithm is selected to
forecast congestion along the data-sets. It is important to clarify that Auto-WEKA
has a base of 39 algorithms and the ones that were not suggested for the data-sets
evaluated are not included in Table 4. As each data-set was evaluated with three
Auto-WEKA’s running times along five repetitions in each of them, one algorithm
can be chosen at most 15 times per data-set. In Table 4, RF is in general the most
chosen algorithm except for DD 5m 5, where it is the second most selected algo-
rithm behind Logistic, and for SD 1h 60 and SD 1h 120 where RF is not chose any
time. In those data-sets Auto-WEKA improves RF because is able to find alterna-
tive methods that work better than RF , especially DecisionTable and LMT . Another
interesting fact is that the RAs k-NN and SVM (named by Auto-WEKA as IBk and
SMO, respectively) are only chosen once and four times, in that order, and NN is
not suggested any time despite of being three of the most widely used algorithms in
literature. Moreover, in the case of the base of algorithms used in [14], only SV M is
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Table 4 Classifiers selected by Auto-WEKA and absolute frequency in which they were suggested
for density and speed data-sets

Classifiers D
D

5m
5

D
D

5m
15

D
D

5m
30

D
D

5m
45

D
D

5m
60

D
D

1h
60

D
D

1h
12

0
Su

bt
ot

al
D

D
SD

5m
5

SD
5m

15
SD

5m
30

SD
5m

45
SD

5m
60

SD
1h

60
SD

1h
12

0
Su

bt
ot

al
SD

To
ta

lD
D

+S
D

BayesNet 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2
Logistic 9 0 0 0 0 0 0 9 2 0 0 0 0 0 0 2 11

SMO 0 0 1 1 0 0 0 2 0 2 0 0 0 0 0 2 4
IBk 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

Kstar 0 1 0 0 0 0 0 1 0 3 4 3 0 0 0 10 11
LWL 0 0 0 0 0 0 0 0 0 1 0 0 0 1 3 5 5

AdaBoostM1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 2 3
Bagging 0 2 1 1 1 2 3 10 3 0 0 0 0 2 2 7 17

RandomCommittee 0 0 0 0 1 2 1 4 1 0 0 0 2 3 1 7 11
RandomSubSpace 2 1 2 1 3 0 0 9 2 0 0 0 0 0 0 2 11

Vote 0 1 0 0 0 1 1 3 0 3 1 0 1 1 1 7 10
DecisionTable 0 1 0 0 0 0 1 2 0 0 0 0 0 0 6 6 8

J48 0 0 0 0 2 0 0 2 0 0 0 0 0 1 1 2 4
LMT 0 0 3 2 0 2 2 9 2 0 0 0 0 4 1 7 16

RandomForest 4 8 8 10 8 8 7 53 5 5 9 12 12 0 0 43 96

selected by Auto-WEKA, which in our opinion stands out the importance of a broad
algorithm base to perform AAS in STTF.

5 Conclusions

In this paper, we have focused on deepening into the benefits of AAS in the field of
STTF. To accomplish this, we have compared to what extent the results of AAS dif-
fers from the general approach in STTF. We used Auto-WEKA as AAS method and
NN, SVM, k-NN and RF as RAs representatives of the general approach. Concretely,
our comparisons were made based on a multi-class imbalanced problem, consisting
on the prediction of traffic LoS, at a fixed location, over different time horizons
ahead. From the results we drawn interesting conclusions: the AAS method im-
proves three out of the four RAs, and obtain similar results to RF , the best RA; with
a lower human effort, the user can expect similar o even better results than the best
RA;higher execution times for Auto-WEKA not always leads to better results due
to over-fitting issues; and the performance shown by the RAs and Auto-WEKA was
poor in general because they shown problems to deal with imbalance data.

Further research lines that we aim to explore in the future are: I) including mech-
anisms, within the base of algorithms used by the AAS method, to deal with im-
balanced data-sets and over-fitting; II) testing different optimization strategies for
finding the best pair (algorithm and hyper-parameter setting); III) integrating more
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data preprocessing techniques to the AAS process; and IV) approaching the fore-
casting of LoS also as a time series regression problem to explore what algorithms
are more suitable depending on the modelling approach chosen.

Acknowledgements This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 636220 and the Marie Sklodoska-
Curie grant agreement No. 665959. This work has been also supported by the research projects
TIN2014-56042-JIN from the Spanish Ministry of Economy and Competitiveness.

References

1. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Advances in Neural Information Processing Systems
28, pp. 2962–2970 (2015)

2. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multi-
ple comparisons in the design of experiments in computational intelligence and data mining:
Experimental analysis of power. Information Sciences 180(10), 2044 – 2064 (2010)

3. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: automatic hyperparameter configu-
ration for scikit-learn. In: Proceedings of SciPy, p. 33–39 (2014)

4. Krawczyk, B., McInnes, B.T., Cano, A.: Sentiment classification from multi-class imbalanced
twitter data using binarization. In: Hybrid Artificial Intelligent Systems, pp. 26–37 (2017)

5. Lana, I., Ser, J.D., Velez, M., Vlahogianni, E.I.: Road traffic forecasting: Recent advances and
new challenges. IEEE Intelligent Transportation Systems Magazine 10(2), 93–109 (2018)

6. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for
short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE
Transactions on Intelligent Transportation Systems 17(2), 557–569 (2016)

7. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-
parameter values. Network Modeling Analysis in Health Informatics and Bioinformatics 5(1),
5–18 (2016)

8. Ma, X., Yu, H., Wang, Y., Wang, Y.: Large-scale transportation network congestion evolution
prediction using deep learning theory. PloS one 10(3), e0119,044 (2015)

9. Oh, S., Byon, Y.J., Jang, K., Yeo, H.: Short-term Travel-time Prediction on Highway: A Re-
view of the Data-driven Approach. Transport Reviews 35(1), 4–32 (2015)

10. Sabharwal, A., Samulowitz, H., Tesauro, G.: Selecting near-optimal learners via incremental
data allocation. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pp. 2007–2015 (2016)

11. Skycomp, I.B.M.: Major High- way Performance Ratings and Bottleneck Inventory. Maryland
State Highway Administration, the Baltimore Metropolitan Council and Maryland Transporta-
tion Authority, State of Maryland (2009)

12. Sparks, E.R., Talwalkar, A., Haas, D., Franklin, M.J., Jordan, M.I., Kraska, T.: Automating
Model Search for Large Scale Machine Learning. In: Proceedings of SoCC’15, pp. 368–380
(2015)

13. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA. In: Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and data mining -
KDD ’13, pp. 847–855 (2013)

14. Vlahogianni, E.I.: Optimization of traffic forecasting: Intelligent surrogate modeling. Trans-
portation Research Part C: Emerging Technologies 55, 14 – 23 (2015)

15. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: Where we are
and where we’re going. Transportation Research Part C: Emerging Technologies 43, 3–19
(2014)


