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Abstract— Since big data sets are structurally complex, 

high-dimensional, and their attributes exhibit some redundant 
and irrelevant information, the selection, evaluation, and 
combination of those large-scale attributes pose huge challenges 
to traditional methods. Fuzzy rough sets have emerged as a 
powerful vehicle to deal with uncertain and fuzzy attributes in 
big data problems that involve a very large number of variables 
to be analyzed in a very short time. In order to further overcome 
the inefficiency of traditional algorithms in the uncertain and 
fuzzy big data, we present a new co-evolutionary fuzzy attribute 
order reduction algorithm (CFAOR) based on a complete 
attribute-value space tree. A complete attribute-value space tree 
model of decision table is designed in the attribute space to 
adaptively prune and optimize the attribute order tree. The fuzzy 
similarity of multi-modality attributes can be extracted to satisfy 
the needs of users with the better convergence speed and 
classification performance. Then the decision rule sets generate a 
series of rule chains to form an efficient cascade attribute order 
reduction and classification with a rough entropy threshold. 
Finally, the performance of CFAOR is assessed with a set of 
benchmark problems that contain complex high dimensional 
datasets with noise. The experimental results demonstrate that 
CFAOR can achieve the higher average computational efficiency 
and classification accuracy, compared with the state-of-the-art 
methods. Furthermore, CFAOR is applied to extract different 
tissues surfaces of dynamical changing infant cerebral cortex and 
it achieves a satisfying consistency with those of medical experts, 
which shows its potential significance for the disorder prediction 
of infant cerebrum. 

 
Index Terms— Complete attribute-value space tree, 

Co-evolutionary fuzzy attribute order reduction, Rough entropy 
threshold, Tissues extraction of infant cerebral cortex 

I. INTRODUCTION 

n recent years, with the development of various technologies, 
a large number of data are being continuely generated 

around us. Big data have attracted plenty of attention from a 
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variety of fields such as biology, health, business management, 
cognition analysis in human brain, and so on [1]-[3]. The data 
contents include a complex mixture of texts, speeches, images, 
and videos [4][5]. It is also true that massive amount of data 
can potentially provide a much deeper understanding of both 
nature and society, opening up new ways for research. It is, 
however, a challenging task to extract useful knowledge from 
such big data. 
 It has been observed that many real datasets are usually 

structurally complex, high-dimensional, and multi-granular. 
Those attributes usually exhibit some irrelevant and 
redundancy information. In these cases, the big datasets 
increase dynamically in size, which occur in a few of fields 
such as the public health and welfare, economics analysis, and 
medical research. Therefore, a series of emerging topics such 
as big data acquisition, storage, management and processing 
are important issues [6][7]. It becomes highly desirable to 
develop some effective representative methodologies to 
analyze big data and further handle their characteristics, such 
as redundancy, uncertainty, fuzzy, and heterogeneity. The 
massive amount of data makes traditional data analytical 
methods inadequate to tackle many real-world high 
dimensional problems. Although a large number of candidate 
attribute sets is provided, most of them may turn out to be 
redundant or irrelevant, which heavily deteriorates the 
performance of traditional methods.  
  With the over-flooding of big data, researchers and 
practitioners have started showing remarkable interest to 
explore the data space, and have considered that structuralized 
knowledge reasoning is an effective computational paradigm 
for dealing with big data tasks. Granular computing (GC) 
focuses on the knowledge representation and reasoning with 
information granules, and fuzzy sets and rough sets are two 
crucial branches of GC [8][9]. Fuzzy set theory (FST) was 
introduced by Zadeh in 1965 to represent concepts with 
ambiguous boundaries and to understand the processes of 
complex human reasoning [10]. It has become a popular tool 
for the design of fuzzy classifiers. However, a fuzzy set is only 
characterized by a membership function, which largely ignores 
the uncertainty. Rough set theory (RST) was presented by 
Pawlak in 1982 to quantitatively analyze the uncertainty and to 
process incomplete knowledge [11]. It can find a decision- 
making table between the strict statistics and random 
distribution. Since RST can typically describe the uncertainty 
of knowledge, it has been extensively used in data mining, 
knowledge discovery, and intelligent system [12]-[16]. Fuzzy 
rough sets (FRS) appear as a combination of the advantages of 
two complementary areas (RST and FST), which provides an 
effective way to overcome the problem of discretization. It can 
be widely applied to various kinds of attribute reduction 
problems of numerical or continuous large-scale datasets 
[17]-[20]. FRS is defined by two fuzzy sets, fuzzy lower and 
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upper approximations, which are obtained by extending the 
corresponding crisp rough set notions. Elements that belong to 
the lower approximation are considered to belong to the 
approximated set with absolute certainty. Elements in the 
fuzzy rough case have a membership in the range, which 
allows for a greater flexibility in handling uncertain 
information [21] [22]. Thus, there is a good potential to 
improve reasoning and understanding of big data by using a 
FRS method. 

A. Related Work   

In recent years, some significant algorithms and models 
based on FRS have been presented. Zhao et al. [23] used one 
generalized FRS model to construct a rule-based classifier, in 
which the consistence degree was used for the reasonable 
critical value to keep the discernibility information invariant. 
The experimental results showed this model was effective and 
feasible on noisy data, whereas, its computational capability in 
big data needed to further be improved. Jensen and Cornelis 
[24] exploited the concepts of lower and upper 
approximations based on FRS and put forward a new nearest 
neighborhood algorithm to classify all test objects and predict 
their decision values. Experimental results showed that this 
algorithm was competitive with some leading classification 
methods. However, one obvious limitation was that no way 
was designed to handle the data possessing missing values. Hu 
et al. [25] summarized the properties of typical fuzzy rough 
models in handling noisy tasks and revealed why they were 
sensitive to the level of noise on fuzzy rough computation. 
Then a collection of robust FRS models based on fuzzy lower 
approximations is developed, and the experiments results on 
real-world tasks illustrated the effectiveness of these models. 
Parthaláin and Jensen [26] used FRS to select features for 
inclusion and removal from the final candidate subset and 
presented two unsupervised feature selection approaches as 
UFRFS and dUFRFS. The approaches were shown to retain 
useful features. But UFRFS utilized a simple but nevertheless 
effective backwards elimination way for search, whilst 
dUFRFS adopted a greedy forward selection way. 
Furthermore, two search techniques often returned sub- 
optimal results. Zeng et al. [27] combined the hybrid distance 
and the Gaussian kernel to construct a novel FRS, and 
presented the incremental algorithms for feature selection. 
The efficiency for updating feature sets can be improved, but 
the variation of multi-attributes was not taken into full 
consideration. Maji and Garai [28] defined the lower and 
upper relevance and significance of features for Interval type 2 
(IT2) fuzzy approximation spaces, and presented an IT2 
FRS-based attribute selection method by integrating the merits 
of IT2 FRS and the maximal relevance-maximal significance 
(MRMS) criterion. The effectiveness of the proposed method 
was shown on several benchmarks and microarray gene 
expression data sets. Yang et al. [29] presented two 
incremental algorithms with FRS for attribute reduction in 
terms of one incoming sample and multiple incoming samples, 
respectively. The relative discernibility relation was 
incrementally calculated for each condition attribute. The 
experimental results demonstrated that proposed algorithms 
could obtain the reduction result with the good classification 
accuracy. But they were not applied to real-world big data. So 

we need to further promote their efficiency on the complex, 
high- dimensional, and multi-granular big data applications. 

B.  Limitations and Challenges 

In the era of big data, the recent apparent progress of FRS 
algorithms can be beneficial for the analysis of our confronting 
big data problems. Meanwhile, it is worth mentioning that, 
although these algorithms based on FRS are dominant in the 
classification performance, there is still a lack of deep studies 
for their applications in current complex big data. The 
traditional algorithms are suffering from the essential 
limitations and challenges as follows:  

(1) Most of traditional algorithms are more suitable for the 
medium datasets. If the sample size or the attribute size of the 
datasets becomes very large, the processing time of attribute 
reduction will tremendously grow with the increasing of 
feature dimensions and number of instances. Furthermore, the 
data dynamism is due to the mechanism that generates related 
big data changes at different times or different real-world 
circumstances, which adds new uncertainty for big data 
analysis. Thus, that inherent interaction relation among 
different attributes is not fully captured. Although we can 
incorporate some known information about the desired data 
partitions into decomposition process, it is not valid for 
handling dynamic big data tasks. Improving the efficiency of 
fuzzy rough attribute reduction algorithms in dynamically 
increasing big data has become a significant research topic, 
which accelerates the process of finding reduction sets. 

 (2) The noise problem is one of the main sources of 
uncertainty in big data applications. When adding noisy or 
inconsistent data sets that have a lot of boundary objects, most 
of traditional algorithms usually result in some undesirable 
feature subsets since their auxiliary space will occupy a large 
amount of memory, which will be detrimental to the attribute 
reduction process. Moreover, data objects are normally 
associated with complex classification scenarios. With the 
dramatically increasing noise, the speed and volume 
performances of data generation will deteriorate rapidly. So it 
is very difficult to generate accurate fuzzy similarity relations 
for the effective process of fuzzy attribute reduction. The 
result is often unable to guarantee that the desired reduction 
set is the optimal attribute set which satisfies the user’s need. 
Consequently, the performance of attribute reduction is 
oftenunreliable in most cases. Clearly, the noise problem in 
big data greatly restricts the practical applications of 
traditional algorithms. 

C. Contributions  

In order to address the challenges listed above, we present a 
new co-evolutionary fuzzy attribute order reduction (CFAOR) 
algorithm based on complete attribute-value space tree (CAST) 
to develop the efficient attribute reduction performance for the 
high-dimensional and uncertain big data. CAST of decision 
table in the attribute space can adaptively prune and optimize 
the attribute order tree. The reduced attribute set can satisfy 
the needs of users with a better convergence speed, which 
provides the same classification performance with the original 
attribute set. This CFAOR algorithm is not only suitable for 
the changing large-scale datasets with interdependent and 
overlapping attribute variables, but also satisfies the 
large-scale complex noisy data, which can preserve the 
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consistency of a given decision table. This CAST provides a 
new viewpoint to understand and extend the FRS-based fuzzy 
attribute reduction of big data. 
  CFAOR is widely compared with state-of-the-art fuzzy 
attribute reduction methods on publicly-available datasets. 
The experimental results demonstrate the superiority of 
CFAOR. CFAOR is applied to identify different tissues 
surfaces of dynamical changing infant cerebral cortex and it 
can find more preferred different tissue surfaces from 
dynamical changing infant cerebrum regions. These 
encouraging results can achieve the satisfying consistency with 
those of medical experts. So the main advantages of CFAOR 
are the high efficiency and robustness for attribute reduction 
solutions, which makes it particularly suitable for complex big 
data. 

D. Organization 

This paper is organized as follows: In Section II, we provide 
some preliminaries. A CAST model of decision table is 
constructed in Section III. A new CFAOR algorithm is 
presented in Section IV. An extensive experimental evaluation 
is provided in Section V. The application performance in the 
tissues extraction of dynamical changing infant cerebrum 
regions is detailed in Section VI. Finally, some conclusions are 
given in Section VII.  
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  Fig.1.  The structure of the paper. 

II. PRELIMINARIES 

In this section, we introduce some relevant preliminaries 
related to fuzzy rough set theory and decision-making system 
with rough entropy threshold. 
Definition 1  [10] Let U  be a non-empty finite set of 
samples. Each sample is described by a set of real-valued 
condition attributes A and a symbolic decision attribute set 

{ }D d . The pair ( , )U A D  and A D  is called a fuzzy 

decision table. If the decision attribute d  divides U  into a 
family of disjoint subsets {[ ] : }DU D x x U  ,

[ ] { : ( ) ( )}Dx y U d x d y    is denoted as the decision class to 

which the sample x belongs. 
Definition 2 [8] Generalization of the granule based 
approximation operators can be obtained by replacing the 
partition ( / )U E  by a covering of U . Let I  be an index 

set, then a collection { | }iK U i I   of non-empty 

subsets of U  is called a covering of U  if 
i

i I

K U


 . 

Definition 3 [30][31] A pair of approximation operators is 
called as dual, if for all 

, ( ( )) ( ( ))A U apr co A co apr A  ,where ( )co  denotes a 

covering operation of universe of objects. Equivalence classes 
can be generalized by neighborhood operators. A 
neighborhood operator N  is a mapping : ( )N U U  , where 

( )U  represents the collection of subsets of U . It is assumed 

that the neighborhood operator is reflexive, i.e., ( )x N x
 
for 

all x U . 
Definition 4 [32] For each condition attribute a A , one can 
define a fuzzy binary relation 

aR , which is called a fuzzy 

equivalence relation if R  a is reflexive ( , ) 1R x x  , 

symmetric ( , ) ( , )R x y R y x , and sup-min transitive as 

   ( , ) { ( , ), ( , )}z UR x y sup min R x z R z y , , .x y U  (1) 

A subset B A  can also define a fuzzy equivalence 
relation, denoted by 

,B a B aR R         (2) 

where 
aR  is a fuzzy equivalence relation. 

Let ( )F U  be the fuzzy power set of U and B A . For 

each x U , a pair of lower and upper approximation 
operators of  ( )X F U  based on 

BR  is defined as 

 ( )( ) {1 ( , ), ( )},B u U BR X x inf max R x u X u      (3) 

( )( ) { ( , ), ( )}.B u U BR X x sup min R x u X u       (4) 

( )( )BR X x  is considered as the degree of x certainly 

belonging to X , while ( )( )BR X x  is the degree of x 

possibly belonging to X .  ( ), ( )B BR X R X  is referred to as 

the fuzzy rough set of X  with respect to B . 
The essences of lower and upper approximations are 

demonstrated in Fig. 2. 
 

The most similar sample with 
the same class to the given 
sample,whose similarity 

degree to the given sample is 
the upper approximation value.

The nearest sample with 
different class to the given 

sample, whose distance to the 
given sample is the lower 

approximation value. 

 
Fig.2. Diagrammatical representation of fuzzy rough approximation operator. 

Definition 5 For a fuzzy decision table ( , )U A D , and B A , 

the fuzzy-rough positive region of D with respect to B  is 
defined as 
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( ) ( ).B B
X U D

Pos D R X


            (5) 

Definition 6 An attribute subset P A  is called a reduct of 
A relative to D, if the following conditions are satisfied:  
(i) For ( ),x U  ([ ] )( ) ([ ] )( );P D A DR x x R x x        (6) 

(ii) For ( ),a P   y U  which satisfies with  

{ } ([ ] )( ) ([ ] )( )P a D A DR y y R y y  .        (7) 

So a reduct P  is a minimum attribute subset of condition 
attributes that keeps the positive region of D with respect to 
A . It can discern these sample pairs, of which the 
corresponding discernibility attribute sets are not empty. 
Definition 7 For the fuzzy-rough attribute reduction process, it 
must be able to find the dependency between various subsets 
of the original feature set to deal with multiple features. It is 
necessary to determine the degree of dependency of the 
decision attribute with respect to { , }P a b . In the fuzzy 

case, since objects may belong to several equivalence classes, 
the cartesian product of / ({ })U IND a  and / ({ })U IND b
must be considered to determine /U P as follows:  

/ { : / ({ })}.U P a P U IND a            
(8) 

Definition 8 For a fuzzy decision table ( , )U A D  and the 

condition attribute set
 1 2{ , ,..., }mA a a a , the attribute order 

satisfying the user’s requirements under A  is denoted as 

1 2( ) : ... kS A a a a   . Therefore, the optimal reduction 

model of attribute order is defined as follows: 
( ) ( ( ))SF x Max f R          (9) 

s.t. ( )R g Q , ( ( ), ( )),Q A S R A R   

where : ( ) ( )g A S A R  is any output reduction of attribute 

sequence with satisfying the needs of users, and R  is the 
reduction of decision table 
Definition 9 Supposed a fuzzy decision table ( , )U A D , 

Q A  as a subset of condition attributes,
 

1/ { , , }SU Q X X   
and 

1/ { , , }tU d Y Y    . Let the rough 

entropy threshold be  (0.75 0.95)  . The decision 

rules set with   is defined as follows: 

(i)  If a decision rule class jY (1 j t  ) is absolutely rough 

set with the indiscernible relation Q , then the rule set 

Q d
  is an absolute rough decision rule set with 

 . 

(ii)  If a decision rule class jY ( j t ) is relatively rough set 

with the indiscernible relation Q , then the rule set 

Q d
  is a relatively rough decision rule set with 

 . 
 

III.  COMPLETE ATTRIBUTE-VALUE SPACE TREE MODEL 

  In this section, we present a new optimization model of 
complete attribute-value space tree structure for fuzzy rough 
attribute order reduction to find the optimal solution. This tree 
can adaptively adjust the topological structure of attribute 
complete tree, and it can successfully finish pruning and 

optimizing the attribute order tree for the high-dimensional 
and uncertain big data. The reduced attribute set can satisfy 
the needs of users with maintaining a good diversity and a 
high convergence speed, which provides the same 
classification performance as the original attribute set. 
Definition 10 Basic attributes-value tree denotes that each node 
of tree is assigned an attribute associated with a basic category, 
and each branch of node is assigned a value in the range of 
node attribute’s value. The related attributes from the root node 
to any leaf nodes are satisfied with the given related attribute 
order.  

Given a fuzzy decision table ( , )U A D , the attributes order 

( )S B  is defined as 

1 2( ) : ... kS B a a a   , ( B A ,
1 2{ , , ..., }kB a a a ). (10) 

Attributes-value tree with ( )S B  is a descending order 

tree, in which each non-leaf node is given an attribute value 

ia  
of B , each branch is assigned a value in the range of ia , 

and each node is associated with a subset of U .  
Definition 11 Given a fuzzy decision table ( , )U A D  and 

condition attribute subset B A , ( , ( ), )T a S B U  represents 

the complete attribute-value tree of ( )S B  in U . ( )D tT d  
is used to represent the corresponding leaf nodes ta  

in  

( , ( ), )T a S B U , which can be also denoted as ( , ( ), )DT a S B U . 

So the subtree on the root node ita  is represented as 

( )D itT a . 

 Definition 11  Supposed that complete attribute-value space 
tree (CAST) can be represented as a n-order subtrees 

1{ ,..., , ..., }i nT T T , as outlined in Fig. 3, where Subpopi, Pari, 

and Eliti refer to the ith subpopulation, the ith parent node and 
the ith elitist node in 

iT , respectively,  

This CAST can self-adapt the subpopulation sizes in 
different subtrees and it is employed to capture the interacting 
attribute order variables by exploiting deep correlation and 
interdependency among interacting attributes order subsets of 
big data. 

Initially, all co-evolutionary particles are assigned in each 
node of the original attribute-value space tree, and each inner 
branch is regarded as a subpopulation with the same number of 
nodes. As depicted in Fig. 3, it contains two kinds of nodes. 
One is the ordinary particle, denoted by white hollow dot ‘ ’, 
and the other one is the elitist particle, denoted by the black 
entity dot ‘ ’, which is the best children node in each subtree.  

 In order to select the best elitist in each subpopulation, 
particles will be compared by their fitness in attribute-value 
space tree. In each iteration, each 

iPar  in 
iSubpop  is 

compared to 
iElit  in 

iT . If ( ) ( )i if Elit f Par , this elitist 

node of this CAST will be moved up and be exchanged with 
the parent node. This procedure is continued until all elitists are 
selected.  
 Due to excessively pursuing the elitists, CAST regardless 

of selection directions easily results in the pruning and 
optimization of attribute order tree into the opposite direction 
to the sink. Thus, the length of CAST is increased. With the 
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extension operators, the adjacent elitists will be integrated to 
reconstruct a unified elitist attribute-value space tree.  

( , ( ), )T a S B U

1( )DT a ( )D iT a ( )D nT a

1
ˆ( )w ˆ( )w i ˆ( )wn 1

ˆ( )w ˆ( )w i ˆ( )wn 1
ˆ( )w ˆ( )w i ˆ( )wn

      Fig. 3.  Construction processes of CAST framework. 

The main construction processes of CAST are described as 
follows:  

Algorithm 1: Complete attribute-value space tree (CAST) 

1. According to the attribute order of ( )S B , all nodes in the ith 

layer ( [1, ]i k ) are assigned attribute value 
ia . The non-leaf 

nodes in the same level take the same attribute and all leaf 
nodes are placed in the (k+1)th layer. 

2. Each node in the (i+1)th layer is associated with an equivalent 
class as 

( 1) 1 2/{ , ,..., }i iE U a a a  ( 1)( )iE   . 

3. If the ith node in the ith layer is associated with the equivalence 
class as 

iE
 

and the child nodes in the (i+1)th layer is  

associated with the equivalence class as 
( 1)i pE 

, the associated 

equivalent classes of the child nodes are mutually disjoint as 

( 1) ( 1)i i p i pE E  . 

4. ( )D iT a  is a subtree on ( , ( ), )T a S B U , and the rules of 

trimming ( )D itT a  
from ( , ( ), )T a S B U are pruned as follows:

(i)  Calculate 
k p PE E   , where 

PE  
is the equivalence 

classes associated with all leaf nodes in ( )D itT a , and 

remove all branches of ( )D itT a . So the node ita
 

is the 

leaf node ka  
of the associated equivalence class 

kE . 

(ii) Replace ka  by the subtree
 ( )D kT d  according to 

features of  ( , ( ), )T a S B U , and continue to prune the 

corresponding subtree. 
5. Adopt the truncated basis to optimize the underlying structure 

of attribute order tree by 

x w
n

i i
i

u ,

         

(11)

 

where n  is the number of variables, wi  
is the selected 

loading vector and iu
 
is its corresponding coefficient.

 6.  Select the ‘best-n-basis’ of attribute order tree in the descending 
normalized energy score as follows:

 ˆ( )w w xx wT T
i i i  ,

        

(12)

where 1 2[ , ,..., ]x d n
nR x x x   is the training data matrix 

of branches of n-order subtrees. 

7.  Generate a set of reference vector 1 2{ , ,..., }n    where 

  1 2( , , ..., ),i i i i
n               

  

(13a) 

1

0 1
, ,..., , 1,

n
i i
j j

j

H

H H H
 



   
 

        
(13b)

where H  is the number of divisions set along each branch 
in 

iT . 

8. Perform the assignment of the subtree neighbourhood

1 2( ) { , ,..., }TE i i i i , 1 2( , ,..., )T T iT    is the closest vectors to 

i  based on the Euclidean distance in 
iT . 

9. Adopt the Spearman rank correlation coefficient to calculate 
the similarity between two nearest elitists by 

2

2
1

( )
( , ) 1 .

( 1)

p pn
i ji

i j
p

Elit Elit
Sim

n n





 

Elit Elit

     

(14)

10. Refine the average shared similarity based on all pairwise 
similarities by  

 
1

1 1

2
( , ) .

( 1)

n n

i j
i j i

SS Sim
n n



  


   Elit Elit

 

      

(15)

11. Reconstruct the complete attribute-value space tree 
ET  by the 

elitist sets with the ‘best-n-basis’ of attribute order tree as 

1 2

1
{ , ,..., }Elit nSS

= Elit Elit Elit ,     

 

(16)

where 1 2( , ,..., }n
i i i iElit Elit ElitElit  is the elitist sets of 

iT for 

the ‘best-n-basis’ from the top level basis 
1pB 

 as the p  

projection vectors 
1 2( , ,..., )pw w w . 

IV. FUZZY ATTRIBUTE ORDER REDUCTION ALGORITHM 

BASED ON CAST 

Since CAST structure of decision table in the attribute space 
adaptively prunes and optimizes the attribute order tree, the 
optimal attribute order reduction set can be achieved efficiently. 
The fuzzy similarity of multi-modality attributes can be fully 
extracted to satisfy the needs of users with the better 
convergence speed and classification performance. In this 
section, we present a co-evolutionary fuzzy attribute order 
reduction (CFAOR) algorithm for large datasets, especially for 
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their dynamic and uncertain analysis. And thus, the decision 
rule sets generate a series of rule chains to develop an efficient 
cascade attribute order reduction and classification with a 
rough entropy threshold. Fig. 4 illustrates the framework of 
attribute order reduction process based on CAST. The main 
steps of CFAOR are described as follows: 

Algorithm 2: Co-evolutionary fuzzy attribute order reduction 
based on CAST (CFAOR) 

Input:  The fuzzy decision table ( , )U A D , B A , ( )S B is be the 

property order of attribute subsets based on fuzzy attribute 
order ( )S A , 1 2( ) : ... kS B a a a   , and ir  is the niche 

neighborhood radius. 
Output: Optimal reduction set of fuzzy attribute order orsRED . 

1.   Initialize the search space of co-evolutionary particles. Create n 
subpopulations with m particles in each particle subpopulation for 
optimizing the respective assigned attribute subset. 

2.  Divide the sample dataset into two equal parts, one as the training 
dataset and the rest as the test set. Normalize the attribute order of 
the training samples and map them into the [0, 1] binary space. 

3.  Decompose the large-scale attribute order set into their  
respective particle subpopulations, and then compute the  
equivalence classes of their decision tables. 

4.  Map the attribute order space ( )C A into reduction space 

   ( )C R , and construct subpopulation with niche neighborhood 

radius ir . 

5.  Generate complete attribute-value space tree by using Algorithm 

1 with the tree root node 1a , and 1( )V a    in each particle 

subpopulation PS_pop (i). 

6. Partition the decision system ( , , , )S U A V f  
into one 

master-table , , ,Q Q QS U Q V f   and sub-tables 

   , { }, , , 1, 2, ...,
Bi

i i iB B B
i iS U B b V f i k   .  

7.  While (Each joint attribute order ( 2,..., )ib Q i k  ) do 

If  / ( { }) / ( )iU IND Q b U IND Q  ,  

then 
ib  is dispensable and delete it from QS and  

{ { { }}iQ Q b  , ( )iP P B  .} 

8.  Do    
   { (i) Select out the current node ima . 

    (ii) If ( ( ) ( ))i ima x V a   

Search the sub-node ( 1)i pa   of the branch ( )ia x , and 

( 1)| | | |i p ima a  . 

     (iii) Else 
{ Create a new ( )ia x , and set its branch sub-node as  

( 1)i pa  . 

( ) ( ) { ( )}im im iV a V a a x  , and ( 1)( )i pV a    . 

 } 
(iv)  ( 1)m i pa a  . 

} While ( )i ka a . 

9.  Do    
 { (i) Reduce ( , ( ))iT a S B by the defined pruning rules and 

obtain a attribute-value space tree ( , ( ))D iT a S B . 

(ii)  Choose the max sub-attribute ka  and { }kR R a  .

  (iii)  Push each attribute-value into the stack. 

 (iv)   Pop attribute-value behind ka  from the stack in attribute 

order ( )S B . 

      (v)   Set ka as the top stack of attribute order ( )S B . 

  (vi)  Perform 1{ , ,..., }i i kB a a a  and  

          1 1( ) : ...k i i kS B a a a a    . 

     } While ( )R B . 

10.  For (Each reduction set iRED of PS_pop (i))  

{  (i)  Move the attribute order ( )S C . 

(ii) Construct the criterion attribute order as 

1 2
: ...

k mR i i i iS a a a a   and { ( ) | }S SP a x a R  . 

      
 (iii)

 { |P Q Q denotes a new searching node by moving 

Sa in different nearest elitists.} 

      }
 

11.  In the reduction space ( )C R of complete attribute-value space 

tree iT , optimize the attribute order reduction set as follow: 

{  (i)  do  { ( ) ( )
r ri i

R RE S F S - P  . 

              ( )
ri

RQ E S and ( )R g Q . 

             If ( ( ) ( ))
ri

S S Rf R f S   

 { ri
R R , ( ) ( )

r ri i
R RE S E S Q  .} 

             } While ( ( ) )
ri

RE S == . 

         (ii)
jr R  , ( )

ri
RR R S  , and compute 

R j

k
S rIND 

. 

        (iii)
ri

R R RS S S  , where 

 min
R m R j

k k
S r S rIND IND  . 

        } 
12.  Compose a mid-table iMS  with both the sub-table iBS  and 

the master-table QS . 
13.   While (Each attribute 

ia B ) do   

If ( / ( { }) / ( ))i iU IND M a U IND M  , then a  is 

indispensable and perform 
{  { }i iB B a  , 

iRed Red B  , and /P P Red .} 

14.  Evaluate whether the accuracy of fuzzy attribute order reduction 
is satisfied with the rough entropy threshold  or not.  

If satisfied, output the optimal reduction set orsRED of fuzzy 

attribute order.  
Otherwise, return to Step 9 to continue to perform fuzzy  
attribute order reduction. 

V. EXPERIMENTAL RESULTS 

In this section, we conduct some experiments to validate 
the effectiveness and robustness of the proposed CFAOR 
algorithm. We start with the description of experimental 
setting in Section A. The performance comparisons with time 
and space between CFAOR and some representative fuzzy 
attribute reduction algorithms are conducted in Section B. In 
Section C, we carry out the accuracy comparisons of fuzzy 
attribute reduction and classification.  

A. Experimental setup 
In order that the comparisons of fuzzy attribute reduction 

performance are more sufficient, we select ten real-world  
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datasets from the UCI Machine Learning Repository and NIPS 
2003 feature selection challenge datasets [33]. Those datasets, 
as described in Table I, include five low-dimensional datasets 
with adding 15% Gaussian  noise ratio and five very high- 
dimensional datasets which come from various real-world 
domains, such as text categorization (Dexter), radar 
(Ionophere), drug science (Dorothea), medical science (Spect 
and Spectf), and biomedical science (Ovarian-cancer and 
Lung-cancer). We add 15% and 25% noise ratios to five 
low-dimensional and five high-dimensional datasets, 
respectively. All algorithms are implemented in Visual C# 
2013, and all experiments are run on a virtual machine with 12 
CPUs and 256 GB memory at the University of Technology 
Sydney (UTS) High Performance Computing Linux Cluster 
with 8 nodes.  

CFAOR is compared to three state-of-the-art algorithms for 
feature selection. To make the comparisons as fair as possible, 
the parameters of the compared algorithms are set to be the 
same as suggested in their respective references. The 
parameters of CFAOR are initialized as follows: The initial 
number of co-evolutionary particles is 2000, the number of 
particle subpopulation is 50, the number of particles in each 
particle subpopulation is 400, the number of iterations is 1000, 
and the number of iterations within each subpopulation is 500. 
The rough entropy threshold is satisfied with 9 2%  . 

TABLE I  

SUMMARY OF 10 REAL-WORLD DATASETS 

Dataset #Feature #Sample 

 
 
 

Dataset #Feature #Sample 

Spect 22 267 Madelon 500 2,000 

Mushroom 22 8,124 Dexter 20,000 300 

Ionophere 34 351 Dorothea 100,000 800 

Spectf  44 267 Ovarian- 
cancer 2,190 216 

Infant 86 5,339 Lung- 
cancer 

12,533 181 

B. Performance comparison metrics with time and space for 
different algorithms 

Table II indicates the performance comparison metrics with 
Time and Space for different algorithms, where Time is the 
running time (in seconds), and Space is the space consumption 
(in Megabytes). Additionally, the bold value means it is the 
best result among different fuzzy attribute reduction 
algorithms.  

As shown in Table II, it is clear that the best solutions 
obtained by CFAOR are better than those by NFRS [22], 
UFRFS [26] and RDRAR[29], although each algorithm comes 

 

 
 
 
 
 
 
 
 
 
 
 
 

with a substantially reduced computing running time and space 
load consumption. The bigger dataset is the more significant 
computational savings for CFAOR. Meanwhile, it is 
remarkable that in our experiments, the big space consumption 
also leads to the memory overflow for NNFS in Madelon, 
Dorothea and Lung-cancer datasets, and also for UFRFS in 
Madelon, Dexter and Dorothea datasets. But our proposed 
CFAOR algorithm can cope with this situation well. As it can 
be seen in Table II, CFAOR clearly outperforms NFRS, 
UFRFS and RDRAR in terms of Time and Space performance 
metrics for most datasets. As for the Spectf, Infant and 
Dorothea datasets, the significant improvements are brought by 
CFAOR. For example, CFAOR spends the 35.20% less space 
consumption (Space) than NFRS on the Spectf dataset, and 
52.12% on the Infant dataset. These facts indicate that CFAOR 
can find consistently much faster and consuming less memory, 
compared with other algorithms. 

From Table II, one can clearly see that, in term of the time 
results, CFAOR outperforms all compared algorithms across 
all instances. Furthermore, both the time and space results 
obtained by CFAOR are better than NNFS on all instances. 
The results reveal that the fuzzy attribute order reduction 
based on complete attribute-value space tree contributes to 
CFAOR performance, which has an effect on the ability in 
producing high quality results across all testing instances.  

C. Accuracy comparisons fuzzy attribute reduction and 
classification  

In this section, we carry out comparisons of fuzzy attribute 
reduction and classification accuracy of CFAOR and five 
compared algorithms: NFRS [22], UFRFS [26], IT2-FR [28] 
FR-MRMS [28], and RDRAR [29]. Using C4.5 [34] as 
classifier, we employ a stratified 10×10-fold cross-validation 
(10-FCV). The original dataset is divided into 10 subsets of 
instances, where one subset is retained as the testing data, and 
the remaining subsets are used for training data.  

Table III depicts the comparisons of the prediction accuracy 
and standard deviation of all algorithms. We can see that 
CFAOR is obviously better than the other five techniques. 
NFRS, RDRAR and IT2-FR cannot deal with high- 
dimensional datasets, and both RDRAR and NFRS show the 
worst performance among all algorithms with failing to offer 
results for most datasets. Meanwhile, it is also noticed that all 
algorithms do not achieve high prediction accuracy because 
Madelon dataset contains many noisy features without 
predictive power. 

 
 
 

Yes

No

Map attribute 
order space into 
reduction space

 Generate 
complete 

attribute-value 
space tree

Satisfy  rough entropy 
threshold of reduction 

accuracy?

Construct 
subpopulation with 
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Prune subtrees and 
constructs the elitist  
attribute-value space 

tree

 Perform fuzzy 
attribute order 

reduction 

Optimize and 
evaluate reduction 
set in the reduction 

space  

 Output optimal 
reduction set of 
fuzzy attribute 

order
       

                          Fig. 4.  Framework of fuzzy attribute order reduction process. 
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As shown in Table  III, CFAOR with C4.5 classifier has 

92.17%, 91.79%, 95.56% and 100% significant average 
classification accuracies on Spectf, Ionophere, Dorothea and 
Ovarian-cancer datasets, respectively, whose corresponding 
results are identified as the symbol ‘♂’. If related algorithms 
cannot deal with high dimensional datasets due to expensive 
computations, their results are identified as the symbol ‘-’. 

It is obvious that CFAOR is consistently much better than its 
competitors on almost datasets. Most compared algorithms 
simply select a few of features from the correlated features set, 
whereas CFAOR considers both strongly relevant features and 
their corresponding correlated features simultaneously, which 
will turn out to be beneficial to reduce the classification error. 
The main reasons for this are as follows: We construct a 
complete attribute-value space tree structure of decision table 
in the attribute space to adaptively prune and optimize the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

attribute order tree. It can perform attribute order reduction in a 
much shorter time, and the reduced attribute set can satisfy the 
needs of users guaranteeing a better convergence speed. 
Therefore, CFAOR can well avoid some recalculations by 
directly exploiting the previous results from the current 
accumulated samples. Of course, it is also necessary to point 
out that in few special cases, the performance of CFAOR is 
slightly worse than those compared algorithms. The 
experimental results obviously demonstrate that the 
classification system by employing CFAOR as the fuzzy 
attribute reduction algorithm leads to the appealing 
performance of classification accuracy. CFAOR provides an 
effective approach to obtain the optimal result of fuzzy 
attribute reduction, which significantly enhances the 
classification accuracy with a reinforcing noise tolerance. 
  

Datasets 
NFRS 

 
UFRFS 

 

RDRAR  

 

CFAOR 

Time (s) Space (M) 
 

Time (s) Space (M) Time (s) Space (M) Time (s) Space (M)

1.  Spect 2.210 1.980 
 

3.107 2.154 2.631 1.489 
 

1.256 1.031 

2.  Mushroom 2.328 2.843 
 

2.194 2.186 2.006 1.098 
 

1.190 1.115 

3.  Ionophere 3.284 2.356 
 

4.169 3.817 3.087 2.124 
 1.689 1.225 

4.  Spectf 4.183 2.092 
 

4.927 1.678 3.288 2.134 
 

1.781 1.787 

5.  Infant 13.165 8.560 
 

14.287 12.978 12.098 8.327 
 8.189 6.237 

6.  Madelon   Memory Overflow 
 

 Memory Overflow 28.110 21.092 
 20.324 17.390 

7.  Dexter      18.604         19.217 
 

 Memory Overflow 19.176 17.693 
 

16.325 13.098 

8.  Dorothea  Memory Overflow 
 

 Memory Overflow 45.672 25.138 
 

31.768 19.675 

9.  Ovarian-cancer     16.063         16.117 
 

  16.170          14.187 15.675 13.430 
 13.290 10.190 

10.  Lung-cancer  26.137         20.280 
 

 42.217   25.169 40.542 22.007 
 

34.789 18.767 

TABLE II 
COMPARISONS OF PERFORMANCE METRICS WITH TIME AND SPACE FOR DIFFERENT 

TABLE III  
 Classification accuracy of CFAOR and its rivals using C4.5 classifier. (%) (Test ± Std /%) 

Datasets UFRFS RDRAR NFRS IT2-FR FR-MRMS CFAOR 

Spect 83.43 ± 0.29 84.16 ± 0.57 87.98 ± 0.23 86.89 ± 0.32 88.21 ± 0.25 92.17 ± 0.08♂

Mushroom 97.75 ± 0.81 96.22 ± 0.43 96.39 ± 0.31 97.35± 0.24 96.09 ± 0.18 100 ± 0 

Ionophere 80.29 ± 0.63  83.89 ± 0.21 86.17 ± 0.28 84.18 ± 0.42 85.20 ± 0.11 91.79 ± 0.05♂

Spectf 81.12 ±0.39 81.12 ± 0.23 85.27 ± 0.23 84.13 ± 0.20 84.89 ± 0.13 89.89 ± 0.44 

Infant 77.12 ±0.71 76.11 ± 0.21 79.90 ± 0.39 82.00 ± 0.15 83.98 ± 0.21 87.48 ± 0.49♂

Madelon 52.25± 0.39 67.11 ± 0.93 70.21 ± 0.67 68.13 ± 0.24 70.18 ± 0.31 74.93 ± 0.08 

Dexter 76.18 ±0.52 70.09 ± 0.74 83.68 ± 0.26 78.37 ± 0.53 83.43 ± 0.24 87.92 ± 0.09♂

Dorothea 85.11 ±0.18 – – 86.1 7± 0.45 87.21 ± 0.32 95.56 ± 0.52♂

Ovarian- 
cancer 

96.38± 0.62 – – – 94.98 ± 0.35 100 ± 0♂ 

Lung-cancer 93.27 ±0.19 – – – 95.34 ± 0.43 97.68 ± 0.65 

Notes: ‘–’ denote that the algorithm cannot deal with high dimensional dataset due to expensive computations. ‘♂’ denote that the  
significantly best mean value is highlighted in boldface with gray background. 
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VI. APPLICATION TO TISSUES EXTRACTION OF DYNAMICAL 
CHANGING INFANT CEREBRAL CORTEX 

Various tissues extraction of infant cerebral cortex is a 
very useful technique for the assessment of different regional 
matters in brain neurodegenerative diseases. The classification 
of the neonatal brain MRI is a critical step towards the infant 
brain development. During the postnatal human brain 
development, the brain tissues often undergo a wide range of 
development. Because there are some distinct differences of 
brain tissue structures between the infant and adult, 
state-of-the-art methods for adult brain classification are not 
applicable to the infant brain, which poses additional 
challenges for the study of infant cerebral cortex [35]-[37]. 

In this selection, we employ CFAOR to accelerate the tissue 
extraction of dynamical changing infant cerebral cortex with 
better accuracy and efficiency. We obtain infant brain datasets 
from the Internet Brain Segmentation Repository (IBSR) [38]. 
We apply different algorithms to determine the brain volumes 
of these subjects and then employed the manually segmented 
brain areas to evaluate the extraction accuracy. CFAOR is 
compared with five popular methods (BET [39], BSE [40], 
FreeSurfer [41], LongSeg [42], BEaST [43], and LPG- PCA 
[44]). The default parameters of these methods are used with 
their respective references. 

A. Extraction results of infant brain tissues from the inner, 
outer and central cortical surfaces  

   To reveal the segmentation accuracy of cortical surfaces for 
infant brain 3D-MRI, we estimate of segmentation results 
from the inner, outer and central cortical surfaces. We label the 
matters inside the inner neonatal cortical surface as WM, the 
matters between the inner and outer cortical surfaces as GM, 
and the matters between the skull and outer cortical surfaces as 
CSF. For ease of viewing, only part of the segmentation results 
is shown in Fig. 5. It can be seen that there are some visible 
isolated holes caused by BET and BSE, but CFAOR can 
smooth out most of imperfections with disposing of them as 
parts of the cortical surfaces, and it shows the essential 
characteristic, which is consistent with the real inner and outer 
cortical surfaces. 

 

 

 

 

 

 
 
 
 
 

 
 

 

 

 

 

Fig. 5.  3D rendering cortical reconstruction comparisons of inner and outer 
cortical surfaces. 

In the following, the average surface distance error of 
different cortical surfaces is further investigated. Since there 
are large developmental changes in the developing infant brain 
matters, we perform the subjects at different birth months to 
validate the robustness of different algorithms. We select 10 
subjects from 2 to 20 birth months from 0.10% 3D MR-18 
dataset size. The average distance errors of 10 subjects are 
illustrated in Fig. 6, where those of the inner, outer and central 
cortical surfaces are around 0.779mm/0.785mm/0.667mm 
(BET), 0.701mm/0.728mm/0.592mm (BSE), 0.620mm 
/0.658mm/0.539mm(CFAOR), respectively. CFAOR achieves 
overall 9.8%-25.6% improvement. Especially, CFAOR shows 
a better mean distance error of central cortical surface (0.539 
mm), which reflects its significantly higher sensitivity and 
accuracy. Although, BSE also achieves good results, but it 
needs to speed more computational cost to obtain those 
compromised results. Thus, CFAOR can use crowns of gyri to 
properly simulate growth with simple image warping, and 
generate a more accuracy results. 

From Fig. 6, it is obvious that CFAOR achieves the highest 
accuracy, indicating its superiority in better characterizing the 
structural longitudinal surfaces of infant cerebral cortex. 
Therefore, it can significantly improve the mean classification 
performance, but two compared methods are under- 
classification for cerebral regions because some deformable 
surfaces are located inner cerebral surface regions. 
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                         (c) 

Fig. 6.  Quantitative comparisons of average surface distance errors of the 
inner, outer and central cortical surfaces for 10 infant brain 3D MR-18 
subjects. (a) BET, (b) BSE, and (c) CFAOR. 

B. Quantification comparisons of multi-criteria performance 

High resolution and high contrast infant MRI allow for the 
tissue extraction of dynamical changing human brain cerebral 
cortex, which can lead to successful and accurate 
segmentation. In the following experiments, multi-criteria for 
brain tissue extraction assessment, such as the Jaccard 
similarity coefficient (JSC), the specificity and sensitivity 
coefficients, and the missed extraction probabilities, are 
employed to measure the comprehensive performance.  

JSC is widely adopted to evaluate the similarity between the 
extracted brain region Y

 

and the corresponding ground truth 
X  as  

( , ) ,
X Y

JSC X Y
X Y





   
      (17) 

where   denotes the cardinality value, and the value of JSC is 

within [0,1]. 
The high sensitivity is regarded as the high recognizing 

percentage for cerebral cortex, denoted as eS . The high 

specificity is regarded as the high rejecting percentage for 

non-brain cerebral cortex, denoted as pS . Brain tissue 

extraction is a compromise between eS  and pS . Their  

coefficients are defined as 

   ,e
TP

S
TP FN


    ,p

TN
S

TN FP


        (18) 

where TP is the true positive rate which is the number of 
voxels correctly classified as brain cerebral cortexes, FP is the 
false positive rate which is the number of voxels incorrectly 
classified as brain cerebral cortexes, TN is the true negative 
rate which is the number of voxels correctly classified as 
non-brain tissues, and FN is the false negative rate which is 
the number of voxels incorrectly classified as non-brain 
cerebral cortexes.

 Furthermore, we adopt two probabilities of missed 

extraction for both brain tissues mp  and false alarm fp  to 

measure the extraction risk, which are calculated as

 

,m

X Y
p

X Y





  ,f

Z X
p

X Y





       (19) 

where Z  is the extracted brain region with false alarm. 
Table IV shows the experimental results of CFAOR and 

compared popular methods on the IBSR datasets. Jointly 

considering eS  and pS , the accuracy of BET, BSE and 

LongSeg are moderate. However, CFAOR is able to correctly 
detect the dynamical changing infant cerebral cortex and 
became remarkable improvement in terms of sensitivity and 
specificity. CFAOR often performed better than compared 
popular methods with multi-criteria performance, which 
indicates its better overlapping of the extracted brain regions 
with the ground truths. We also notice that LPG-PCA can 
achieve the better sensitivity in detecting almost brain tissues 
at the expense of the relatively low specificity.  

Meanwhile, it is noticeable from Table IV that the 
computational time of CFAOR is obviously lower than BSE, 
BEaST, and FreeSurfer for all tested instances. CFAOR 
produces high quality solutions with lower computational 
times, followed by LPG-PCA, BET and LongSeg.  

Through these restricted analyses, we can conclude that the 
extraction of brain tissues yielded by CFAOR further 
facilitates the correction of intensity non-uniformity for 
dynamical changing infant cerebral cortex. 

C. Comparison of the Dice similarity coefficient of expert 
consensus extraction 

To further ensure the reliability of CFAOR, we compare 
the Dice coefficient of our extraction and the expert consensus 
extraction between each pair of expert manual extraction. We 
quantitatively examine the overlap level between our 
extraction and manual expert extraction. Dice similarity 
coefficient is defined as 

2
Dice( , ) 100%,

A B
A B

A B
 




   
         

(20) 

where A
 

and B  are the voxel sets of two different 
extractions of the same tissue, respectively. 

We obtain average Dice values of ten subjects in Table V, 
which show the differences between our extraction and the 
expert consensus and the differences of different experts. It 
also indicates that the committed errors are in the same 
magnitude range with the inter-experts variability. CFAOR 
can achieve the highest Dice similarity coefficient as expert 
consensus extraction and boost much better consistent labeling 
boundaries for large-scale dynamical changing infant cerebral 
cortex. 

VII. CONCLUSIONS 

A. Discussion of experimental results 

As illustrated in above experimental results, it is easy to 
draw the conclusion that CFAOR outperforms its competitors 
on most of the used complex datasets and achieves the higher 
computational efficiency and classification accuracy. CFAOR 
is effective and efficient. Furthermore, it can be well applied to 
the tissues extraction of dynamical changing infant cerebral 
cortex and achieves satisfying results. The reported results 
illustrate that its predication is highly correlated with the 
human learning and evaluation. CFAOR has very low-time 
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complexity and high accuracy with high quality solutions, 
compared to the state-of-the-art methods. 

In contrast, other compared representative fuzzy attribute 
reduction algorithms as NFRS [22], UFRFS [26], IT2-FR [28],  
FR-MRMS [28] and RDRAR [29], load features into memory at 
one time, which costs are heavy in both memory and time, so 
that the time cost for these algorithms fluctuate obviously 
because their computational complexity and their classification 
performance dynamically decrease as time increases. 

CFAOR is robust to the large-scale sample size dataset by 
added the noisy percentage, which means it is more stable than 
the compared representative algorithms. CFAOR only requires 
a relatively small time to achieve remarkable classification 
performance and it is more suitable to be used on noisy attributes 
than other representative algorithms. Moreover, CFAOR has 
better classification performance on five high-dimensional 
datasets with large noisy percentage attributes.  

The traditional fuzzy attribute reduction algorithms are 
unreliable for dealing with the dynamically changing massive 
datasets with ever-greater amounts and complex fuzzy structures. 
However, CFAOR is more advantageous than traditional 
methods to measure accuracy of attribute reduction and 
classifications in dynamically changing uncertain big data. The 
major reasons are as follows: the use of fuzzy attribute order 
reduction model based on CAST structure can explore the 
structure of the dataset in the attribute dimension, which will 
reduce the effect of the noisy attributes with good speed. 
Therefore, it greatly improves the search efficiency in finding the 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

optimal solution. More importantly, CAST can adaptively adjust 
the topological structure of attribute complete tree, and it can 
successfully finish pruning and optimizing the attribute order 
tree for the high-dimensional and uncertain big data. The 
reduced attribute set can satisfy the needs of users with 
maintaining a good diversity and a high convergence speed. 
Nevertheless, the results obtained by compared representative 
algorithms are not satisfactory. They are often not suitable for 
the attribute reduction classification task in the above- 
mentioned complex real-world datasets described in 
Introduction. 

Therefore, we observe that CFAOR has a great superiority in 
terms of computational time and accuracy of fuzzy attribute 
reduction, especially for the high-dimensional and uncertain 
large-scale datasets to be processed. The classification 
superiority of CFAOR has been clearly proved when big datasets 
are added the noisy percentages, while its accuracy values 
maintain stable, which are depicted in Tables II and III. In 
summary, we can conclude CFAOR is a better choice to balance 
the computational cost and accuracy of fuzzy attribute reduction, 
compared with representative algorithms. 

B. Closure 

 In this paper, we have presented a new co-evolutionary fuzzy 
attribute order reduction algorithm, CFAOR. This algorithm can 
deal with lots of uncertaint variables of fuzzy attribute sets in 
big data so that we induce their complexity and non-separability. 
A complete attribute-value space tree model of decision table is 
constructed in the attribute space to adaptively prune and 

TABLE V 
Comparison of the Dice similarity coefficient between our extraction and the expert consensus extraction. 

Subjects 

Tissue 
automatic 

 vs. 
Consensus 

Expert 1
vs. 

 Expert 2

Expert 2
vs. 

 Expert 3

Expert 3
vs. 

 Expert 4

Expert 4
vs. 

 Expert 5

Expert 3 
vs. 

 Expert 5 

Average 
Dice of 

five pairs 
of experts 

GM 0.93 0.91 0.93 0.92 0.91 0.91 0.92 

WM 0.94 0.89 0.92 0.95 0.93 0.93 0.93 

SGM 0.90 0.92 0.87 0.85 0.89 0.89 0.88 

MWM 0.84 0.83 0.79 0.83 0.82 0.82 0.82 

CSF 0.85 0.85 0.84 0.84 0.85 0.85 0.84 

TABLE IV
Performance comparison for brain extraction algorithms using the IBSR dataset.  

  Methods  
JSC eS  pS  

mp  fp  
 Time (s)

(Test ± Std /%)

BET  82.92 ± 0.39 93.46 ± 0.58 94.23 ± 0.64 4.79 ± 2.37 10.21 ± 1.08  56.23 

LongSeg   82.18 ± 0.51 94.46 ± 0.76 94.49 ± 0.29 5.83 ± 2.20 21.37 ± 1.52  61.89 

BSE  85.24 ± 0.875 93.23 ± 0.63 94.11 ± 0.66 6.82 ± 0.88 19.43 ± 1.42  78.23 

BEaST  87.74 ± 0.15 95.67 ± 0.87 95.14 ± 0.29 4.47 ± 0.59 16.22 ± 0.32  123.09 

FreeSurfer  85.12 ± 0.69 94.11 ± 0.37 96.19 ± 0.84 5.28 ± 1.06 11.32 ± 1.21  218.28 

LPG-PCA  89.34 ± 0.32 95.51 ± 0.71 97.22 ± 0.43 3.32 ± 1.19 9.25 ± 0.35  50.28 

CFAOR  
 

92.32 ± 0.25 97.32 ± 0.43 99.12 ± 0.31 2.76 ± 0.42 7.89 ± 0.45  32.10 
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optimize the attribute order tree, with providing the same 
classification performance as the original attribute set. The 
experimental results have demonstrated that the proposed 
CFAOR algorithm can carry out attribute order reduction and 
classification more accurately. It is able to effectively deal with a 
variety of forms and distributions of big datasets. CFAOR turns 
out to be efficient and robust on large-scale attribute reduction 
classification tasks. Furthermore, it is applied into automatic 
tissues extraction of human cerebral cortex of infant MRIs, and 
our results have indicated that CFAOR can be used for reliable 
tissues extraction in the lower resolution infant cerebral cortex. 
Hence, the proposed CFAOR algorithm is useful for evaluating 
neuro-protective clinical trials in infant brain.  

Despite of these promising results of tissues extraction of 
large-scale dynamical changing infant cerebral cortex, the visual 
comparison of automatic extraction results yielded by CFAOR 
shows a bit of regions of MWM buried in the gyri that cannot 
detected. The main reason is that the partial volume effect 
makes it difficult for the MWM region to enter narrow channels 
in the cortical gray matter [45][46]. It limits the CFAOR’s 
application in real-world large-scale infant cerebral cortexes. In 
the future, we plan to enable the straightforward use of the 
tissues extraction for an accurate reconstruction of the gradual 
myelination process, which should allow for a higher 
improvement in the complex infant cerebral resolution. 
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