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ABSTRACT 10 

A technical and economic feasibility study of multiple energy piles (EPs) for a ground-coupled heat pump (GCHP) system is 11 

presented in this paper. The GCHP system energy performance and life-cycle cost (LCC) are evaluated, it is found that the 12 

system energy output (heating and cooling) could meet a domestic building comfortable environment requirement with the 13 

annual average COP of 3.63 and EER of 4.62. The LCC evaluation indicates that the system net present value (NPV) is 14 

approximately £26,095 at the market discount rate of 8.75% for a 20-year operating period. Moreover, the payback period of the 15 

GCHP system is approximately 4.31 years, which is sensitive to the main parameters including electricity price, capital 16 

investment and energy generation. Furthermore, the low discount rate and high energy generation are beneficial to the GCHP 17 

system with the high NPV and cash flows. The capital price of the system should be regulated to a lower level for the larger 18 

market potential.  19 
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1. Introduction 23 

In recent years the dramatic concerns about climate change by using fossil fuels, and their accompanying costs, have driven 24 

governments, companies and consumers towards renewable energy resources, the European Parliament directive 2010/31/EU [1] 25 

on building energy performance has been adopted to accelerate renewable energy application in building sector. Currently, there 26 

are more than 160 million buildings over the whole of Europe which consume approximately 40% of the primary energy for 27 

                                                                 
 Corresponding author. Tel: +44-115-8466141 Fax: +44-115-951315 

  E-mail address: jie.zhu@nottingham.ac.uk 

mailto:jie.zhu@nottingham.ac.uk


2 

 

heating, cooling and electricity [2, 3]. Decreasing the building sector primary energy consumption will make a substantial 28 

contribution towards achieving the EU’s 2020, the UK’s 2050 and other international CO2 emission targets. Therefore, renewable 29 

energy technologies become more prevalent and are widely used in energy-efficient and cost-effective buildings. 30 

1.1 Energy pile (EP) technology 31 

One of the prevalent renewable energy sources is shallow geothermal energy, which can be used to fulfil building heating and 32 

cooling needs by ground-coupled heat pump (GCHP) system. A typical GCHP system includes three essential components: (i) 33 

a heat pump, (ii) a ground heat exchanger (GHE), and (iii) a piping network. In heating season, soil is regarded as a heat source 34 

for the GCHP system while in cooling season, it is treated as a heat sink. In terms of most regions of Europe, the seasonal soil 35 

temperature is relatively stabilized with ranging from 10 °C to 15 °C underneath a depth of 10-15 m, symbolizing good condition 36 

for heat extracted and rejected [4]. Due to the requirement of large land area for the horizontal loop and high expense for the 37 

vertical loop, the GHE pipes can be mounted inside building structural foundation elements referred as energy pile (EP) [5, 6] 38 

as presented in Fig.1. 39 

 40 

Fig.1. The schematic diagram of EPs foundation  41 

The EP primary advantage is its dual functions as heat exchanger and building structural element. Meanwhile, concrete is utilized 42 

as an ideal heat transfer medium for heat transfer because of its high thermal energy storage capacity and thermal conductivity 43 

[7, 8]. It is found that the GCHP system with EPs can achieve energy-saving of approximately 75% in comparison to the 44 

traditional air conditioning system [9-13]. In the past decades, there are several EP systems mounted in Europe, particularly in 45 

United Kingdom, Germany, Switzerland and Austria [14]. Some case studies have been carried out including Zurich airport in 46 

Germany [15], international solar centre in Berlin [16], multi-purpose hall in Austria [17] and Keble College in Oxford [18]. In 47 

excess of three hundred foundation EPs have been installed at Dock Midfield Zurich airport [15], and the system performance 48 
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evaluation reveals that about 85% of the annual heating requirement and 100% of the annual cooling need are covered by the 49 

system. International solar centre in Berlin adopted 200 EPs to cover 20% of heating and 100% of cooling requirements [16]. 50 

320 EPs with 18 m length were installed in a multi-purpose hall with a capacity of 8,000 people in Austria for space heating and 51 

cooling, the installed system could save natural gas of 85,000 m3 per annum, which is equivalent to a reduction of CO2 emission 52 

of 73 tons [17]. One of the largest projects is at the Keble College Oxford, which is also the first EP structure in the UK, 53 

established in 2001 [18]. Since then, the number of mounted EPs in the UK has promptly increased, with almost 4,600 EPs 54 

(cumulative) until 2010 [19].  55 

Recently, the performance improvement of the GCHP system with EPs has received more attentions, owing to the fact that it is 56 

one of the most effective measures for building air conditioning [20], therefore, some research works [21-24] have been 57 

implemented to study its heat transfer features. Hamada et al. [21] analysed the performance of an EP unit, and found that the 58 

unit makes up about 90% of building thermal energy requirement as well as the average heating COP is 3.9. Darkwa et al. [22] 59 

investigated a single EP performance during the long-term operating period, and concluded that the annual average thermal 60 

energy rejected into ground is about 4.5 times higher than the amount extracted. Kim et al. [23] utilized the TRNSYS software 61 

to evaluate the system performance of a GCHP with EPs, and obtained that the COP values can be increased by 25.2% and 15.1% 62 

under heating and cooling modes, respectively. Capozza et al. [24] compared the performance characteristics between a hybrid 63 

GCHP with a heat storage bath and a pure one, and discovered that the average COP of the hybrid system is approximately 7.2% 64 

higher than that of the pure one at the optimum running circumstance.  65 

1.2 Economic evaluation 66 

Due to their merits of the GCHP system with EPs, some studies [25-33] focus on the techno-economic assessment for various 67 

EPs categories in different regions. Most of them assess the system energy performance by various approaches, and then analyse 68 

and predict financial benefits based on different economic indicators, such as life cycle cost (LCC) [27-34], Monte Carlo method 69 

[32], Bin method [33], life cycle assessment (LCA) [35-37], discounted cash flow analysis (DCFA) [38], discounted payback 70 

period (DPB) [28], and simple payback period (SPB) [27,30]. According to these research results, it can be found for the GCHP 71 

system with EPs that: 1) its net present value (NPV) is approximately £24,000–£30,000 for a 20–25 years’ service lifetime; 2) 72 

its payback period is about 4–10 years in general. 73 

Bristow et al. [25] demonstrated the GCHP technology in Canada, and their results indicate that the technology can not only 74 

reduce CO2 emission but also shorten the payback time. Yoon and Lee [26] studied the LCC of a GCHP at Korean Incheon 75 

International airport by one intelligent operating method to decrease the energy consumption and operating bills. Chiasson [27] 76 

analysed three air conditioning systems for an office building in Nebraska, USA, and obtained that the GCHP unit has the lowest 77 

LCC over air-source heat pump (ASHP), direct expansion (DX) cooling and gas heating units, as well as its payback period is 78 
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approximately 6.5 years. Morrone et al. [28] compared the cost effectiveness between the conventional and EPs systems by using 79 

NPV and discounted payback time (DPB) methods in Naples and Milan of Italy. It is demonstrated that the cost-saving of EPs 80 

system can be achieved approximately 20% with 8-11 years’ DPB in comparison to the conventional unit in Naples, while the 81 

saving is predicted no more than 10% with 4 years’ DPB in Milan. Vu et al. [29] proposed an economic model to optimize the 82 

LCC of a GCHP system in view of the impact of pipe size and heat pump capacity on different U-type heat exchangers. Their 83 

results reflect that the pipe size and heat pump capacity have more effects on the coil-type GHEs than that of other U-type GHEs. 84 

Ren et al. [30] estimated energy and economic benefits of the GCHP units with both steel and polyethylene (PE) heat exchangers 85 

in China, and discovered that the investment of the steel heat exchanger and energy consumption are less than the PE one by 86 

35.2% and 45.6%, respectively. The payback periods of the steal and PE heat exchangers reach 1.83 years and 3.45 years, 87 

respectively. Canbek [31] reported that the GCHP systems could save about 45–55% of heating and cooling expenses for 88 

residential buildings in the hot and humid climate. Zhu et al. [32] studied the LCC of a GCHP system based on the Monte Carlo 89 

method for a commercial building in USA and compared with the probabilistic method by @risk software with considering the 90 

data uncertainties. They confirmed that the GCHP unit is more favourable than the conventional system. Lu et al. [33] assessed 91 

the performances of several GCHP units and compared their costs against other traditional heating and cooling system’s based 92 

on the Bin method in Melbourne, and revealed that for a design lifetime of 20 years, the ASHP is more economically attractive 93 

than the GCHP unit whereas for a design life of 40 years, the GCHP system can produce more saving than other alternatives. 94 

Arat and Arslan [34] implemented economic analysis for a GCHP system to provide district heating for a town centre with a 95 

population of about 25,000 in Turkey through the LCC method, and denoted that the system can supply enough heat for the 96 

residences in a figure between 7,929 and 46,098 along with NPV varying from US$ 1,192.81 to US$ 23.20 million.  97 

Based on the aforementioned techno-economic assessments for the GCHP system with EPs, many studies have been 98 

implemented on energy performance and LCC analysis, the long-term performance assessment is one of the challenges to 99 

integrate the system into domestic building. Furthermore, the main obstacles in using LCC involve life of assets, erratic economic 100 

alteration, uncertainty factors concerning interest and discount rates, as well as future maintenance expense, NPV and payback 101 

period. The purpose of this paper is to assess the techno-economic characteristics of a GCHP system with EPs for a long-term 102 

operating period. The system seasonal operating performance, soil heat extracted/rejected rates, annual energy generation 103 

(heating and cooling) from the GCHP system are all determined by using the Engineering Equation Solver (EES) software. 104 

Furthermore, the system LCC assessment is carried out through the @Risk software considering the time value of the money to 105 

investigate the NPV and cumulative energy cost savings for 20 years of service lifetime. The key factors are taken into account 106 

in the complete LCC analysis, these include inflation rate, income tax rate, discount rate, interest rate, capital investment (CI), 107 

loan payment (LP), system energy cost (SEC), maintenance cost (MC), periodic cost (PC), present value (PV) of money and 108 
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cumulative EP system savings (EPS). Meanwhile, the payback period is also obtained according to the values of cash flows and 109 

cumulative system energy cost (SEC) savings.  110 

2. System description 111 

The building selected in this study is a two-storey family house in Birmingham, UK [39, 40]. The operation period of the GCHP 112 

system with multiple EPs is from October/2007 to September/2008. Data regarding the building geometry and system parameters 113 

are obtained from the project plan and specifications [39, 40]. The diagram of EPs array layout is given in Fig.2.  114 

 115 

Fig.2. The diagram of multiple EPs array layout 116 

The total number of EPs established is 21, which would be essential for the foundation demand of the family house. Nevertheless, 117 

only the perimeter 16 EPs are employed to exchange heat with ground. Each EP has a diameter of 0.3 m with 10 m depth. The 118 

U-tube is constructed with an external diameter of 0.032 m and wall thickness of 0.0029 m. The major parameters of EP are 119 

illustrated in Table 1. 120 

Table 1 Geometrical parameters and initial conditions [39, 40] 121 

Description Value 

Pipe external diameter  0.032 m 

Pipe internal diameter  0.0262 m 

EP diameter  0.3 m 

Shank spacing 0.06 m 

EP depth 10 m 

Initial ground surface temperature 10.4 °C 

Soil temperature   15.0 °C 

Soil bottom temperature  15.5 °C 

Fluid inlet temperature  1.2 °C  

 122 

2.1 Building energy demands 123 

The domestic building with the whole floor area of 144 m2 is designed for one family of four people, and its mean monthly 124 

ambient temperatures and energy (heating and cooling) demands are given in Fig.3 [39]. The lowest and highest temperatures 125 
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reach 4.75 °C in December and 17.38 °C in August, respectively. The maximum and minimum heating energy demands are 126 

3,154.85 kWh and 1,372.96 kWh, respectively. On the other hand, the maximum and minimum cooling energy are 1,488.12 127 

kWh and 862.49 kWh, respectively.   128 

 129 

Fig.3. Monthly energy demands and ambient temperatures 130 

2.2 Heat pump system 131 

The EPs are linked to a 5.9 kW Greenline HT Plus heat pump [39, 40] which generates hot water at a temperature range between 132 

35 °C and 65 °C. Technical specifications of the Greenline HT Plus [41] are given in Table 2. The main thermal property 133 

parameters are shown in Table 3.  134 

Table 2 Nominal specifications of the heat pump [39, 41] 135 

Description Value 

Emitted /Supplied output at 0/35°C  5.9/1.3 kW 

Refrigerant R407C mass flow rate  0.02 kg/s 

Superheat  3 °C  

Subcooling 4 °C  

Nominal flow heating medium 0.20 l/s 

Minimum flow heating medium  0.14 l/s 

 136 

Table 3 Thermal property parameters 137 

Fluid (mixture of glycol and water)  

Density  1,035 kg/m3 

Kinematic viscosity  4.94 ×10-6 m2/s 

Heat capacity 3,795 J/(kg ·K) 

Thermal conductivity  0.58 W/(m·K) 

Pipe(High density polyethylene)  

Density  950 kg/m3 

Heat capacity  2,300 J/(kg ·K) 

Thermal conductivity  0.45 W/(m ·K) 

Filling (Grout)  

Density  1,860 kg/m3 

Heat capacity  840 J/(kg ·K) 

Thermal conductivity  2 W/(m ·K) 

 

 

Depth Thermal conductivity Density 

Mixed Gravel and coarse sand 0 m to 2.22 m 1.30 W/(m·K) 2,277 kg/m3 
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Soil 

Sand gravel 2.22 m to 3.3m 1.15 W/(m·K) 2,094 kg/m3 

Gravelly Clay 3.3m to 5.5 m 1.68 W/(m·K) 2,223 kg/m3 

Gravelly Clay 5.5m to 10 m 1.75 W/(m·K) 2,392 kg/m3 

Weighted mean 1.50 W/(m·K) 2,260 kg/m3 

 138 

3. Methodology   139 

3.1 Energy analysis model 140 

3.1.1 EP thermal energy output 141 

The energy output of the multiple EPs unit is determined based on the local weather data and a 2D thermal resistance model as 142 

shown in Fig.4.  143 

 144 

Fig.4. Cross-section of EP and corresponding thermal resistance circuit 145 

Under the steady operating condition, the heat extracted/rejected rate from the soil (Qsoil) is given by [42]: 146 

soil pipe LMTDQ U A ΔT                                                                                                                                                                    (1) 147 

where U is the total heat transfer coefficient (W/m2·K); Apipe is the surface area of the U-tube pipe (m2); ΔTLMTD is the logarithmic 148 

mean temperature difference. ΔTLMTD is obtained by [42]: 149 

outlet inlet

LMTD

outlet soil

inlet soil

T T
ΔT

(T T )
ln

(T T )








                                                                                                                                                          (2) 150 

where Tinlet and Toutlet are the inlet and outlet working fluid temperatures (°C), respectively; Tsoil is the soil temperature (°C).  151 

The total heat transfer coefficient can be calculated by thermal resistance equations [42]: 152 

total

1
U

R
                                                                                                                                                                                       (3) 153 

total fluid pipe grout soilR R R R R                                                                                                                                                     (4) 154 
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where Rfluid is the working fluid thermal resistance (K/W); Rpipe is the pipe thermal resistance (K/W); Rgrout is the grout thermal 155 

resistance (K/W); Rsoil is the soil thermal resistance (K/W). 156 

fluid

inner fluid

1
R

2πr Lh
                                                                                                                                                                       (5) 157 

where rinner is the internal radius of pipe (m); L is the EP length (m); hfluid is the convective heat transfer coefficients of the 158 

working fluid within pipe (W/m·K).  159 

Based on the Gnielinski correlation, the convective heat transfer coefficient is given as: 160 

HD fluid

fluid

inner

Nu λ
h

2r


                                                                                                                                                                         (6) 161 

where λfluid is the thermal conductivity of the working fluid (W/m2·K). 162 

The Nusselt number is given as [43]: 163 

h

H

D

D 2/3

(f / 8) (Re 1000) Pr
Nu

1 12.7 (f / 8) (Pr 1)

  


   
                                                                                                                                            (7) 164 

where f is the Dracy friction factor; Re and Pr are the working fluid Reynolds and Prandtl numbers, respectively. 165 

The Dracy friction factor is given by [43]:  166 

h

2

Df [0.790 ln(Re ) 1.64]                                                                                                                                                          (8) 167 

Re and Pr are written as: 168 

H

fluid fluid H

D

fluid

ρ υ D
Re

μ
                                                                                                                                                                       (9) 169 

fluid fluid

fluid

c μ
Pr

λ
                                                                                                                                                                               (10) 170 

where ρfluid is the working fluid density (kg/m3); υfluid is the working fluid velocity (m2/s); μfluid is the working fluid dynamic 171 

viscosity (Pa·s); DH is the hydraulic dimeter (m).  172 

outer

pipe

pipe inner

r1
R ln

2πLλ r
                                                                                                                                                                (11) 173 

where λpipe is the thermal conductivity of the pipe material (W/m2·K); router is the pipe outer radius (m). 174 

Rgrout is given by [44, 45] 175 

EP

grout

grout outer

r1
R ln

2πLλ r ζ



                                                                                                                                                       (12) 176 

where λgrout is the thermal conductivity of the grout (W/m2·K); rEP is the radius of EP (m); ζ is the pipe number in the EP (e.g. for 177 

a single U-tube pipe where there are two pipes in the borehole, ζ = 2). 178 
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Rsoil is written by [44, 45] 179 

soil

soil

soil grout

r1
R ln

2πLλ r
                                                                                                                                                                  (13) 180 

where λsoil is the soil thermal conductivity (W/m2·K); rsoil is the soil region radius (m); rgrout is the grout radius (m). 181 

3.1.2 Heat pump power consumption 182 

A parametric model is adopted to calculate the compressor power consumption with consideration of the influence of its rotation 183 

speed by [46]:  184 

1
r,cond n

r c r,suc v

r,evap

P
m V ωρ [1 C (1 ) ]

P
                                                                                                                                                  (14) 185 

n 1
r,evap r,cond n

comp r,dis r,suc

r,suc r,evap

P Pn
Δξ ξ ξ [( ) 1]

n 1 ρ P



     


                                                                                                                     (15) 186 

r comp

comp

comp

m Δh
W

η
                                                                                                                                                                        (16) 187 

where mr is the compressor refrigerant mass flow rate (kg/s); Vc is the compressor suction volume (m3); ω is the compressor 188 

rotational speed (rev/s); ρr,suc is the compressor suction refrigerant density (kg/m3); Cv is the compressor volumetric coefficient, 189 

P is the pressure (kPa); ξ is the specific enthalpy (kJ/kg), n is the polytropic compression coefficient; ƞcomp is the compressor 190 

mechanical efficiency; Δξ is the specific enthalpy change (kJ/kg); Wcomp is the compressor power consumption (kW).  191 

On the other hand, a circulation pump is used to keep the working fluid flowing in the EPs, its electricity consumption is added 192 

to the total energy usage of the GCHP system. The pressure drop in the EPs is calculated by using the friction factor in the Darcy 193 

Weisbach equation [47], and can be given as: 194 

2

fluid

H

ρ VL
Δp f

D 2
                                                                                                                                                                        (17) 195 

where V is the working fluid velocity in the EPs (m/s). 196 

The power required by the circulation pump can be calculated as: 197 

pump

fluid

Δp m
W

ρ η /100


                                                                                                                                                                        (18) 198 

where ղ is the pump efficiency (%); m is the mass flow rate in the EPs (kg/s). The fan power consumption in the air duct network 199 

is very lower compared with the compressor’s or circulation pump’s, so it is not considered in this study. 200 

3.1.3 System performance 201 

The system energy output includes the useful heating (Qh) and cooling energy (Qc). In heating mode, Qh is equal to (Qsoil + Wcomp 202 

+ Wpump) whereas in cooling mode, Qc is equal to (Qsoil – Wcomp – Wpump). Furthermore, the key parameters to assess heat pump 203 
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performance are the Coefficient of Performance (COP) in heating mode, and the Energy Efficiency Ratio (EER) in cooling mode, 204 

which are given as: 205 

soil comp pum

comp pump

ph
Q W WQ

COP
W W W

 
                                                                                                                                                (19) 206 

soil comp pum

comp pump

pc
Q W WQ

EER
W W W

 
                                                                                                                                                (20) 207 

3.2 Economic analysis model 208 

The LCC is the sum of all expenses associated with an energy delivery system over a selected period or its service lifetime, with 209 

consideration of the time value of money. In the LCC, the expected future expenses are brought back to the present costs 210 

(discounted) through calculating how much have to be invested at a market discount rate. The LCC assessment process can be 211 

applied to evaluate financial benefit of the GCHP system with EPs, the main parameters, for example, interest rate, income tax 212 

rate, capital investment (CI), loan payment (LP), system energy cost (SEC), maintenance cost (MC), periodic cost (PC), extra 213 

property tax (EPT), incoming tax savings (ITS), net present value (NPV) of money and cumulative EP system savings (EPS), 214 

are all evaluated in the LCC analysis. The LCC assessment of the GCHP system consists of seven parts: SEC, CI, LP, MC, PC, 215 

ITS and NPV, while the core part is the NPV calculation which is utilised to compare cash flows at different time intervals. The 216 

structure of the LCC assessment is shown in Fig.5. 217 

 218 

Fig.5. The LCC structure for GCHP with EPs 219 

 220 
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3.2.1 LCC analysis  221 

According to the international standard of Environmental management BS ISO 15686 [48], the LCC refers to the systematic 222 

economic assessment of combined MC, CI, LP, SEC, PC and end-of-life costs of construction project during the whole life cycle 223 

period.  224 

The LCC on the basis of the NPV for the GCHP system can be written as: 225 

SEC CI LP MC ITS PCLCC C C C C C C                                                                                                                                      (21) 226 

where LCC is the GCHP system entire life cycle cost in NPV (£); CSEC is the GCHP system energy cost in PV (£); CCI is the 227 

GCHP system capital costs including the construction and engineering design expenses (£). In this study, only the construction 228 

expenses (installation and equipment expenses) are taken into account; CLP is the annual loan payment in PV (£); CMC is the 229 

GCHP system maintenance cost in PV (£); CITS is the GCHP system income tax savings expense in PV (£); CPC is the GCHP 230 

system periodic cost in PV (£). 231 

3.2.1.1 System boundary 232 

To obtain the precise LCC assessment results and provide the strongest protection for final evaluation, the foremost thing is to 233 

determine system boundary including its scope and lifetime. The scope of the GCHP system composes of high density 234 

polyethylene U-tube pipes, EPs, heat pump unit, fan coils and circulating pumps. According to the studies [40, 41, 48], the 235 

lifetime of the polyethylene U-tube pipe is approximately 50 years. On the other hand, the service lifetime of the heat pump 236 

system could be approximately 20 years. Thereby, the 20 years’ service lifetime of the GCHP system is adopted for the LCC 237 

evaluation. 238 

3.2.1.2 System energy cost (SEC) 239 

The SEC is also known as the fuel cost saving which is determined based on the electricity price and consumption. The electricity 240 

consumption of the system depends on heating and cooling loads of the building. The annual SEC is given as: 241 

SEC SEC N

SEC

1
C c

(1 d )
 


                                                                                                                                                              (22) 242 

SEC generationc E β                                                                                                                                                                            (23) 243 

where CSEC is the GCHP system energy cost in PV (£); cSEC is the GCHP annual electricity cost (£); dSEC is the inflation rate of 244 

electricity price (%); N is the period of economic assessment; Egeneration is the energy generation (heating and cooling) from the 245 

GCHP system (kWh); β is the electricity price (£/kWh). 246 

 247 

 248 

 249 

https://www.designingbuildings.co.uk/wiki/Cost
https://www.designingbuildings.co.uk/wiki/Construction
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3.2.1.3 Capital investment (CI) 250 

The high expenses of the system are for drilling and high density polyethylene pipe material, then followed by the heat pump 251 

with a mean cost of £5,600 for a capacity of 5.9 kW [41]. The other costs are comparatively low, for instance, the expenses of 252 

installing header pipes, circulation pump and expansion tank, and fittings [28].   253 

The CI model is established based on three cost categories as follows: 254 

ic in coCI C C C                                                                                                                                                                          (24) 255 

where Cic is the initial expense of main equipment (£); Cin is the installation expense, labour expense, auxiliary equipment 256 

expense (£); Cco is the commissioning or subscription expense (£). 257 

3.2.1.4 Loan payment (LP)  258 

The LP is also referred to as the mortgage payment per annum which involves principle and interest payments to install the 259 

system.  260 

The PV of LP is given by: 261 

z

LP LP

LP z

LP

r (1 r )
C G

(1 r ) 1

 
 

 
                                                                                                                                                                 (25) 262 

where CLP is the loan payment per annum (£); G is the principal payment (£); rLP is the yearly interest rate (%); z is the number 263 

of loan payment years.  264 

3.2.1.5 Maintenance cost (MC) 265 

The annual MC includes expected and unexpected budgets that are associated with the repair and corrective maintenance of the 266 

system. The present worth of MC per annum is given by: 267 

MC MC k

MC

1
C c

(1 d )
 


                                                                                                                                                                (26) 268 

where CMC is the present worth of the kth year GCHP maintenance expense (£); cMC is the first year maintenance expense of 269 

GCHP (£); dMC is the inflation rate of maintenance (%); k is the period of maintenance payment. 270 

3.2.1.6 Periodic cost (PC) 271 

The PC denotes the replacement cost of main system parts. For the GCHP system, only the heat pump is required to be replaced 272 

every 20 years [41, 49, 50]. Therefore, the PC in PV is written as: 273 

PC PC s

PC

1
C c

(1 d )
 


                                                                                                                                                                 (27) 274 

where CPC is the present worth of the sth year GHCP system periodic expense (£); cPC is the first year GCHP system periodic 275 

expense (£); dPC is the inflation rate of replacement (%); s is the year number of periodic payment.  276 
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In fact, the PC of the GCHP system is not considered in this study because the heat pump only needs to be replaced every 20 277 

years. 278 

3.2.1.7 EP system savings (EPS) and income tax savings (ITS) 279 

The EPS is also referred to as the yearly net cash flow and can be written as [49, 50]: 280 

MCEPS SEC LP EP P SC T ITC C C C C C C                                                                                                                                     (28) 281 

where CEPT is the extra property tax (£); CITS is the income tax savings (£). 282 

The CEPT in PV is expressed as: 283 

EPT EPT α

EPT

1
C c

(1 γ )
 


                                                                                                                                                              (29) 284 

where cEPT is the annual extra property tax cost of the GCHP system (£); γEPT is the inflation rate of extra property tax (%); α is 285 

the period of extra property tax. 286 

The CITS in PV is given by [49, 50]: 287 

ITS ETR IP EPT RHIC C (C C C )                                                                                                                                                     (30) 288 

where CETR is the effective tax rate (%); CIP is the interest payment (£); CRHI is the renewable heat incentive bonus for heat 289 

generation in the UK (£). 290 

3.2.1.8 Net present value (NPV) 291 

The NPV is estimated to evaluate the whole gain of the system. If a payment repeats every year at an inflate rate of r per annum, 292 

the NPV is written by the following equation: 293 

N'
N

CI N
N 1

C
NPV C

(1 r)

  


                                                                                                                                                            (31) 294 

where CN is the net cash inflow during the N period (£); CCI is the entire capital investment expense (£); r is the discount rate 295 

(%). 296 

A positive NPV demonstrates that the projected earning created by a project or investment surpasses the expected cost. Generally, 297 

an investment with a positive NPV will be profitable, and an investment with a negative NPV will cause a net loss.  298 

3.3 LCC simulation process 299 

The implementation of the LCC is done by the @Risk software, which is coupled with Microsoft Excel. The whole analysis is 300 

split into six parts and the LCC assessment flowchart is shown in Fig.6. Some critical parameters and economic equations are 301 

needed, such as the system scope, system functional component, CI value, building heating/cooling loads, heat pump 302 

specifications and number of iterations for each step. The CSEC, CLP, CMC, CEPS, CEPT and CITS are obtained by using Eqs. (22), 303 

(23), (25), (26) and (28) - (30). And then, the NPV and payback period are defined as the output parameters. Meanwhile, the 304 
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input parameter distribution is defined by using the Normal function. Specifically, the ranges of the capital cost, energy 305 

generation and electricity price are from £6,500 to £15,000, 13,000 kWh to 24,000 kWh, and £0.075/kWh to £0.22/kWh, 306 

respectively. In the following, the number of iteration is set as 6000 in this simulation process. Once the programmed cycles of 307 

iterations are finished, the NPV and payback period are obtained. 308 

 309 

Fig.6. The flowchart of LCC assessment for GCHP with EPs 310 

4. Results and discussion 311 

Before the 2D numerical model is employed to simulate the system energy performance, the model validation is implemented 312 

by comparing numerical results with the experimental data [39, 40]. The COPs of the numerical and experimental results are 313 

presented in Fig.7 (a), and it is found that the maximum COP difference between them is approximately 8.33 % noticed in 314 

November. Likewise, the EERs of the numerical and experimental data are displayed in Fig.7 (b), and the maximum EER 315 

difference is about 8.17 % noticed in May. Therefore, the simulation results are effectively supported by the experimental data, 316 

so the 2D numerical model can be utilized to study the energy performance of the GSHP with multiple EPs. 317 
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 318 

Fig.7. Comparisons between numerical results and experimental data: (a) COP; (b) EER 319 

4.1 Energy performance  320 

The annual operating process of the GCHP system is classified into two periods on the basis of the local climate condition. One 321 

is the heating season from October/2007 to April/2008. Another is the cooling season from May/2008 to September/2008. The 322 

mean system energy output from the heat pump (heating and cooling) and ground energy obtained (extracted and rejected) are 323 

simulated and given in Fig. 8. In this figure, the monthly thermal energy generations are lower in October and April. It is 324 

noteworthy that the minimum monthly energy output of the GCHP system is approximately 1,593.94 kWh in April whereas the 325 

maximum value is approximately 2,285.24 kWh in December. Moreover, from February to April, the GCHP system operates in 326 

most of time, therefore the soil has no enough time to recover. So the soil temperature nearby the EP is comparatively low, which 327 

results in a low temperature working fluid temperature entering into the evaporator of the heat pump unit, correspondingly a low 328 

COP. Meanwhile, the minimum value of monthly heat extracted from the ground is about 1,148.99 kWh in April, and the 329 

maximum value is about 1,890.20 kWh in December. The minimum GCHP system cooling output is about 1,000.25 kWh in 330 

September whereas the maximum value is about 1,521.78 kWh in July. Furthermore, the monthly heat rejected into the soil is 331 

also depicted, the minimum rejected heat is about 894.85 kWh in September whereas the maximum value is about 1,279.01 kWh 332 

in July.  333 

    334 

Fig.8. Energy output: (a) in the heating season; (b) in the cooling season 335 
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   336 

Fig.9. Electrical energy consumption and system performance: (a) in the heating season; (b) in the cooling season 337 

The monthly electrical energy consumption and system performance in the heating and cooling seasons are shown in Fig.9. The 338 

system can fulfil the building energy demands under both operating conditions. The monthly heating electrical energy 339 

consumptions of the GCHP system are 440.69 kWh, 578.40 kWh, 643.73 kWh, 596.18 kWh, 555.67 kWh, 516.33 kWh and 340 

427.33 kWh from October to April, with corresponding average monthly COPs reach 3.65, 3.6, 3.55, 3.58, 3.62, 3.65 and 3.73, 341 

respectively. Therefore, the system annual average COP is 3.63. The monthly cooling electrical energy consumptions are 215.10 342 

kWh, 241.13kWh, 281.10 kWh, 266.02 kWh and 190.80 kWh from May to September, with corresponding average monthly 343 

EERs achieve 4.65, 4.58, 4.55, 4.61 and 4.69, respectively. So the system annual average EER is 4.62. 344 

 345 

Fig.10. Annual total energy generation, electrical energy consumption and ground energy extracted/rejected 346 

According to Fig.10, the total heat output of the GCHP system is approximately 13,599.40 kWh and the heat extracted from soil 347 

is about 10,805.36 kWh, leading to the power consumption of around 3,746.39 kWh. By comparison, the cooling output is around 348 

5,500.82 kWh and the heat rejected into the soil is approximately 6,564.24 kWh, resulting in 1,193.24 kWh of the power 349 

consumption. Therefore, the annual energy output (heating and cooling) of the GCHP system is estimated to be about 19,100 350 

kWh and the total power consumption reaches approximately 4,939.63 kWh. So the energy provided by the GCHP system can 351 

cover the building heating and cooling requirements. 352 

 353 
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4.2 Economic assessment 354 

The total system capital cost is £9,033 with 10% down payment, the remaining part of the initial expense is financed at an interest 355 

rate of 8.2% for the 20 years’ period. It is anticipated to pay normal maintenance expense for the system annually with an inflation 356 

rate of 4.5% [50]. Energy pricing mechanism in the UK is a combination of regulated and market-driven prices [30]. The 357 

electricity price is £0.1097/kWh by the UK government [51]. In the light of UK energy prices regulated via Ofgem [52], the RHI 358 

rate for the units between 4 kW and 10 kW is £0.1986/kWh. The property tax is 2% of the initial cost. The maintenance expense 359 

for EPs is estimated to be £150 per annum. The average effective income tax rate is evaluated to be 20% over the service lifetime 360 

period. The costs of EPs include the auger drilling, high density polyethylene pipe material, installation and maintenance costs, 361 

are given in Table 4. Details of the component prices, economic expenses and parameters are illustrated in Table 5. 362 

Table 4 Cost breakdown of GCHP system [39] 363 

Item Value 

EP pipe   

Pipe drilling cost   £2.63/m × 413m 

Loop installation into pile reinforcement cages £640 

Estimated pipe installation cost £1,726 

Heat pump system  

Heat pump & commissioning £5,600 

Working fluid cost £174 

Estimated heat pump unit cost £5,774 

Other equipment installation  

Header circuit insulation £186 

Brass fittings £386 

4 port brass manifold with flow control  £361 

Estimated other equipment cost £933 

Labour cost  

Header circuit labour £600 

Total capital cost £9,033 

Estimated maintenance cost £150 

 364 

Table 5 Parameters used for economic analysis 365 

Item Value 

Electricity price  £0.1097/kWh 

RHI for GCHP  £0.1986/kWh 

Down payment  10% 

Inflation rate of electricity price 6% 

Interest rate of principal 8.2% 

Inflation rate of maintenance  4.5% 

Council rate for property tax  2% 

Inflation rate of extra property tax  4% 

Income tax rate 20% 

UK discount rate 8.75% 

 366 

The annual progressions of SEC and MC of the GCHP system for the 20-year operating period are presented in Table 6. The 367 

system annual fuel saving bill is the previous year’s expense multiplied by inflation rate of electricity price. Specifically, the 368 
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SEC for the first year is approximately £2,095.27 (19,100 kWh × £0.1097/kWh) and the second year’s SEC is about £2,220.99 369 

[19,100 kWh × £0.1097/kWh × (1+6%)] with considering the inflation rate of electricity price. By the end of the 20th year, the 370 

value can reach £6,339.45 [19,100 kWh × £0.1097/kWh × (1+6%)19]. Similarly, the MC in the first year and 20th year achieve 371 

£150 and £346.18, respectively. Moreover, the annual progressions of LP, interest payment, remaining principal, EPS and ITS 372 

are also shown in Table 6. For example, the interest payment in the first year is £666.64 (8.2% × £8,129.7). The LP is 373 

approximately £840.39 by using Eq. (25), thereby the principal payment and remaining principal reach £173.75 (£840.39 - 374 

£666.64) and £7,955.95 (£9,033×10% - £173.75), respectively. In terms of the ITS and EPS, the progressions of the ITS and 375 

EPS for the 20-year operating period are given in columns 10 and 11, to be more specific, the ITS for the first year and 20th year 376 

are approximately £928.11 and £847.51, respectively. Moreover, the EPS for each year is the sum of the items including SEC, 377 

LP, MC, EPT and ITS. The annual EPS is brought to present worth using the UK market discount rate of 8.75%. The deposit 378 

charge is £903.3 which is a negative present value, and it is displayed as Year 0. The EPS becomes a positive value reaching 379 

approximately £1,852.33 after the first year and the EPS achieves £5,619.77 until the 20th year. Furthermore, the NPV of the 380 

GCHP system is obtained approximately £26,095.14 at the market discount rate of 8.75% for a 20-year operating period. The 381 

economic assessment demonstrates that the cash flow turns positive at the end of the first year and maintains positive permanently 382 

by the end of the service lifetime. This is because the replacement of the heat pump is only considered in the 20th year, meanwhile, 383 

the original and maintenance expenses of the GCHP system are much less as well in this case. 384 

 385 

Fig.11. Variation of remaining principal, cumulative EPS and cumulative SEC savings  386 

According to Fig.11, the cumulative SEC saving (£9,166) exceeds the CI (£9,033) by the end of the fourth year. The cumulative 387 

EPS becomes positive after one year due to the low capital and little maintenance costs. The cumulative system saving (£9,531.53) 388 

surpasses the remaining principal balance (£7,106.28) by the end of the fifth year. The calculation process of the LCC analysis 389 

is given in Table 6. Meanwhile, the payback period is approximately 4.3 years as shown in Fig.11. This is deemed an acceptable 390 

payback period (<10 years) for an engineering project of this nature, and serves to demonstrate the clear benefit of adopting such 391 

a system in the UK context. 392 
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 393 

Table 6 The economic assessment of the GCHP with multiple EPs system for Birmingham, UK (20-year service lifetime)  394 

Year Energy 

generation 

(kWh/year) 

SEC (£) LP (£) Interest 

payment 

(£) 

Principal 

payment 

(£) 

Remaining 

principal  

(£) 

MC (£) EPT (£) ITS (£) EPS (£) Present 

worth of 

EPS (£) 

Cumulative 

EPS (£) 

Cumulative 

SEC 

savings (£) 

0      8,192.70    (903.30) (903.30) (903.30)  

1 19,100 2,095.27 (840.39) 666.64 173.75 7,955.95 (150) (180.66) 928.11 1,852.33 1,703.29 949.03 2,095.27 

2 19,100 2,220.99 (840.39) 652.39 188.00 7,767.94 (156.75) (187.89) 926.70 1,962.67 1,659.54 2,911.69 4,316.26 

3 19,100 2,354.25 (840.39) 636.97 203.42 7,564.52 (163.80) (195.40) 925.13 2,079.78 1,617.07 4,991.47 6,670.50 

4 19,100 2,495.50 (840.39) 620.29 220.10 7,344.43 (171.18) (203.22) 923.35 2,204.07 1,575.83 7,195.55 9,166.00 

5 19,100 2,645.23 (840.39) 602.24 238.15 7,106.28 (178.88) (211.35) 921.37 2,335.99 1,535.76 9,531.53 11,811.23 

6 19,100 2,803.94 (840.39) 582.71 257.68 6,848.60 (186.93) (219.80) 919.16 2,475.98 1,496.83 12,007.51 14,615.18 

7 19,100 2,972.18 (840.39) 561.59 278.80 6,569.80 (195.34) (228.59) 916.69 2,624.55 1,458.98 14,632.06 17,587.36 

8 19,100 3,150.51 (840.39) 538.72 301.67 6,268.13 (204.13) (237.74) 913.94 2,782.19 1,422.18 17,414.26 20,737.87 

9 19,100 3,339.54 (840.39) 513.99 326.40 5,941.73 (213.32) (247.25) 910.89 2,949.49 1,386.38 20,363.75 24,077.41 

10 19,100 3,539.92 (840.39) 487.22 353.17 5,588.56 (222.91) (257.14) 907.52 3,126.99 1,351.56 23,490.75 27,617.32 

11 19,100 3,752.31 (840.39) 458.26 382.13 5,206.43 (232.95) (267.42) 903.79 3,315.34 1,317.67 26,806.09 31,369.63 

12 19,100 3,977.45 (840.39) 426.93 413.46 4,792.97 (243.43) (278.12) 899.66 3,515.17 1,284.68 30,321.26 35,347.08 

13 19,100 4,216.10 (840.39) 393.02 447.37 4,345.60 (254.38) (289.24) 895.11 3,727.19 1,252.57 34,048.45 39,563.18 

14 19,100 4,469.06 (840.39) 356.34 484.05 3,861.55 (265.83) (300.81) 890.08 3,952.11 1,221.29 38,000.56 44,032.24 

15 19,100 4,737.20 (840.39) 316.65 523.74 3,337.81 (277.79) (312.84) 884.55 4,190.73 1,190.83 42,191.29 48,769.44 

16 19,100 5,021.44 (840.39) 273.70 566.69 2,771.12 (290.29) (325.36) 878.46 4,443.86 1,161.16 46,635.15 53,790.88 

17 19,100 5,322.72 (840.39) 227.23 613.16 2,157.96 (303.36) (338.37) 871.77 4,712.38 1,132.25 51,347.52 59,113.60 

18 19,100 5,642.09 (840.39) 176.95 663.44 1,494.53 (317.01) (351.91) 864.42 4,997.21 1,104.08 56,344.73 64,755.69 

19 19,100 5,980.61 (840.39) 122.55 717.84 776.69 (331.27) (365.98) 856.36 5,299.32 1,076.63 61,644.05 70,736.30 

20 19,100 6,339.45 (840.39) 63.69 776.70 -0.015 (346.18) (380.62) 847.51 5,619.77 1,049.86 67,263.82 77,075.75 

Total           26,095.14   

 395 
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4.3 Sensitive analyses of NPV and payback period 396 

In the following, the comparison analyses are implemented with respect to the NPV and payback period with different parameters. 397 

The distribution graphs of cumulative probability versus NPV and payback time for the GCHP system over the whole LCC 398 

period are presented in Figs.12 and 13 respectively. The legend gives the minimum, maximum, average, number of iterations 399 

and standard deviation of NPV and payback period in this case.  400 

 401 

Fig.12. NPV distribution  402 

 403 

Fig.13. Payback period distribution  404 

The vertical lines in Fig.12 represent the NPV of present case (£26,095) and average value (£33,053). One row of percentages 405 

on the top of the diagram displays the probabilities relative to the NPV. Specifically, the top row depicts the probability regarding 406 

the LCC of the GCHP system which is classified into three categories. When the NPV is less than the present case value, it 407 

accounts for 28.6%; when the NPV is located between the NPV of the present case value and average value, it makes up 25.2%; 408 

when the NPV is greater than the average value, it accounts for a proportion of 46.2%. By comparison, the vertical lines in Fig.12 409 
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denote the minimum and average values in the payback period. Based on one row of percentages on the top of the graph, there 410 

is a probability of 44.2% that the payback period of the system is more than 4.31 years, and 55.8% of the payback time is between 411 

1.61 and 4.31 years, while 0% of the payback period is less than 1.61 years. 412 

4.3.1 NPV variation with the uncertain input factors 413 

The NPV variations with the uncertain input factors are shown in Fig.14. It is denoted that the uncertainty associated with 414 

electricity price has the largest effect on the NPV whereas the inflation rate of maintenance cost has the least impact among the 415 

uncertain input parameters. Notably, the low electricity price makes the NPV to be £20,308.66, 38.6% lower compared to the 416 

baseline of £33,068.19. On the contrary, the high electricity price makes the NPV as high as £49,255.99 (50.0% higher). Similarly, 417 

the uncertainty in energy generation is closely related to the variety of financial credits achieved from improving the NPV. Thus, 418 

the range of energy generation by using the GCHP system results in a NPV variation of approximately £23,078.62 - £42,588.94. 419 

If the lower capital investment were obtained, the NPV would reach about £36,816.40 while the higher capital investment induces 420 

a longer period to achieve a positive NPV of £28,663.53 (i.e. a longer payback period). 421 

 422 

Fig.14. Tornado chart of NPV variation with uncertain input parameters  423 

The NPV variations against electricity price, energy generation, capital cost and discount rate are presented in Fig.15. The 424 

horizontal and vertical lines (respective mean values) split the graph into four quadrants with the change of electricity price from 425 

£0.06/kWh to £0.22/kWh as shown in Fig.15 (a). The NPV varies from £10,000 to £33,066 accounting for the largest proportion 426 

of 43.0% when the electricity price increases from £0.08/kWh to £0.1349/kWh, meanwhile, the smallest proportion of 10.7% 427 

occurs when the electricity price further increases from £0.1349/kWh to £0.22/kWh. Likewise, the energy output range of 13,000 428 

kWh to 24,000 kWh affects the savings, cash flows and NPV as presented in Fig.14 (b): the higher energy generation, the greater 429 

system performance and larger energy savings, as well as the more NPV and cash flow. When energy output varies from 18,699 430 

kWh to 24,000 kWh, the NPV changes from £10,000 to £33,066 and takes up the biggest proportion of 34.3%, while the NPV 431 
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lies in the range of £10,000 to £33,066 making up the smallest ratio of 17.0% when the energy output is in the range of 13,000 432 

kWh to 18,699 kWh. 433 

 434 

 435 

 436 
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 437 

Fig.15. NPV against variations of (a) electricity price; (b) energy generation; (c) capital cost; (d) discount rate 438 

In addition, considering the GCHP system price change in the future, the NPV variation is relative to the capital expense as 439 

shown in Fig.15 (c). Compared to the impact of electricity price and energy output, the influence of capital cost is more evenly 440 

distributed in the NPV quadrants. For instance, when increasing the GCHP system capital cost from £6,000 to £10,178 and from 441 

£10,178 to £15,000, about 23.7% and 26.7% of the NPVs fall below the average value of £33,066, respectively. This 442 

demonstrates that the initial cost of the GCHP system is significant to the final judgement of investment as the higher GCHP 443 

price leads to the higher capital cost and loan payment. Therefore, the capital price of the GCHP system should be regulated as 444 

low as possible for the better market potential. Finally, similar with the capital cost, altering the discount rate also results in an 445 

even distribution of the NPV value as given in Fig.15 (d). Higher discount rate weakens the present worth of cash flow and 446 

energy output, and decreases the NPV. The lower discount rate is beneficial to the investment of the GCHP system. 447 

4.3.2 Payback period variation with the uncertain input parameters 448 

The payback period is sensitive to several key parameters, including electricity price (£/kWh), capital investment (£) and energy 449 

generation (kWh) (see Figs.16-18). Uncertainty associated with electricity price significantly affects the total operating cost (i.e., 450 

electricity consumption), energy output and NPV. According to Fig.16, the low electricity price reduces the operating and 451 

electricity costs, and increases the payback period up to about 6.18 years relative to the baseline of about 4.31 years. On the other 452 

hand, the high electricity price makes the payback period as short as 2.88 years. Likewise, uncertainty in energy output is closely 453 

related to the financial credit achieved from reduced electricity consumption. Thus, the range of energy output by using the 454 

GCHP system gives rise to a payback period range of approximately 3.51-5.46 years. If lower capital investment can be obtained, 455 

the payback period can be achieved about 3.17 years while higher capital investment induces a longer term to achieve positive 456 

NPV (up to about 5.70 years).  457 
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 458 

Fig.16. Tornado chart of payback period variation with uncertain input parameters 459 

Fig.17 presents the correlation of payback period. The high electricity price has a good chance (38.7% versus 6.7%) to reduce 460 

payback period to below 4.31 years. But for lower electricity price, there is a possibility of 36.0% that payback period is over 461 

the mean value as shown in Fig.17 (a). Scenarios in the lower half of Fig.17 (b) have low payback period (<4.31 years) while 462 

those in the left-hand side of the figure have lower capital investment (<£10,178). The payback period is therefore located in the 463 

lower left quadrant with a possibility of 40.0%. The correlation between the payback period and energy generation presents a 464 

pretty even distribution in the four quadrants as shown in Fig.17 (c). The possibility of reducing the payback period below the 465 

mean value (4.31 years) is 57.3%, with 20.3% for energy generation lower than 18,699 kWh and 37% for energy generation over 466 

18,699 kWh. 467 

 468 
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 469 

 470 

Fig.17. Payback period against variations of: (a) electricity price; (b) capital cost; (c) energy generation 471 

 472 

4.3.3 Payback period variation with NPV  473 

It can be seen from Fig.18 that 38.0% of probability NPV value is lower than the average value of £33,066 when the payback 474 

period is above the mean value (4.31-8.50 years). Only 4.7% of chance NPV is higher than the average value, indicating the long 475 

payback time is detrimental to the total NPV. If payback period can be achieved less than 4.31 years, there is a possibility of 476 

45.0% that the NPV value is higher than the mean value whereas a chance of 12.3% for lower value. This indicates that the high 477 

NPV value (the upper left side of the figure) can be achieved when the payback period is shortened in the case. 478 
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 479 

Fig.18. Payback period variation with NPV 480 

5. Conclusions 481 

A techno-economic assessment on a GCHP system with multiple EPs for a domestic building in Birmingham, UK is presented 482 

in this paper. 16 EPs are utilized as the ground heat exchangers, and a 5.9 kW nominal heat pump is connected to the EPs. A 2D 483 

thermal resistance model of the GCHP system is employed to determine its monthly energy output (heating and cooling), ground 484 

energy extracted/rejected, electrical energy consumption and system performance (COP and EER) through the EES software. 485 

Furthermore, the financial benefit of the GCHP system is evaluated by using the @Risk software, a complete LCC method with 486 

consideration for the time value of money is adopted and some key parameter effects on the LCC are assessed, such as interest 487 

rate, income tax rate, LP, SEC, CI, MC, EPT, EPS, ITS, NPV and cumulative EPS. The critical conclusions are obtained as 488 

follows: 489 

(1) The energy output (heating and cooling) of the GCHP system could meet the space heating and cooling demands of the 490 

domestic building with the annual average COP of 3.63 and EER of 4.62. 491 

(2) The NPV of the GCHP system is £26,095.41 at the market discount rate of 8.75% for a 20-year operating period.  492 

(3) The cumulative EPS becomes positive by the end of the first year, afterwards it keeps positive until the life cycle is completed. 493 

(4) The cumulative SEC saving (£9,166) exceeds the initial cost (£9,033) by the end of the fourth year, the cumulative EPS 494 

(£9,531.53) surpasses the remaining principal balance (£7,106.28) by the end of the fifth year. The system payback period 495 

is 4.31 years. 496 

(5) The high discount rate reduces the GCHP system energy output and NPV; the low discount rate contributes to the system 497 

capital cost. 498 

(6) The payback period is sensitive to electricity price, capital investment and energy output. The high capital investment induces 499 

a long term to achieve positive NPV.  500 

For the future research work, a more detailed LCC in comparison with other conventional systems will be investigated.  501 
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 604 

 605 

Nomenclature 

A          Surface area of the U-tube pipe (m2) 

C           Cost (£) 

DH        Hydraulic dimeter (m) 

d           Discount rate (%) 

E               Energy generation (kWh)  

G           Principal payment (£) 

h           Heat transfer coefficient [W/(m2·K)] 

k            Period of maintenance payments 

L            Energy pile length (m) 

https://researchbriefings.parliament.uk/Resear%20chBriefing/Summary/SN04153
https://researchbriefings.parliament.uk/Resear%20chBriefing/Summary/SN04153
https://www.ofgem.gov.uk/environmental-programmes/domest%20ic-rhi
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N            Period of economic assessment 

Nu          Nusselt number 

n             Polytropic compression coefficient 

P             Pressure (kPa) 

Pr            Prandtl number 

R            Thermal resistance (K/W) 

Re           Reynolds number 

r              Radius (m)  

s             Year number of periodic payments 

T            Temperature (°C) 

t             Time (s) 

U           Overall heat transfer coefficient (W/m2·K) 

W           Rate of work input (kW) 

z             Number of loan payment years 

Subscripts 

c                Cooling output from heat pump 

comp         Compressor 

fluid           Fluid 

h                 Heat output from heat pump 

inlet            Inlet fluid temperature 

outlet          Outlet fluid temperature 

pipe            Pipe 

pump          Pump 
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soil             Soil 

total            Total 

Greek Letters 

α              Period of extra property tax (%) 

β              UK electricity rate (£/kWh) 

γ               Inflation rate of extra property tax (%) 

ζ               Number of pipes in the EP 

λ              Thermal conductivity (W/m2·K) 

ρ               Density (kg/m3) 

υ               Working fluid velocity (m2/s) 

μ               Working fluid dynamic viscosity (Pa·s) 

Abbreviations 

ASHP            Air source heat pump 

CI                   Capital investment 

COP               Coefficient of performance 

DC                 Direct expansion 

DCFA            Discounted cash flow analysis 

DPB               Discounted payback time 

EER               Energy efficiency ratio 

EES               Engineering equation solver 

EP                  Energy pile 

EPS                Energy pile system savings 

EPT               Extra property tax 
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ETR              Effective tax rate 

GHE             Ground heat exchanger 

GCHP           Ground-coupled heat pump  

ITS               Income tax savings 

LCA             Life-cycle assessment 

LCC             Life-cycle cost 

LMTD          Logarithmic mean temperature difference 

LP                Loan payment 

MC              Maintenance cost 

NPV             Net present value 

PC                Periodic cost 

RHI              Renewable heat incentive 

SEC             System energy cost 

SPB             Simple payback period 
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