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We present novel methods to numerically address the problem of characterizing the response of
particle detectors in curved spacetimes. These methods allow for the integration of the Wightman
function, at least in principle, in rather general backgrounds. In particular we will use this tool to
further understand the nature of conformal massless scalar Hawking radiation from a Schwarzschild
black hole in anti-de Sitter space. We do that by studying an Unruh-DeWitt detector at rest above
the horizon and in circular geodesic orbit. The method allows us to see that the response rate shows
peaks at certain characteristic frequencies, which correspond to the quasinormal modes (QNMs)
of the spacetime. It is in principle possible to apply these techniques to more complicated and
interesting physical scenarios, e.g. geodesic infall or multiple detector entanglement evolution, or
the study of the behaviour of quantum correlations in spacetimes with black hole horizons.

I. INTRODUCTION

In recent years, there has been renewed interest in ver-
ifying the existence of Hawking radiation in spacetimes
with black hole event horizons using the Unruh-DeWitt
detector formalism. For instance, a recent proposal [1]
has allowed for an insightful study of the thermal re-
sponse of static and circular-geodesic particle detectors
in Schwarzschild backgrounds, and there are new and
promising results in progress regarding a detector model
that is free from infrared divergences [2], which may
be helpful in studying the response of particle detectors
across event horizons.

The Hawking effect was first discovered in
Schwarzschild spacetime in 1974 [3]. In essence,
Hawking argued that black holes would radiate as
though they had a temperature. Soon afterward, Unruh
[4] suggested the idea of a model particle detector,
in order to operationalize the idea of “observing” the
radiated particles. This method was recently applied in
[1] to a study of the Schwarzschild spacetime.

In this paper, we will analyze the radiation emitted
by a black hole in a 4-dimensional asymptotically anti-de
Sitter space by means of the vacuum response of a par-
ticle detector in this background. This spacetime, often
called “Schwarzschild-Anti-de Sitter”, or SAdS, has been
examined by many other authors; however, previous work
has mostly focused on other aspects of the spacetime,
such as characterizing the decay of scalar modes [5], an-
alyzing its thermodynamics [6], calculating quasinormal
frequencies [7, 8], and so on. While the Hawking radia-
tion of the SAdS spacetime has previously been studied
through other methods, e.g. [6, 9], we believe that our
application of particle detectors to the spacetime is novel,
and shows new insights.

We model the particle detector with the Unruh-DeWitt

model [10], which consists of a two-level system with a
monopole coupling to a scalar field. Although simple,
this model is known to capture the fundamental features
of the light-matter interaction [11] when no orbital an-
gular momentum exchange between atomic electrons and
the electromagnetic (EM) field is involved [12, 13]. The
coupling is given by the interaction Hamiltonian

Hint(τ) = cχ(τ)µ(τ)φ(x(τ)), (1)

where c is a coupling constant, χ(τ) is the switching func-
tion, µ is the detector’s monopole moment operator, x(τ)
is the trajectory of the detector, and τ is the proper time
of the detector (henceforth simply ‘proper time’). If the
initial state of the joint system is |Ψ〉⊗|0〉d where |Ψ〉 is a
Hadamard state, on which the expectation of the energy-
momentum tensor is non-singular, and if c is small, we
can write the transition probability (summing over all
final field configurations) to first order in perturbation
theory as [14]

P (E) = c2 |d 〈0 |µ(0)| 1〉d|
2
F (E), (2)

where the response function F (E) is independent of the
physical details of the detector, aside from its dependence
on the detector’s energy gap E. For instance, this form
holds whether the detector is a two-level system or a
harmonic oscillator; the differences only become appar-
ent at higher order in perturbation theory and do not
yield a qualitative difference as compared with the two-
level quantum emitter [15]. For this reason, abusing no-
tation, the response function itself is often simply called
the ‘probability’ [14]. The response function can be writ-
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ten as

F (E) = lim
ε→0

∫ ∞
−∞

duχ(u)

×
∫ ∞
−∞

ds χ(u− s)e−iEsWε(u, u− s) (3)

where W (u, u′) = W (x(u), x(u′)) is the pullback of the
Wightman function W (x, x′) = 〈Ψ |φ(x)φ(x′)|Ψ〉 to the
detector trajectory and ε parametrizes its regularization.

In the special cases where the detector is static, or
on a circular geodesic orbit, and its response integrated
over all times, no special considerations are required to
regularize the Wightman function or to control possible
divergences related to the switching function; in this case,
the Wightman function only depends on the proper time
between points, W (u, u−s) = W (s), as discussed in [16].
The response function can then be written as

F (E) = lim
ε→0

∫ ∞
−∞

du

∫ ∞
−∞

ds e−iEsWε(s), (4)

and taking the time derivative (i.e. dropping the u inte-
gral) yields the transition rate

Ḟ (E) = lim
ε→0

∫ ∞
−∞

ds e−iEsWε(s). (5)

More precisely, we have taken the limit in which the de-
tector is on for an infinite time; this removes any transient
effects due to switching that may induce additional de-
tector excitation [14]. However, there may still be other
features inherent in the response function which contain
information about the particular spacetime background,
as we will see.

Our efforts focus first on finding the solutions to the
Klein-Gordon equation in Schwarzschild-anti-de Sitter
space, which will allow us to evaluate the Wightman
function, and second on using this to calculate the re-
sponse of the detector. We then explore some possible
interpretations of the numerical results.

II. CALCULATING THE TRANSITION RATE

A. Basic equations

The spacetime known as “Schwarzschild-AdS”, or sim-
ply SAdS, has the following metric:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2, (6)

where the lapse function f(r) is given by

f(r) =
r2

R2
+ 1− r0

r
, (7)

R =
√
−3/Λ is the AdS characteristic length, and

r0 = 2M . Since, without losing generality, we are free

to choose an arbitrary value for one of the length scales
(equivalent to assuming some system of units), for con-
venience we set R = 1.

This spacetime has a few notable features. Like
AdS, its ‘conformal infinity’ is timelike; that is, sig-
nals can propagate from spatial infinity to any point in
Schwarzschild-AdS in finite coordinate time (i.e. finite
t). Like Schwarzschild, it has an event horizon r+ —
namely, the (real) root of the lapse function f(r). The
domain of interest is r+ < r < ∞. Note that we can
write r0 = r+(r2+ + 1).

We can also define the tortoise coordinate, defined by
dr∗ = dr/f(r); this new parameterization reaches a finite
value as r → ∞, and r∗ → −∞ as r → r+. Since r∗ is
defined up to a constant, we choose to set r∗ = 0 at
infinity; in other words,

r∗ = −
∫ ∞
r

dr′

f(r′)
. (8)

In terms of this tortoise coordinate, we can write the
(time-independent) one-dimensional Klein-Gordon equa-
tion as

[∂2r∗ + ω2 − Ṽ (r∗)]R̃ = 0, (9)

where the effective potential

Ṽ (r∗) = f(r∗)V (r∗) = f(r)

(
l(l + 1)

r2
+
r0
r3

)
vanishes near the horizon. In the particular case we con-
sider here, that of the massless conformal scalar, the ef-
fective potential has a finite value near infinity as well;
specifically, Ṽ (r → ∞) = l(l + 1). This implies that
much like the case of the Schwarzschild black hole in
flat space, there are modes defined for r < ∞ where
Φ ∼ r−1e−iω(t±r

∗), which we will call ‘in’ and ‘out’ in
analogy.

We also define the null coordinates, u = t − r∗ and
v = t+ r∗, and the Kruskal coordinates

U = − exp(−2πTHu) (10)

V = exp(2πTHv) (11)

where

TH =
1

4π
f ′(r+)

=
3r2+ + 1

4πr+
(12)

is the usual Hawking temperature.
Most papers analyzing SAdS space have focused on

minimally coupled fields; see [17] for a recent review.
This type of coupling generalizes quite readily to massive
fields and fields of non-zero spin, e.g. gravitational waves.
However, in this paper, we will instead focus on the con-
formally coupled massless scalar field. The conformal
coupling was chosen because it most closely mimics the
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more astrophysically relevant case of the Schwarzschild
black hole in flat space—namely, that the effective po-
tential takes a finite value at infinity (if not necessarily
zero), and that the effective potential always has a max-
imum outside the horizon.

Since the conformal infinity of an asymptotically anti-
de Sitter space is timelike, we must specify a boundary
condition at infinity. We will take the usual Dirichlet
boundary conditions—that is, where mode functions van-
ish at infinity. However, it is easier to start by analyzing
the usual incoming and outgoing modes as if conformal
infinity were an actual boundary, and then find a lin-
ear superposition satisfying the physical boundary con-
ditions. In these coordinates, if we write out our modes
as [7]

winωlm = (4πω)−1/2r−1ψinωl(r)Ylm(θ, φ)e−iω(t+r
∗)

woutωlm = (4πω)−1/2r−1ψoutωl (r)Ylm(θ, φ)e−iω(t−r
∗), (13)

our radial equations then become

f(r)
d2

dr2
ψinωl(r) + [f ′(r)− 2iω]

d

dr
ψinωl(r)

−V (r)ψinωl(r) = 0 (14)

f(r)
d2

dr2
ψoutωl (r) + [f ′(r) + 2iω]

d

dr
ψoutωl (r)

−V (r)ψoutωl (r) = 0, (15)

where

V (r) =
l(l + 1)

r2
+
r0
r3

(16)

for a conformal coupling. Note that ψ(r) approaches a
finite value near the horizon; for simplicity we will set
ψ(r+) = 1.

We make a note here regarding the effective potential,
Ṽ (r) = f(r)V (r). In contrast to the minimally coupled
case, here the effective potential goes to a finite value
as r → ∞. Furthermore, this effective potential always
has a maximum above the event horizon for any r+; this
is in contrast to the minimally coupled case, where the
effective potential for a sufficiently large black hole will
not have a local maximum above the event horizon [17].
Therefore, we do not expect to see phenomena related to
the phase transition.

As stated earlier, precisely because we want spatial
infinity to be reflecting, these ‘in’ and ‘out’ modes are
not typically valid solutions. They do behave correctly
everywhere except spatial infinity; if we were to apply
a conformal transformation to the interval of interest to
make it finite, the in and out modes would simply take
the wrong value at the point corresponding to spatial
infinity. Nevertheless, we can find a linear superposition
of them which satisfies the boundary condition. Notice
that for real ω, the equations governing the in and out
modes are complex conjugates; so, in that case ψoutωl =
ψin∗ωl .

We now characterize the physical modes wωlm in terms
of the in and out modes defined in (13). For ω positive,
the ψ parts of the in and out modes are complex conju-
gates. Hence, if we can determine θ0 = ph[ψinωl(r →∞)],
then we know that a solution to the Klein-Gordon equa-
tion satisfying the boundary conditions is

wωlm = (4πω)−1/2r−1e−iωtYlm(θ, φ)

× (−i)
(
e−iθ0e−iωr

∗
ψinωl − eiθ0eiωr

∗
ψoutωl

)
(17)

or simply

wωlm = (4πω)−1/2r−1e−iωtYlm(θ, φ)

× 2Im
(
e−i(θ0+ωr

∗)ψinωl

)
. (18)

For brevity, let us define the time-independent radial part
of the mode as

Rωl(r) = r−12Im
(
e−i(θ0+ωr

∗)ψinωl

)
. (19)

The reason we included the 2 is so that R̃ωl = rRωl
satisfies the Schrödinger normalization,∫ 0

−∞
dr∗R̃ωlR̃

∗
ω′l = 2πδ(ω − ω′). (20)

Note that (19) immediately implies that the time-
independent radial part of the mode is real.

A cursory examination of the equations governing the
metric and the modes suggests that rescaling to a dif-
ferent value of R is fairly simple, with a couple caveats.
Time and space coordinates scale in the obvious way:
t → σt, r → σr. As one might expect, temperature,
energy, and transition rate scale inversely with σ, i.e.
TH → TH/σ, ω → ω/σ and Ḟ (E) → Ḟ (E/σ)/σ. There-
fore, E/TH is invariant under scaling, as is the product of

Ḟ and any of the three lengths r+, r0, and R. Notably,
f(r) → f(σr); the lapse function at equivalent radii is

scale-invariant. In this paper, we will use ωR and RḞ
to refer to the dimensionless energy and transition rate
respectively.

B. The Hartle-Hawking-like vacuum

As usual, we can write the field operator as

φ(x) =

∞∑
l=0

∞∑
m=0

∫ ∞
0

dω
(
aωlmwωlm + a†ωlmw

∗
ωlm

)
. (21)

In order to calculate the response function, we then need
to calculate how the Wightman function depends on the
modes. The derivation works in a similar way as in the
asymptotically flat Schwarzschild case; the details can be
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found in Appendix A. The result is that

W (x, x′) =

∞∑
l=0

l∑
m=−l

∫ ∞
0

dω

2 sinh(ω/2TH)[
eω/2THwωlm(x)w∗ωlm(x′)

+e−ω/2THw∗ωlm(x)wωlm(x′)
]
. (22)

We can then write the Wightman function in terms of
the radial modes defined in (19):

W (x, x′) =

∞∑
l=0

l∑
m=−l

∫ ∞
0

dω

8πω sinh(ω/2TH)

×
[
eω/2TH−iω(t−t

′)Ylm(θ, φ)Y ∗lm(θ′, φ′)Rωl(r)Rωl(r
′)

+e−ω/2TH+iω(t−t′)Y ∗lm(θ, φ)Ylm(θ′, φ′)Rωl(r)Rωl(r
′)
]
.

(23)

This expression is almost identical to that of the
Schwarzschild case (see [16])—in fact, it is identical, af-
ter substituting the appropriate TH and Rωl(r) functions.
Of course, the key difference is that we only have one
set of basis functions. Note that this expression for the
Wightman function allows us to use essentially the same
expression for the transition rate of the static detector as
in the Schwarzschild case, with the substitutions noted
above.

In the specific case of the static detector, we can sim-
plify even further. The proper time between t and t′ is
then just s =

√
f(r)(t − t′), i.e. (t − t′) = s/

√
f(r). By

spherical symmetry, it suffices to consider the case where
θ = θ′ = 0. In that case,

Ylm(θ = 0, φ) = δm,0

√
2l + 1

4π
,

and thus (the pullback to the worldline of) the Wightman
function, W (s) = W (u, u− s), may be written

W (s) =

∞∑
l=0

∫ ∞
0

(2l + 1) dω

32π2ω sinh(ω/2TH)

×
[
eω/2TH−iωs/

√
f(r)

+e−ω/2TH+iωs/
√
f(r)
]
R2
ωl(r)

=

∞∑
l=0

∫ ∞
0

(2l + 1) dω

16π2ω sinh(ω/2TH)

× cos

[
ω

(
s√
f(r)

+
i

2TH

)]
R2
ωl(r)

=
∞∑
l=0

∫ ∞
0

dω
(2l + 1)

16π2ω
R2
ωl(r)

×
[
coth(ω/2TH) cos(ωs/

√
f(r))

−i sin(ωs/
√
f(r))

]
(24)

where r is the radius at which the static detector is lo-
cated. We can then simply substitute this into (5) to
calculate the transition rate; following the derivation in
[16], this yields

Ḟ (E) =
1

2E

1

eE/Tloc − 1

∞∑
l=0

2l + 1

4π
R2
ω̃l(r), (25)

where ω̃ =
√
f(r)E and Tloc = TH/

√
f(r). Notice that

since the remaining integral in (5) evaluates to a Dirac
delta, we only need to evaluate the mode at one value of
ω for each l.

We can also consider the case where the detector is in
a circular geodesic orbit at radius r. For convenience, we
will write:

a := dt/dτ =

√
2r

2r − 3r0

b := dφ/dτ =

√
r0 + 2r3

r2(2r − 3r0)
(26)

The transition rate of a detector in a circular geodesic
orbit can then be found to be [16]

Ḟ (E) =

∞∑
l=0

l∑
m=−l

(l −m)!

(l +m)!

2l + 1

16π
|Pml (0)|2

×
(

Θ(ω−)
e2πω−

aω− sinh(2πω−)
R2
ω−l(r)

+ Θ(ω+)
e−2πω+

aω+ sinh(2πω+)
R2
ω+l(r)

)
(27)

where ω± = mb±E
a is a function of m, and Pml (x) is the

associated Legendre polynomial. Notice that, since we
must sum over a number of m proportional to l for each
l, the total number of modes evaluated is of order l2. This
is in contrast to the static case, where we only needed to
calculate one mode for every l, namely at m = 0. (While
we can take advantage of certain symmetries of Pml (0) to
shorten the calculation, the general scaling relation still
holds.)

At this point, it should be noted that Vl(r) near the
horizon, r ≈ r+, behaves like

Vl(r) ≈
1

r2
(
l(l + 1) + (r2+ + 1)

)
. (28)

This is rather problematic: It means that for large r+—
the case which is most interesting from the AdS/CFT
perspective—we will need to calculate the Wightman
function and modes to high angular momentum, of order
r+. In particular, since the circular geodesic calculation
requires O(l2) mode calculations, that calculation can
quickly become intractable. However, this is unavoidable
given the mode separation method. On the other hand,
for small r+, we will only need to worry about very small
angular momenta.
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C. The Boulware vacuum

We may also consider the vacuum in which static ob-
servers outside the horizon observe no particles; this is
known as the Boulware vacuum. The Wightman func-
tion of the Boulware vacuum is

W (x, x′) = 〈Ψ|φ(x)φ(x′) |Ψ〉

=

∞∑
l=0

l∑
m=−l

∫ ∞
0

dω

4πω

×
[
e−iω(t−t

′)Ylm(θ, φ)Y ∗lm(θ′, φ′)Rωl(r)Rωl(r
′)
]
,

(29)

while the static detector response rate is simply

Ḟ (E) = Θ(−E)
1

2|E|

∞∑
l=0

2l + 1

4π
R2
ω̃l(r), (30)

and the circular detector response is (using the quantities
defined in (26))

Ḟ (E) =
1

a

∞∑
l=0

l∑
m=−l

(l −m)!

(l +m)!

2l + 1

8πω−
|Pml (0)|2

×Θ(ω−)R2
ω−l(r) (31)

where ω− = mb−E
a as before.

Comparing the Boulware and Hartle-Hawking vacua
allows us to determine the effect of Hawking radiation,
separate from any other possible effects on the response
of the detector.

D. Numerical methods

Two independent numerical methods were used in or-
der to calculate the transition functions of the detec-
tor. One was a close adaptation of the methods used
in [1, 16]; briefly, we evaluated from initial conditions via
series solutions for the in and out modes (13) up from the
horizon, and the physical modes (19) down from infinity,
then found the phase θ0 which related the two modes
via Wronskian methods. The other is described in detail
in this section. It is similar to a previous method first
used by Horowitz and Hubeny [7] to find the quasinormal
modes of a minimally coupled scalar in Schwarzschild-
AdS; we used it to find modes of the conformally coupled
scalar.

We apply a transformation to the radial part of the
solutions to the Klein-Gordon equation, substituting x =
1/r. Letting x+ = 1/r+, we find that the in and out

radial solutions satisfy

s(x)
d2

dx2
ψinωl(x) +

tin(x)

x− x+
d

dx
ψinωl(x)

+
u(x)

(x− x+)2
ψinωl(x) = 0 (32)

s(x)
d2

dx2
ψoutωl (x) +

tout(x)

x− x+
d

dx
ψoutωl (x)

+
u(x)

(x− x+)2
ψoutωl (x) = 0 (33)

where

s(x) =
x2+ + 1

x3+
x4 +

1

x2+
x3 +

1

x+
x2 (34)

tin(x) = 3r0x
4 − 2x3 − 2x2iω (35)

tout(x) = 3r0x
4 − 2x3 + 2x2iω (36)

u(x) = (x− x+)V (x). (37)

We then expand the solutions around the horizon x+:

ψinωl(x) =

∞∑
n=0

ainn (x− x+)n (38)

ψoutωl (x) =

∞∑
n=0

aoutn (x− x+)n; (39)

the coefficients then are governed by the recurrence rela-
tions

ainn = − 1

P inn

n−1∑
k=0

[k(k − 1)sn−k + ktinn−k + un−k]aink

(40)

aoutn = − 1

P outn

n−1∑
k=0

[k(k − 1)sn−k + ktoutn−k + un−k]aoutk

(41)

where

s(x) =

4∑
n=0

sn(x− x+)n (42)

tin(x) =

4∑
n=0

tinn (x− x+)n (43)

tout(x) =

4∑
n=0

toutn (x− x+)n (44)

u(x) =

4∑
n=0

un(x− x+)n (45)

P inn = n(n− 1)s0 + ntin0 (46)

P outn = n(n− 1)s0 + ntout0 . (47)

Note that the recurrence relations (40), (41) only involve
a finite number of ak terms (five, in this case), as s(x),
t(x), and u(x) are all quartic polynomials.
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As mentioned earlier, these solutions do not satisfy the
boundary condition at infinity. Specifically, because of
the structure of (32), the expressions in (38), (39) will
diverge at x = 0. However, summing over a finite number
of terms N at x = 0 allows us to find a linear combination
of those modes which vanishes at x = 0; in other words,
we can solve for A, B such that

A

N∑
n=0

[ainn (−x+)n] +B

N∑
n=0

[aoutn (−x+)n] = 0. (48)

We can then increase N and verify that the linear com-
bination still vanishes. In the particular case where ω is
real, the in and out modes are complex conjugates, so
this must be possible; we use the approach described in
the previous section, culminating in (19).

For smaller values of ω, smaller l, and near the horizon,
the power series expression for ψinωl can be found with a
reasonable value of N . However, for larger values of ω,
larger l, and for larger radii, convergence takes a very
large number of terms; in particular, it is more efficient
to compute the values of the modes at spatial infinity
using another approach, e.g. using the power series ex-
pansion at finite distance and numerically integrating the
differential equation to spatial infinity.

Note that this method is somewhat different from the
approach taken by Horowitz and Hubeny [7]. Since they
were interested in quasinormal modes, they only consid-
ered modes that were ingoing at infinity; they then solved

for complex ω such that
∑N
n=0[ainn (−x+)n] = 0. Our ω,

on the other hand, can take any real value, and we allow
for superpositions of in and out modes.

III. NUMERICAL RESULTS

Using the previously outlined methods, we numerically
calculated the response rate of the static detector for
various values of the relevant parameters. The Wron-
skian method performed better for small r+/R, while
the Horowitz-Hubeny method was faster for larger r+/R.
Both methods were in agreement over the range of pa-
rameters where they could both be applied. As men-
tioned earlier, the appropriate expression is (25). First,
plotted in Fig. 1 is the transition rate for r+ = 0.1, r = 1,
summing from l = 0 to 4. The horizontal axis indicates
the relative detector energy gap E/Tloc and the vertical

axis indicates RḞ (E). While there are a number of dif-
ferent scales in this problem, assuming units such that
R = 1 is the simplest way to make the transition rate
dimensionless. The blue curve marked with circles in-
dicates the Hartle-Hawking vacuum response, while the
red curve with squares indicates the Boulware vacuum
response. Note that for this and the following graphs,
the markers are intended as an aid to identifying the
curves; the actual density of data points is much higher.
Convergence of the l sum can be easily verified by carry-
ing out the summation to higher l order and comparing.
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Figure 1. The total static transition rate for r+ = 0.1, r =
1. Hartle-Hawking vacuum in blue circles, Boulware in red
squares. Note Boulware transition is zero for positive E.
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Figure 2. Static transition rate contributions for r+ =
0.1, r = 1, l = 0, 1, .., 4 from top to bottom.

There are a couple of notable features in the transition
rate. First, note that for very large negative energy gap,
corresponding to an initially excited detector, the Boul-
ware and Hartle-Hawking vacuum responses are almost
identical. Second, a number of spikes are observed, both
in the Boulware and Hartle-Hawking vacuum response;
in fact, the responses of both vacua are quite similar in
the region of the plot where spikes occur. There do not
appear to be any other interesting features in the regime
where the different vacua produce different results: there-
fore we will henceforth focus on the Hartle-Hawking re-
sponse.

Next, there are also a number of ‘dips’ in the response.
This has a simple explanation: since the modes are real,
there must be some energy for which a zero of a mode
crosses the location of the detector. Therefore, if we plot-
ted the contributions of different l individually, we would
see the transition rate go to zero. Indeed, this is visible
in Fig. 2, where l = 0 is the top blue line with circles,
l = 1 is the next line down in red with squares, and so
on to l = 4.

Recall that the transition rate for detector gap E
only depends on the modes at a particular energy ω̃ =
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Figure 3. . Transition rate for different r. The static transi-
tion rate contribution for r+ = 0.1, l = 2, r = 1 in blue circles,
r = 1.5 in red squares.
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Figure 4. : Static transition rate contributions for r+ = 1,
r = 10, l = 0, 1, ..., 10 from top to bottom.

(E/Tloc)TH . Therefore, the best way to compare transi-
tion rates at two different radii is to plot both of them
against E/Tloc as we have done in Fig. 3, for l = 2;
r = 1 is in blue circles, r = 1.5 in red squares. Notice
how the peaks occur at the same locations, even as the
zeroes shift. This suggests that our explanation for the
zeroes is correct; the peaks will be addressed later.

Next, we plot the contributions of l = 0, 1, 2, ..., 10 for
r+ = 1, r = 10 in Fig. 4. Note that r/r+ = 10 is kept
constant; using this scaling allows us to compare situ-
ations with different black hole sizes, without worrying
about scaling the detector into the horizon. In Fig. 4
once again l = 0 is the top line, l = 1 is the next line
down, and so on.

Notice that the larger black hole appears to allow con-
tributions from higher l modes. This makes sense, since
we noted that near the horizon (and thus near the peak
of the effective potential), the dependence of the poten-
tial on l decreases as r+ increases. At low energies, as
we would expect, the contribution from l = 0 is largest,
followed by l = 1, and so forth. However, at higher en-
ergies, it appears as though the contributions for various
l are comparable, up to some maximum. Of course, this
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Figure 5. The static transition rate contributions for r+ =
0.01, r = 0.1, l = 0, 1, 2 from top to bottom.

means that if we wish to calculate the total transition
rate for E/Tloc > 30, we will need to consider higher l
modes. This phenomenon is also visible in Fig. 2, but
to a lesser extent; while the presence of the peaks con-
fuses things somewhat, the l = 2 contribution does start
being smaller than the l = 0 contribution at low energy,
becoming comparable at larger energy.

The next graph, Fig. 5, shows the contributions of
l = 0, 1, 2 for r+ = 0.01, r = 0.1, with l = 0 at the top
in blue circles, l = 1 below in red squares, and l = 2 at
the bottom in yellow diamonds. First, the suppression of
higher l modes at smaller r+ is clearly visible. Second,
the ‘spikiness’ of the graph appears to have increased
from the r+ = 0.1 case—not only are the peaks at low
energy sharper, but the peaks appear to be present at
higher energies than in the r+ = 0.1 case.

However, the graph is in some ways misleading. The
higher l modes are much, much spikier than the lower
l modes: the barely visible spike at l = 2, E/Tloc ∼
1/2 actually goes up to almost 109, although we require
more than ten digits of precision in E/Tloc to find the
maximum of the peak properly. Unfortunately using this
level of precision for the graph is not feasible, so the
maximum heights of the peaks shown in the graphs are
not completely accurate. The situation is comparable to
that of Fig 2, in which higher l modes can dominate at
the peaks, but the peaks themselves are far thinner here.

In Fig. 5 our choice of scale for the horizontal axis
appears to have placed the peaks in approximately the
same places as in the r+ = 0.1 case, Fig. 2; on the
other hand, the exponential decrease of the transition
rate with respect to increasing E appears to be more
gradual. In other words, the relationship between the
scale of the exponential decrease and the scale of the
peaks changes as we manipulate the ratio of the black
hole size to the AdS length (r+/R). Going in the opposite
direction, for r+ = 1, näıvely applying scaling suggests
that a peak should appear at about E/Tloc = 20; no peak
is present, suggesting that the exponential decrease has
overwhelmed the peaks entirely.

The next graph, Fig. 6, shows the contributions of
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Figure 6. The static transition rate contribution of l = 0 for
r+ = 0.002, r = 0.02 at higher energy.
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Figure 7. The static transition rate contribution of l = 2 for
r+ = 0.002, r = 0.02 at higher energy.

l = 0 for r+ = 0.002, r = 0.02, at a higher energy. It
demonstrates the persistence of the peaks at higher ener-
gies for smaller black holes, as we previously asserted—
although the peaks have broadened significantly. The
variation in the height of the spikes is actually an inter-
action between the troughs and peaks - their spacings are
slightly different, so the transition rate is smaller in the
region where the troughs and peaks line up.

In Fig. 7, the contribution of l = 2 for r+ = 0.002,
r = 0.02 is plotted at very high relative energy. How-
ever, despite the high energies involved, it is quite clear
that the sharpness and height of the peaks is still very
significant. As expected, the peaks are sharper than in
the l = 0 case, Fig. 6. Also notable is that once again,
the absolute height of the peaks is well above that of the
peaks in Fig. 6; any computation at this energy will re-
quire consideration of l = 2, and likely much higher l as
well.

The observations in the previous paragraphs can be
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Figure 8. Total circular geodesic transition rate contribu-
tions for r+ = 0.1, r = 1. Hartle-Hawking vacuum in blue
circles, Boulware vacuum in red squares

summarized as follows: In general, it appears that as
|E| is increased, the spikes visibly become shorter and
broader, to the point where the peaks are not apparent
at all; when r+ is decreased, and as l increases, the spikes
become taller and thinner, and persist at higher |E|. This
is probably due to a competition between the exponen-
tial trend of the transition rate and the sharpness of the
peaks: if r+ is large enough, the exponential trend dom-
inates, and the peaks cannot be seen. The location of
the peaks appears to be on a different energy scale from
the exponential decay; the relationship between these two
scales changes as we change r+/R.

Our previous observations also seem to suggest a nec-
essary precaution: when r+/R is very small, the peaks
at high l become quite extreme. Therefore, in order to
properly represent the sum over all l at some energy, it
appears that we must sum over all l which have peaks
at lower energies, since we saw earlier that, under cer-
tain circumstances, high l mode peaks can dominate over
lower l modes.

We also briefly discuss the circular geodesic case. The
transition rate is illustrated in Fig. 8 for r+ = 0.1, r = 1,
summing to l = 4, with the Boulware vacuum in red,
and the Hartle-Hawking vacuum in blue. Once again, for
almost all E < 0, the two are almost exactly the same.
Unlike the static case, however, the Boulware transition
is nonzero for some E > 0. We will discuss it more later.

One notable feature is that the Hartle-Hawking transi-
tion appears “shifted” rightwards compared to the static
graphs; it is no longer symmetric about E = 0, but in-
stead about some positive energy. This is expected, since
the detector is accelerating relative to static observers.
Plotting the component l individually in Fig. 9 helps
clarify what is going on here; once again, we have l = 0
in blue circles on the top, l = 1 in red squares below, and
so on to l = 4.

At this point, it is apparent that each l appears more
shifted than the last; the “centre” of each curve lies
slightly farther to the right as l increases. The shift
is such that each l dominates for a particular range
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Figure 9. Hartle-Hawking circular geodesic transition rate
contributions for r+ = 0.1, r = 1, l = 0, 1, .., 4 from top to
bottom.

of energies. The explanation lies in the definition of
ω− = (mb−E)/a: for any positive E there will be some
m such that ω− takes its smallest positive value, and thus
dominates; but l ≥ |m|, and so this particular m can only
be achieved for sufficiently large l. This is also why the
Boulware transition rate appears to go to zero at some fi-
nite E: If we continued summation to higher l, we would
see the transition rate stay nonzero at higher E. How-
ever, since the ω− term occurs in both the Boulware and
Hartle-Hawking responses, the nonzero transition rate at
positive E should not be interpreted as a feature of the
Hawking radiation; rather, it is a result of the circular
motion.

It is also now clear why no peaks were visible for E > 0.
While a small peak is visible in the l = 0 transition rate,
for instance, the strong exponential decay suppresses it.
In fact, the suppression is strong enough that the peak is
‘hidden’ by the higher l modes; at the energy where the
l = 0 peak is located, both the l = 1 and l = 2 contri-
butions are greater in magnitude, and their exponential
trend masks the peak further.

For comparison, we include Fig. 10 for the Boulware
transition rate. Note that the ‘step’ in the transition rate
at zero seen in Fig. 8 is due solely to the l = 0 contri-
bution; the higher l modes only vanish at higher energy.
Specifically, each l contribution vanishes for E = lb, since
this is the energy such that the highest ω− becomes zero.
This also explains the “steps” visible in the positive en-
ergy transition rate; each step simply corresponds to an
l.

Besides that, however, the graphs appear to show pre-
cisely the same features as observed in the static detector
scenario, e.g. the characteristic peaks. Therefore, we will
focus our analysis on the previous case.

IV. ANALYSIS

We now discuss the peaks present in the static detector
transition rate. At an abstract level, the spikes are re-
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Figure 10. Boulware circular geodesic transition rate contri-
butions for r+ = 0.1, r = 1, l = 0, 1, .., 4 from top to bottom.

flective of resonances of the Klein-Gordon field over this
spacetime—in other words, spikes occur when the fre-
quency approaches a quasinormal frequency. While the
literature on the analysis of quasi-normal modes (QNMs)
is rich, the particular case of conformally coupled scalar
fields on SAdS has not been fully explored at the present
time—specifically, a table of quasinormal frequencies has
not yet been calculated for this particular case. There-
fore, we will use an alternate analysis.

Since the Klein-Gordon equations are equivalent to a
scattering problem in one dimension, in tortoise coordi-
nates, it makes sense to consider what happens if we have
an incident wave from infinity with coefficient 1—that is,
consider the following (approximate) solution to (9):

R̃scatterωl =

{
1√
ω′

(
e−iω

′r∗ +Aeiω
′r∗
)

r →∞
1√
ω
Be−iωr

∗
r → r+

(49)

where ω′2 = ω2 − l(l + 1) is the squared wavenumber

“at infinity”, since Ṽ does not vanish at infinity. We
assume ω′2 is positive, i.e. ω2 > l(l + 1). (While the
regime ω2 < l(l + 1) may a priori bear some interesting
phenomena, empirically this does not appear to be the
case: there is no particular structure at energies below
that of the first peak.) This solution to the Klein-Gordon

equation is simply the incoming mode R̃inωl from before,
up to a constant coefficient.

There is a subtlety, however: since r∗ is finite when
r is infinite, the approximation requires that ω′ is suf-
ficiently large that the potential does not change much
over a wavelength. Again, in practice this assumption
generally appears to be justified. More precisely, we are
using a Wentzel-Kramers-Brillouin (WKB) approxima-

tion; for wavenumber k(r∗) =
√
ω2 − Ṽ (r), the validity

condition is that |k′(r∗)|/k2(r∗) � 1/2π, which is valid
for small black holes and far from the black hole. For
instance, as r∗ → 0, |k′(r∗)|/k2(r∗)→ r0/2ω

′3.
Then, since ψ(r+) = 1, we must have

R̃inωl =

√
ω

B
R̃scatterωl , (50)



10

which in turn implies that

R̃inωl =

{√
ω
ω′

1
B

(
e−iω

′r∗ +Aeiω
′r∗
)

r →∞
e−iωr

∗
r → r+

(51)

Now, recall how we used this to get a mode satisfying
the boundary condition: we set R̃ωl = 2 Im[e−iθ0R̃inωl]. In

this case, we can see that θ0 = Arg[A+1
B ]. So,

R̃ωl =

{√
ω
ω′

2
|B| Im

(
|A+1|
A+1

(
e−iω

′r∗ +Aeiω
′r∗
))

r →∞
2 Im[e−i(ωr

∗+θ0)] r → r+
(52)

We can clarify the situation by rewriting in terms of
trigonometric functions. Specifically, near infinity, the
physical modes must look like

R̃ωl →
√
ω

ω′
2

|B|
Im

(
|A+ 1|
A+ 1

(
A+ 1

2
cos(ω′r∗)

+i
A− 1

2
sin(ω′r∗)

))
=

√
ω

ω′
|A+ 1|
|B|

Im

(
cos(ω′r∗) + i

A− 1

A+ 1
sin(ω′r∗)

)
=

√
ω

ω′
|A+ 1|
|B|

Re

(
A− 1

A+ 1
sin(ω′r∗)

)
(53)

The meaning of the last line is clarified if we use the

identity |A+1|
A+1 = (A+1)∗

|A+1| , which results in

R̃ωl →
√
ω

ω′
1

|B||A+ 1|
Re ((A− 1)(A+ 1)∗ sin(ω′r∗))

=

√
ω

ω′
1

|B||A+ 1|
Re ((AA∗ +A−A∗ − 1) sin(ω′r∗))

=

√
ω

ω′
|A|2 − 1

|B||A+ 1|
sin(ω′r∗)

= −
√
ω

ω′
|B|
|A+ 1|

sin(ω′r∗) (54)

where the last equation follows from the fact that |A|2 +
|B|2 = 1 in our approximation. (Of course, near the

horizon, R̃ωl → −2 sin(ωr∗ + θ0), which we previously
demanded in order to satisfy normalization.)

An explanation for the peaks now presents itself: we
must experience a peak when the reflection coefficient A
approaches −1, i.e. the phase of A approaches π. This
corresponds to having R̃inωl(r → ∞) approach 0 — in
other words, it is much like having the incoming (at the
horizon) mode satisfy the boundary condition at infinity.
Of course, those boundary conditions are precisely those
satisfied by the quasinormal modes, so we have come full
circle.

The previous derivation has a small caveat: we relied
on the WKB approximation to determine the behaviour
of the mode near infinity. However, the validity condition
typically is not satisfied at the particular r of the detector

and the energies of the peaks shown in the graphs. We
can relax the validity condition by allowing the amplitude
to change with r∗, which corresponds to taking a higher
order WKB approximation; in that case, we would see
that the amplitude smoothly interpolates from 2 near the
horizon to a large value at infinity, so a large amplitude at
infinity indicates a large amplitude at any intermediate
distance, and thus a peak in the detector transition rate.

Besides avoiding the invocation of QNMs, the anal-
ysis above additionally allows us to make qualitative
predictions regarding the peaks. For instance, assum-
ing the phase of A changes much faster than its mag-
nitude (which appears to be the case when r+ is suffi-
ciently small), the local maxima of the coefficient C =
|B|/|A+ 1| in (54) occur when A is negative real, and
are

C =
|B|

1− |A|
=

√
1− |A|2
1− |A|

,

while the local minima occur when A is positive real, and
are

C =
|B|

1 + |A|
=

√
1− |A|2
1 + |A|

.

The maxima and minima are both 1 when |A| = 0;
as |A| → 1, the maxima monotonically increase towards
infinity, while the minima monotonically approach zero.
Since we expect |A| → 0 as ω2 → ∞, peakiness de-
creases as energy increases; conversely, as energy de-
creases, peakiness must increase. Of course, there is a
peak of lowest energy, i.e. a lowest energy QNM, so there
will not be an infinite sequence of higher and higher peaks
as ω2 → 0. Additionally, the fact that l corresponds to a
higher effective potential suggests that as l increases, the
real part of the frequency of the lowest-lying QNM will
also increase—in other words, it suggests that the peaks
will occur at higher energies. The exact relationship be-
tween A and ω, however, must be calculated.

As an aside, if we translate the above predictions into
the language of QNMs, we are essentially predicting that
as the real part of the QNM increases in magnitude, the
imaginary part also increases in magnitude; and that as l
increases, so does the real part of the QNM. This agrees
with the behaviour of QNMs in SAdS for other couplings
(e.g. minimal) noted in the literature (see [17] for a thor-
ough survey).

We may also compare the peaks found here to the more
familiar case of normal modes in AdS. Following the ap-
proach found in [18], using effective mass µ2 = −2R2 to
yield a conformal coupling, we find that the normal mode
frequencies corresponding to our coupling and boundary
conditions are

ωR = 2 + l + 2n. (55)

Notably, this is quite similar to the frequencies of the
minimally coupled modes, ωR = 3 + l + 2n.
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Figure 11. Frequency corresponding to the peak of the static
transition rate with respect to black hole size, for small black
holes (thick dotted line). A quadratic fit (red solid line) has
been overlaid on the peak frequencies.

In order to translate the peak detector energies E into
mode energies, recall that ω̃ =

√
f(r)E; therefore,

E/Tloc = ω̃/TH (56)

Using this equation, we can observe from the graphs that
the peaks converge to the AdS normal conformal modes
as r+ → 0: for instance, when r+ = 0.01, TH = 7.96, so
the first peak (l = 0, n = 0) corresponds to a mode fre-
quency of about 2.0. This makes sense—the smaller the
black hole is, the smaller its “influence” over the volume
of AdS.

In order to verify the convergence to the AdS normal
mode limit, we plotted the location (i.e. the correspond-
ing mode frequency) of the first peak in the l = 0 tran-
sition rate, corresponding to n = 0, with respect to the
black hole size. The results are plotted in Fig. 11: simi-
larly to the minimally coupled case mentioned in [17], the
trend is linear as r+ → 0, with a very slight next-order
(i.e. quadratic) term visible; a quadratic fit has been
plotted on the graph. This strongly suggests that the
frequency of the SAdS QNMs is tied to the AdS scale,
rather than the Schwarzschild scale, at least for small
black holes.

However, the analogue of the limit r+ → ∞ is rather
less clear. First, while not shown in the graph in Fig.
11, when r+ is sufficiently large, the peak disappears;
it is simply suppressed by the larger-scale trend of ex-
ponential decay in the transition rate. Even before then,
some behaviour is visible that departs from the quadratic
fit done on the previous graph, as we can see in Fig.
12; there is an increase in peak frequency over the gen-
eral trend above the quadratic fit done in the previous
case. Also, the peak in the transition rate disappears
completely just beyond the end of the region plotted. It
is likely that the reason for the deflection is that the peak
is being “shifted” by the exponential term in the transi-
tion rate; in that case, the true location of the QNM no
longer corresponds to the peak of the transition rate.

Physically, as r+ is increased, the horizon moves ‘to-
wards’ the SAdS conformal boundary; or, if we choose

ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ
æ
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Figure 12. Frequency corresponding to the peak of the static
transition rate with respect to black hole size, for larger black
holes (thick dotted line). The quadratic fit displayed in Fig.
11 (red solid line) is also plotted here.

to keep the horizon radius constant and scale the AdS
radius instead, the cosmological constant becomes larger
and larger in magnitude, and the conformal boundary
moves towards the horizon. This limit is quite unlike
the Schwarzschild black hole in flat space. It is not sim-
ply a matter of placing a reflecting sphere very near the
Schwarzschild black hole in flat space, either—since the
effective potential always has a peak within SAdS, any
reflecting sphere would have to stay outside the peak of
the effective potential in the Schwarzschild-flat case. In
fact, this limit is also unlike the minimally coupled case:
in that case, a sufficiently large SAdS black hole has no
local maximum in the effective potential outside the hori-
zon (see e.g. [17]), while our conformally coupled case
always does. In the end, it is probably better to consider
the limit of a large black hole as a different physical situ-
ation entirely; the QNMs in that case may not converge
to any more familiar form, and in any case may not be
of any relevance to the transition rate.

V. CONCLUSION AND OUTLOOK

We have computed, for the four-dimensional
Schwarzschild anti-de Sitter spacetime, the response of
an Unruh-DeWitt detector in static and circular geodesic
trajectories to a conformally coupled scalar field. The
response function bears some sharp peaks with respect
to the detector energy gap; we have demonstrated that
these spikes are due to quasinormal mode resonances.
There are also some troughs in the graph; when the
contributions are separated by l, it becomes clear that
this corresponds to when a zero of the mode function
crosses the location of the detector.

We have also attempted to characterize the dependence
of the location of the peaks on the radius of the black
hole in AdS space. Qualitatively, the spikes are only vis-
ible when the black hole is much smaller than the AdS
length; as the black hole’s size is decreased, the spikes
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appear sharper and higher. One might have expected a
transition between small, intermediate, and large black
holes, in analogy with the minimally coupled case. How-
ever, this type of transition cannot occur in this case:
the effective potential of the conformally coupled scalar
field always has a maximum at finite distance, and as
a result, no phenomena related to the phase transition
are apparent in the conformally coupled scalar field. Our
computation of the peak frequencies at various black hole
sizes confirms the convergence of the peak frequency as
r+ → 0 to the AdS normal frequencies; the disappearance
of peaks at higher black hole size appears to be mainly
due to the dominance of the exponential decay term over
the peak, rather than any sort of phase transition of the
spacetime as a whole.

We would like to note that the calculation of the
static and circular geodesic transition rates is a first step
towards characterizing the response of the detector to
Hawking radiation on more general trajectories, e.g. ra-
dial geodesic infall. Remarkably, the Unruh-Dewitt de-
tector formalism used here can also be applied to even
more general physical scenarios, such as calculating the
evolution of the entanglement of two detectors above the
black hole, a calculation that would be relevant for the
study of the dynamics of correlations and information
near black hole horizons. The usage of these methods
in these scenarios may shed light on some of the central
mysteries of the black hole, e.g. the question of what
happens to information lost beyond the horizon.
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Appendix A: Derivation of the Hartle-Hawking
Wightman Function

The Hartle-Hawking vacuum can be constructed by
computing the Bogoliubov coefficients of the external
modes with respect to the Kruskal modes [19]. While the
Dirichlet boundary condition presents a slight complica-
tion, the derivation proceeds much like the Schwarzschild
case.

In this particular case, we have what is essentially a re-
flecting boundary at infinity, and so we only have one ba-
sis of modes on each exterior, rather than Schwarzschild’s
two; the situation is analogous to that of the black hole
in a reflecting boundary analyzed in [20]. Consider the
mode given in (17):

wωlm = (4πω)−1/2r−1e−iωtYlm(θ, φ)

(−i)
(
e−iθ0e−iωr

∗
ψinωl − eiθ0eiωr

∗
ψoutωl

)
. (A1)

It fulfils the boundary condition at infinity, and is a pos-
itive frequency superposition of in and out modes. We
can express it in terms of u, v as

wωlm = (4πω)−1/2r−1Ylm(θ, φ)

(−i)
(
e−iθ0e−iωvψinωl − eiθ0e−iωuψoutωl

)
. (A2)

Next, we consider the behaviour of these physical
modes inside the black hole. Rewriting in terms of U, V ,
we get

wωlm = (4πω)−1/2r−1Ylm(θ, φ)

(−i)
(
e−iθ0V

− iω
2πTH ψinωl − eiθ0(−U)

iω
2πTH ψoutωl

)
.

(A3)

We then analytically continue to the parallel exterior of
the black hole, crossing the singularities at UV = 0 by
analytic continuation in the lower half-plane in both U
and V . Note that the part involving ψin is regular across
U = 0 and the part involving ψout is regular across V =
0. The rest of the derivation follows quite similarly to
the Schwarzschild case [21]: we compute the Bogoliubov
coefficients of the physical mode relative to the Kruskal
modes and find

〈Ψ| a†ωlmaωlm |Ψ〉 =
1

eω/TH − 1
, (A4)

〈Ψ| aωlma†ωlm |Ψ〉 =
1

1− e−ω/TH
, (A5)

where we write the annihilator of the usual physical mode
as aωlm, our state |Ψ〉 = |0K〉 is the Hartle-Hawking vac-
uum (i.e. the Kruskal vacuum), and all other operator
combinations vanish. Note that this is a Bose-Einstein
distribution, as expected [22].

Using the field operator in (21) and these operator re-
lations, we arrive at our final result,

W (x, x′) = 〈Ψ|φ(x)φ(x′) |Ψ〉

=

∞∑
l=0

l∑
m=−l

∫ ∞
0

dω[
wωlm(x)w∗ωlm(x′)

1− e−ω/TH
+
w∗ωlm(x)wωlm(x′)

eω/TH − 1

]
=

∞∑
l=0

l∑
m=−l

∫ ∞
0

dω

2 sinh(ω/2TH)[
eω/2THwωlm(x)w∗ωlm(x′)

+e−ω/2THw∗ωlm(x)wωlm(x′)
]
. (A6)
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